
Efficient Symbolic Multi–Objective Design Space Exploration

Martin Lukasiewycz, Michael Glaß, Christian Haubelt, and Jürgen Teich
Hardware/Software Co-Design, Department of Computer Science

University of Erlangen-Nuremberg, Germany

{martin.lukasiewycz, glass, haubelt, teich}@cs.fau.de

Abstract — Nowadays many design space exploration tools are
based on Multi–Objective Evolutionary Algorithms (MOEAs).
Beside the advantages of MOEAs, there is one important draw-
back as MOEAs might fail in design spaces containing only a
few feasible solutions or as they are often afflicted with prema-
ture convergence, i.e., the same design points are revisited again
and again. Exact methods, especially Pseudo Boolean solvers (PB
solvers) seem to be a solution. However, as typical design spaces
are multi–objective, there is a need for multi–objective PB solvers.
In this paper, we will formalize the problem of design space explo-
ration as multi–objective 0–1 ILP. We will propose (1) a heuristic
approach based on PB solvers and (2) a complete multi–objective
PB solver based on a backtracking algorithm that incorporates
the non–dominance relation from multi–objective optimization
and is restricted to linear objective functions. First results from
applying our novel multi–objective PB solver to synthetic prob-
lems will show its effectiveness in small sized design spaces as well
as in large design spaces only containing a few feasible solutions.
For non–linear and large problems, the proposed heuristic ap-
proach is outperforming common MOEA approaches. Finally, a
real world example from the automotive area will emphasize the
efficiency of the proposed algorithms.

I. INTRODUCTION AND RELATED WORK

The automatic optimization of embedded systems with re-

spect to several and often conflicting objectives, also known

as design space exploration, is still a challenging task in elec-

tronic system level design. This task is twofold [1]: (1) each

design point has to be evaluated regarding all objective func-

tions and (2) a strategy for covering the search space is needed.

State–of–the–art approaches in automatic design space explo-

ration are based on Multi–Objective Evolutionary Algorithms
(MOEAs), e.g., [2, 3, 4]. MOEAs have several advantages over

other optimization strategies, e.g., they do not make any as-

sumption on the objective functions. However, MOEAs also

have some severe limitations: Firstly, MOEAs often fail in

search spaces containing only a few feasible solutions. Sec-

ondly, after a convergence phase, MOEAs are not able to ex-

plore the search space even more. Instead, MOEAs revisit al-

ready known solutions again and again.

A remedy to these drawbacks might be symbolic represen-

tations [5] or Integer Linear Programming (ILP) in automatic

design space exploration [6]. The basic design space explo-

ration problem can be reduced to an ILP problem with binary

variables (0–1 ILP). A 0–1 ILP is stated as

min{f(x)|Ax ≤ b} (1)

where the linear objective function f(x) = cT x is optimized

considering a set of linear constraints1 Ax ≤ b with b ∈ Z
k,

c ∈ Z
n, A ∈ Z

k,n, and x ∈ {0, 1}n. However, these

exact methods are afflicted by exponential runtimes making

them prohibitive in the presence of real–world applications.

Anyhow, the recent enhancements in the Boolean Satisfiability
[7, 8, 9] were transfered into specialized programs, the Pseudo
Boolean (PB) solvers [10, 11, 12], that are efficiently solving

0–1 ILPs. Although a general ILP solver will solve these prob-

lems, too, PB solvers are superior regarding the runtime [13].

Common PB solvers have some limitations, too: Firstly,

they can optimize just a single objective function. Secondly,

the objective function has to be linear. In this paper, we will

close this gap by formalizing and solving the design space

exploration problem as a multi–objective 0–1 ILP. The main

contribution of this paper are two approaches solving these

multi–objective 0–1 ILPs: (1) a sophisticated heuristic ap-

proach for problems with also non–linear objective functions

and (2) a novel complete multi–objective PB solver for prob-

lems with only linear objective functions. The effectiveness

will be shown by comparing our results with results from a

design space exploration performed with a state–of–the–art

MOEA approach.

The remainder of the paper is organized as follows: Sec-

tion II formally defines the problem of design space explo-

ration. In Section III, we propose the formalization of the de-

sign space exploration problem as a multi–objective 0–1 ILP

and present a novel heuristic approach based on common PB

solvers as well as our multi–objective PB solver based on a

specialized backtracking algorithm. In Section IV, we will

present first results from applying our methodologies to syn-

thetic and real–world problem instances.

1Greater–relations and equalities are obtained by Ax ≥ b ⇔ −Ax ≤ −b
and Ax = b ⇔ Ax ≥ b ∧ Ax ≤ b

8B-4

691978-1-4244-1922-7/08/$25.00 ©2008 IEEE

���������	�
�

������	�
�

�����	��	���

�������	�	�
�

���������	

�	��	�

Fig. 1. The design space exploration problem.

II. PROBLEM STATEMENT

In this paper, we consider the problem of design space ex-

ploration at system level. The task of design space exploration

is to find the set of optimal feasible implementations for a given

specification. The design flow is illustrated in Figure 1. The

specification consists of the architecture, the application, and

the relation between these two views:

• The architecture is modeled by a graph ga(Va, Ea) and

represents possible interconnected hardware resources.

The vertices r1, ..., r|Va| ∈ Va are the single resources,

the edges Ea are possible communication links.

• The application is modeled by a problem graph

gp(Vp, Ep) that describes the behavior of the system. The

vertices p1, ..., p|Vp| ∈ Vp are tasks whereas the directed

edges Ep are data dependencies. Data–dependent tasks

have to be executed on the same or adjacent resources to

ensure a correct communication.

• The set of mapping edges Em are indicating whether a

specific task can be executed on a hardware resource.

Each mapping edge e1, ..., e|Em| is a directed edge from

a task to a resource.

An implementation or solution of the problem is deduced

from the specification and consists of two main parts:

• The allocation α is the set of hardware resources like,

e.g., processors, IP cores, or buses. The allocation is a

subset of Va and represents these resource that are actually

used.

• The binding β determines on which allocated resource

each task is executed. For each task from the problem

graph exactly one mapping has to be in use. The binding

is a subset of Em.

Due to data dependencies, a binding can be infeasible. A

binding is called feasible if it guarantees that data communi-

cations imposed by the problem graph could by established by

the allocated resources. Furthermore, a feasible allocation is

an allocation α that allows at least one feasible binding β. In

order to restrict the combinatorial search space, it is useful to

determine the set of feasible allocations and bindings. With

this knowledge, we define an implementation as a pair (α, β).

Definition 1 (Design Space Exploration) The task of design

space exploration can be formulated as the following multi–
objective optimization problem:

minimize f(α, β),
subject to:

α is a feasible allocation,
β is a feasible binding,

The constraints on α and β define the set of feasible implemen-

tations. The objective function f consists of m ∈ N functions

where in the following, without loss of generality, only mini-

mization problems are assumed.

In single–objective optimization, the feasible set of imple-

mentations is totally ordered, whereas in multi–objective op-

timization problems, the feasible set is only partially ordered

and, thus, there is generally not only one global optimum, but a

set of Pareto solutions. A Pareto–optimal solution is not worse

or equal in all objectives than any other feasible solution in the

design space [14].

III. SYMBOLIC DESIGN SPACE EXPLORATION

A. 0–1 ILP Model

In order to use a 0–1 ILP model for the design space explo-

ration problem, cf. Equation 1, an implementation has to be

encoded into a binary vector x = (r1, ..., r|Va|, e1, ...,e|Em|).

Here, for each resource and mapping edge a binary variable is

introduced. For a variable ri a 1 indicates that the resource

ri ∈ Va is part of the allocation α and for a variable ei the

value 1 means that the mapping edge ei ∈ Em is in use and

part of the binding β. Correspondingly, the values 0 indicate

that the resource or mapping edge, respectively, are not allo-

cated or used.

If the objective functions are linear, the costs are calculated

as a sum of the costs of each used mapping edge and each

allocated resource. In this case, the m–dimensional objective

function of the 0–1 ILP is f(x) = CT x with C ∈ Z
n,m. The

single costs function for the objective i is named ci.

Objective Function 1 The overall costs are the sum of the sin-
gle costs of each used mapping edge and each allocated re-
source.

∀i ∈ {1, ...,m} : fi(x) =
∑

e∈Em

ci(e) · e +
∑

r∈Va

ci(r) · r

One vector x ∈ X = {0, 1}n represent one implementation.

Furthermore, the subset Xf ⊆ X contains all feasible imple-

mentations. Therefore, the constraints Ax ≤ b of the 0–1 ILP

have to formulated such that they are satisfied if and only if the

implementation x is feasible or x ∈ Xf , respectively. With the

8B-4

692

following constraints, one solution of Ax ≤ b equals a feasible

implementation.

Constraint 1 Each used mapping edge has to end at an al-
located resource.

∀e = (p, r) ∈ Em : r − e ≥ 0

Constraint 2 For each task p ∈ Vp exactly one mapping edge
has to be activated.

∀p ∈ Vp :
∑

e=(p,r)∈Em

e = 1

Constraint 3 Data–dependent tasks have to be mapped to
the same or to an adjacent resource.

∀e = (p, r) ∈ Em ∧ (p, p̃) ∈ Ep :
−e +

∑
ẽ=(p̃,r̃)∈Em:
r=r̃∨(r,r̃)∈Ea

ẽ ≥ 0

A scheme for the composition of additional system–

constraints as well as the conversion for non–linear constraints

into linear constraints is stated in [11].

B. Heuristic Multi–Objective PB Solver — HPB

A common PB solver is only able to solve single–objective

problems. Hence, the PB solver cannot find all Pareto–optimal

solutions of general multi–objective problems. Instead, com-

mon MOEA approaches are applicable, but, since they are di-

rectly varying the implementation, they tend to find many in-

feasible implementations. Repairing strategies and punishing

functions are used to force the MOEA to stay in the feasible

search space. But particularly, if the problem has just a few

feasible solutions, the MOEA is more focused on searching a

feasible implementation than optimizing the objectives.

As a remedy, we will propose a sophisticated heuristic strat-

egy that incorporates a common DPLL [15] based PB solver

(cf. Algorithm 1). This heuristic optimizes multi–objective

0–1 ILPs with also non–linear objective functions and design

space exploration problems, respectively. In particular, the PB

solver is used to force a common heuristic approach, like a

MOEA, to stay in the feasible search space allowing to focus

merely on the optimization of the objectives:

With the defined constraints from Section A and without any

objective function, the PB solver will find one specific feasible

implementation for a given design space exploration problem.

In fact, the branching strategy of the search process of the PB

solver has a huge impact on which implementation is found.

Our branching strategy is guided by two vectors ρ ∈ R
n and

σ ∈ {0, 1}n. The optimization algorithm now varies the vec-

tors ρ and σ of the branching of the PB solver. Instead of vary-

ing the implementation as common design space exploration

approaches, this will produce only feasible implementations.

Hence, this ensures a good convergence to the optimal solu-

tions.

Here, we will use an MOEA for the variation of ρ and σ. The

fitness estimation of an individual (ρ, σ) is done by a two–step

procedure:

1. Decoding: Using Algorithm 1 and the branching strategy

(ρ, σ) a feasible implementation x is found.

2. Evaluating: The found implementation x is evaluated by

the objective function f(x). At this, the objective function

can obviously be also non–linear.

Now, the MOEA tries to improve the values ρ and σ with

respect to the objective values. In the MOEA, the PB solver

is subsequently restarted with varied branching strategies and

at the same time feasible implementations x are found and im-

proved.

In the following, the used DPLL based backtracking algo-

rithm is explained.

Algorithm 1 Search algorithm for a single feasible solution

based on a DPLL backtracking algorithm, cf. [8].

1: while true do
2: branch(ρ, σ)

3: if CONFLICT then
4: backtrack()

5: else if SATISFIED then
6: return x
7: end if
8: end while

This algorithm efficiently searches for an implementation

that fulfills all constraints, cf. [10, 12]:

Starting with completely unassigned variables, the operation

branch(ρ, σ) chooses an unassigned variable and assigns it a

value. The rules which variable is chosen and value is assigned

is called decision strategy. Our decision strategy is simply

guided by the vectors ρ ∈ R
n and σ ∈ {0, 1}n. Unassigned

variables xi with the highest value ρi are prioritized and are set

to the value σi.

The branch operation recognizes if any variable assignment

is required to keep the constraints satisfiable or a conflict
(CONFLICT) occurred. One has to keep in mind that every

single constraint has to be satisfied in order to find a feasible

solution. Therefore, one decision can cause several necessary

assignments, the implications. If an implication of the same

variable occurs to 0 and 1, a conflict is recognized and analyzed

such that a backtracking is triggered, i.e., variable assignments

are reverted. The backtracking is able to recognize unsatisfi-

able problems if the first decision was already tested in both

ways 0 and 1 and the algorithm is aborted since there exists

not a single feasible solution. If there exists at least one feasi-

ble solution, the algorithm proceeds until all variables have an

assignment (SATISFIED) and one feasible solution is found,

respectively.

For a detailed theoretical analysis of the HPB confer [16].

8B-4

693

C. Complete Multi–Objective PB Solver — CPB

If the objective functions are linear (f(x) = CT x) it is pos-

sible to solve these problems with a complete multi–objective

PB solver. Here, we will provide an approach as an extension

of the DPLL backtracking algorithm [15]. Note that instead of

an MOEA approach, this algorithm is able to find all Pareto–

optimal solutions and prove their optimality as well.

It is obvious that a common PB solver cannot be simply

adapted to solve multi–objective PB problems as all constraints

are joined by a logical AND. Instead, we will propose a mod-

ification of the search algorithm as it is used in DPLL based

PB solvers. The DPLL algorithm is used to stay in the feasi-

ble search space Xf and obtain only feasible solutions. At the

same time, the search space is pruned such that the found solu-

tions are optimized throughout the search process. Hence, each

solution corresponds a feasible implementation. This depth–

first search is given in Algorithm 2.

Algorithm 2 Algorithm for multi–objective optimization of 0–

1 ILPs based on a DPLL backtracking algorithm.

1: A = {}
2: while true do
3: branch(ρ, σ)

4: if CONFLICT then
5: backtrack()

6: else if SATISFIED ∧ ∀a ∈ A : (a � CT x) then
7: y = CT x
8: A = x ∪ {a | a ∈ A ∧ y � CT a}
9: end if

10: if ∃ a ∈ A : CT a � (f1(x̃), ..., fm(x̃))T then
11: backtrack() // ’to the most recent decision tried not both ways’

12: end if
13: end while

The archive A is holding the set of non–dominated solutions

(line 1). A dominated solution is worse or equal in all objec-

tives compared to a second solution, i.e., a dominates b (a � b)

if ∀i ∈ {1, ...,m} : fi(a) ≤ fi(b). The archive is filled and up-

dated throughout the backtracking process until the algorithm

aborts. Now, the archive contains the optimal non–dominated

solutions or the Pareto–optimal implementations, respectively.

Line 3 to 5 is identical to Algorithm 1. It ensures that the

search process stays in the valid search space Xf . In case that

all variables have an assignment (SATISFIED) and the current

solution is not dominated by any solution inside the archive

(line 6), it is added to the archive. At the same time all solu-

tions inside the archive that are dominated by the new solution

are removed (line 8).

For this algorithm, it is crucial that a backtracking is also

triggered if a partial solution is recognized to be dominated by

some solutions in the archive independently of its completion.

This operation prunes the search space and prevents that the

algorithm equals an enumeration of the feasible solutions in

Xf . Hence, a lower bound for each objective function has to

be calculated and compared for domination with the archive

(line 10). The lower bounds for the objective functions for

a partial solution are calculated separately in each dimension,

i.e., a lower bound vector is calculated by (f1(x̃), ..., fm(x̃))T .

Therefore, the vector x̃ contains the values of the assigned vari-

ables and for unassigned variables a 0 (1) is used if the corre-

sponding coefficient Cij of the objective function fi is positive

(negative). The backtracking will take place to the level of the

most recent decision that was not tried in both ways 0 and 1
unless this level is lower than 0 what causes an abort of the

algorithm (line 11).

The used decision strategy is crucial for the success of this

algorithm. It is obvious that with good solutions early in the

search process and an accurate lower bound calculation, large

parts of the search space can be pruned. A good approach is a

decision strategy that is guided by the coefficients of the objec-

tive functions: Focusing on a single–objective problem, vari-

ables with a big corresponding coefficient should be favored

by the decision strategy to increase the accuracy of the cal-

culated lower bound. This takes place as only variables with

small coefficients will be unassigned later in the search pro-

cess. Moreover, it is desirable to obtain good solutions early

in the search process and, as a minimization problem is given,

the favored decision phase for a variable with a positive (nega-

tive) coefficient should be 0 (1). For multi–objective problems,

a more sophisticated decision strategy is needed because vari-

ables have different effects in different objective functions. We

will propose a static decision strategy for the vectors ρ and σ
based on distribution functions:

∀i ∈ {1, ..., n} : ρi = |vi|
σi = �sign(vi)�

with vi =
m∑

j=1

Fj(|Cij |)sign(Cij)

For each dimension a distribution function Fj : N → [0, 1]
is approximated by the absolute values of all coefficients Cij .

We will use a uniform distribution between 0 and the highest

value of each dimensions coefficient.

For a comparison of different complete multi–objective PB

solvers cf. [17].

IV. EXPERIMENTAL RESULTS

In the following, the proposed complete multi–objective

PB solver is termed CPB, the heuristic PB solver HPB. The

introduced methodologies based on 0–1 ILPs are compared

with a common method for design space exploration based on

MOEAs that is termed EA. The EA is described in [18] and is

based on a data structure with priority lists that allows a local

repair strategy. Moreover, infeasible solution are deteriorated

by a punishing function. The used MOEA for the common

method EA and the heuristic strategy HPB is the elitist SPEA2
algorithm [19]. The population size is 100 with 25 parents

and offspring for each generation. The mutation rate was set

to p = 1
|Va|+|Em| . The crossover of the real number values

is based on the Simulated Binary Crossover operator [20] fol-

lowed by a mutation by adding a number from the the natural

8B-4

694

test case |Vp| |Va| |Em|
f40/m40 40 20 160

f60/m60 60 30 270

f80/m80 80 40 400

f100/m100 100 50 500

f120/m120 120 60 660

TABLE I

TEST CASES WITH THE NUMBER OF PROCESSES |Vp|, THE NUMBER OF

RESOURCES |Va|, AND THE NUMBER OF MAPPING EDGES |Em|.

distribution N (0, p). All experiments were carried out on a

Intel Pentium 4 3.20 GHz machine with 1 GB RAM.

In order to evaluate the quality of the methods, we use the

ε–dominance [14] criterion which is a measurement used to

specify the convergence of multi–objective optimization meth-

ods to the front of Pareto–optimal solutions. The ε–dominance

calculates the relation of a set of solutions A to the set of the

Pareto–optimal solutions B.

Dε(A,B) = inf
ε
{b ∈ B | ∃a ∈ A : a �ε b}

Thus, the ε–dominance is the smallest value ε that a set of

Pareto–optimal solutions has to be scaled with in order to be

dominated by the set A. If the Pareto–optimal solutions could

not be estimated, the set of the non–dominated solutions over

all runs on a problem instance was used as reference set B.

The scaling is normalized in a way that the value of Dε(A,B)
lies between 1 and 2. In the following, we will use the recip-

rocal value such that a high value is aspired with 1 being the

optimal value.

Synthetic test cases with different sizes were generated and

are stated in Table I. For all problem sizes, test cases with only

a few as well as many feasible implementations were achieved

by varying the number of possible interconnections Ea in the

architecture graph. For each test case, 10 instances were gener-

ated and the methods were started 10 times such that a mean-

ingful average value was calculated. The objective functions

are the area and power–consumption that are both linear such

that all three methods could be used.

Figure 2 shows the results. For the heuristic methods HPB
and EA the runtime is 120 seconds. The CPB method is su-

perior on small test cases and also if the search space has just

a few feasible implementations. The CPB delivers all opti-

mal implementations for f40 (0.2 sec.), m40 (0.6 sec.), f60 (3.9
sec.), m60 (4.8 sec.), and f80 (36.6 sec.) in a short time. At the

same time the method proves optimality of these solutions. On

all other test cases the CPB was interrupted after 120 seconds.

Our heuristic HPB outperforms the common method EA on all

test cases and compared to the CPB, it is near–optimal on the

small test cases. The results are also indicators for the behavior

on problems with non–linear objective functions for the HPB
and EA methods since both methods are driven by an MOEA

that does not make any assumption on the objective functions.

Finally, we studied an industrial example from the automo-

tive area to compare our new methodologies with common

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1
 1.05

 1.1
 1.15

f120f100f80f60f40

1
/ ε

-d
om

in
an

ce

test case

few feasible implementations

CPB
HPB

EA

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1
 1.05

 1.1
 1.15

m120m100m80m60m40

1
/ ε

-d
om

in
an

ce

test case

many feasible implementations

CPB
HPB

EA

Fig. 2. Quality estimation of the found implementations for the synthetic test

cases based on the reciprocal ε–dominance criterion. A high value is aspired,

the optimal value is 1. All methods were interrupted after 120 seconds.

strategies. The adaptive light control (ALC) is a large auto-

motive design problem and consists of 234 process, 1103 re-

sources and 1851 mappings edges. This leads to approximately

2375 possible bindings. All algorithms were interrupted after

600 seconds.

Firstly, the optimized objectives are area and power–

consumption. Again, linear models were used for these two

objectives such that the CPB could be used. Figure 3 shows

the convergence of the used methods. For the heuristic strate-

gies, the average over 10 runs was calculated. The quality of

the implementation of the CPB and HPB methods are nearly

equal after 600 seconds and superior to the common method

EA. Secondly, a third objective, the reliability of the system,

was introduced, cf. [21]. This objective is not linear or lin-

earizable. That means, the CPB method is not applicable and

only the heuristic strategies HPB and EA are compared. As

expected, Figure 3 shows that our heuristic approach HPB is

superior to the EA analogous to the linear objective test cases.

V. CONCLUSIONS

In this paper, we have formalized the design space explo-

ration problem as a multi–objective 0–1 ILP. In order to solve

this multi–objective optimization problem, a novel multi–

objective PB solver and a heuristic based on a PB solver were

proposed. Synthetic as well as real world problems have been

8B-4

695

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 100 200 300 400 500 600

1
/ ε

-d
om

in
an

ce

time [s]

ALC linear objective functions

CPB
HPB

EA

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 100 200 300 400 500 600

1
/ ε

-d
om

in
an

ce

time [s]

ALC non-linear objective functions

HPB
EA

Fig. 3. Quality estimation of the found implementations for the adaptive light

control case study based on the reciprocal ε–dominance criterion. A high

value is aspired, the optimal value is 1.

tested, showing the effectiveness of our proposed design space

exploration. For small problems with linear objective func-

tions, the multi–objective PB solver is able to deliver the opti-

mal implementations in a short time whereas it is also proved

that these solutions are optimal. For large problems and those

with non–linear objective functions our heuristic approach is

applicable and outperforms common MOEA search strategies

on all test cases.

REFERENCES

[1] M. Gries, “Methods for evaluating and covering the design

space during early design development,” Integration, the VLSI
Journal, Elsevier, vol. 38, no. 2, pp. 131–183, December 2004.

[2] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel, “Multiobjective

Optimization and Evolutionary Algorithms for the Application

Mapping Problem in Multiprocessor System-on-Chip Design,”

IEEE Transactions on Evolutionary Computation, vol. 10, no. 3,

pp. 358–374, 2006.

[3] V. Kianzad and S. S. Bhattacharyya, “CHARMED: A Multi-

Objective Co-Synthesis Framework for Multi-Mode Embedded

Systems,” in Proceedings of ASAP ’04, 2004, pp. 28–40.

[4] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli, “Design

Space Exploration of Network Processor Architectures,” Net-
work Processor Design: Issues and Practices, vol. 1, pp. 55–89,

Oct. 2002.

[5] S. Neema, “System Level Synthesis of Adaptive Computing

Systems,” Ph.D. dissertation, Vanderbilt University, Nashville,

Tennessee, May 2001.

[6] R. Niemann and P. Marwedel, “An Algorithm for Hard-

ware/Software Partitioning Using Mixed Integer Linear Pro-

gramming,” Design Automation for Embedded Systems, vol. 2,

no. 2, pp. 165–193, 1997.

[7] N. Eén and N. Sörensson, “An extensible sat-solver.” in Pro-
ceedings of SAT ’03, 2003, pp. 502–518.

[8] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and

S. Malik, “Chaff: engineering an efficient sat solver,” in Pro-
ceedings of DAC ’01, 2001, pp. 530–535.

[9] J. P. M. Silva and K. A. Sakallah, “Grasp - a new search algo-

rithm for satisfiability,” in Proceedings of ICCAD ’96, 1996, pp.

220–227.

[10] D. Chai and A. Kuehlmann, “A fast pseudo-boolean constraint

solver,” in Proceedings of DAC ’03, 2003, pp. 830–835.

[11] N. Eén and N. Sörensson, “Translating Pseudo-Boolean Con-

straints into SAT,” Journal on Satisfiability, Boolean Moelding
and Computation, vol. 2, pp. 1–25, 2006.

[12] H. M. Sheini and K. A. Sakallah, “Pueblo: A modern pseudo-

boolean sat solver,” in Proceedings of DATE ’05, 2005, pp. 684–

685.

[13] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah,

“Generic ilp versus specialized 0-1 ilp: an update,” in Proceed-
ings of ICCAD ’02, 2002, pp. 450–457.

[14] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G.

da Fonseca, “Performance assessment of multiobjective opti-

mizers: an analysis and review.” IEEE Trans. Evol. Computa-
tion, vol. 7, no. 2, pp. 117–132, 2003.

[15] M. Davis, G. Logemann, and D. Loveland, “A machine program

for theorem-proving,” Comm. of the ACM, vol. 5, no. 7, pp. 394–

397, 1962.

[16] M. Lukasiewycz, M. Glaß, C. Haubelt, and J. Teich, “SAT-

Decoding in Evolutionary Algorithms for Discrete Constrained

Optimization Problems,” in Proceedings CEC ’07, 2007, pp.

935–942.

[17] ——, “Solving Multiobjective Pseudo-Boolean Problems,” in

Proceedings of SAT ’07, 2007, pp. 56–69.

[18] T. Blickle, J. Teich, and L. Thiele, “System-level synthesis using

Evolutionary Algorithms,” J. Design Automation for Embedded
Systems, vol. 3, no. 1, pp. 23–58, 1998.

[19] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the

Strength Pareto Evolutionary Algorithm for Multiobjective Op-

timization,” in Evolutionary Methods for Design, Optimisation,
and Control, 2002, pp. 19–26.

[20] K. Deb and R. B. Agrawal, “Simulated binary crossover for con-

tinuous search space,” Complex Systems, vol. 9, pp. 115–148,

1995.

[21] M. Glaß, M. Lukasiewycz, T. Streichert, C. Haubelt, and J. Te-

ich, “Reliability-Aware System Synthesis,” in Proceedings of
DATE ’07, 2007, pp. 409–414.

8B-4

696

