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EFFICIENT SYMMETRY-DRIVEN FULLY CONVOLUTIONAL NETWORK FOR

MULTIMODAL BRAIN TUMOR SEGMENTATION

Haocheng Shen⋆ Jianguo Zhang⋆ Weishi Zheng†

⋆ Computing, School of Science and Engineering, University of Dundee, UK
† School of Data and Computer Science, Sun Yat-sen University, China

ABSTRACT

In this paper, we present a novel and efficient method for brain

tumor (and sub regions) segmentation in multimodal MR im-

ages based on a fully convolutional network (FCN) that en-

ables end-to-end training and fast inference. Our structure

consists of a downsampling path and three upsampling paths,

which extract multi-level contextual information by concate-

nating hierarchical feature representation from each upsam-

pling path. Meanwhile, we introduce a symmetry-driven FCN

by the proposal of using symmetry difference images. The

model was evaluated on Brain Tumor Image Segmentation

Benchmark (BRATS) 2013 challenge dataset and achieved

the state-of-the-art results while the computational cost is less

than competitors.

Index Terms— FCN, brain tumor segmentation

1. INTRODUCTION

Gliomas are the most frequent primary brain tumors in adults

[1] and can be classified as high-grade (HG) or low-grade

(LG) based on the aggressive form of the disease. Multimodal

MRI is usually utilized to enhance the contrast of tumor and

its structures. Fig. 1 shows a typical HG gliomas tumor with

experts’ delineation of tumor and its sub-regions. Normally

there are four structures in the tumor: edema (green), necrosis

(red), non-enhancing (blue) and enhancing (yellow). The last

three also make up a super-structure called tumor core.

Clinically, precise segmentations of tumors are crucial

for making treatment plans, guiding surgery and follow-up

of individual patients. Unreliable segmentation may mislead

surgery, which could cause irreversible impact, e.g., the loss

of brain functions such as speaking or reading. However, it

is tedious and time-consuming to segment brain tumor man-

ually, especially in 3D MR images. Automatic and reliable

segmentation of gliomas brain tumor is an active topic for

decades with challenges on the diversity and variation of

tumor size, shape, and location and appearance.

A common approach is to pose this problem as classify-

ing voxels into different tissues using hand-crafted features,

followed by conditional random fields (CRF) models, incor-

porating smoothness terms of the classification results and

Flair T1 T1c T2 Annotation

Fig. 1: An HG brain tumor example with 4 MRI modalities

(Flair, T1, T1c, T2) and experts’ delineation of tumor struc-

ture: edema (green), necrosis (red), non-enhancing (blue) and

enhancing tumor (yellow). Best viewed in colour.

maximizing label agreement between pixels in the neighbor-

hood [1, 2, 3]. Nowadays, deep convolutional neural network

(CNN) achieved several substantial breakthrough in several

image recognition benchmarks, such as image classification

[4, 5], semantic segmentation [6, 7] and object detection [8]

and is getting popular in applications of medical imaging. Ba-

sically, CNN automatically learns high-level discriminative

feature representations through a supervised manner. When

CNN were applied to MRI brain tumor segmentation they

achieved the state-of-the-art results [9, 10, 11]. Specifically,

[10] trained a traditional 2D CNN on 2D image patches.

During testing, 2D patches were extracted from the new im-

ages by a sliding window and assigned labels for the central

pixel. [9] used 2D CNN on larger 2D patches in a cascade

way to capture both local and global contextual information.

[11] learned 3D CNN on 3D patches and considered global

contextual feature via downsamping the original 3D patches.

All these methods are patch-level based. Fully convolutional

networks (FCN) are recently studied by [6, 7] and achieved

promising results for natural image segmentation. It replaces

the fully connected layers in the traditional CNN with all

convolutional kernels and includes upsampling or deconvolu-

tional layers to transform back to original spatial size. Thus,

it can take input of arbitrary size and enables image end-to-

end training as well as fast inference. Although FCN has

been recently applied to medical image segmentation tasks

[12, 13, 14], but not for brain tumor.

In this paper, we propose an automatic method for brain

tumor segmentation based on FCN. The main contributions

of our paper are: 1) to our best knowledge, we are the first

to apply FCN for multimodal brain tumor (and sub-structure)



Fig. 2: CNN structure. The original images and the corre-

sponding symmetry maps are concatenated as the input of the

network. Best viewed in color.

segmentation; 2) our proposed FCN structure is simple and

efficent, with only one loss layer coupling features at differ-

ent levels; 3) we introduce brain symmetry inputs to FCN to

further improve the segmentation performance; 4) our model

is ranked top on BRATS 2013 testing set, and more efficient

than the other competitors.

2. METHODOLOGY

In this section, we present an efficient fully convolutional net-

work (FCN) for brain tumor segmentation. The proposed

network is a variant which combines multiscale information

from different stages and also takes full advantage of convolu-

tional kernels for efficient and effective image segmentation.

2.1. Our FCN structure

The architecture of the proposed method is illustrated in Fig.

2. It contains two modules, i.e., one downsampling path with

convolutional and maxpooling layers and three upsampling

paths with upsampling and convolutional layers. The down-

sampling path aims at enlarging receptive fields to encode

high level abstract and contextual information to detect tu-

mors, while the upsampling paths reconstruct the fine details

such as tumor boundaries. We designed the upsampling paths

in a hierarchical manner to take full advantage of including

multiple scale feature maps from downsampling path.

The downsampling path is similar to VGG-16 network

[5], but instead of using total 5 convolutional blocks (one

convolutional blocks contains two or three convolutional lay-

ers with 3 × 3 kernels and 1 maxpooling layer with 2 × 2

strides), we only use the first 3 convolutional blocks. There

are three main reasons for only adopting the first 3 convolu-

tional blocks: 1) unlike natural images which mostly contains

rich high-level semantic features, medical images are mostly

based on low-level texture features. Thus going deeper may

not be helpful for medical images as limited high-level fea-

ture information could be learned from medical images; 2)

in medical images, the sizes of lesions (e.g., brain tumors)

are normally small compared to the entire image. Going too

deeper may cause some tiny lesions vanished in the later con-

volutional blocks as each block shrinks image size by max-

pooling operation using a factor of stride (usually stride is set

to 2). Therefore, the filters learned in the later blocks has

less capability of detecting lesions; 3) adding more convolu-

tional blocks will introduce more parameters (e.g., adding the

forth block will introduce 6 millions more parameters), which

could lead to overfit the medical datasets of small scale. Our

experiments confirmed that adding more convolutional blocks

is not helpful in terms of brain tumor segmentation accuracy

(described in Section 3.2).

For upsampling paths, we simply upsample the feature

maps from the last convolutional layer of each convolutional

block (before maxpooling layer) to the original spatial size.

Then another three convolutional layers are applied to en-

code multi-scale feature representations. The resulting fea-

ture maps from three upsampling paths are concatenated be-

fore the final classification layer. Note that we did not use

backwards strided convolutional (a.k.a deconvolutional) layer

to perform upsampling as it will also introduce more parame-

ters in the network, which may potentially lead to over-fitting.

Our structure shares some similarity with the one used

in [14], but instead of injecting 3 auxiliary classifiers for

each upsampling path for regularization, we extract multi-

level contextual information by concatenating hierarchical

feature representation from each upsampling path before the

classification layer. We formulate the training of whole net-

work as a per-pixel classification problem with respect to

the ground-truth segmentation masks and choose categorical

cross entropy as the loss function.

After each convolutional layer, we use Relu [4] as activa-

tion function to ensure non-linear mapping and batch normal-

ization [15] to reduce the internal-covariate-shift. We observe

batch normalization is crucial to optimize out network in ex-

periments: it can accelerate training process by allowing a

larger learning rate and avoid optimization ending with poor

local minimals. In our architecture, we use 2D slices split

from 3D MR volumes from axial view as the input of the pro-

posed network. This is for two reasons: 1) it can significantly

increase the number of training samples as each 3D volumes

contains about 100∼150 slices; 2) 2D axial slices might have

enough discriminative information to differentiate tumor tis-

sues as the experts’ annotations in BRATS dataset were drawn

in 2D axial slices rather than in a 3D version [1].

2.2. Symmetry-Driven FCN

It was noted that symmetry in axial view is an important cue

for brain tumor segmentation as tumors usually break sym-

metric appearance of a health brain (see Fig. 1). Although,



Fig. 3: top row: each step of computing the symmetry maps

(from left to right: Flair, symmetry axis, local search, and

symmetry map); bottom row: the final symmetry maps for

each MR modality.

brain symmetry or asymmetry information has been used in

shallow methods [2, 16, 17], however, they are not explored

in deep method such as CNN.

In this paper, we encode brain symmetry information to

the CNN framework by adding extra symmetry maps. Our

symmetry maps are computed as follows: 1) we first locate

the symmetric axis in T1 modality axial slices through the

approach presented in [18]; 2) given the symmetric axis (the

red dash line in Fig. 3), we found the corresponding match-

ing pixel pairs and calculated their intensity differences. In

order to reduce the effects of the errors of symmetric axis and

image noises, each image was smoothed beforehand using a

Gaussian filter with 5 × 5 kernel. The most matched pixel

was searched in a 11 × 11 local window (the blue square in

Fig. 3) centered on the mirrored the location w.r.t the symme-

try axis. The resulting intensity differences are then converted

into range [0, 1] by a sigmoid function.

The results of each step when computing the symmetry

maps are visualized in the top row of Fig. 3, while the final

symmetry maps for each MR modality are shown in the bot-

tom row. We combine them with the four original images as

the inputs of our CNN framework as show in Fig. 2.

3. EVALUATION

We evaluated our model on BRATS 2013 clinical dataset. The

dataset contains 20 HG patients with pixel-level annotations

for the training (10 LG patients were not used for the HG seg-

mentation task) and 10 HGs for the testing. For each patient,

there exists 4 modalities, namely T1, T1-contrast (T1c), T2

and Flair, which are skull-stripped and co-registered.

Quantitative evaluation on the testing set is through the

online VSD evaluation system [1] for three sub-tasks: 1) the

complete tumor region (including all four tumor structures);

2) the core tumor region (including all tumor structure except

”edema”); 3) the enhancing tumor region (including only the

”enhancing tumor” structure). For each tumor region, Dice,

Sensitivity and Positive Predictive Value are computed.

Fig. 4: performance curves of 3 blocks vs 4 blocks. From left

to right: complete , core and enhancing. The vertical axis is

Dice while horizontal axis is the number of epochs.

(a) (b) (c)

Fig. 5: performance curves of with and w/o symmetry maps.

(a) complete tumor; (b) the residual of (a); (c) tumor core.

3.1. Implementation

Each brain MR image is standardized with zero mean and unit

standard deviation. We augmented the data set by scaling,

rotating, flipping each image; thus resulting a new dataset that

is 3 times larger than the original one.

Our model was implemented with Keras library and

Theano backend. All images were cropped to have the same

size 144 × 192 × 128 as the input into the network, which

was trained with standard back-propagation using Adam op-

timizer. We set the learning rate as 0.001 and never changed

it during the training. The downsampling path was initialized

by VGG-16 weights [5] while the upsampling paths were

initialized randomly using the method proposed by [19]. The

training time on the augmented dataset is about five hours

using a standard PC with a NVIDIA Titan Pascal GPU.

3.2. Cross Validation

We perform a 5-fold cross validation for 20 HG training im-

ages, and conducted two experiments to test the effects of

1) going ’deeper’ and 2) symmetry maps. The augmented

dataset was not used in 5-fold CV to save computational cost.

Firstly, we compare the performance with 3 or 4 convo-

lutional blocks to see whether going ’deeper’ of the model

is helpful for our tasks. We plot the Dice scores for three

sub-tasks at different training epoch (up to 50). The curves

are shown Fig 4. It can be observed that there is no obvi-

ous improvement using 4 convolutional blocks over 3 for all

subtasks in terms of Dice score. On the other hand, going

’deeper’ added more parameters and thus resulted in more

training time and slower convergence.

We then evaluate the effect of symmetry maps. Fig.5

shows the validation Dice scores w.r.t epochs of FCN and

symmetry-driven FCN. It could be observed that FCN ben-



Table 1: Comparison with the state-of-the-arts on the testing set (ranked by VSD evaluation system [1])

Dice Positive Predictive Value Sensitivity
Method

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

Pereira [10] 0.88 0.83 0.77 0.88 0.87 0.74 0.89 0.83 0.81

Proposed 0.87 0.82 0.75 0.85 0.87 0.72 0.89 0.79 0.80

Kwon [20] 0.88 0.83 0.72 0.92 0.90 0.74 0.84 0.78 0.72

Havaei [9] 0.88 0.79 0.73 0.89 0.79 0.68 0.87 0.79 0.80

Tustison [2] 0.87 0.78 0.74 0.85 0.74 0.69 0.89 0.88 0.83

Meier [1] 0.82 0.73 0.69 0.76 0.78 0.71 0.92 0.72 0.73

Reza [1] 0.83 0.72 0.72 0.82 0.81 0.70 0.86 0.69 0.76

T1c T2 Flair(+GT) w/o sym with sym

Fig. 6: Examples of segmentation results. From left to right:

T1c, T2, Flair with ground truth, results without symmetry

maps and results with symmetry maps. Best viewed in colour.

efits from symmetry maps, especially for the Complete tumor

task (Fig.5(a)). For this task, we further calculate the resid-

ual between FCN and symmetry-driven FCN along training

epoch (Fig.5(b)). Using symmetry maps improves the per-

formance over most training epochs and gives an average of

3% improvement for Dice score. The Core tumor segmenta-

tion also benefit from adding symmetry maps, though not as

big as Complete tumor (Fig.5(c)). Alternatively, the perfor-

mances of FCN and symmetry-driven FCN at their respected

best performing epoch are 0.83 vs 0.85 for the Complete tu-

mor task (0.70 vs 0.72 for the Core tumor task), resulting an

2% improvement. However, there is no obvious improvement

observed for Enhancing tumor task. Examples of results with

and without symmetry maps are shown in Fig 6. It shows

that symmetry-driven FCN greatly removes the false posi-

tives, which confirms its efficacy.

3.3. Comparison with Best Performers on Testing Set

We compare the proposed method with state-of-the-arts on

BRATS13 testing set. As it only contains HG images, we only

use the 20 HG images for training. The proposed method is

among the top-ranking in the state-of-the-arts (see Table 1).

Specifically, Tustison, Meier and Reza were the best per-

formers of BRATS13 challenge [1]. Our method outperforms

them all (by a big margin over Meier and Reza, e.g., 0.82 vs

0.72 in terms of Dice for Core tumor segmentation). Particu-

larly, Tustison[2], the winner of BRATS13 challenge, is less

efficient than ours as it needs an auxiliary health brain dataset

for registration to calculate the features, while we only use the

data provided by the challenge. Our model is fully automatic

and overall ranked higher than a semi-automatic method [20].

For CNN methods, our results are competitive with [10]

and better than [9]. Compared to the cascade structure [9],

our network structure is simpler, showing the effectiveness of

FCN framework and combining multi-scale features. Note

that although [10] performs best on this dataset, they evalu-

ated different experimental settings on the testing set, which

might lead to overfit and produce optimistically-biased re-

sults. A fair comparison with 3D CNN [11] is not available

as they did not evaluate on this dataset.

One advantage of our model over the others is the compu-

tational efficiency for a new test image. [20] reported an aver-

age running time of 85 minutes for each 3D volume on CPU,

which is a bottleneck for daily clinical use. The two CNN ap-

proaches, [10] reported an average running time of 8 minutes

while 3 minutes was reported by [9], both using a modern

GPU. For an indicative comparison, our method took about

2 minutes for each 3D volume in its current implementation.

Note that 95% of the time was used to compute the symmetry

inputs on CPU. Thus it expects the time could be much less if

the computation of symmetry maps is parallelized on GPU.

4. CONCLUSION

We propose an automatic brain tumor segmentation method

based on fully convolutional neural network. Our method

contains three convolutional blocks and encodes multi-scale

features from different layers in one loss function. Going

deeper did not make a big difference. We also present a

symmetry-driven FCN, which further improves segmentation

performance, especially for the Complete tumor region. Our

method achieved state-of-the-art results, and is more efficient

than others. In the future, we will evaluate our model on a

larger dataset.
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