
Efficient Synthesis of Compressor Trees on FPGAs 

Abstract – FPGA performance is currently lacking for arithmetic 
circuits. Large sums of k > 2 integer values is a computationally 
intensive operation in applications such as digital signal and 
video processing. In ASIC design, compressor trees, such as 
Wallace and Dadda Trees, are used for parallel accumulation; 
however, the LUT structure and fast carry-chains employed by 
modern FPGAs favor trees of carry-propagate adders (CPAs), 
which are a poor choice for ASIC design. This paper presents the 
first method to successfully synthesize compressor trees on 
LUT-based FPGAs. In particular, we have found that generalized 
parallel counters (GPCs) map quite well to LUTs on FPGAs; a 
heuristic, presented within, constructs a compressor tree from a 
library of GPCs that can efficiently be implemented on the target 
FPGA. Compared to the ternary adder trees produced by 
commercial synthesis tools, our heuristc reduces the 
combinational delay by 27.5%, on average, within a tolerable 
average area increase of 5.7%.  

I. Introduction 

Despite more than 20 years of research on FPGAs, gaps in 
performance, power consumption, and area utilization between 
FPGAs and ASICs remain. These gaps are generally small for finite 
state machines and control-dominated circuits, but are pronounced 
for arithmetically intensive circuits. To improve the quality of 
arithmetic circuits synthesized on FPGAs, this paper describes a new 
method to synthesize compressor trees on FPGAs. 

A compressor tree is a specific circuit implementation of k-input 
integer addition, generally under the assumption that k > 2. Wallace 
[19] and Dadda [7] introduced compressor trees more than 40 years 
ago, in the context of parallel multiplication. Compressor trees are 
also used in FIR filters [10], 3G wireless base station cards [13], and 
motion estimation in video coding algorithms such as H.264/ACV [5]. 
More generally, transformations can be applied to a general class of 
arithmetic circuits to form compressor trees by merging disparate 
addition operations with one another and with partial product 
reduction trees in parallel multipliers [18]. 

A carry-propagate adder (CPA) is a circuit that adds two integer 
values, A0 and A1, and produces the sum A0+A1. An adder tree is a 
circuit that adds k-values, A0, …, Ak-1, using a tree of CPAs. A 
compressor tree, in contrast, is a circuit constructed from carry-save 
adders (CSAs), and produces two outputs, S (sum) and C (carry) such 
that S+C = A0 + … + Ak-1; a CPA is only required to add S and C.
The superiority of compressor trees over adder trees for multi-input 
addition is well known [7, 19], and is beyond the scope of this paper. 

High-performance FPGAs, however offer implementation of fast 
ternary carry-propagate addition by providing dedicated carry chains 
[1-3, 21]. Conventional wisdom has held that compressor trees 
cannot be synthesized efficiently onto FPGAs; this, in fact, is not the 
case. 

The primary contribution of this paper is a demonstration of the 
fact that it is possible to effectively map compressor trees onto 
modern high performance FPGAs. Compressor trees synthesized 

using our approach were 27.5% faster than ternary adder trees 
synthesized on an Altera Stratix II FPGA; on average, we suffered a 
tolerable area increase of 5.7%.

The paper is organized as follows. Related work is summarized in 
Section II. Sections III and IV respectively introduce single-column 
counters and generalized parallel counters, which are basic building 
blocks used by our compressor tree synthesis method, which is 
described in Section V. Experimental results are then presented in 
Section VI, and lastly, Section VII concludes the paper. 

II. Related Work 

Over the years, numerous techniques in both hardware and 
software have been proposed to enhance FPGA performance. Most 
notably, carry chains [8] have been proposed to integrate efficient 
circuitry for arithmetic operations, such as shifting and 
carry-propagate addition into FPGA logic blocks; both Xilinx [20, 21] 
and Altera [2, 3] FPGAs feature such carry chains. With the Stratix-II 
architecture [2], Altera introduced a new logic architecture, which 
allows the 6-input LUTs (6-LUTs) to be decomposed into smaller 
LUTs that share several inputs. In particular, two 3-LUTs can be 
organized to compute the carry and save functions of a CSA, which 
acts as a 3:2 compressor; in conjunction with the carry chain, the 
logic block can be configured as a ternary CPA. Xilinx incorporated 
similar support for ternary addition into the Virtex 5 logic blocks 
[21]. 

Another alternative for increased arithmetic acceleration is to 
integrate hard IP cores, such as DSP/MAC blocks, into FPGAs [22]. 
Although DSP cores are hand-optimized ASICs, Kuon and Rose [9] 
have argued that they do not offer much performance advantage for 
two reasons: (1) the cost of routing data to and from the blocks, 
whose position in the FPGA is fixed; and (2) mismatches in bitwidth 
(e.g. using a 9x9 bit multiplier to implement 5x5 bit multiplication). 
Thus, for operations whose bitwidth does not match that of the IP 
cores, the flexibility of LUT-based implementations is generally 
preferable.  

Poldre and Tammemae [12] developed a software technique to 
synthesize compressor trees for parallel multipliers onto Xilinx Virtex
FPGAs. Their technique was specific to the LUT structure and carry 
chains of that architecture. They reported delays that were 1.5x faster 
and used 1.28x less area than standard adder trees1. Our approach, in 
contrast, does not require or exploit carry chains, and is therefore 
amenable to any FPGA architecture. 

To accelerate arithmetic circuits, Brisk et al. [4] introduced the 
field programmable counter array (FPCA), a programmable array of 
parallel counters (see Section III), which could be integrated into an 
FPGA; the transformations of Verma and Ienne [18] are applied to a 
circuit in advance to expose large compressor trees that could be 
mapped onto the FPCA. The compressor tree synthesis heuristic 

1 The results are not shown in the paper, but are available online at 
http://www.pld.ttu.ee/~jp/FPL99/
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presented here, in contrast, targets modern high-performance FPGAs 
that are available today: namely, the Altera Stratix II/III and the 
Xilinx Virtex 4/5, which employ the 6-LUTs as the core element of 
their logic cell.  

The compressor tree synthesis heuristic presented in this paper is a 
form of technology mapping. Unlike traditional technology mappers, 
such as FlowMap [6] and its many descendants, our heuristic is 
limited in its domain to multi-input addition operation. To use a 
traditional technology mapper, a specific implementation of a 
compressor tree must be provided (e.g., Wallace Tree [19], Dadda 
Tree [7], 3-greedy [14], etc.) to the mapper. Our approach, in contrast, 
simultaneously generates the specific implementation of the 
compressor tree and performs the mapping task at once; the 
remaining portions of the circuit are then synthesized using a 
traditional technology mapping algorithm. 

III. Single Column Parallel Counters 

Here, we describe different components that have been used in the 
past to construct compressor trees, typically for partial product 
reduction in parallel multipliers.  

A single column parallel counter (also called an m:n counter) is a 
circuit that takes m input bits, counts the number of bits that are set to 
1, and outputs the result as an unsigned n-bit integer, a value in the 
range [0, m]. For a given m, the number of output bits, n, is: 

( )1mlogn 2 +=            (1) 

A 2:2 counter is typically called a half-adder; a 3:2 counter is called 
a full-adder (in the context of CPA design) and a carry-save adder 
(CSA) when used for parallel accumulation. 

The use of CSAs for partial product reduction in parallel 
multipliers was introduced by in the 1960s [7, 19]; since then, 
numerous other approaches have been introduced as well. The 
logic-delay optimal (ignoring wiring delays) 3-greedy algorithm was 
introduced by Stelling et al. [14]; Um and Kim [16] extended this 
idea to account for wire delays and other issues related to layout. 
Verma and Ienne [17] developed an optimal integer linear 
programming (ILP) formulation of compressor tree synthesis from a 
library of counters ranging from 2 to 8 inputs; they also showed that 
an optimal compressor tree cannot be constructed purely from m:n
counters. 

All of the aforementioned compressor tree synthesis methods are 
tailored for ASICs; they do not perform well for FPGAs, and cannot 
compete with binary or ternary adder trees. Different components are 
necessary to successfully synthesize compressor trees on FPGAs.  

IV. Generalized Parallel Counters 

Let B = (bk-1bk-2…b0) be an n-bit positive binary integer. The rank
of bit bi is the subscript value i, which indicates its position in the 
integer. For example, in the binary value 0100, the bit set to 1 has 
rank 2. In general, bit bi of rank i contributes a value of bi2i to the 
overall value represented by B. The following formula converts the 
bits in B to a decimal (base-10) value: 
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An m:n counter, by definition, always sums bits of the same rank. 
If the input bits all have rank i, then the output bits have ranks i, i+1,
…, i+(n-1) respectively.  

A generalized parallel counter (GPC) [15] is a counter that can 
sum bits having different ranks; all of the input bits of the same rank 
are referred to as a column. In principle, we could design a GPC that 
produces more than one output bit of each rank; to simplify our 
heuristic, however, we only consider GPCs that produce a single 
output bit of each rank. An m:n counter can implement a GPC by 
connecting all input bits of rank i to 2i inputs of the counter. Of 
course, it is also possible to construct a GPC from basic gates as 
well; it turns out that k-input GPCs map quite well onto k-LUTs. 

We assume that a GPC has at most M input bits and N output bits. 
Formally, a GPC is a tuple: (KN-2, KN-1, …, K0; S), where the output S
is an N-bit number. There are N-1 columns, from rank 0 to N-2, with 
Ki > 0 input bits in the ith column. For example, a (1, 2, 3; 4) GPC 
sums one rank-2 input, two rank-1 inputs, and three rank-0 inputs, 
and produces four output bits. The largest possible output value that 
can be produced by this GPC is 1×22 + 2×21 + 3×20 = 12; S = 4 bits 
are required to express a value in the range [0, 12]. On the other hand, 
a (1, 2, 3; 3) GPC is infeasible, because 3 output bits cannot express 
a value in the range [0, 12].

 A legal GPC must satisfy the following two constraints: 
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Constraint (3) ensures that the number of the bits in all columns does 
not exceed the maximum number of inputs, M. Constraint (4) ensures 
that the maximum value of the GPC (assuming all input bits are 1) 
does not exceed 2N - 1, the largest integer value that can be expressed 
with N bits. For a given M and N, there may be many different GPCs 
that satisfy these two constraints. 

Fig. 1 provides an illustrative example. The input is two columns: 
three bits of rank-1 and three bits of rank-0. Using two CSAs, as 
shown in Fig. 1(a), these bits can be reduced to three columns, one of 
which contains two bits. Thus, a CPA is required to sum the 
remaining bits; if this circuit was synthesized on an FPGA, it would 
require two layers of logic: the first layer for the two CSAs, and the 
second for the CPA. Fig. 1(b), in contrast, employs a (3, 3; 4) GPC, 
which reduces all six input bits to four columns, each of which 
contains a single bit; if mapped onto an FPGA, only one level of 
logic is required.  

Fig. 2 shows a slightly larger example. The input is a set of 
columns, each having 5 bits. The compressor tree is generated using 
(5, 5; 4) GPCs. The layer of GPCs produces two rows of output bits, 
which can then be summed with a CSA.  

An M-input GPC can be mapped efficiently onto M-LUTs, since 
one logic layer is required to compute the function. If the GPC has N
outputs, then N M-LUTs are required to compute each of the output 
bits. Modern high-end FPGAs, such as the Xilinx Virtex 4 and 5, and 
Altera Stratix II and III, employ 6-LUTs as their basic logic elements. 
In practice, their logic cells are much more flexible: they contain 
multiple LUTs with shared inputs, carry chains, and sometimes local 
routing. The issue of shared LUT inputs can significantly affect the 
utilization of logic resources when mapping GPCs onto logic cells.  

The Altera Stratix II/III Adaptive Logic Module (ALM) has two 
6-LUTs with 6 shared inputs: thus, one ALM can compute any 
6-input, 2-output Boolean function. This structure naturally lends 
itself to GPCs with M = 6 inputs and N = 3 or 4 outputs, respectively.  

In Fig. 3(a), we map a 6-input, 3-output GPC onto two ALMs; one 
6-LUT is unused, yielding a LUT utilization of 75%. In Fig. 3(b), we 
map a 6-input, 4-output GPC onto two ALMs, in this case, all 
6-LUTs are used, so the utilization is 100%. Ideally, two 6-input, 
3-output GPCs should be mapped onto the six 6-LUTs contained in 
two ALMs; however, this is impossible because of shared LUT inputs, 
as shown in Fig. 3(c); four ALMs are necessary and the LUT 
utilization remains at 75%. 
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V. Compressor Tree Synthesis Heuristic 

This section describes a heuristic to construct a compressor tree 
from GPCs, which are then synthesized onto LUTs. The primary goal 
of the heuristic is to minimize the number of logic levels in the tree; 
minimizing the area (number of GPCs) is secondary. Like other work 
on more general forms of technology mapping [6], our heuristic 
cannot account for wire delays, because the placement and routing of 
the circuit is not known in advance.  

A. Preliminary Definitions 

A dot is an input/output bit of each GPC, represented visually, as 
in Figs. 1 and 2. This is typical of notation used in computer 
arithmetic textbooks, e.g. [11]. 

A primitive GPC is one that satisfies the I/O constraints. For 
example, if M = 6 and N = 3, there are 12 primitive GPCs, including 
(1, 3; 3) and (2, 3; 3).

A covering GPC is one whose functionality, given I/O constraints, 
cannot be implemented by another GPC. For example, when M = 6
and N = 3, a (2, 2; 3) GPC is not a covering GPC, since it could be 
implemented with a (2, 3; 3) GPC with one rank-0 bit set to 0. For 

these I/O constraints, the set of covering GPCs is {(0, 6; 3), (1, 5, 3), 
(2, 3; 3)}. (3, 0; 3) is unreasonable because no bit of rank-0 is 
summed.  

The compression ratio of the GPC is the ratio of input to output 
bits. For example, the compression ratio of a (3, 3; 4) GPC is 6/4 = 
1.5; the compression ratio of a (2, 3; 3) GPC is 5/3 = 1.66. GPCs 
with larger compression ratios are generally more effective at 
reducing the number of bits at each logic level in the compressor tree. 

When given a choice among several GPCs, our heuristic favors 
the one with the maximal compression ratio; given a choice between 
several GPCs with the same compression ratio, our heuristic favors 
the one that covers the largest number of dots.  

We have identified two cases where the use of a particular GPC is 
unreasonable. In the first case, consider a (3, 1; 3) GPC. The one 
rank-0 input dot will be propagated directly to the rank-0 output; thus, 
it can be routed directly, bypassing the GPC. In the second case, a 
GPC may fail to reduce the number of dots: a (1, 2; 3) GPC takes 3 
input dots, representing a value in the range [0, 4]; therefore, it 
produces 3 output dots; in general a GPC that fails to reduce the 
number of dots is not useful. 

B. Heuristic 

This section introduces the heuristic for compressor tree synthesis, 
using the definitions introduced in the previous section. All else 
being equal, the heuristic favors GPCs with higher compression 
ratios. This approach tends to favor both of our objectives: it reduces 
the number of logic levels in the compressor tree and the number of 
GPCs used. 

Fig. 4 shows pseudocode for the mapping heuristic, which 
contains seven main steps. The inputs to the algorithm are: 

M – the input constraint of the GPC (typically the LUT size of the 
target FPGA, e.g., 6 for Xilinx Virtex 4/5 and Altera Stratix II/III.

N – the output constraint of the GPC. 
k – the number of input rows of the final adder (typically 2, but 3

in the case of the ternary adders in the Stratix II/III and Virtex 5).  
Columns – the set of bits to be summed; in principle, an array of 

non-negative integers, where the ith integer in the array is the number 
of bits in the rank-(i-1) column. 
The output is a compressor tree constructed from GPCs that satisfy 

Synthesize_Compressor_Tree(Integer : M, N, k,
Array of Integers : Columns ) 

Step 1: Find_Covering_GPCs(M, N) 
Step 2: Find_Primitive_GPCs(M, N)
Step 3: Order_Primitive_GPCs( )
Repeat { 

Step 4: Repeat {
Col_Index = Max_Height_Column( Columns )

  Find_Next_GPC( Col_Index ) 
Remove_Covered_Dots( ) 

} Until all dots are covered or no reasonable     
   GPC can be found 

Step 5: Connect_GPC_Inputs( )
Step 6: Generate_Next_Stage_Dots( )

} Until k (or fewer) rows of dots remain 
Step 7: Generate_Final_CPA( Columns ) 

Fig. 4. Compressor tree synthesis heuristic 
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Fig. 3. An Altera ALM contains two 6-LUTs with shared inputs. A 
6-input, 3-output GPC has 75% logic utilization (a); a 6-input, 
4-output GPC has 100% logic utilization (b); two 3-output GPCs 
cannot be synthesized on 3 ALMs due to shared inputs (c). 
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Fig. 1. Compressor tree mapping by (a) 3:2 counters (b) and a 
(3, 3; 4) GPC. 

Fig. 2. Compressor tree synthesis using (5, 5; 4) GPCs 
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the I/O constraints; the mapping does not include the final adder, but 
this portion of the mapping is trivial. Our experiments are performed 
on the Stratix II FPGA by Altera. In this case, M = 6, N = 4, and k = 
3.

Here, we summarize the seven main steps in the mapping heuristic. 
The first three steps create an appropriate library of GPCs, and can be 
performed once for each pair of values M and N; the GPC library can 
then be stored in a database offline. The remaining steps perform the 
actual mapping. 

Step 1. The first step is to generate the set of covering GPCs, given 
M and N. This step is straightforward and deterministic, and 
converges quickly for small constant values of M and N.

Step 2. The second step is to generate the set of primitive GPCs, 
given M and N. In the general-case, the size of this set may be 
exponential in M and/or N; however, M and N are fairly small 
constants (6 and 4, in our case). The compressor tree itself is 
constructed from primitive GPCs, but in the final netlist each 
primitive GPC is represented by its corresponding covering GPC 
with some inputs set to 0.  

Step 3. The third step of the heuristic is to sort the primitive GPCs 
according to their compression ratio. All primitive GPCs with the 
same compression ratio are then locally sorted by the number of 
covering dots. The resulting set is used to cover the adder tree in an 
iterative fashion during steps 4-6.  

Steps 4-6 occur inside a loop that generates the compressor tree. 
Each execution of these three steps creates another logic layer in the 
tree, which reduces the number of rows of bits to be summed. These 
steps repeat until there are at most k rows, e.g., at most k bits per 
column. At this point, the heuristic terminates, and a k-input CPA is 
created to sum the remaining rows.   

Step 4. The fourth step covers all of the columns of the current logic 
level of the compressor tree with GPCs. Connections between the 
current and preceding logic levels are then created in Step 5, and Step 
6 generates the new set of columns for the following logic layer.  

First, a column containing the maximal number of dots is selected 
as the base column. This tends to favor GPCs with high compression 
ratios. To find the best GPC for the base column, the ordered set of 
GPC primitives is search from highest to lowest priority. 

Suppose that the ith column is selected as the base column. Since 
GPCs can compress bits in multiple columns, we can, for example, 
consider the dots in columns i+1, i+2, …, i+(N-1) in conjunction 
with the dots in column i: we call this a forward search, as illustrated 
in Fig. 5(a); likewise, we could also consider the dots column i in 
conjunction with dots in columns i-1, i-2, …, i-(N-1): we call this a 
backward search, as illustrated in Fig. 5(b).  

The first GPC that fits the base column and its following columns 
(forward search) is chosen as GPCF; likewise, the first GPC that fits 
the base column and its preceding columns (backward search) is 
chosen as GPCB; between GPCF and GPCB, the one of higher priority 
is selected. In Fig. 5(a), the forward search finds GPCF = (3, 5; 4),
and in Fig. 5(b), the backward search finds GBCB = (5, 2; 4). The 
respective compression ratios are CRF = 8/4 = 2 and CRB = 7/4 = 
1.75. Since CRF > CRB, GPCF has a higher priority and is selected.  

The reason to do both a forward and a backward search is that the 
input dots may have an asymmetric distribution. This can occur in 
FIR and other types of filters. For a symmetric distribution—for 
example, adding several 32-bit integers—a greedy forward search, 
starting from the least significant column toward the most significant 
column, would probably suffice. 
Step 4 repeats until all of the dots in the current stage of the 
compressor tree are covered, or no primitive GPC can be found for 

any of the remaining dots in the current stage. Any uncovered dots 
are propagated to the next stage in Step 6.  

Fig. 6 shows an example of an asymmetric set of input bits. Five 
iterations of Step 4 are required to cover (most) of the bits by GPCs. 
In this example, M = 6 and N = 3, so each GPC can consume at most 
6 input bits and can produce at most 3 output bits.  

1. The tallest column has six bits, so a (0, 6; 3) GPC, labeled 
‘1’ in Fig. 6, covers all of the bits in the column.  

2. The second-tallest column has five bits; by using a (1, 5; 3)
GPC, labeled ‘2’ in Fig. 6, an extra bit from adjacent column 
on the left (higher rank) is covered as well. 

3. The third-tallest column has four bits; by using a (1, 4; 3)
GPC, labeled ‘3’ in Fig. 6. The one bit from the column to 
the left (higher rank) is covered as well. 

4. The fourth-tallest column has three bits. One possibility 
would be to use a (3, 1; 3) GPC to cover these three bits, 
along with an extra bit in the preceding column; however, 
this GPC is unreasonable because the rank-0 input bit is 
simply propagated directly to the rank-0 output. Therefore, 
we use a (2, 2; 3) GPC, labeled ‘4’, in Fig. 6, instead. We 
cannot use a GPC that covers all 5 bits in these two columns, 
because its maximum value would be 8, which requires 4 
output bits. 

5. Four bits are left unmapped. There are only two rank-0 bits; 
they do not need to be added until the final CPA. The rank-2
and rank-4 bit could be covered by a (1, 0, 1; 3) GPC; 
however, this counter is unreasonable because it produces 
more output bits than it consumes, and the rank-0 and rank-1
outputs are equal to the rank-0 and rank-1 inputs respectively. 
Thus, all four of these bits are propagated to the next level of 
the compressor tree as inputs in their respective columns. 

Step 5. In the fifth step of the mapping heuristic, the GPCs that were 
created in Step 4 are connected to the GPCs in the previous stage (or 
the compressor tree inputs, if appropriate). Each GPC output in stage 
i-1 is connected to a GPC input in stage i, such that the respective 
GPC input and output in question have the same rank.  
Step 6. In the sixth step of the mapping heuristic, the columns for the 
next layer of logic are generated from the GPCs that are allocated in 

Fig. 6. Example illustrating four iterations of Step 4 on an 
asymmetric set of input columns (M = 6; N = 3).   

2
3

4

1

(a) (b) 

Fig. 5. Forward (a) and backward (b) search 
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Step 4. Any uncovered dots are propagated into the appropriate 
columns. A new layer of logic is generated, comprised either of GPCs 
(return to Step 4) or a k-ary CPA (Step 7, followed by termination). 

Step 7. If there are no more than k rows of bits remaining, then there 
is no need for further GPCs; instead, these bits are summed using a 
k-ary CPA, which produces one final row of output bits. Once the 
CPA is generated, the heuristic terminates. 

VI. Experimental Results 

A.  Overview 

The algorithm described in the preceding section was implemented 
and tested in a synthesis flow targeting the Altera Stratix II FPGA.
We synthesized a set of arithmetic circuits used by Verma and Ienne 
[18] to demonstrate the effectiveness of a flowgraph rewriting 
heuristic to expose compressor trees; we also synthesized a FIR filter, 
a 12x12 parallel multiplier, and an internally-developed 
1-dimensional systolic array implementation of the variable block 
size motion estimation phase of H.264/AVC (ME). We isolated the 
multi-input addition operations, and synthesized each one as a 
combinational circuit, i.e., without pipelining it. We synthesized each 
multi-input addition operation using three different approaches: 

GPC: Compressor tree synthesis using GPCs, as described in the 
preceding section, with M = 6 and N = 4. The compressor tree 
produced 3 outputs summed by ALMs configured as a ternary CPA. 

ADD: Synthesis on ALMs configured as a tree of ternary CPAs. This 
is considered to be the state-of-the-art at present because it exploits 
fast carry-chains.  

3GD: Compressor tree synthesis using the 3-greedy algorithm of 
Stelling et al. [14]. Each compressor tree was constructed from 
ALMs configured as CSAs, rather than CPAs; as such, it cannot 
exploit carry chains. For ASICs, 3GD is delay-optimal under the 
assumption of zero wire delay. This assumption is fairly unrealistic, 
both for ASICs (where wires do not scale as well as transistors) and 
FPGAs, where wire delay often dominates logic delay for large 
combinational circuits. The inclusion of 3GD illustrates the fact that 
CSAs are the incorrect building blocks for compressor tree synthesis 
on FPGAs.  

Our compressor/adder tree synthesis software produced structural 
VHDL that was mapped onto the FPGA using Synplicity’s Simplify 
Pro, and placed-and-routed with Altera’s Quartus-II software. 
 In the case of 3ADD, extra care had to be taken when generating 
VHDL for the ternary adder tree. The Quartus-II fitter does not 
automatically map multi-input addition operations to compressor tree. 
For example, a straighforward product accumulation statement, of the 
form S <= i0 + i1 + … + ik is mapped to a mixture of binary adders 
and LUTs, rather than ternary adders. On the other hand, a statement 
of the form T = i0 + i1 + i2; S <= T + i3 + i4 is mapped directly to 
ternary adders, and the result is a faster implementation; we 
generated VHDL using the latter coding style.  

B.  Results 

 The delay (ns) of the compressor trees synthesized using GPC,
3ADD, and 3GD is shown in Figs. 7. In all cases but one, GPC 
achieved a smaller delay than either 3ADD or 3GD; however, in the 
case of G721_X, GPC and 3ADD found the solution with the same 
delay. In this case, four 32-bit integers are summed; thus, two layers 
of logic are required for both the adder and the compressor tree. On 
average, the combinational delay of GPC was 27.5% less than 3ADD
and 28.6% less than 3GD.

Fig. 8 shows the area (ALMs) of the three synthesis methods. On 

average, GPC used 74.1 ALMs, 3ADD used 70.1, and 3GD used 
112.8. In the case of SAMUL and FIR3, GPC required fewer ALMs 
than 3ADD, which was due to the asymmetric input patterns in the 
latter case. In a few cases, the difference in area between GPC and 
3ADD was negligible; however, the overall trend for area favored 
3ADD.

Modern high-performance FPGAs contain DSP/MAC blocks for 
arithmetic acceleration; however, these blocks are optimized for 
high-throughput, high-frequency pipelined accumulation, rather than 
parallel accumulation. Nonetheless, we tried to synthesize ternary 
adder trees using them. The delay using this approach was on average, 
more than twice the delay of 3GD; Fig. 9 shows the resource usage. 

On average, this approach used 33.1 9-bit DSP blocks and 16.5
ALMs, compared to 70.1 ALMs, on average, for 3ADD. A 
comparison of 49.6 “resources” to 70.1 ALMs is spurious, because a 
DSP block is considerably more complex than an ALM. Due to the 
high delay of this last approach, we do not advocate using an adder 
tree built from DSP blocks unless resource constraints prevent the 

Fig. 7. Delay (ns) from mapping multi-input addition operations 
onto the Stratix-II FPGA. 

Fig. 8. Area (ALMs) from mapping multi-input addition 
operations onto the Stratix-II FPGA. 

Fig. 9. Resources (DSPs and ALMs) used when by mapping 
multi-input additions onto adder trees using DSP blocks. 
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use of GPC or 3ADD. At the same time, a larger FPGA device from 
the same family is likely to be a preferable choice than an adder tree 
with unreasonably high delay.  

These experiments focused specifically on the ALM structure of 
Altera Stratix II FPGAs; the Stratix III uses the same ALM 
architecture; likewise, we would expect to observe comparable 
results for the Xilinx Virtex 5, which also supports ternary addition.  

For prior FPGAs, that used 3- or 4-LUTs, it is not clear whether 
the proposed approach would be beneficial. Compressor trees would 
require more layers of logic; however, on the other hand, ternary 
addition is not supported, and carry chain technology was not 
advanced as it is today.  

VII. Conclusion and Future Work 

A novel technique to map compressor trees onto FPGAs has been 
proposed. In our experiments with the Altera Stratix II FPGA, our 
technique reduced the critical path delay by 27.5%, on average, 
compared to ternary adder trees, with a tolerable average increase in 
ALM usage of 5.71%.The mapping heuristic used GPCs, rather than 
CSAs and single column parallel counters, which are generally used 
in ASIC synthesis of compressor trees. 

Conventionally, it has been thought that compressor trees do not 
map well onto FPGAs; we have shown that this is not the case. More 
precisely, however, these assumptions are still shown to hold true for 
compressor trees synthesized from CSAs, not necessarily compressor 
trees synthesized from larger m:n counters and GPCs. It is possible 
that other common components for arithmetic circuit design, such as 
6:2 compressors may also be useful in compressor tree synthesis for 
FPGAs; we leave this investigation open for future work. 

It is not immediately clear whether GPCs are useful in compressor 
tree synthesis for ASICs. On the one hand, GPCs can be constructed 
from smaller components, such as CSAs, and m:n counters; thus, any 
technique that constructs compressor trees from CSAs and m:n
counters implicitly has the ability to use CSAs. On the other hand, 
Verma and Ienne [17] have shown that better architectures for m:n
counters occur when they are constructed from basic gates, rather 
than CSAs and smaller m:n counters; thus, it is possible that the same 
property holds for GPCs as well; in this case, it is possible, although 
not guaranteed, that GPCs could be useful components in ASIC 
synthesis of compressor trees. 
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