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SUMMARY

This thesis is concerned with queueing models where demand is allowed to exceed

the system capacity, and also with the capacity sizing and pricing problem for het-

erogenous products and resources under demand uncertainty. Our aim is to improve

productivity and profitability.

In the first part of the thesis, we consider the dynamic assignment of servers to

tasks in queueing networks where demand may exceed the capacity for service. The

objective is to maximize the system throughput. We use fluid limit analysis to show

that several quantities of interest, namely the maximum possible throughput, the

maximum throughput for a given arrival rate, the minimum arrival rate that will

yield a desired feasible throughput, and the optimal allocations of servers to classes

for a given arrival rate and desired throughput, can be computed by solving linear

programming problems. We develop generalized round robin policies for assigning

servers to classes for a given arrival rate and desired throughput, and show that our

policies achieve the desired throughput as long as this throughput is feasible for the

arrival rate. We conclude with numerical examples that illustrate the points discussed

and provide insights into the system behavior when the arrival rate deviates from the

one the system is designed for.

In the second part of the thesis, we consider the effects of inspection and repair

stations on the production capacity and product quality in a serial line with possible

inspection and repair following each operation. We consider multiple defect types and

allow for possible inspection errors that are defect dependent. We construct a profit

function that takes into account inspection, repair, and goodwill costs, as well as the

x



capacity of each station. Then we compare the profitability of different inspection

plans and discuss how to identify the optimal inspection plan. Unlike previous works,

our analysis captures the possibility of increasing production capacity by scrapping

or repairing defective items before a bottleneck operation station, and hence reducing

the waste of operation capacity on defective products.

Finally, in the third part of the thesis, we consider the capacity and pricing de-

cisions made by a monopolistic firm producing two heterogenous products under

demand uncertainty. The objective is to maximize profit. Our model incorporates

dedicated and flexible resources, product substitutability, and processing rates that

may depend on the product and on the resource type. We provide the optimum prices

and production quantities as functions of resource capacities and demand intercepts.

We also show that investment in flexible capacity is only desirable when it is opti-

mal to invest in dedicated capacities for both products, and obtain upper bounds for

the costs of the dedicated capacities that need to be satisfied for investment in the

flexible resource. We conclude with numerical examples that illustrate the points dis-

cussed and provide insights into how the optimal capacities and expected production

quantities, prices, and profit depend on various model parameters.

xi



CHAPTER I

INTRODUCTION

In today’s highly competitive market, it is vital to find new ways to utilize the existing

resources in a production/queueing system more efficiently. This thesis is concerned

with the analysis and implications of allowing instability in queueing systems, specif-

ically in serial inspection systems, as well as with capacity and pricing decisions for

flexible resources. Our primary objectives include increasing the production rate and

profitability of the systems under consideration.

Consider a network with K service facilities (or stations) and M servers assigned

to those stations, with probabilistic routing among stations. In traditional queueing

network models, each server is dedicated to work only at a single station. However,

it is interesting to study the effects of flexible (cross-trained) servers that are capable

of working at different stations, with the objective of achieving more efficiency. This

interest in flexible workforce has motivated many researchers to determine ways to

utilize cross-trained servers efficiently. For example, researchers have considered how

servers should be moved dynamically between stations in order to enhance system

performance. In analyzing these flexible systems, as well as other queueing systems,

the stability of the queue lengths is an implicitly required assumption or goal. There

exists only a limited amount of research on unstable queueing systems (see Chapter

2 for a literature review). However, in certain settings, allowing instability can lead

to performance improvements.

In the first part of this thesis, we investigate multi-class, discrete-flow networks

with infinite buffers when demand is allowed to exceed the capacity for service. Mul-

tiple types of customers are serviced by flexible servers that are able to work on

several different classes. Offered demand to each class can come from both external

sources as well as internal transitions. The same server can have different service

rates for different classes. Moving a server among the classes is assumed to incur

switching times that can be different for each origin-destination pair of classes. More

than one server can be assigned to a given class, possibly with different service rates.

In that case, servers at a class can either cooperate by working simultaneously on a

customer, or work in parallel and process the customers separately. We concentrate

on the case where the servers work in parallel and there is one arrival stream routed
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to various classes (cooperating servers and multiple arrival streams are straightfor-

ward extensions). Our aim is to find the best assignment of servers to classes so that

the throughput of the system is maximized in the multi-class network with flexible

servers.

To motivate our analysis, consider manufacturing processes where demand exceeds

the production capacity and work in process can be either salvaged for some profit or

scrapped at small cost compared to the final product value. In these cases, allowing

instability in the system might be desirable given the right parameters. We quantify

the effects of allowing instability on both throughput and server assignments, and also

construct a linear program that is used to identify the optimal allocation of servers

to classes, as well as the resulting throughput. Two server allocation policies are

introduced with proofs that they can achieve any throughput less than the optimal

value. Through numerical studies, we show how the assignments are determined

for a specific network, and provide information about the sensitivity of the optimal

assignment with respect to the demand, as well as some simulation results.

Quality and cost are important factors impacting the profitability of competitive

manufacturing industries. To prevent nonconforming items from reaching customers,

inspection of products is performed. Although repeated inspection may add to the

total cost of produced units, it introduces the opportunity of scrapping defective units

early in the production process, so as to avoid wasting production capacity, partic-

ularly at bottleneck stations, on defective units, as well as eliminating unnecessary

production cost incurred for defective units. Therefore, there is a tradeoff between

inspection, repair, and scrap costs on the one hand, and the cost of products with

undetected defects reaching customers on the other hand.

In the second part of the thesis, we analyze inspection policies for serial produc-

tion systems based on the total profit rate, where production may be constrained by

the external arrival rate (demand), or by the capacity of any of the inspection, repair,

or production processes. In addition to factoring in revenue and production, inspec-

tion, and repair costs, we also take into account goodwill cost that is incurred when

defective units are shipped to customers. Goodwill cost may be incurred directly in

the form of repair costs, or indirectly in the form of loss of customer goodwill.

Although previous works take into account the throughput of the system in the

inspection allocation problem, they only consider reduction in the throughput as a re-

sult of scraps at inspection stations or consider inspection stations that determine the

overall throughput (see Chapter 2 for a literature review). None of them quantify the

benefit of having inspection, and hence scraps, before the bottleneck stations, which
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has the effect of increasing the capacity of the bottleneck. Moreover, our model allows

for more generality in the repair and inspection processes. For instance, inspection

errors can depend both on the station and defect type; partial inspection is allowed as

opposed to complete inspection; at each inspection station, some units are identified

as having repairable or not repairable defects, and hence scraps are possible after the

inspection stations; and also repair cost and probability at each repair station can

depend on whether a unit is actually defective or wrongly classified to be defective.

Since we take into account the side effects of inspection on downstream bottleneck

stations, our results are more broadly applicable than previous work considering de-

mand constrained systems. We also demonstrate through numerical examples that

bottleneck considerations for determining the best inspection locations can lead to

different inspection decisions than previous models (that do not take the capacity of

the system into account).

The capacity investment decision has a high impact on a firm’s profitability and

competitiveness. Capacity levels are typically determined in advance of the actual

production because of the long lead times for acquiring the capacity. This decision can

be made as early as five years before the planned production date (see Fleischmann,

and Henrich [39]). Hence, capacity decisions have to be made under demand un-

certainty based on available forecasts, resulting in mismatches between supply and

demand. As a result, firms are increasingly resorting to flexibility, both on the supply

and demand sides, to effectively match their supply with demand (see e.g., Boudette

[19], Edmondson [35], Holweg and Pil [53], Jordan and Graves [58], Mackintosh [68],

McMurray [70], and Muriel, Somasundaram, and Zhang [71] for specific examples).

In the third part of the thesis, we analyze the optimal capacity decision faced

by a price-setting and monopolistic firm producing two substitutable or complemen-

tary products with flexible and dedicated technologies. The firm needs to determine

its production capacity beforehand under demand uncertainty (first stage); however,

production and pricing decisions can be made after the demand uncertainty is re-

solved (second stage). We assume a linear demand function, where demand for a

product is inversely related to its own price, taking into account possible cross-price

effects on demand from the other product. Demand uncertainty is introduced into

the model as uncertainty about the location of demand curves. There are two types

of capacity, namely dedicated to one product and flexible to produce both products.

We allow products to be heterogenous in that they might require different amounts

of server time. Also, the flexible server may have service rates that differ from those

of the dedicated servers. Determining how to share the flexible capacity between the

3



two products is another decision variable in the second stage when actual demand

parameters become visible. Hence the firm can deal with the demand uncertainty

by changing the supplies for both products through flexible capacity (supply side

flexibility), and by changing the demand for the products through pricing (demand

side flexibility). The firm can also produce below the installed capacity (volume flex-

ibility). Although previous works consider similar two stage problems, none of them

model the effects of server capabilities, along with product substitutability and dif-

ferent technology types (dedicated and flexible), on the optimal capacity decision, as

well as the optimal expected profits. Hence, our model allows for more generality and

broader applicability.

The remainder of this thesis is organized as follows. In Chapter 2, we review the

previous research on flexible servers, inspection allocation, and capacity sizing and

pricing. In Chapter 3, we provide our analysis and results on dynamic server allocation

with flexible servers. In Chapter 4, we describe the inspection allocation problem in

capacity-constrained serial lines and provide our results. We discuss and analyze the

capacity planning and pricing problem in Chapter 5. Finally, we summarize our main

results and contributions and suggest possible future research directions in Chapter

6.
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CHAPTER II

LITERATURE REVIEW

In this chapter, we review the literature that is related to our work. More specifically,

Section 2.1 reviews the literature on server assignment to queues (both static and

dynamic) for increasing the efficiency of flow lines, as well as results on unstable

queues. Next, we review the research on the inspection allocation problem specifically

for serial network configurations in Section 2.2. Finally, Section 2.3 reviews the

literature on pricing and capacity allocation problems.

2.1 Flexible Server and Unstable Queueing Literature

In recent years, there has been a growing interest in queueing systems with flexible

servers, with most of the work examining holding costs or throughput. Ahn, Duenyas,

and Zhang [2], Pandelis and Teneketzis [76], and Farrar [37] study how servers should

be assigned to stations to minimize the total holding cost incurred for systems with

two queues in tandem and no arrivals. Ahn, Duenyas, and Zhang [3] consider the

same problem for a two-class queueing system with one dedicated server, one flexi-

ble server, and no exogenous arrivals. Similarly, for systems with two stations and

Poisson arrivals, Ahn, Duenyas, and Lewis [1], Hajek [50], and Rosberg, Varaiya, and

Walrand [82] aim to minimize the expected total holding cost by assigning servers to

stations. Works that aim to maximize the long-run average throughput through dy-

namic assignment of reliable servers include Andradóttir, Ayhan, and Down [4, 5, 6]

and Tassiulas et al. [87, 88]. By contrast, Andradóttir, Ayhan, and Down [7, 8] and

Wu, Lewis, and Veatch [98] determine the optimal allocation of flexible servers in a

tandem-line system where servers are not necessarily reliable. For parallel queueing

systems with flexible servers and external arrivals, Williams [97], Bell and Williams

[10, 11], Bramson and Williams [20], and Harrison and López [52] suggest asymptoti-

cally optimal server assignment policies that minimize the discounted infinite-horizon

holding costs under a heavy traffic assumption.

The earliest work we are aware of that considers overloaded systems is by Good-

man and Massey [43]. They study non-ergodic Jackson networks and propose a way to

determine the maximal subnetwork that achieves steady state. Weiss [95] considers a

Jackson network in which some of the nodes have an infinite supply of customers. He
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shows that when only customers in transit are counted as congestion, the stable subset

of nodes has the usual product-form distribution. Similarly, the marginal distribution

for the number of customers in transit exists for each node with an infinite supply of

work, but the joint distribution does not have product-form. Kopzon, Nazarathy, and

Weiss [62] and Nazarathy and Weiss [74] determine policies for push-pull networks

that ensure that the networks are working at full utilization.

Chen and Mandelbaum [23] conduct a bottleneck analysis of a dynamic, discrete-

flow network, where customers are indistinguishable. They use a fluid approximation

of the initial discrete network to identify the system throughput, and show that

calculating equilibrium throughput rates is equivalent to identifying the bottlenecks

of the original network. Unlike our work, in their network, servers are dedicated

to a single class. We will find that allowing the servers to be flexible considerably

complicates the analysis, as it is difficult to precisely control the amount of time a

server spends at each class. A diffusion approximation for the fluid model in Chen and

Mandelbaum [23] is described by the same authors in [24]. Andradóttir, Ayhan, and

Down [6] identify a tight upper bound on the capacity, while maintaining stability, and

provide a method to construct server assignment policies with performance arbitrarily

close to this bound. By contrast, we do not require the system to be stable, which also

significantly complicates the analysis. Note that if the class of a customer determines

the server (that is if only one server is allowed per class) and the servers are not

allowed to move, then our problem reduces to production scheduling of classes at

each node.

Overloaded systems have also been considered in nonstandard queueing networks

where the service rates at the individual classes are not independent, but depend

deterministically on the state of the entire system. In such a network, Jonckheere,

van der Mei, and van der Weij [57] obtain necessary conditions for rate stability at

each class, and also provide bounds for the output rate at each class. Similarly, for

bandwidth sharing networks, Egorova, Borst, and Zwart [36] give a partial character-

ization of the overloaded system’s behavior by providing a fixed-point equation for

the asymptotic growth rates of the queue lengths.

The use of fluid limits in queueing systems is by now a standard technique. From

a stability point of view, it is known that stability of the fluid model is intimately

related to the stability of the queueing network (Dai [30]). It is also known that if

the fluid model of a queueing network is unstable in a strong sense, then the queueing

network is unstable in the sense that the total number of customers in the queueing

network diverges (Dai [31]). However, additional analysis is required to address how
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a network with flexible servers becomes unstable.

2.2 Inspection Allocation Literature

The inspection allocation problem has been studied by many researchers under dif-

ferent assumptions on the topology of the assembly line. Raz [80] and, more recently,

Mandroli et al. [69] provide exhaustive reviews of the work done in this area. Next,

we review some works on the inspection allocation problem, namely the early papers

and ones closely related to our work.

Lindsay and Bishop [66] proposed a serial production line model where inspection

stations are assumed to be error free and all defects are scrapped. Each inspection

station could only check the outcome of the previous operation station. They showed

that the optimum inspection level at each station was to inspect either all or no

units. Hurst [56] was the first to account for the occurrence of inspection errors. Raz

and Kaspi [81] examined sequencing and location issues for serial lines with rework

and scrap, where multiple inspections are possible after a given operation. Cochran

and Erol [29] developed analytical models for calculating the outgoing quality level

in a serial manufacturing line with repair stations, scraps, multiple defect types, and

inspection errors. Garcia et al. [42], Yum and McDowell [99], and Britney [21] stud-

ied the optimal allocation of inspection stations for non-serial production systems,

where the output of a processing activity can serve as input to multiple operations.

Re-entrant production systems with inspection at various stages of processing were

studied by Narahari and Khan [73]. Lee and Unnikrishnan [65] considered a job shop

system with finite inspection resources, where each part had a particular manufac-

turing sequence. More recently, Galante and Passannanti [41] proposed an integrated

approach to part scheduling and inspection for job shop manufacturing. Foster et al.

[40] and Villalobos et al. [93] discussed the optimal inspection allocation problem for

flexible inspection systems where the decisions on what parts to inspect are made just

prior to performing inspection operations. Unlike the above studies which considered

optimization of steady-state performance, Kogan and Raz [61] studied the problem

in a finite planning horizon setting.

Since the advent of continuous improvement methodologies, it has been of inter-

est to know how defective a product is, not just whether it is defective. All of the

papers reviewed in the previous paragraph consider workstations of attribute data

(WAD), where defects are introduced with Bernoulli type distributions. Some papers

proposed models with workstations of variable data (WVD), where defect values have
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continuous probability density functions. Hsu and Tapiero [54, 55, 86] constructed

and analyzed queue dependent sampling plans intended to screen defective products

for single stage M/M/1 and M/G/1 queues based on WVD. Chevalier and Wein [27]

proposed a mathematical model based on WVD in a serial line. Their model was

the first to address the presence of multiple defect types, and involves the joint opti-

mization of the inspection allocation and testing policy, together with an application

involving Hewlett-Packard. However, every defective part is assumed to be repaired

with probability one, and hence no scraps exist. Shiau [83, 84] considered inspec-

tion capability, manufacturing capability, and tolerance in the inspection allocation

problem with the WVD inspection error model. More recently, Volsem et al. [94]

developed an evolutionary algorithm that jointly optimizes the number and location

of inspection stations, as well as the inspection limits (acceptance range), for a serial

multi-stage production line.

The tradeoff in all the above models is between inspection, repair, scrap, and

goodwill costs. Such traditional economic models of optimal inspection allocation

focus on minimizing the production cost while meeting minimum required product

quality levels. However, none of them explicitly accounts for the fact that inspection

and repair may place an additional burden on the system, causing productivity to

decrease. As a result, the optimal solution takes the form of all or none inspection

at each inspection station. Moreover, the works discussed so far all assume infinite

buffers between stations. Shin et al. [85] considered the effects of all or none inspection

on the throughput in a WAD serial line model with infinite buffers, a single defect

type, and the objective to satisfy a throughput requirement. Gurnani et al. [49]

constructed a two stage serial line WAD model, with finite buffers among stations,

having error free, all or none inspection operations, and compare the case with an

inspection station at the end to the case when there are inspection stations after

each production operation. Han et al. [51] provided a closed form approximation for

the average steady-state production rate in a serial line with all or none inspections,

single defect type, and finite buffers between the stages.

Some authors considered the effects of inspection on the production capacity of

the system. Bai and Yun [9] discussed the problem where a limited number of inspec-

tion stations are available in a serial line with single defect type and perfect repair.

However, their model is restricted to the case where production is constrained by the

throughput rate of the inspection systems, so that adding new inspection systems

or increasing the inspection level (representing the percentage of defects inspected

for) might lower the total throughput of the system. Kakade et al. [59] extended
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the results of Bai and Yun [9] by accounting for dissimilar quality characteristics

carried by different components, with the inspection time depending on component

quality. In both models, the inspection level is the same for all inspection stations,

and hence all the inspection stations have the same capacity. Rau and Chu [78, 79]

accounted for the existence of both types of workstations (WAD and WVD) in arrival-

constrained serial lines and re-entrant production systems, respectively, with rework,

repair, scrap, and a single defect type. Although both papers determine the inspec-

tion allocation based on optimal profit, they only take into account the effect of

scrapped units on the throughput. Kim and Gershwin [60] analyzed how production

system design, quality, and throughput are interrelated in a small production system

with two WVD type machines without scraps and finite buffers. Instead of scrapping

defective units, they employed a continuous improvement policy, where the system is

stopped once the machine is out of order and producing defective units. Kouikoglou

and Phillis [63] jointly determined inspection and production plans for a single stage,

input-constrained production system taking into account the throughput rate. More

recently, Penn and Raviv [77] suggested a polynomial time algorithm for determining

the location of error free, all or none inspection stations in an arrival-constrained

serial line with a single defect type and no repair, so that expected net profit per time

unit is maximized.

2.3 Capacity Sizing and Pricing Literature

The value of capacity flexibility has been extensively studied in the operations man-

agement literature, with most works assuming exogenously given prices. Linear de-

mand models, where demand for a product is inversely related to its price, are very

common in the capacity management literature, since the linear form presents a rea-

sonable representation of the demand price relationship while providing analytical

tractability (see Bish and Suwandechochai [16]). All of the papers that we mention

below consider linear demand models similar to the one considered in this thesis.

Netessine, Dibson, and Shumsky [75] consider a model with partially flexible re-

sources where higher valued resources can supply the demand for any of the lower

valued resources. For the case of two products under exogenously given prices, they

show that increasing demand correlation causes a shift in capacity choice from flexible

to dedicated resources. Van Mieghem [90] finds that flexibility is beneficial even un-

der perfect positive correlation of demand if one product is more profitable than the

other for a two product firm facing a bivariate demand distribution. His numerical
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results show that as the demand correlation between products increases, the optimal

dedicated resource capacity increases in a concave manner, while optimal flexible re-

source capacity decreases in a convex manner. Later, Van Mieghem [91] compares

a flexible resource strategy with a component commonality strategy and shows their

equivalence under exogenously given prices.

In all of the papers mentioned in the previous paragraph, prices are exogenously

given. Other works consider models where the firm has control over the product

pricing, and hence can affect its demand. The ability to modify price before prod-

uct launch is known as pricing flexibility. Other forms of flexibility include volume

and product flexibilities, which imply the ability to produce below installed capacity

and switch capacity between products without cost or penalty. Fine and Freund [38]

determine the optimal level and mix of dedicated and flexible capacities for a firm

manufacturing two products under demand uncertainty, with the demands restricted

to only take a discrete set of possible values and the pricing decision implicitly consid-

ered through a concave revenue function. They show numerically that the expected

profit and total capacity are increasing in demand variance (because the extra revenue

when demand and prices are high dominates the loss in revenue when demand and

prices are low). Gupta, Gerchak, and Buzacott [48] extend the model of Fine and

Freund [38] by studying the effects of existing capacities through numerical examples.

Van Mieghem, and Dada [92] conduct a comprehensive study of postponement

(flexibility) strategies for a single product, with the firm deciding on optimal capacity

levels, production quantities, and price. Biller, Muriel, and Zhang [13] study the im-

pact of price postponement on capacity and flexibility investment decisions. Through

a numerical study, they show that considering price postponement (flexibility) at the

planning stage leads to reduction in capacity investments, especially for the flexible

capacity, and hence to an increase in profits. The trade-off between dedicated and

more expensive flexible resources and the firm’s optimal capacity decision has been

analytically characterized by Bish and Wang [18] and Bish and Hong [15]. Bish and

Wang [18] provide threshold values calculated from the model parameters that can be

compared with the unit cost of the flexible resources to determine if the investment in

flexible resources is profitable. Bish and Hong [15] consider systems with two prod-

ucts and two resources where the resource that can be used to produce the higher

level product also can be used to produce the lower level one, but not vice versa.

They obtain the optimal investment strategy when the demands for the products

have perfect positive and negative correlation.

Although all of the mentioned research considers investment in a mix of dedicated
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and flexible capacities, they assume that products are independent with no cross

price effect and that the flexible and dedicated resources produce all the products at

the same rate. Some researchers consider general linear demand models with cross-

price effects (known as product substitutability/complementarity) and correlation on

demand for each product. However, to keep analytical tractability and emphasize

their results on substitutability/complementarity, they allowed investment either in

dedicated or flexible resources, not both.

In particular, assuming that the random demand intercepts have a normal dis-

tribution, Chod and Rudi [28] show that the investment of a monopolist in flexible

capacity increases in both demand variability and correlation. However, they do not

analyze the sensitivity of capacity decisions with respect to product substitutabil-

ity. Goyal, Netessine, and Randall [47] also conduct empirical analysis of the North

American automotive industry and show that flexible capacity is most valuable with

high demand uncertainty but low demand correlation. Goyal and Netessine [44, 45]

support the results of Chod and Rudi [28] and further explore the impact of product

substitutability on optimal capacity. Birge, Drogosz, and Duenyas [14] and Bish and

Suwandechochai [17] also study the impact of substitutability on optimal capacity

investment decisions with flexible resources and show that total capacity investment

increases with the substitutability parameter. Goyal and Netessine [46] show that

while the value of product flexibility always decreases in demand correlation, the

value of volume flexibility can increase or decrease in demand correlation depend-

ing on whether the products are strategic complements or substitutes. They also

show that volume flexibility is a better tool against aggregate demand uncertainty

for the two products, while product flexibility is better at mitigating the individual

demand uncertainties. More recently, Bish, Liu, and Suwandechochai [16] consider

a linear demand model where uncertainty can be included in the model either as

an additive or as a multiplicative variable, and study how various market conditions

and assumptions on demand (additive or multiplicative) affect a monopolist firm’s

capacity investment decision under responsive pricing. Finally, Lus and Muriel [67]

consider a model with flexible and dedicated resources and product substitutability,

and conduct a numerical analysis to study the effects of a substitutability param-

eter on optimal profits and flexible capacity for a monopolistic firm producing two

products and various models where two competing firms each produce one product.
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CHAPTER III

DYNAMIC SERVER ALLOCATION FOR UNSTABLE

QUEUEING NETWORKS WITH FLEXIBLE SERVERS

In this chapter we study general queueing networks with multiple customer classes

and flexible servers without any stability restrictions on the network. Our objective

is to construct an assignment policy for the servers such that the throughput from

the system is maximized. We will use fluid limit analysis to quantify the effects of

allowing instability on both throughput and server assignments.

The organization of this chapter is as follows. In Section 3.1, our queueing network

model and other assumptions are described in detail. In Section 3.2, we construct a

linear program (LP) that is used to identify the optimal allocation of servers to classes,

as well as the resulting throughput, and we provide a uniqueness result for the sets of

stable or unstable classes. Section 3.3 introduces two server allocation policies with

proofs that they can achieve any throughput less than the optimal value. In Section

3.4, the concepts of “saturation” input and maximum output that can be achieved

are introduced, as well as modified linear programs to calculate those quantities.

Section 3.5 gives numerical results that show how the assignments are determined

for a specific network, and provides information about the sensitivity of the optimal

assignment with respect to the demand, as well as some simulation results. Finally,

Section 3.6 summarizes our findings.

3.1 Queueing Network Model

We consider a network composed of M flexible servers and K classes of customers,

with a buffer of infinite size for each class. The class of a customer represents its

current processing stage and customers can change class after each stage. The classes

may all be at separate physical stations or there may be several classes served at

a particular station. The network is supplied by an exogenous arrival process with

independent and identically distributed (i.i.d.) increments u(n) for the nth customer

with E(u(1)) = 1/λ. An external arrival is routed to class k with probability p0,k, for

k = 1, . . . , K. Let the resulting interarrival time of the nth customer at class k be

denoted by uk(n). We allow p0,k = 0 for some k, meaning that the external arrival

process for customers to class k is null. The arrival rate to class k is denoted by
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λk = λp0,k.

Upon completion of service, a class i customer becomes one of class k with proba-

bility pi,k, with the customer leaving the system with probability pi,0 = 1−∑K
k=1 pi,k

for i, k = 1, . . . , K. Let the routing matrix P have (i, k) entry pi,k for i, k = 1, . . . , K.

We assume that the n-step transition matrix P n satisfies P n → 0 as n → ∞, which

implies that the network is an open network and (I−P )−1 exists and is nonnegative.

The servers are assumed to be flexible, with each server being capable of serving

a set of classes. If server j is capable of serving class k, then the nth customer served

by server j at class k has a service time given by vj,k(n), so that the service rate at a

class can depend on both the server and the class being served. We assume that the

sequence {vj,k(n)} is i.i.d. for each j = 1, . . . ,M and k = 1, . . . , K. The mean service

time is given by mj,k = E(vj,k(1)) for server j at class k, with corresponding service

rate µj,k = 1/mj,k. If server j is not capable of serving class k, we set vj,k(n) = ∞ and

µj,k = 0. Within a class, service is First Come First Served (FCFS). Moving server

j from class i to class k the nth time incurs a switching time ξj
i,k(n), i, k = 1, . . . , K,

j = 1, . . . , M . We assume that the sequence {ξj
i,k(n)} is i.i.d. for each i, k = 1, . . . , K,

j = 1, . . . , M with mean sj
i,k = E(ξj

i,k(1)). The interarrival, service and switchover

times are assumed to be mutually independent.

Next we define some cumulative processes for the queueing network model. The

total number of exogenous arrivals at time t is represented by E0(t). The processes

A = {A(t), t ≥ 0}, E = {E(t), t ≥ 0}, and D = {D(t), t ≥ 0} are K-dimensional

column vectors with Ak(t) denoting the cumulative number of class k customers that

arrive in (0, t], Ek(t) being the number of exogenous arrivals to class k in (0, t],

and Dk(t) being the total number of departures from class k in (0, t]. The variable

Φi,k(n) =
∑n

l=1 φi,k(l), i = 1, . . . , N , k = 0, . . . , N is the number of customers that

arrive to class k from class i among the first n customers passing through class i (with

the k=0 case corresponding to departures from the system), and φi,k(n) are indepen-

dent Bernoulli random variables that have value one with probability pi,k (meaning

that the nth customer from class i is routed to class k) and are zero otherwise. More-

over, Vj,k(t) is the residual service time for class k by server j at time t (set to infinity

if µj,k = 0) and U(t), Uk(t) are the residual exogenous interarrival time at time t to

the system and to class k, respectively. Let Tj,k(t) be the total amount of time that

server j spends serving class k customers in (0, t] and Sj,k(t) be the potential number

of service completions by server j at class k if server j devotes all its time to class

k in (0, t]. Finally, let W j
i,k(n) denote the total time spent by server j on switching

from class i to class k up to and including the nth switch.
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Expressing the cumulative processes in terms of the interarrival, service, and

switching times uk(n), vj,k(n), and ξj
i,k(n), we have

Sj,k(t) = max{n : Vj,k(0) + vj,k(1) + vj,k(2) + · · ·+ vj,k(n− 1) ≤ t}; (1)

E0(t) = max{n : U(0) + u(1) + u(2) + · · ·+ u(n− 1) ≤ t}; (2)

Ek(t) = max{n : Uk(0) + uk(1) + uk(2) + · · ·+ uk(n− 1) ≤ t}; (3)

W j
i,k(n) =

n∑
m=1

ξj
i,k(m). (4)

By the Strong Law of Large Numbers (SLLN), we have,

lim
t→∞

Ek(t)

t
= λk, lim

t→∞
Sj,k(t)

t
= µj,k, and lim

n→∞
W j

i,k(n)

n
= sj

i,k,

for j = 1, . . . , M, and i, k = 1, . . . , K.(5)

Finally, we assume that the interarrival times are unbounded and spread out. That

is, there exists some integer l, and some function q(x) ≥ 0 on R+ with
∫∞

0
q(x)dx > 0,

such that

P (u(1) ≥ x) > 0, for any x > 0, (6)

P (a ≤ u(1) + . . . + u(l) ≤ b) ≥
∫ b

a

q(x)dx, for any 0 ≤ a < b. (7)

This assumption is required for Theorem 4.2 in Dai [30], which we will use in Section

3.3.5.

Let the queue length at class k at time t be denoted by Qk(t). For a given server

assignment policy (i.e., the functions Tj,k(t) are given for all j and k), the cumulative

variables satisfy the following queueing network equations

Ak(t) = Ek(t) +
K∑

i=1

Φi,k(Di(t)), k = 1, . . . , K; (8)

Dk(t) =
M∑

j=1

Sj,k(Tj,k(t)), k = 1, . . . , K; (9)

Qk(t) = Qk(0) + Ak(t)−Dk(t), k = 1, . . . , K; (10)

and 0 ≤ ∑K
k=1 Tj,k(t) ≤ t, j = 1, . . . , M . Finally, let D(t) =

∑K
k=1 Φk,0(Dk(t)) be the

total number of departures from the system until time t. Then the throughput of the

system is given by lim supt→∞ D(t)/t.
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3.2 Deterministic Analysis

When we allow instability in the system, the calculation of the flow rates at each

class is not obvious. In particular, the usual traffic equation for the flow rate at

class k (i.e., rk = λp0,k +
∑K

i=1 pi,kri, where rk is the effective inflow rate to class

k) is not valid, because in our case the input rate to a class does not necessarily

equal the output rate from that class. In this section, given the offered demand λ to

the system, we construct an optimization problem whose solution provides both the

optimal allocation of servers to classes and also the corresponding input and output

rates at each class. The allocation of the servers is such that the maximum capacity

for the network is achieved for λ, while satisfying network constraints.

The outline of this section is as follows. In Section 3.2.1 the LP that is used

to determine the allocation of servers, is constructed. Section 3.2.2 introduces a

uniqueness result for the effective inflow and outflow from each node in the network

given the allocation parameters. Finally, in Section 3.2.3, we identify the stable and

unstable classes based on the allocation LP, and also consider the special case when

we have a Jackson network.

3.2.1 The Allocation LP

In this section, we introduce the allocation LP. We start by defining the flows within

the network. The effective inflow rate ak to class k consists of inflow from the outside

plus the inflow from the other classes within the network. Similarly, dk is the effective

outflow rate from class k. Let δj,k be the fraction of time that server j devotes for

class k customers. For all k = 1, . . . , K, we have

ak = λp0,k +
K∑

i=1

dipi,k, (11)

dk = min
( M∑

j=1

µj,kδj,k, ak

)
. (12)
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Next, we maximize the throughput using the following allocation LP having de-

cision variables dk and δj,k for j = 1, . . . , M , k = 1, . . . , K:

max
K∑

k=1

dkpk,0 such that (13)

dk ≤
M∑

j=1

µj,kδj,k, k = 1, . . . , K; (14)

dk ≤ λp0,k +
K∑

i=1

dipi,k, k = 1, . . . , K; (15)

K∑

k=1

δj,k ≤ 1, j = 1, . . . , M ; (16)

dk ≥ 0, δj,k ≥ 0, j = 1, . . . , M, k = 1, . . . , K. (17)

Our objective in this LP is to allocate the servers to the classes so that the output

from the system is maximized. The right-hand side of the first constraint (14) is the

total amount of service effort allocated to class k and the left-hand side is the long-run

departure rate from class k. So (14) simply means that the departure rate from a

class k cannot exceed the service allocation to that class. Similarly, the right-hand

side of constraint (15) is the long-run arrival rate to class k. So this constraint means

that the long-run departure rate from a class can not exceed the long-run arrival rate

to that class. The constraint (16) prevents us from overallocating a server, and (17)

prevents negative allocations.

Let an optimal solution to the above LP for the offered demand λ be given by

δ∗j,k and d∗k, for all j, k. Let µ∗(λ) =
∑K

k=1 d∗kpk,0 be the optimal value of the LP

corresponding to λ. Clearly, (d∗1, . . . , d
∗
K) is an optimal solution to the above LP if

and only if (d∗1, . . . , d
∗
K) satisfy the set of equations (11) − (12) with δj,k = δ∗j,k, for

all j, k. Consequently, one can obtain a solution to (11) − (12) under the optimal

allocation δ∗j,k, for all j, k, by solving the LP. The solution to the allocation LP

provides an upper bound on the maximum achievable throughput, and we will see

that we can get arbitrarily close to this value. The following theorem states this fact;

a formal proof will be given in Section 3.3.5. Generalized round robin policies that

achieve throughput arbitrarily close to the optimum value of the allocation LP will

be described in Sections 3.3.1 and 3.3.2.

Theorem 3.2.1. (a) Any throughput less than µ∗(λ) can be achieved, where µ∗(λ)

is the optimal value of the allocation LP (13)− (17) for the offered demand λ.

16



That is, for any given λ and 0 < ε < 1, there exists a generalized round robin

policy π with throughput µπ such that µπ ≥ (1− ε)µ∗(λ).

(b) A throughput larger than µ∗(λ) cannot be achieved.

We also have a result on the behavior of the optimal objective function value µ∗(λ)

as a function of λ.

Lemma 3.2.1. The optimal objective function value µ∗(λ) obtained from the allo-

cation LP (13)-(17) is a continuous, non-decreasing, piece-wise linear, and concave

function of λ.

Proof. The fact that µ∗(λ) is non-decreasing as we increase λ is obvious, since by

increasing λ, we are increasing the feasible set. The concavity and linearity of µ∗(λ)

follows from Theorem 5.1 in Bertsimas and Tsitsiklis [12]. Finally, the continuity

follows from the concavity.

3.2.2 Uniqueness

In this section, we show that given the allocations δ∗j,k, j = 1, . . . , M, k = 1, . . . , K,

the set of equations (11)− (12) has a unique solution (a∗k, d
∗
k) for k = 1, . . . , K. This

result has also been proved by Chen and Mandelbaum [23], Lemma 3.2, but we provide

a different proof. Note, however, that non-unique allocations may lead to non-unique

(a∗k, d
∗
k) values. For instance, consider a network with three classes, external input

only to class 1, and with each customer equally likely to go to class 2 or class 3 from

class 1, after which they exit the system. We have two servers and three classes with

µj,k, j = 1, 2, k = 1, 2, 3, values given by the (j, k) entry in the matrix

H =

(
5 0 0

0 2 2

)
.

Let λ = 6. Then, based on the solution of the allocation LP, µ∗(λ) is 2 and can be

achieved through different assignments, each resulting in different (a∗k, d
∗
k) values. For

instance, let the M × K matrix T ∗ have (j, k) entry δ∗j,k, for all j, k. Consider the

following two assignments:

T ∗
1 =

(
1 0 0

0 1 0

)
, T ∗

2 =

(
1 0 0

0 0 1

)
.

For both assignments, µ∗(λ) is 2. Then, for the first assignments we have a∗2 = a∗3 =

2.5 and d∗2 = 2, d∗3 = 0; however for T ∗
2 , we have a∗2 = a∗3 = 2.5 and d∗2 = 0, d∗3 = 2.
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Consider an arbitrary assignment of servers δj,k for all j, k satisfying (16) and (17).

For k = 1, . . . , K, let the effective processing capacity at class k be µk =
∑M

j=1 µj,kδj,k,

so that (12) yields dk = min(µk, ak). For all k = 1, . . . , K, let wk = ak − dk and

zk = µk − dk, so that we have ak = wk + µk − zk and dk = µk − zk. Substituting ak

and dk into (11), we obtain

wk + µk − zk = λp0,k +
K∑

i=1

(µi − zi)pi,k = λp0,k +
K∑

i=1

µipi,k −
K∑

i=1

zipi,k. (18)

Let w′ = [w1, . . . , wK ], z′ = [z1, . . . , zK ], and q′ = [q1, . . . , qK ], where ′ denotes the

transpose of a matrix, and

qk = λp0,k +
K∑

i=1

µipi,k − µk, k = 1, . . . , K.

Then (18) yields w−Gz = q, where G = I−P ′. If µk ≥ ak, then dk = ak and wk = 0,

zk ≥ 0. Otherwise, if µk ≤ ak, then zk = 0, wk ≥ 0. Hence in either case we have

wkzk = 0, so that we can formulate (11)− (12) as

w −Gz = q, (19)

wkzk = 0, k = 1, . . . , K, (20)

wk ≥ 0, zk ≥ 0, k = 1, . . . , K, (21)

which is a linear complementarity problem (q, G).

Since P n → 0 as n → ∞, it follows that G is an M -Matrix (see Chen and Yao

[25] Lemma 7.1), and hence G is also a P -Matrix (see Chen and Zhang [26], page

27). Hence, it follows from Theorem 3.15 in Murty [72] (page 213) that (wk, zk)

in (19) − (21) are uniquely determined for (q, G). Since δj,k, for all j, k, are fixed,

dk = µk − zk, for all k, are also unique, and so are ak = wk + dk, for all k. Hence we

have a unique solution for (11)− (12).

3.2.3 Classification of the Nodes

In this section, we identify the stable and unstable sets of nodes based on the solution

of the LP. In particular, we separate the nodes into two sets as follows:

S = {k : a∗k = d∗k}, (22)

U = {k : a∗k > d∗k}. (23)

Since there is a unique solution for (11)− (12), see Section 3.2.2, the sets S and U are

uniquely determined given the allocations {δ∗j,k}. The sets S and U specify the sets

18



of classes that are stable and unstable, respectively, in the solution of the allocation

LP, where a class is defined to be stable if the departure rate from the class equals

the arrival rate. Note that the unstable set of classes U cannot simply be determined

by comparing the solution of the regular balance equations {rk} with the effective

processing rates at each station; i.e., U is in general different from {k : rk ≥ µ∗k},
where rk = λp0,k +

∑K
i=1 ripi,k and µ∗k =

∑M
j=1 µj,kδ

∗
j,k for all k.

For example, consider the network illustrated in Figure 1, where all customers

arrive to class 1 and each customer is equally likely to either depart or be routed to

the other class from each class 1, 2; see also the routing matrix P . Suppose that we

have three servers and that the service rates for each class are indicated in the matrix

H, where the (j, k) entry is µj,k:

P =

(
0 0.5

0.5 0

)
, H =




6 2

5 1

4 0


 . (24)

Looking at the respective service rates µj,k in H, the best assignment of the servers to

the classes is not obvious. Since the effective arrival and departure rates at the classes

depend on these allocations, identifying the unstable classes from the matrix H by

inspection is also not obvious. So we resort to the allocation LP (13) − (17). When

λ = 6, the optimum objective function value (d∗1/2+ d∗2/2) is given by µ∗(6) ' 4.7727

and the assignments are as follows

T ∗ '




0 1

0.6364 0.3636

1 0


 . (25)

According to these results, we see that the effective processing capacities, departure,

and arrival rates at each class k = 1, . . . , K are given by

µ∗ ' [7.1818, 2.3636]′, d∗ ' [7.1818, 2.3636]′, a∗ ' [7.1818, 3.5909]′,

where µ∗ = [µ∗1, . . . , µ
∗
K ]′, d∗ = [d∗1, . . . , d

∗
K ]′ and a∗ = [a∗1, . . . , a

∗
K ]′. If we solve the

regular balance equations, we obtain r1 = 8 and r2 = 4, so that {k : rk ≥ µ∗k} = {1, 2}.
However, according to our algorithm, the only unstable class in the solution of the

allocation LP is class 2, because we have a∗1 = d∗1 and a∗2 > d∗2, so that U = {2} and

S = {1}.
As shown before, we cannot simply determine stable and unstable nodes by in-

spection, and Jackson networks are no exception. Goodman and Massey [43] identify
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Figure 1: A two-class network

the maximal subnetwork that achieves steady state in a non-ergodic Jackson network.

However, the allocation LP can also determine the stable and unstable sets of nodes

for Jackson networks with the servers constrained to choose only one class to serve

(i.e., δj,k ∈ {0, 1}, for all j and k). Unlike the algorithm suggested by Goodman and

Massey [43] to find the stable and unstable sets, our LP not only provides a classifica-

tion of the nodes but also suggests an optimal server allocation plan that maximizes

throughput. If the server allocation is predetermined (i.e., the δ∗j,k are given), then

the stable and unstable sets suggested by our LP coincide with those determined in

Goodman and Massey [43]. Moreover, an invariant distribution exists for the stable

set of classes as shown by Goodman and Massey [43].

Note that some policy π with throughput µπ that comes arbitrarily close to the

optimum throughput µ∗(λ) (i.e., µπ ≥ µ∗(λ) − ε, where ε > 0 is small) does not

necessarily have the same sets of stable and unstable classes as determined by the

allocation LP. For instance, consider a network with two classes and offered demand

λ = 1, where each job is equally likely to go to class 1 or class 2, from which they exit

the system. We have one flexible server with (µ1,1, µ1,2) = (1, 0.5). Then, the unique

optimal allocations are given by δ∗1,1 = 1/2 and δ∗1,2 = 1/2 with µ∗(λ) = 0.75. Hence

the sets S and U are uniquely determined by {1} and {2}, respectively.

Next we consider three allocations that yield different stable and unstable sets.

First, for any 0 < ε < 1, let (δ
(1)
1,1, δ

(1)
1,2) = ((1 − ε)/2, (1 + ε)/2), so that S(1) = ∅,

U (1) = {1, 2}, and µ(1) = µ∗(λ) − ε/4 > µ∗(λ) − ε. Secondly, for any 0 < ε < 1,

let (δ
(2)
1,1, δ

(2)
1,2) = ((1 + ε)/2, (1 − ε)/2), so that S(2) = {1}, U (2) = {2}, and µ(2) =

µ∗(λ)− ε/4 > µ∗(λ)− ε. Finally, consider the assignment (δ
(3)
1,1, δ

(3)
1,2) = (0, 1), then we

have µ(3) = 0.5 ≥ µ∗(λ) − ε for ε ≥ 0.25, and S(3) = {2}, U (3) = {1}. We observe

that even if the allocation LP has unique set classifications, we can construct policies

based on ε with different stable and unstable sets. Hence, we conclude that stability

of a class according to the LP does not imply it has to be stable for a near-optimal

policy, and vice versa. Returning to the example, if we want to get arbitrarily close
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to µ∗(λ) with a small enough ε, then only policies 1 and 2 are valid, because the last

one violates this requirement. This suggests that as we get closer to the optimum

allocations (i.e., ε → 0), the set of unstable classes under a near-optimal policy will

contain the set of unstable classes of the allocation LP.

3.3 Optimum Server Allocation

In this section, we develop two alternative server allocation algorithms that achieve

throughput that is arbitrarily close to the optimum value of the allocation LP (13)−
(17). The analysis is complicated by the observation in the previous section that

for a policy π, the set of stable and unstable classes may not correspond to those

given by the LP. This makes it difficult to determine the proportion of time spent

by a server at each class under π. To ensure that the fraction of time that servers

spend at the different classes is sufficiently close to the allocations obtained by the

solution of the allocation LP, we propose two approaches. The first, described in

Section 3.3.1, involves admission control and controlled routing. The second approach,

described in Section 3.3.2, involves forced idling of servers at certain classes. Section

3.3.3 constructs the underlying fluid model for the queueing network described in

Section 3.1 and Section 3.3.4 describes a Markov process model for the same queueing

network. Section 3.3.5 uses the results from Sections 3.3.3 and 3.3.4 to prove that

the algorithms provided in Sections 3.3.1 and 3.3.2 can be used to obtain throughput

that is arbitrarily close to the maximum output µ∗(λ) given the available demand λ.

3.3.1 Server Allocation Policy with Admission and Routing Control

In this section, an algorithm for assigning servers to classes is presented based on

the allocation LP introduced in Section 3.2.1. In particular, suppose that we are

given a certain λ (level of offered demand to the system) and asked to maximize the

throughput without regard to stability. Let {δ∗j,k} be the optimal assignment fractions

given by the solution to the allocation LP (13) − (17), and let µ∗(λ) =
∑K

k=1 d∗kpk,0

be the resulting optimum throughput. Our aim is to assign servers to classes based

on the fractions {δ∗j,k} to achieve throughput as close to µ∗(λ) as desired. For this,

a generalized round robin policy with admission control and controlled routing is

considered. More specifically, in this policy, we reject arrivals to the system with a

small probability, and also modify the routing probabilities pi,k, for all i, k, so that the

arrival rate to the classes k ∈ U is reduced to d∗k and excess input is rerouted to an

imaginary class K+1 served by an imaginary server M +1. In practice, the customers
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routed to class K + 1 would be scrapped, but the addition of his imaginary class

simplifies the analysis as it facilitates differentiation between successful completions

and scrapped customers. This policy not only guarantees a target throughput, but

also stabilizes the classes in the network by scrapping just enough customers at certain

classes in the network.

The following proposition is used to show that for any allocation of servers to

classes, a generalized round robin policy exists that gets arbitrarily close to that

allocation. For a proof, see Andradóttir, Ayhan, and Down [6], Proposition 3.

Proposition 3.3.1. Let κ be a finite set, and for each k ∈ κ, suppose that mk and

δk satisfy 0 < mk < ∞, δk ≥ 0, and 0 ≤ ∑
k∈κ δk ≤ 1. Suppose furthermore that

0 ≤ s < ∞. Then for any 0 < ε ≤ 1, there exists a set of non-negative integers {lk},
where k ∈ κ, such that

lkmk

s +
∑

i∈κ limi

≥ δk(1− ε) for all k ∈ κ. (26)

Let 1{·} denote the indicator function. Then one possible choice for lk is

lk =

⌈
(1− ε)(s +

∑
i∈κ mi1{δi > 0})δk

εmk

⌉
. (27)

Consider a specific policy π that has each server j serving a fixed list V π
j of classes

in a cyclic order. For each class k ∈ V π
j , server j serves a maximum of lπj,k customers

and then moves to the next class on the list for service, but if the queue for class k

empties before lπj,k service completions, the server moves on to the next class on its list.

If there are no more customers in any of the classes on the list, then the server idles

until an arrival to any class on the list. We now state how to choose the parameters

V π
j and lπj,k of our generalized round robin server assignment policy π, assuming that

the offered demand to the system is λ. In the following algorithm, we are primarily

interested in the behavior of the network when λ > λ∗ (i.e., when U 6= ∅), where λ∗

is the maximum offered demand such that the system can be stabilized for λ < λ∗.

The case λ < λ∗ is already covered in [6], where it is shown that λ∗ can be computed

by solving an appropriate LP.

1. Solve the allocation LP (13)− (17).

2. Choose 0 < ε < 1.

3. Admission Control: Thin the arrival process by rejecting arrivals with proba-

bility ε and accepting them with probability 1− ε, so that the arrival rate

reduces to λ′ = λ(1− ε).
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Controlled Routing: Introduce an imaginary scrapping class K + 1 with an

associated dedicated server M +1 such that µM+1,K+1 = λ and δ∗M+1,K+1 =

1. Replace the routing probabilities pi,k, where 0 ≤ i, k ≤ K by the

following routing probabilities p̄i,k, 0 ≤ i, k ≤ K. For 0 ≤ i ≤ K, let

p̄i,k = pi,k for k ∈ S; p̄i,k = pi,kεk for k ∈ U , where εk = d∗k/a
∗
k; p̄i,K+1 =∑

k∈U pi,k(1−εk); and p̄K+1,0 = 1, p̄K+1,K+1 = 0. For 1 ≤ k ≤ K, p̄k,0 = pk,0

and p̄K+1,k = 0.

4. For each server j, specify the ordered list V π
j using all of the classes k with

µj,kδ
∗
j,k > 0. Define the ith element of each list V π

j as vj,i and let | · | denote

cardinality of a set.

5. For each server j with |V π
j | > 1, let sπ

j be the expected switching time in a cycle

of visiting the states in V π
j in order, so that

sπ
j =

|V π
j |−1∑
i=1

sj
vj,i,vj,i+1

+ sj
vj,|V π

j
|,vj,1

.

6. For each server j with |V π
j | > 1 and each class k ∈ V π

j , calculate parameters lπj,k

satisfying lπj,kmj,k/(s
π
j +

∑
i∈V π

j
lπj,imj,i) ≥ δ∗j,k(1 − ε′), where ε′ = ε/(2 − ε), see

Proposition 3.3.1 and equation (27).

7. For each server j with |V π
j | = 1, set sπ

j = 0 and lπj,k = 1 for k ∈ V π
j .

8. For each server j and all classes k /∈ V π
j , let lπj,k = 0.

As a result of ignoring stability in the allocation LP (13) − (17), it is possible

to have queue lengths {Qk(t)} at certain classes k diverge as t → ∞, without the

controlled routing. The following theorem shows that the above generalized round

robin policy π yields throughput µπ that comes arbitrarily close to achieving the

desired throughput level of µ∗(λ), and also stabilizes the original queueing network.

The proof of Theorem 3.3.1 is postponed until Section 3.3.5.

Theorem 3.3.1. A policy constructed using the above algorithm achieves throughput

µπ = (1 − ε)µ∗(λ). Moreover, the distribution of the queue length process {Q(t)}
converges to a steady state distribution as t →∞.

It immediately follows from Theorem 3.3.1 that an appropriate value of ε will

guarantee that we achieve a target throughput µ < µ∗(λ), as stated in the following

corollary.
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Corollary 3.3.1. A policy constructed using the above algorithm with ε = 1−µ/µ∗(λ),

where µ < µ∗(λ), achieves a target throughput µ (i.e., µπ = µ).

3.3.2 Server Allocation Policy with Forced Server Idling

In this section, we introduce an alternative generalized round robin policy without

admission control or controlled routing. Since we allow instability in the system, each

server j will eventually always find more than the required number of customers lj,k at

unstable classes k, and hence spend the maximum amount of time allowed during each

of its cycles at such classes in its list. However, this could result in problems, because

although the fractions of time servers spend at unstable classes are guaranteed to

achieve certain minimums (see Proposition 3.3.1), we do not control how big they

can be. Since there are always customers to process at unstable classes, it becomes

possible for a server assigned to an unstable class to spend more time than required

there, resulting in the flows of customers between stations in the network not being

sufficiently close to the optimal flows identified by the allocation LP (13)− (17). To

prevent this, we force the servers to spend the required amount of time at each of

the classes in their lists, even if it means idling them. Unlike the approach in the

previous section where servers complete a fixed number of customers before switching,

we will construct a timed round robin policy where servers spend a fixed amount of

time at each class on its list. We also assume that service time distributions are

independent of the server (this assumption is required since a server may resume a

customer service started by another server). Hence, we will represent the service

requirement of customer n at class k by vk(n), and server j reduces this requirement

at a rate µj,k when assigned to class k.

Consider a specific policy π that has each server j serving a fixed list V π
j of classes

in a cyclic order as in Section 3.3.1. For each class k ∈ V π
j , server j spends a fixed

amount of time hπ
j,k at class k, even if the queue for class k empties before that time,

and then server j moves to the next class on its list. We make use of Proposition

3.3.1 to determine hπ
j,k, for all j, k. Although the following algorithm works for any

value of λ, we are primarily interested in the behavior of the network when λ > λ∗.

Next, we state how to choose the parameters V π
j and hπ

j,k of our generalized round

robin server assignment policy π, assuming that the offered demand to the system is

λ. In particular, we will use the eight-step policy of Section 3.3.1, except that steps

3, 6, and 8 of that policy are replaced by the steps below:
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3. For all the servers j = 1, . . . , M , let

κj = 1−
K∑

k=1

δ∗j,k1{µj,k > 0}.

6. For each server j with |V π
j | > 1 and each class k ∈ V π

j , set δ̄∗j,k = δ∗j,k +

κj/|V π
j |, for all k ∈ V π

j , and calculate parameters lπj,k satisfying lπj,kmj,k/(s
π
j +∑

i∈V π
j

lπj,imj,i) ≥ δ̄∗j,k(1− ε), see Proposition 3.3.1 and equation (27).

8. For each server j, set hπ
j,k = lπj,kmj,k, for k ∈ V π

j , and hπ
j,k = 0, for k /∈ V π

j .

Theorem 3.3.2. A policy constructed using the above algorithm achieves the through-

put µπ ≥ (1− ε)µ∗(λ).

The proof of Theorem 3.3.2 is provided in Section 3.3.5. It immediately follows

from Theorem 3.3.2 that an appropriate value of ε will guarantee that we achieve a

target throughput µ < µ∗(λ), as stated in the following corollary.

Corollary 3.3.2. A policy constructed using the above algorithm with ε = 1−µ/µ∗(λ),

where µ < µ∗(λ), achieves a target throughput µ (i.e., µπ ≥ µ).

3.3.3 A Fluid Model for Queueing Networks

The fluid models involve smoothing out discrete processes, using the SLLN. In this

section, we develop a fluid model for the original queueing network described in

Section 3.1 under a server assignment policy π. Let q =
∑K

k=1 Qk(0). Suppose

that the function (Q̄k(·), T̄j,k(·),∀j, k) is a limit point of (Qk(qt)/q, Tj,k(qt)/q, ∀j, k)

when q → ∞. Then (Q̄k(·), T̄j,k(·) : k = 1, . . . , K) is a fluid limit of the system.

Each component of a fluid limit is absolutely continuous (and thus differentiable)

almost everywhere in [0,∞) (see Dai [32], page 20). If we require the derivative

of a quantity, we will assume it is taken at a time point t such that the derivative

exists (such a point is known as a regular point). For each class k = 1, . . . , K, let

Āk(t) = limq→∞ Ak(qt)/q and D̄k(t) = limq→∞ Dk(qt)/q be the fluid limits for the

arrival and departure processes Ak(t) and Dk(t), respectively. Then the deterministic

analogs Ā, D̄, and Q̄ of the queueing network processes A, D, and Q satisfy the
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following equations (see Theorem 4.1 of Dai [33]):

Āk(t) = λp0,kt +
K∑

i=1

M∑
j=1

pi,kµj,iT̄j,i(t), k = 1, . . . , K; (28)

D̄k(t) =
M∑

j=1

µj,kT̄j,k(t), k = 1, . . . , K; (29)

Q̄k(t) = Q̄k(0) + λp0,kt +
K∑

i=1

M∑
j=1

pi,kµj,iT̄j,i(t)−
M∑

j=1

µj,kT̄j,k(t), k = 1, . . . , K.(30)

Equations (28) − (30) are obtained from (8) − (10) by replacing Sj,k(t), Ek(t), and

Φi,k(n) by their asymptotic means. Note that (28) − (30) are independent of the

selected policy π, the dependence on π is given in the functions {T̄j,k(t)}.

3.3.4 Underlying Markov Process Construction

In this section, we define a Markov process X = {X(t), t > 0} which describes

the dynamics of the queueing network described in Section 3.1 with K classes and M

servers operating under a generalized round robin policy π, where each server j cycles

among all the classes k on its list V π
j , serving a maximum of lπj,k customers at class

k before moving to the next class. Let U(t) and Vj,k(t), j = 1, . . . , M , k = 1, . . . , K,

be the residual interarrival and service times defined in Section 3.1 and Wj(t) be the

residual switching time at time t for server j. Also, let Lj(t) be the location of server

j at time t (set to the destination class if the server is switching at time t), Ij(t) be

the status of server j (0 if the server is idle or switching, 1 if busy), and Nj(t) be the

number of customers finished by server j at the current location Lj(t) (reset to zero

each time server j idles or makes a switch). Note that since we have non-preemptive

service, the residual service time can be only at the current location Lj(t) at time

t, so let Vj(t) be the residual service time for server j. The continuous variables

{U(t), Vj(t), Wj(t)} are taken to be right continuous. Then the process X(t) defined

by

X(t) = (U(t), Vj(t),Wj(t), Qk(t), Lj(t), Ij(t), Nj(t); j = 1, . . . , M, k = 1, . . . , K)

can be shown to have the strong Markov property as in Section 4 of Davis [34], with

elements

x ∈ R+ × RM
+ × RM

+ × ZK
+ × {1, . . . , K}M × {0, 1}M × {0, 1, . . . , max lj,k − 1}M .

Next, we need to make minor modifications for the allocation policy described in

Section 3.3.1 as it results in a slightly modified network. A similar Markov process
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exists for the modified network under admission control and controlled routing as

for the original network, with the only difference that the dimension of the state is

increased by the additional class and server, so that the Markov process evolves on

x ∈ R+ × RM+1
+ × RM

+ × ZK+1
+ × {1, . . . , K}M × {0, 1}M × {0, 1, . . . , max

j,k
lj,k − 1}M .

Note that VM+1(t) is the only information, we need to keep on the (M + 1)th server,

because it is a dedicated server assigned to class K + 1. Since we will not be proving

the stability of the queueing network under the policy described in Section 3.3.2, we

do not need to describe the resulting Markov process in that case.

3.3.5 Proofs of Theorems 3.2.1, 3.3.1, and 3.3.2

In this section we give formal proofs to Theorems 3.2.1, 3.3.1, and 3.3.2. We start with

part (b) of Theorem 3.2.1. Next, we prove Theorem 3.3.1 for the generalized round

robin policy introduced in Section 3.3.1. Then part (a) of Theorem 3.2.1 follows.

Finally we show that the allocation policy in Section 3.3.2 also achieves the target

throughput, as stated in Theorem 3.3.2.

Proof of Theorem 3.2.1(b). We proceed by contradiction. Assume that there exists a

policy π and a subset A of the sample space Ω with P (A) > 0, such that

lim sup
t→∞

Dπ(t, ω)

t
> µ∗(λ), ∀ω ∈ A, (31)

where Dπ(t, ω) is the total number of departures from the system under the policy π

in (0, t] for the sample path ω. By the i.i.d. assumption on the primitive processes,

there exists a set A′ with P (A′) = P (A) such that for all ω ∈ A′, and any ε, ε1 > 0,

there exists T1(ω) and N(ω) such that for all t ≥ T1(ω) and for all n ≥ N(ω), and

i = 0, . . . , K, k = 1, . . . , K, and j = 1, . . . , M,

∣∣∣∣
Ek(t, ω)

t
− λp0,k

∣∣∣∣ ≤ ε1,

∣∣∣∣
Φk,i(n, ω)

n
− pk,i

∣∣∣∣ ≤ ε1,

∣∣∣∣
Sj,k(t, ω)

t
− µj,k

∣∣∣∣ ≤ ε.

Next we obtain bounds on the cumulative queueing processes, starting with the

departure process from each class. We have Dk(t) =
∑M

j=1 Sj,k(Tj,k(t)), k = 1, . . . , K.

On the sample path ω ∈ A, some servers may spend a finite amount of time at given

classes, resulting in two cases:

• For pairs j, k such that limt→∞ Tj,k(t, ω) < ∞, we have Sj,k(Tj,k(t), ω)/t → 0,

since Sj,k(t, ω) < ∞, for all t, by assumption (5).
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• For pairs j, k such that limt→∞ Tj,k(t, ω) = ∞, we can find T2(ω) such that for

all t ≥ T2(ω), we have Tj,k(t, ω) ≥ T1(ω) implying
∣∣∣∣
Sj,k(Tj,k(t, ω))

Tj,k(t, ω)
− µj,k

∣∣∣∣ ≤ ε.

Let Mk(ω) = {j : µj,k > 0 and limt→∞ Tj,k(t, ω) = ∞}. We have

Dk(t, ω)

t
=

∑

j∈Mk(ω)

Sj,k(Tj,k(t, ω))

Tj,k(t, ω)
× Tj,k(t, ω)

t
+

∑

j /∈Mk(ω)

Sj,k(Tj,k(t, ω))

t
, k = 1, . . . , K.

Let δj,k(t, ω) = Tj,k(t, ω)/t. For any ε2 > 0, there exists T3(ω) such that for all

t ≥ T3(ω), we have
∑

j /∈Mk(ω) Sj,k(Tj,k(t, ω))/t ≤ ε2, for k = 1, . . . , K. Then for

t ≥ max{T2(ω), T3(ω)}, we have

Dk(t, ω)

t
≤

∑

j∈Mk(ω)

(µj,k + ε)δj,k(t, ω) + ε2, k = 1, . . . , K.

Let ε3 = εM + ε2, which implies that ε3 ≥ maxk{ε
∑

j∈Mk(ω) δj,k(t, ω) + ε2}, and thus

for t ≥ max{T2(ω), T3(ω)}, we obtain

Dk(t, ω)

t
− ε3 ≤

∑

j∈Mk(ω)

µj,kδj,k(t, ω), k = 1, . . . , K. (32)

Next, we bound the arrival process to each class. Let K = {1, . . . , K} denote the

set of all classes in the network, and define

K \ K̄(ω) = {k : lim
t→∞

Tj,k(t, ω) < ∞,∀j with µj,k > 0} = {k : Mk(ω) = ∅}.

Note that all of the servers capable of working at the classes in K\K̄(ω) spend only a

finite amount of time at those classes, so that the number of departures is bounded.

For the arrival process, we have

Ak(t, ω) = Ek(t, ω) +
K∑

i=1

Φi,k(Di(t, ω)), k = 1, . . . , K.

For i ∈ K̄(ω), limt→∞ Di(t, ω) = ∞, and hence there exists T4(ω) such that for all

t ≥ T4(ω), we have Di(t, ω) > N(ω), implying
∣∣∣∣
Φi,k(Di(t, ω))

Di(t, ω)
− pi,k

∣∣∣∣ ≤ ε1, k = 0, 1, . . . , K.

For i ∈ K \ K̄(ω), limt→∞ Di(t, ω) < ∞, and limt→∞ Φi,k(Di(t, ω))/t = 0. Hence, for

any ε4 > 0, there exists T5(ω) such that for all t ≥ T5(ω), we have

∑

i∈K\K̄(ω)

Φi,k(Di(t, ω))

t
≤ ε4, k = 0, 1, . . . , K.
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Then, for the arrival process, we have for t ≥ max{T1(ω), T4(ω), T5(ω)},
Ak(t, ω)

t
≤ λp0,k + ε1 +

∑

i∈K̄(ω)

(pi,k + ε1)
Di(t, ω)

t
+ ε4, k = 1, . . . , K.

Plugging in (32), we get, for t ≥ max{T1(ω), T2(ω), T3(ω), T4(ω), T5(ω)},
Ak(t, ω)

t
≤ λp0,k +

∑

i∈K̄(ω)

pi,k
Di(t, ω)

t
+ ε1

∑

i∈K̄(ω)

∑

j∈Mi(ω)

δj,i(t, ω)µj,i

+ε1

∑

i∈K̄(ω)

ε3 + ε4 + ε1, k = 1, . . . , K.

We also have Dk(t, ω) ≤ Ak(t, ω)+Qk(0) for all t ≥ 0. Let ε5 = ε1KMµ+Kε1ε3 +

ε4 + 2ε1, where µ = max{µj,i, j = 1, . . . , M, i = 1, . . . , K}, so that

ε5 ≥ max
k

{
ε1

∑

i∈K̄(ω)

∑

j∈Mi(ω)

δj,i(t, ω)µj,i + ε1

∑

i∈K̄(ω)

ε3 + ε4 + 2ε1

}
.

Then for t ≥ max{T1(ω), T2(ω), T3(ω), T4(ω), T5(ω), Qk(0)/ε1} we have

Dk(t, ω)

t
− ε5 ≤ λp0,k +

∑

i∈K̄(ω)

pi,k
Di(t, ω)

t
, k = 1, . . . , K. (33)

Finally, we bound the departure process from the system, D(t, ω) =
∑K

i=1 Φi,0(Di(t, ω)).

For t ≥ max{T4(ω), T5(ω)}, we have

D(t, ω)

t
≤

∑

i∈K̄(ω)

(pi,0 + ε1)× Di(t, ω)

t
+ ε4.

Let ε6 = ε1K(ε3 + Mµ) + ε4, so that (32) implies that ε6 ≥ ε1

∑
i∈K̄(ω) Di(t, ω)/t + ε4.

Then we get for t ≥ max{T4(ω), T5(ω)}
D(t, ω)

t
− ε6 ≤

∑

i∈K̄(ω)

pi,0
Di(t, ω)

t
. (34)

By assumption, under policy π, the departure process satisfies (31). Let l =

lim supt→∞ Dπ(t, ω)/t > µ∗(λ). Then for any ε7 > 0, Dπ(t, ω)/t ≥ l− ε7 infinitely of-

ten. Then we can choose a time t0 ≥ max{T1(ω), T2(ω), T3(ω), T4(ω), T5(ω), Qk(0)/ε1}
with an ε7 small enough so that Dπ(t0, ω)/t0 > µ∗(λ) and also the bounds in (32),

(33) and (34) are satisfied at t0. Rewriting (32) − (34) for the cumulative processes

29



at time t0, we get

Dk(t0, ω)

t0
− ε3 ≤

∑

j∈Mk(ω)

µj,kδj,k(t0, ω), k = 1, . . . , K, (35)

Dk(t0, ω)

t0
− ε5 ≤ λp0,k +

∑

i∈K̄(ω)

pi,k
Di(t0, ω)

t0
, k = 1, . . . , K, (36)

D(t0, ω)

t0
− ε6 ≤

∑

i∈K̄(ω)

pi,0
Di(t0, ω)

t0
. (37)

Next, our aim is to show that given the above bounds on the cumulative processes,

there exists a solution to the LP (13) − (17) with an objective value greater than

µ∗(λ), which will yield the desired contradiction. To see this, define

dk =

{
0 if k ∈ K \ K̄(ω),
Dk(t0,ω)

t0
if k ∈ K̄(ω),

and

δj,k =

{
0 if j /∈ Mk(ω),

δj,k(t0, ω) if j ∈ Mk(ω).

Plugging these in (35), (36) and (37) and noting that the bounds in (35)− (37) hold

for arbitrarily small ε3, ε5, and ε6, respectively, we get after a little manipulation

K∑
i=1

pi,0di > µ∗(λ), (38)

dk ≤
M∑

j=1

µj,kδj,k, k = 1, . . . , K, (39)

dk ≤ λp0,k +
K∑

i=1

pi,kdi, k = 1, . . . , K. (40)

By definition, we have dk ≥ 0 and δj,k ≥ 0. Moreover,
∑K

k=1 Tj,k(t0, ω) ≤ t0 implies

that
∑K

k=1 δj,k ≤ 1 for j = 1, . . . , M . Then we see that along this sample path ω under

the policy π, we can construct a solution to the LP (13)−(17) with an objective value

greater than µ∗(λ), a contradiction.

Proof of Theorem 3.3.1 and Theorem 3.2.1(a). We will refer to the network obtained

as a result of the controlled routing in step 3 of the policy π described in Section 3.3.1

as the “modified” queueing network. Hence step 3 of this policy results in a modified

network under admission control. Let P̄ be the routing matrix for the modified

network (so that P̄ has (i, k) entry p̄i,k for i, k = 1, . . . , K + 1). Then we have that
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(I− P̄ ) is invertible and P̄ n → 0 since the modified network is open (see, e.g., Lawler

[64], page 27).

To prove Theorem 3.3.1, we need to develop the queueing network equations and

the corresponding fluid model for the modified network. We can obtain these in the

same way as we did in Sections 3.1 and 3.3.3. So we have

Ak(t) = Ek(t) +
K+1∑
i=1

Φ̄i,k(Di(t)), k = 1, . . . , K + 1;

Dk(t) =
M+1∑
j=1

Sj,k(Tj,k(t)), k = 1, . . . , K + 1;

Qk(t) = Qk(0) + Ak(t)−Dk(t), k = 1, . . . , K + 1;

and 0 ≤ ∑K+1
k=1 Tj,k(t) ≤ t, j = 1, . . . , M + 1, where Φ̄i,k(n) =

∑n
l=1 φ̄i,k(l) and the

random variables φ̄i,k(l) are independent and have value one with probability p̄i,k and

are zero otherwise. Similarly, fluid limits Āk(t), D̄k(t), and Q̄k(t) for the modified

network under admission control are defined in the same manner as for the original

network, for k = 1, . . . , K + 1, and satisfy the equations

Āk(t) = λ′p̄0,kt +
K+1∑
i=1

M+1∑
j=1

p̄i,kµj,iT̄j,i(t), k = 1, . . . , K + 1;

D̄k(t) =
M+1∑
j=1

µj,kT̄j,k(t), k = 1, . . . , K + 1;

Q̄k(t) = Q̄k(0) + λ′p̄0,kt +
K+1∑
i=1

M+1∑
j=1

p̄i,kµj,iT̄j,i(t)−
M+1∑
j=1

µj,kT̄j,k(t),

k = 1, . . . , K + 1; (41)

subject to the conditions

0 ≤
K+1∑

k=1

T̄j,k(t) ≤ t, j = 1, . . . , M + 1;

T̄j,k(0) = 0 and T̄j,k(·) is non-decreasing for j = 1, . . . ,M + 1, k = 1, . . . , K + 1;

Q̄k(t) ≥ 0, k = 1, . . . , K + 1;

lπj,kmj,k

sπ
j +

∑
i∈V π

j
lπj,imj,i

≤ dT̄j,k(t)

dt
≤ 1, j = 1, . . . , M + 1,

k = 1, . . . , K + 1, whenever Q̄k(t) > 0.(42)
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The lower bound in (42) can be derived as in Andradóttir, Ayhan, and Down [6].

Let rk = d∗k, for k = 1, . . . , K, and rK+1 = λp̄0,K+1 +
∑K

i=1 d∗i p̄i,K+1. We claim that

r1, . . . , rK+1 satisfy the traffic equations for the modified queueing network under the

offered demand λ, so that

rk = λp̄0,k +
K+1∑
i=1

rip̄i,k, k = 1, . . . , K + 1. (43)

To see this, recall that a∗k = λp0,k +
∑K

i=1 d∗i pi,k, for k = 1, . . . , K. First consider the

classes k ∈ U . Then, we get

λp̄0,k +
K+1∑
i=1

rip̄i,k = λp0,kεk +
K∑

i=1

d∗i pi,kεk

= εk(λp0,k +
K∑

i=1

d∗i pi,k) =
d∗k
a∗k

a∗k = d∗k = rk, k ∈ U,

as required. Next consider the classes k ∈ S. Then d∗k = a∗k, and we get

λp̄0,k +
K+1∑
i=1

rip̄i,k = λp0,k +
K∑

i=1

d∗i pi,k = a∗k = d∗k = rk, k ∈ S.

Finally, rK+1 = λp̄0,K+1 +
∑K+1

i=1 rip̄i,K+1 follows from the definition of rK+1 and the

fact that p̄K+1,K+1 = 0. We have shown that r1, . . . , rK+1 satisfy (43), and since I− P̄

is invertible, the solution is unique.

Let αk, k = 1, . . . , K + 1, be the unique solution of the system of equations

(43) when λ = 1. Then we have αk = d∗k/λ, k = 1, . . . , K, and αK+1 = p̄0,K+1 +

(
∑K

i=1 d∗i p̄i,K+1)/λ. Moreover, by constraint (14) in the allocation LP, we have

rk = d∗k ≤
M∑

j=1

µj,kδ
∗
j,k =

M+1∑
j=1

µj,kδ
∗
j,k, k = 1, . . . , K, (44)

and

rK+1 ≤ λ =
M+1∑
j=1

µj,K+1δ
∗
j,K+1 (45)

follows from the facts that pK+1,0 = 1, rK+1 is the flow through node K +1 in a stable

queueing network with offered demand λ and routing matrix P̄ , and if rK+1 > λ, the

system would have more output than input. Then, by the server allocation policy π,

and (44)− (45), we have, for all k = 1, . . . , K + 1,

M+1∑
j=1

lπj,k
sπ

j +
∑

i∈V π
j

lπj,imj,i

≥
M+1∑
j=1

µj,kδ
∗
j,k(1− ε′) ≥ rk(1− ε′). (46)
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Let λ′ = λ(1− ε) be the thinned offered demand, and r′k = λ′αk, k = 1, . . . , K +1,

be the solution to the traffic equations for the modified network corresponding to the

offered demand λ′. Since (1− ε′)/(1− ε) = 1 + ε′, we have

rk(1− ε′) = λαk(1− ε′) = λ′αk
1− ε′

1− ε
= r′k(1 + ε′), k = 1, . . . , K + 1. (47)

Plugging (47) in (46), we get

M+1∑
j=1

lπj,k
sπ

j +
∑

i∈V π
j

lπj,imj,i

≥ r′k(1 + ε′), k = 1, . . . , K + 1. (48)

Equations (42) and (48) for the modified network imply that when Q̄k(t) > 0,∑M+1
j=1

dT̄j,k(t)

dt
≥ r′k(1 + ε′). By Theorem 2.4.9 of Dai [32], this means that there

is a finite time t0 such that the system is empty and the fluid model for the modified

network is stable under the offered demand λ′. Then by Theorem 4.2 of Dai [33],

the Markov chain describing the dynamics of the modified network is positive Harris

recurrent. Hence, the modified queueing network is stable for the offered demand λ′,

and the distribution of the queue length process {Qk(t)}, k = 1, . . . , K +1, converges

to a steady state limit as t →∞.

Finally, it remains to find the throughput µπ for the modified network with offered

demand λ′ under the policy π, i.e., without the customers serviced at class K +1. For

this, consider the fluid scale queue length differential equation obtained from (41) for

the modified network under admission control. Given the queueing network is stable,

there exists some time t0 such that
∑K+1

k=1 Q̄k(t) = 0 for t ≥ t0. Then, for any t > t0,

we have

0 = λ′p̄0,k +
K+1∑
i=1

p̄i,k

M+1∑
j=1

µj,i
dT̄j,i(t)

dt
−

M+1∑
j=1

µj,k
dT̄j,k(t)

dt
, k = 1, . . . , K + 1. (49)

Let d̄k(t) = dD̄k(t)/dt =
∑M+1

j=1 µj,kdT̄j,k(t)/dt be the fluid level departure rate from

class k, for k = 1, . . . , K + 1, in the above equation (49). Then we see that solving

the set of equations (49) for d̄k(t), k = 1, . . . , K +1, gives the same solution as for the

traffic equations in (43) when the offered demand is λ′. Hence, d̄k(t), k = 1, . . . , K+1,

are uniquely given by d̄k(t) = r′k, k = 1, . . . , K+1, and the fluid level total throughput

rate d̄(t) = dD̄(t)/dt from classes k = 1, . . . , K is

d̄(t) =
K∑

k=1

p̄k,0

M+1∑
j=1

µj,k
dT̄j,k(t)

dt
=

K∑

k=1

r′kp̄k,0 =
K∑

k=1

(1− ε)d∗kpk,0 = µ∗(λ)(1− ε),
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and hence

D̄(t)− D̄(t0) = µ∗(λ)(1− ε)(t− t0). (50)

Connecting back to the queueing network, recall that D̄(t) is a limit point of

Dπ(qt)/q as q → ∞, where Dπ(t) =
∑K

k=1 Φ̄k,0(Dk(t)) is the total number of depar-

tures from the modified network until time t from classes k = 1, . . . , K with offered

demand λ′ under the policy π. Assume l = lim supt→∞ Dπ(t)/t 6= µ∗(λ)(1− ε). Then,

there exists a sequence {tk} such that limk→∞ Dπ(tk)/tk = l. Hence, there exists a

fluid limit D̄(·) such that D̄(t) = limq→∞ tDπ(qt)/qt = tl, contradicting (50). So we

have

lim sup
t→∞

Dπ(t)

t
= µ∗(λ)(1− ε).

This completes the proof for Theorem 3.3.1, and part (a) of Theorem 3.2.1 immedi-

ately follows.

Proof of Theorem 3.3.2. By Steps 3 and 6 of the generalized round robin policy π

in Section 3.3.2, we obtain an alternative feasible solution to the LP (13) − (17),

that is also optimal. By inflating some δ∗j,k, we are relaxing some of the bounds in

(14) and (15) and also making each of the constraints in (16) tight. Let d̄∗k be the

corresponding departure rates with allocation δ̄∗j,k, see (12). Then we see that d̄∗k ≥ d∗k,

hence this feasible solution also achieves the optimal. From now on, we will refer to

the alternative LP solution d̄∗k, δ̄∗j,k as d∗k, δ∗j,k.

As a result of the policy π, each server spends exactly the same amount of time

at any class during each cycle of visiting the classes in its list. Let Ij,k(t) be the

cumulative idle time for server j at class k, and Īj,k(t) the corresponding fluid limit.

Then the fluid model for the queueing network under the server allocation policy of

Section 3.3.2 satisfies the equations (28)− (30) subject to the conditions

0 ≤
K∑

k=1

T̄j,k(t) ≤ t, j = 1, . . . ,M ;

K∑

k=1

T̄j,k(t) + Īj,k(t) = t, j = 1, . . . , M ;

T̄j,k(0) = 0, Īj,k(0) = 0, and T̄j,k(·) and Īj,k(·) are non-decreasing for j = 1, . . . ,M ,

k = 1, . . . , K;

Q̄k(t) ≥ 0, and Q̄k(t)
dĪj,k(t)

dt
= 0, k = 1, . . . , K; (51)
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dT̄j,k(t)

dt
+

dĪj,k(t)

dt
=

hπ
j,k

sπ
j +

∑
i∈V π

j
hπ

j,i

, j = 1, . . . ,M, k = 1, . . . , K; and

dT̄j,k(t)

dt
=

hπ
j,k

sπ
j +

∑
i∈V π

j
hπ

j,i

, j = 1, . . . , M, k = 1, . . . , K, whenever Q̄k(t) > 0.

The second constraint in equation (51) means that Īj,k(t) can only increase when

Q̄k(t) is zero. Whenever the amount of fluid at a given class k is positive, then the

fluid level is decreased at a constant rate by each server j such that hπ
j,k > 0. Then∑

j:k∈V π
j
(hπ

j,kµj,k)/(s
π
j +

∑
i∈V π

j
hπ

j,i) is the total rate at which the fluid level at class k

is decreased whenever Q̄k(t) > 0 for k = 1, . . . , K.

Next consider a fixed server system with K servers operating under the non-idling

FCFS service discipline, external arrival rate λ, and routing probabilities among the

classes given in the matrix P . Assume that server k is assigned to class k, and set

the service rates µπ
k , k = 1, . . . , K, of the servers as

µπ
k =

∑

j:k∈V π
j

hπ
j,kµj,k

sπ
j +

∑
i∈V π

j
hπ

j,i

.

Then we see that this fixed server system has fluid limits {Āk(t), D̄k(t), Q̄k(t), ∀k ∈
K}, satisfying the same properties as the multi-class system with M servers operating

under the policy of Section 3.3.2. Since we have the same routing matrix P for both

systems, this means the fluid limits for the throughput D̄(t) =
∑K

k=1 D̄k(t)pk,0, and

hence the throughput of the original system, are equal.

To analyze the throughput in the fixed server system, we can proceed as in Chen

and Mandelbaum [23]. Let ak and dk be the arrival and departure rates (defined as the

inflow and outflow capacities in [23]) at servers k = 1, . . . , K with the corresponding

vectors A and D. Let µ be the K-dimensional processing capacity at each server,

with the kth element µπ
k . Then A, D, µ, and the external arrival rate vector E with

Ek = λp0,k, k = 1, . . . , K, satisfy the traffic equations,

A = E + P ′D, (52)

D = A ∧ µ, (53)

where ∧ denotes the componentwise minimum. We know from Section 3.2.2 that

(52) − (53) has a unique solution for A and D, when µ is given. The throughput of

the fixed server system τ(µ) as a function of the processing capacity µ is given by

τ(µ) =
K∑

i=1

dipi,0 = e′(I − P ′)(A ∧ µ),
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where e is the K-dimensional unit vector, see page 426 of Chen and Mandelbaum

[23].

Now, τ(µ) is a nondecreasing function of the processing capacity µ (see page 427

of Chen and Mandelbaum [23]). Let µ∗ be the vector of processing capacities corre-

sponding to the optimal allocations, so that the kth entry of µ∗ is µ∗k =
∑M

j=1 µj,kδ
∗
j,k,

k = 1, . . . , K. Then we see that (52)−(53) are satisfied for ak = a∗k and dk = d∗k. Hence

the maximum throughput for the fixed server system with processing capacity µ∗ is

given by τ(µ∗) =
∑K

i=1 d∗i pi,0 = µ∗(λ). By Proposition 3.3.1, we have µ ≥ µ∗(1− ε) so

that τ(µ) ≥ τ(µ∗(1− ε)). We claim that for the fixed server system with processing

capacity µ∗(1− ε), the throughput τ(µ∗(1− ε)) is at least µ∗(λ)(1− ε). This follows

because we have

d∗k(1− ε) ≤ µ∗k(1− ε), (54)

d∗k(1− ε) ≤ λ(1− ε)p0,k + (1− ε)
K∑

i=1

d∗i pi,k ≤ λp0,k +
K∑

i=1

d∗i (1− ε)pi,k. (55)

Inequality (54) follows from (14) and (55) follows from (15). But then d′k = d∗k(1−ε) is

a feasible solution for the allocation LP (13)−(17) with fixed servers having processing

capacity µ∗(1 − ε), and dk is the optimal solution. Hence, we have τ(µ) ≥ τ(µ∗(1 −
ε)) =

∑K
k=1 dkpk,0 ≥

∑K
k=1 d′kpk,0 = µ∗(λ)(1− ε) as required.

3.4 The Saturation Input and Maximum Output

Even if we allow some of the classes in the network to be unstable, the output from

the network does not necessarily increase with increased offered demand λ. We refer

to the point λ̄ where increasing the offered demand has no effect on the best possible

output as the “saturation” input to the system, and we let µ̄ denote the corresponding

maximum output. In this section, we discuss how to identify λ̄ and µ̄. This informa-

tion determines the limitations for our system. We also show how to determine the

minimum demand required based on a target output level of µ ≤ µ̄.

To determine µ̄, we use the allocation LP (13)− (17) with the only difference that
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we set λ = ∞:

max
K∑

k=1

dkpk,0 such that

dk ≤
M∑

j=1

µj,kδj,k, k = 1, . . . , K; (56)

dk ≤
K∑

i=1

dipi,k, ∀k : p0,k = 0; (57)

K∑

k=1

δj,k ≤ 1, j = 1, . . . , M ;

dk ≥ 0, δj,k ≥ 0, j = 1, . . . , M, k = 1, . . . , K. (58)

The following theorem shows that the solution of this LP allows us to identify the

maximum output µ̄ and to define an upper bound on the saturation input λ̄.

Theorem 3.4.1. (a) Let µ̄ =
∑K

k=1 d∗kpk,0 be the optimal value for the allocation

LP (56)− (58) and

λ̂ = max
k:p0,k>0

{
d∗k −

∑K
i=1 d∗i pi,k

p0,k

}
. (59)

Then we have λ̄ ≤ λ̂ and µ∗(λ) = µ̄, for all λ ≥ λ̂. That is, even if the arrival

rate to the original queueing network is increased beyond λ̂, any capacity larger

than µ̄ can not be achieved.

(b) The optimal value µ̄ of the allocation LP (56)− (58) is a tight upper bound on

the maximum achievable throughput. That is, any capacity larger than µ̄ cannot

be achieved in the original queueing network. Moreover, given a demand λ ≥ λ̂,

there exists a specific round robin policy π with parameters given by the solution

of the LP (56)− (58) and constructed as in Section 3.3.1 or Section 3.3.2 with

µπ ≥ µ̄(1− ε), where 0 < ε < 1.

Proof. The optimum value µ̄ of the allocation LP (56) − (58) is finite, since (56)

implies that dk ≤
∑M

j=1 µj,k, k = 1, . . . , K, and
∑K

k=1 dkpk,0 ≤
∑K

k=1 dk. Also note

that δ∗j,k, d∗k from the solution of the above LP also satisfy the allocation LP (13)−(17)

for any λ ≥ λ̂ with an optimum value µ∗(λ) = µ̄, since (15) is automatically satisfied

by definition of λ̂. Together with part (b) of Theorem 3.2.1, this proves part (a) of

the theorem.
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By Theorem 3.2.1, we know that µ̄ is a tight upper bound on the achievable

throughput. Moreover, Theorems 3.3.1 and 3.3.2 show that a policy π constructed

as in Section 3.3.1 or 3.3.2 will achieve µπ ≥ µ̄(1 − ε), and part (b) of the theorem

follows.

Next our aim is to show how to determine a policy based on a target throughput

and also to show how to find the saturation input λ̄. Because of the non-uniqueness of

optimal solutions, λ̂ can be different from λ̄. For instance, consider a network with two

stations in tandem, each having exactly one dedicated server with processing rates µ1

and µ2, respectively. Suppose furthermore that λ > µ1 > µ2. Then d∗1 = µ1, d∗2 = µ2

is an optimal solution with λ̂ = µ1, but λ̄ = µ2. We need this tighter saturation

input bound to gain insight into the limitations of our network. For instance, if the

actual offered demand to the system is less than the saturation level (i.e., λ < λ̄),

then our capacity is underutilized. On the other hand, when λ ≥ λ̄, we know that we

have excess offered demand. The second benefit is the fact that for λ ≥ λ̄, optimal

allocations become insensitive to the offered demand λ, so that we do not need to

worry about fluctuations in the input process as long as λ ≥ λ̄.

Let µ ≤ µ̄ be the target output. Then we determine the minimum offered demand

λ′ ≥ µ required so that the target output of µ is feasible. For this, consider the

following allocation LP:

min λ such that (60)
K∑

k=1

dkpk,0 ≥ µ; (61)

dk ≤
M∑

j=1

µj,kδj,k, k = 1, . . . , K; (62)

dk ≤ λp0,k +
K∑

i=1

dipi,k, k = 1, . . . , K; (63)

K∑

k=1

δj,k ≤ 1, j = 1, . . . ,M ; (64)

dk ≥ 0, δj,k ≥ 0, j = 1, . . . , M, k = 1, . . . , K. (65)

This time our objective is to allocate the servers such that the minimum offered

demand is required while maintaining the desired output. Our decision variables are

λ, dk for k = 1, . . . , K, and δj,k for j = 1, . . . ,M , k = 1, . . . , K. The right-hand

side of the first constraint (61) is the total amount of output required µ and the
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left-hand side is the long-run departure rate from the system. So (61) simply means

the throughput of the system should be at least µ. All the other constraints in this

LP appear in the previous LP (13)− (17) and have the same interpretations. Let the

optimal solution to the above LP be given by λ∗(µ), d∗k and {δ∗j,k}.

Theorem 3.4.2. (a) A generalized round robin policy constructed as in Section

3.3.1 or Section 3.3.2, based on the offered demand λ ≥ λ∗(µ) and allocations

δ∗j,k, for all j, k, obtained from the solution of the allocation LP (60)−(65) comes

arbitrarily close to the target throughput µ. That is, the throughput µπ of the

generalized round robin policy π satisfies µπ ≥ µ(1− ε), where 0 < ε < 1.

(b) We have λ̄ = λ∗(µ̄).

Proof. To simplify the notation, let λ̃ = λ∗(µ). Let a policy π be designed as in

Section 3.3.1 or Section 3.3.2 corresponding to λ̃ and ε. Then we have by Theorem

3.3.1 or 3.3.2 that µπ ≥ µ∗(λ̃)(1− ε), where µ∗(λ̃) is the solution to the allocation LP

(13)− (17). Note that d∗k and {δ∗j,k} from the LP (60)− (65) also satisfy (13)− (17).

The constraint (61) implies that µ∗(λ̃) ≥ µ, and hence that µπ ≥ µ(1− ε) as required.

Together with Lemma 3.2.1, this proves part (a) of the theorem, and part (b) follows

by the definition of λ̄ and Theorem 3.4.1.

Note that our generalized round robin policies depend on the offered demand λ.

So an optimal assignment for a given λ may not be the best choice when the actual

offered demand varies. In Section 3.5, we look at the sensitivity of the throughput to

varying offered demand.

3.5 A Numerical Example

In this section, we provide in-depth analysis of an example from Section 3.2.3 (see

Figure 1). Section 3.5.1 demonstrates how the optimal allocations vary as the offered

demand to the system changes. Section 3.5.2 investigates the sensitivity of the optimal

allocation for a given offered demand to the actual offered demand. Lastly, Section

3.5.3 simulates the same example for a given offered demand level.

3.5.1 Optimal Server Allocations Under Varying Offered Demand

In this section, we use an example to illustrate the effects on the maximum throughput

of increasing the offered demand λ to the system. We will investigate the system

with two classes and three servers considered earlier in Section 3.2.2 (see Figure 1
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and equation (24)). Instead of looking at a single offered demand λ = 6, we consider

λ ∈ [0, 20] by dividing this range into 500 equal intervals and solving the allocation

LP for each value of λ incrementally (i.e., λ = 0.04, 0.08, . . . , 20). Note that for this

system, we have λ∗ ' 4.0714, λ̄ = 15, and µ̄ = 7.5. Figure 2(a) gives the optimal

assignments to class 1 for each server corresponding to different λ. Figure 2(b) shows

d∗1, d
∗
2, and µ∗(λ) as a function of the offered demand λ. Note that optimal allocations

for a given λ may not be unique. To avoid fluctuations in the allocations and better

see the effects of instability, we consider two specific basic allocations and use them

whenever they are feasible and optimal. The first specific basic allocation is obtained

by solving the allocation LP given by Andradóttir, Ayhan, and Down [6]. The second

specific basic solution is obtained by solving the allocation LP (13)− (17) for λ = λ̄.

Then for λ ≤ λ∗ and λ ≥ λ̄, the optimal allocations are constant and equal to the

first and second specific basic solutions, respectively. When λ∗ < λ < λ̄, neither of

the specific basic solutions is optimal, and the allocations obtained from the solution

of the allocation LP (13)− (17) are used.
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Figure 2: Optimal server assignments at class 1 and corresponding departure rates
at each class as a function of λ

As we can see from Figure 2(a), servers 1 and 2 switch from the second class to

the first class as the offered demand λ increases. Consequently, the servers prefer

class 1 as long as there are customers there to process (because a customer leaving

class 2 requires more service effort than one leaving class 1). But any excess capacity

is devoted to class 2 since it also has an effect on the throughput. If all the servers

work at class 1, then the total processing rate is 15. Hence until λ̄ = 15, some excess

capacity is available to allocate to class 2 customers. For λ ≤ 8.08, servers 2 and
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3 are able to handle all of the input to class 1, with server 2 helping with class 1,

increasingly with λ. After all the efforts of servers 2 and 3 are devoted to class 1

at λ = 8.08, server 1 starts to help until all of its effort is switched to class 1 as

well. Figure 2(b) also shows that as expected by Lemma 3.2.1, the throughput is a

piecewise-linear concave function of the offered demand level. Moreover, we observe

that by allowing instability in the queueing network, it is possible for the production

output to increase significantly compared to the stable throughput (in this case by

a factor of almost two) given sufficient input. However, the optimal departure rates

from each class d∗1 and d∗2 display different reactions to the increasing offered demand

λ in parallel with optimal allocations in Figure 2(a). They both increase until server

2 starts to spend more time on the first class, so that d∗2 starts to decrease.

3.5.2 System Throughput Under Varying Offered Demand

In this section, we look at the performance of the optimal policy developed for one

offered demand as a function of the actual offered demand. For this, we develop a

policy based on a fixed λ, and then investigate the system performance when the

actual offered demand λ′ is different from λ. Figure 3 depicts the cases where the

policy π is designed for λ ∈ {3, λ∗, 6, 9, 12, λ̄}, respectively, and provides the optimal

throughput µ∗(λ′) and actual throughput µπ
λ(λ′) for different λ′. To obtain µπ

λ(λ′),

we use the optimal fractions obtained for λ in the allocation LP (13) − (17), and

solve for d∗k, for all k, see Section 3.2.2. The actual throughput of the system differs

from the optimal because the policy is designed based on the offered demand λ, and

hence the assignments may no longer be optimal for another offered demand λ′. Note

that in Figure 3(a), we have used the allocations obtained as a result of solving the

LP (13) − (17) for λ = 3, and not the ones obtained for the point λ∗. As a result,

we observe that the throughput becomes sensitive to the offered demand even for

λ ≤ λ′ ≤ λ∗. Substituting the allocations obtained at λ∗ for λ = 3, Figure 3(a) would

be the same as Figure 3(b).

As can be seen in Figure 3, the system performance is sensitive to the actual

offered demand level. Note that λ∗ is a critical point in all of the figures. Moreover,

we notice a common pattern that µπ
λ(λ′) equals µ∗(λ′) until some point t1, then

deviates from µ∗(λ′), intersecting it only at a second point t2 (if λ 6= λ∗), and finally

becoming constant after the second intersection. For those two points t1 and t2, we

have 0 ≤ t1 ≤ min{λ, λ∗} and λ∗ ≤ t2 ≤ λ̄. Also, µπ
λ(λ) is always equal to µ∗(λ), and

in particular t1 = λ when λ ≤ λ∗, and t2 = min{λ, λ̄} when λ ≥ λ∗. We have two

special cases, namely when λ = λ∗, where t1 = t2 = λ, and when λ ≥ λ̄, where t1 = 0

41



 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  2  4  6  8  10  12  14  16  18  20

λ λ* 8.08 –λ

µ*(λ)
µ(π)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  2  4  6  8  10  12  14  16  18  20

λ=λ* 8.08 –λ

µ*(λ)
µ(π)

(a) λ=3 (b) λ = λ∗

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  2  4  6  8  10  12  14  16  18  20

λ* λ 8.08 –λ

µ*(λ)
µ(π)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  2  4  6  8  10  12  14  16  18  20

λ* 8.08 λ –λ

µ*(λ)
µ(π)

(c) λ=6 (d) λ=9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  2  4  6  8  10  12  14  16  18  20

λ* 8.08 λ –λ

µ*(λ)
µ(π)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  2  4  6  8  10  12  14  16  18  20

λ* 8.08 λ=–λ

µ*(λ)
µ(π)

(e) λ=12 (f) λ = λ̄

Figure 3: Sensitivity analysis when actual offered demand differs from the one
designed for.

42



and t2 = λ̄. Also, a comparison of parts (a) and (b) of Figure 3 shows that solving

the allocation LP for λ = 3, rather that λ = λ∗, achieves higher output for large λ′.

This is because the optimal solution for λ = 3 turns out to be similar to the optimal

solution for λ ' 8. Finally, note that the assignments are constant for λ ≥ λ̄ (see

Figure 2(a)), and hence sensitivity analysis for λ ≥ λ̄ will be exactly the same as for

λ = λ̄.

If the offered demand to the system is not known beforehand, then there is no

single best λ to design for, since solving for λ is not necessarily good for other λ′

regardless of whether λ′ < λ or λ′ > λ. However, we can still make some general-

izations, since system capacity is not lost when λ′ < λ ≤ λ∗ and when λ, λ′ ≥ λ̄. In

particular, if the expected offered demand is less than λ∗, then it is best to design

for λ∗ so that no throughput is lost (see Theorem 1 in [6]). Similarly, if the expected

offered demand is greater than λ̄, then we design for λ̄ without any loss of through-

put. However, we cannot say the same when λ∗ < λ < λ̄. So, if the expected offered

demand is between λ∗ and λ̄, and we design for λ, then the actual throughput cannot

exceed µπ(λ). However, we could find a value of λ that minimizes our maximum loss,

which in our case corresponds to some λ ∈ [9, 12], where the losses at λ∗ and λ̄ are

equal. We could find this point using the Bisection-Extreme Point Search Algorithm

(BEPSA), starting with (λ∗ + λ̄)/2, then moving towards the middle point between

the current solution and the extreme point (i.e., λ∗ or λ̄) where the difference is

greater. For our case, it turns out that designing a policy for λ = 11 minimizes our

loss at the extreme points.

3.5.3 Simulation Results

In this section, we give simulation results for the system analyzed in the previous

subsections under an arrival stream that is a Poisson process with rate λ = 6. We

assume the service requirements are exponentially distributed with mean 1 and that

there are three servers whose service rates are given in the matrix H, see (24). We also

assume servers switch instantaneously, so that no switching times occur. Then, from

the allocation LP (13)− (17), we have µ∗(6) ' 4.7727 and the optimum assignments

are given in (25). Our aim is to observe how our allocation policy with admission

and routing control (see Section 3.3.1) performs in terms of achieving the theoretical

throughput value, and also to see if the sets S and U predicted by the allocation LP

coincide with the ones actually observed without admission and control or controlled

routing.

Next we choose ε =2/11 in the server assignment algorithm of Section 3.3.1, so
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that ε′ = 0.1. Then server 1(3) is dedicated to class 2(1), see (25). Moreover, we

have that l2,1 = 35 and l2,2 = 4, obtained from (27), satisfy step 6 of the assignment

algorithm. We simulate this system for one million time units with a warm-up period

of length 50,000. We divide the runtime into 40 batches for constructing a 95 percent

confidence interval on the throughput of the system. We expect the throughput of

the system to approach µ∗(6)(1− ε) ' 3.9049 (see Theorem 3.3.1) and all the nodes

to be stable. Figure 4 shows the throughput rate Dπ(t)/t as a function of time. We

observe that the throughput approaches its limiting value from above. The resulting

95 percent confidence interval for the throughput is (3.9007, 3.9101) with an average

of 3.9054. Figure 5 shows the queue lengths over time at classes 1 and 2. As expected

given the results of Section 3.3.1, the queue length at both classes displays stable

behavior.
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Figure 4: Average throughput with admission and routing control.

Finally, our aim is to observe the system if we the apply the policy of Section

3.3.1 without admission and routing controls. For this, we follow the same steps as in

Section 3.3.1, but omit steps 2 and 3 and choose ε′ = 0.1 in step 6. Then we expect

the throughput to be no smaller than µ∗(6)(1 − ε′) ' 4.2954. As before, we have

l2,1 = 35 and l2,2 = 4, obtained from (27), satisfy step 6 of the assignment algorithm.

We simulate this system for eight million time units with a warm-up period of length

300,000. A longer run length is chosen for this version of the system to observe the

queue length process of class 1 (which is expected to be stable, see Section 3.2.3) for

a longer period of time. We divide the run time into 40 batches for constructing a

95 percent confidence interval on the throughput of the system. Figure 6 shows the

throughput rate Dπ(t)/t as a function of time. The resulting 95 percent confidence

interval for the throughput is (4.7708, 4.7736) with an average of 4.7722. Figure
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Figure 5: Queue lengths with admission and routing control.

7 shows the queue lengths over time at classes 1 and 2. In accordance with the

results of Section 3.2.3, the queue length at class 1 displays stable behavior, whereas

the queue length at class 2 increases over time. Thus the stable and unstable sets

in the original queueing system operating under this policy appear to coincide with

the stable and unstable sets S and U defined in (22) and (23) for the allocation LP

(13)− (17). As we observe, dropping steps 2 and 3 of policy of Section 3.3.1 results

in significantly increased throughput at a cost of having an unstable system. This is

the case because we do not reject any incoming demand (i.e., no admission control)

and keep the second class busy at all times (i.e., no routing control).
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3.6 Conclusions

We have developed generalized round robin server assignment policies for a possi-

bly unstable queueing network with flexible servers, i.i.d. interarrival, service, and

switching times, and probabilistic routing. These policies are shown to achieve any

throughput less than the maximum value computed using a simple LP. In fact, allow-

ing instability can increase the production throughput significantly given sufficient

demand, resulting in higher revenues. We have also shown how to determine the sat-

uration input and the corresponding maximum output, and provided means to check

the feasibility of a desired output given the available offered demand.

One drawback for a given server assignment policy is the sensitivity of the through-

put to fluctuations in the offered demand. We have shown that this sensitivity is

eliminated and our policies are robust as long as the system is stable or the offered

demand is above the saturation level. We have also discussed how to choose offered

demand to base a policy on that minimizes the maximum loss. In actual produc-

tion systems, offered demand often changes over time. In that case, we can simply

modify our policies by letting the server allocations adjust with time according to the

forecasted demand.
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CHAPTER IV

INSPECTION LOCATION IN

CAPACITY-CONSTRAINED LINES

In this chapter, we study the effects of inspection and repair stations on the pro-

duction capacity and product quality in a serial line with possible inspection and

repair following each operation. We consider multiple defect types and allow for pos-

sible inspection errors that are defect dependent. Unlike previous works, our analysis

captures the possibility of increasing production capacity by scrapping or repairing

defective items before a bottleneck operation station, and hence reducing the waste

of operation capacity on defective products. Our objective is to maximize the to-

tal profit rate function that combines the effects of bottlenecks on throughput with

product quality, as opposed to previous papers where the objective is either to meet

minimum outgoing quality levels, or to minimize total costs, or to maximize total

profit without regard to increasing the effective capacity of bottlenecks.

The organization of this chapter is as follows. In Section 4.1, our network model,

assumptions, and notation are described in detail, and some limiting properties are

proven. Section 4.2 introduces a probability model based on a given inspection al-

location strategy, and shows how the outgoing quality level, scrap probabilities, and

flow rates are calculated. Based on this probability model and flow rates, we develop

the profit rate function for the system in Section 4.3, taking into account the costs

incurred, as well as the revenue generated. In Section 4.4, we develop an admission

control policy for a given allocation strategy that results in cost reduction, and also

introduce nonlinear programs for determining the optimal inspection locations and

levels when all repair stations are known to be stable. Section 4.5 provides numer-

ical results that show how the inspection allocation decisions are determined under

different parameters for a two station system. We also demonstrate that bottleneck

considerations for determining the best inspection locations can lead to different in-

spection decisions than previous models (that do not take the capacity of the system

into account). Finally, we summarize our findings in Section 4.6.
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4.1 Queueing Network

In this section, we introduce the queueing network model in detail and also provide

results about its asymptotic behavior. More specifically, in Section 4.1.1, the oper-

ating logic for the production network, along with the notation, are introduced. In

Section 4.1.2, we show that the departure process from each server satisfies certain

limiting properties.

4.1.1 Model Description

In this section, we describe the production process, assumptions, and notation in

detail. Our model consists of an arbitrary number N of operation stations in tan-

dem. After each operation station, we place an inspection station with an associated

repair station. We will use the notation O1,. . . ,ON to refer to the N consecutive

operation stations, I1,. . . ,IN to refer to the N consecutive inspection stations, and

finally R1,. . . ,RN to refer to the N consecutive repair stations. All stations have

given capacities and operate under the First Come First Serve (FCFS) scheduling

policy. Note that assuming that an inspection and repair station are associated with

every operation station is without loss of generality because we can always remove an

inspection and/or repair activity through an appropriate choice of parameter values.

Finally, if the production process starts with an inspection instead of an operation,

we can simply let O1 be a dummy operation station with infinite capacity.

We have a finite set D of possible defects with |D| elements. At each operation

station Oi, a defect j ∈ D could be incurred independently on different parts with

some given probability pi,j. Letting pi,j = 0, we can turn off the possibility that defect

j occurs at station Oi, so that only a subset Si = {j ∈ D : pi,j > 0} of defects can

occur at station Oi. Different defects j ∈ Si are introduced independently on the

same unit. We assume that no defects are introduced at the inspection and repair

stations, as well as at the dummy operation stations O0 and ON+1.

After each operation station Oi, i = 1, . . . , N , units are routed to the associated

inspection station Ii. Inspection station Ii might inspect only a fraction fi of the

incoming parts for some set Di ⊆
⋃

j≤i Sj of defects that are inspected for at inspection

station Ii. Consequently, a complete inspection station Ii and the associated repair

station Ri can be turned off by letting fi = 0. Although Lindsay and Bishop [66]

and Wiel and Vardeman [96] show that inspecting either all units or no units (so

that fi ∈ {0, 1}, ∀i) yields minimal total goodwill and inspection cost for systems

with Bernoulli product characteristics and independent defect propagation for each
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item (as is the case for our model), we allow partial inspection for the following

reasons. First and most importantly, we could make an inspection station faster

through partial inspection when it is a bottleneck station for the system. Secondly,

even when full inspection is not desirable, we can use partial inspection to stabilize

a down-stream bottleneck. We do not retain information about whether a part was

previously inspected for a specific defect. This is for example reasonable if inspection

is not repeated for defects at later stages unless the defect can be reintroduced.

Our model allows the inspection process to be imperfect in that a product that

does not have defect j when it is inspected at station Ii might be classified as having

defect j with probability αi,j, which constitutes Type 1 error. Likewise, a product

having defect j that is inspected for at station Ii might be classified as being nonde-

fective with probability βi,j, constituting Type 2 error. We assume that the inspection

process for different defects is independent at each of the inspection stations and that

the inspection process at different inspection stations is independent.

We assume that inspections are only carried out for defects that necessitate either

that the part be scrapped (major defects) or repaired (minor defects). Hence Di =

DS
i ∪DR

i , where DS
i is the set of major defects that require ‘Scrapping’ at inspection

station Ii and DR
i is the set of minor defects requiring ‘Repair’. If a unit is classified

by the inspection station to have at least one major defect, then the unit can not be

repaired and is scrapped. On the other hand, if a unit is free of any major defects

but has at least one minor defect, then it is routed to the associated repair station

Ri. By contrast, a unit is routed to the next operation station Oi+1 if the unit is

not inspected, or if the unit passes the inspection (i.e., it is not found to have any

defects). If a stage consist only of inspection without any repair, then DR
i is empty

and Di = DS
i , so that all defects are serious and defective unit are scrapped without

any repair attempt. Thus, repair station Ri can be turned off by letting DR
i = ∅. Let

sI
i represent the fraction of inspected units scrapped at Ii (i.e., the unit is classified

as nonconforming in some defect j ∈ DS
i ) and rI

i be the fraction of inspected units

routed from the inspection station Ii to the repair station Ri (i.e., the part passes the

inspection for all j ∈ DS
i , but is classified as nonconforming for some defect j ∈ DR

i ).

Finally, let oI
i represent the fraction of inspected units routed from the inspection

station Ii to the next operation station Oi+1.

We assume that for all units that are routed to repair station Ri, repair is at-

tempted for all defects that are captured by the associated inspection station Ii. The

repair process is independent for different defects and the repair probability for de-

fect j depends on whether the unit actually has defect j or not, given by qi,j and
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1, respectively. If the repair operation fails on any of the defects, then the part is

scrapped. On the other hand, if the repair is successful on all known defects at Ri,

then the part is sent to the operation station Oi+1. Let sR
i be the fraction of units

that are scrapped at repair station Ri (i.e., at least one of the repair operations fail)

and oR
i be the fraction of units routed to the next operation station Oi+1. Clearly the

routing fractions satisfy

sI
i + rI

i + oI
i = 1,

sR
i + oR

i = 1.

A graphical representation of our model is given in Figure 8 along with the rate

notation used. Note that since we allow the system to be capacity constrained, the

output from a given station is not necessarily equal to the input to that station. Let

λi represent the arrival rate to operation station Oi and λO
i be the corresponding

output rate. Similarly, let λI
i and λR

i be the output rates from the inspection and

repair stations Ii and Ri, respectively. The flow rate between Ii and Ri, Ii and

Oi+1, and Ri and Oi+1 are denoted by λIR
i , λIO

i , and λRO
i , respectively. Also the

scrap rates at the inspection and repair stations Ii and Ri are denoted by νI
i , and

νR
i , respectively. Lastly, the production rates at the operation and repair stations

Oi and Ri are denoted by µO
i and µR

i . However, the processing rate at inspection

station Ii will be modelled by µI
i /fi to emphasize the dependence on the fraction

of parts inspected (so µI
i is the conditional service rate given the part is inspected).

All processing times (operation, inspection, and repair) are assumed to be generally

distributed i.i.d. sequences with finite variances. We also include dummy start and

delivery nodes with station numbers O0 and ON+1, respectively, so that we can scrap

before the first operation station O1 at the rate νO
0 as a form of admission control,

and represent the system output by λO
N+1. The exogenous interarrival time sequence

to the dummy operation station O0 is assumed to be i.i.d. with general distribution

and rate λ = λ0. The production rates of the dummy operation stations are given by

µO
0 = µO

N+1 = ∞.

In calculating the total profit rate, we need to know the flow rate into each sta-

tion, which requires knowing the fraction of units with certain defect structures at

various stages of the production process. Production can be either demand or ca-

pacity constrained, i.e., it could be constrained either by the arrival rate λ or by the

processing rate of any of the operation, inspection, or repair stations. Although the

throughput of the system can not exceed the capacity of any of the inspection or

operation stations, it is not similarly restricted by the capacity of the repair stations
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Figure 8: Model and rate notation

because of the structure of the production network. Note that when the system is

capacity constrained, it may not be able to process all incoming parts.

Note that, as described above, our model with multiple defect types, error prone

inspection and repair, and fractional inspection allows for more generality than the

previous studies on the inspection allocation problem. Moreover, by considering

throughput in the capacity constrained system and comparing profit rate functions,

we account for the effects of inspection on bottleneck stations.

4.1.2 Asymptotic Properties

In this section, we define some cumulative processes for the queueing network model

described in the previous section. Our aim is to show that departure processes from

each server satisfy certain limiting properties. Let AO
0 (t) denote the number of ex-

ogenous arrivals to the dummy operation station O0 in (0, t]. For i = 1, . . . , N , the

processes AO
i (t), AI

i (t), and AR
i (t) are the cumulative number of jobs that arrive to

operation, inspection, and repair stations Oi, Ii, and Ri, respectively, during (0, t].

Similarly, NO
i (t), N I

i (t), and NR
i (t) denote the cumulative number of jobs that exit

operation, inspection, and repair stations Oi, Ii, and Ri, respectively, during (0, t] for

i = 1, . . . , N .

The serial structure of the production network allows us to analyze each node

sequentially. Consider some station in isolation with cumulative arrival process A(t).

Initially, there are Q(0) jobs at the station and Q(t) is the number of jobs at the

station at time t. Let B(t) denote the total amount of busy time for the server until

time t and S(t) be the potential number of service completions if the server is always

busy in (0, t]. The actual number of departures until time t is given by N(t). Then
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the cumulative variables satisfy the following queueing network equations

Q(t) = Q(0) + A(t)−N(t), (66)

B(t) =

∫ t

0

1{Q(s) > 0}ds,

N(t) = S(B(t)),

where 1{·} is the indicator function. Next we state that given that the input process

satisfies certain limiting properties, so does the output process.

Proposition 4.1.1. Consider a queue with a server that has i.i.d. processing times

with rate µ, and assume that the input process {A(t)} satisfies

lim
t→∞

A(t)

t
= λ almost surely (a.s.) (67)

Then for the output process {N(t)}, we have

lim
t→∞

N(t)

t
= min{λ, µ} a.s. (68)

Proof. By the Strong Law of Large Numbers (SLLN), we have limt→∞ S(t)/t = µ a.s.

Then, by the proof of Lemma 5.8 of Chen and Yao [25] and equation (67), we have

Ān(t) =
A(nt)

n

a.s.→ λt as n →∞, u.o.c., and S̄n(t) =
S(nt)

n

a.s.→ µt as n →∞, u.o.c.,

where u.o.c. stands for “uniformly on compact sets”. Hence we can construct a fluid

model for this single server queue as in Theorem 6.5 of Chen and Yao [25]. Let

Q̄(t) = limn→∞ Q(nt)/n be the corresponding queue length fluid limit with initial

condition Q̄(0) = 0. When ρ ≤ 1, Q̄(t) = 0 u.o.c., by Chen and Yao [25], Remark

6.7, implying that limt→∞ Q(t)/t = 0 a.s. by the definition of uniform convergence

on compact sets. Then it follows from (66) and (67) that limt→∞ N(t)/t = λ a.s.

Similarly, when ρ > 1, Q̄(t) = (λ − µ)t u.o.c., implying that limt→∞ Q(t)/t = λ − µ

a.s. Then (66) and (67) imply that limt→∞ N(t)/t = µ a.s.

Now, for the dummy operation station, assumption (67) is satisfied because of

the i.i.d. interarrival times. Then applying Theorem 4.1.1 in a recursive manner and

exploiting the feedforward structure of the network shows that all departure rates

exist and satisfy (68). Note that possible splits and joins at the inspection and repair

stations do not complicate the analysis. For instance, at an inspection station Ii with

full inspection fi = 1, given that a fraction rI
i of items are routed to repair station Ri

(see Section 4.2.2), then

lim
t→∞

AR
i (t)

t
= lim

t→∞
AR

i (t)

N I
i (t)

× N I
i (t)

t
= rI

i ×min{λO
i , µI

i } a.s. (69)
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4.2 Defect Propagation

In this section, we derive the fraction of units with given defect structures at different

stations in the network. The flow rates at various stages of the production process

will then follow as described in Section 4.1.2. Our analysis will take into account

that since the inspection of the units is error prone, units may be defective even after

inspection or repair. We start by the analyzing the status of units leaving operation

station Oi in Section 4.2.1, continue by analyzing units leaving inspection and repair

stations Ii and Ri in Sections 4.2.2 and 4.2.3, respectively, and finally investigate

units entering the succeeding operation station Oi+1 in Section 4.2.4. In this way, we

completely describe the ith stage, and continuing N times in a similar manner, we

can characterize the whole production process.

In the system analysis to follow, an inspection policy (hence fi, ∀i) is assumed

to be given. The analysis is started with the input rate λ to the system. Note that

how much to admit to the system, hence the scrap rate νO
0 , is a policy parameter,

assumed to be known. Since µO
0 = ∞, we have λ1 = λ− νO

0 . Later, in Section 4.4.1,

we will show how to determine the best admission policy for a given inspection plan.

Our analysis is initialized with the information on the incoming defect fractions πO
1,j

for all j, that represent the fraction of raw materials that are already defective. Note

that this is requirement is not limiting since we can simply set πO
1,j = 0 for all j if the

incoming defect fraction information is not available.

We start by introducing some useful notation. Define πO
i,j, πI

i,j, and πR
i,j as the

long-run average fraction of units arriving at operation station Oi, inspection station

Ii, and repair station Ri, respectively, that already have defect j. Similarly, πIO
i,j is the

fraction of units routed from inspection station Ii to operation station Oi+1 that has

defect j. Finally, the fraction of units still having defect j after the repair operation

is denoted by πRO
i,j . Figure 9 shows the ith stage and the fraction of units that have

defect j at stage i after each of the steps. We discuss how πI
i,j, πIO

i,j , πR
i,j, πRO

i,j , and πO
i,j

are computed next in Sections 4.2.1 through 4.2.4 below. Note that when division by

zero occurs, it is easy to see that the corresponding numerator is also zero. To avoid

these trivial cases, we adopt the convention 0/0 = 0.

4.2.1 Departures from Operation Stations

At this point in the calculations, we already know all the information for the stations

in stages 1, . . . , i− 1, as well as the arrival rate λi, and the fraction of parts that have

defect j ∈ D, before operation station Oi, given by πO
i,j. At operation station Oi, a
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Figure 9: Notation for the fraction of units with defect j at the ith stage

unit could acquire any defect j ∈ Si with probability pi,j; the unit is unaltered in

defect probability distributions for all defects j /∈ Si. Consequently, we have

πI
i,j = πO

i,j + pi,j(1− πO
i,j), for i = 1, . . . , N, j ∈ D, (70)

λO
i = min(λi, µ

O
i ). (71)

The second equality follows from Proposition 4.1.1. To derive the first equality, let

AO
i,j(t), AI

i,j(t), and AR
i,j(t) be the total number of units arriving at stations Oi, Ii,

and Ri, respectively, in (0, t] that have defect j ∈ D. Similarly, NO
i,j(t), N I

i,j(t), and

NR
i,j(t) are the total number of units with defect j that depart stations Oi, Ii, and

Ri, respectively, until time t. Then by definition we have πO
i,j = limt→∞ AO

i,j(t)/A
O
i (t).

We have

πI
i,j = lim

t→∞
AI

i,j(t)

AI
i (t)

= lim
t→∞

NO
i,j(t)

NO
i (t)

= lim
t→∞

AO
i,j(t)

AO
i (t)

+ lim
t→∞

AO
i (t)− AO

i,j(t)

AO
i (t)

pi,j

= πO
i,j + pi,j(1− πO

i,j),

where the third equality takes both units that already have defect j and units that

acquire defect j at operation station Oi into account, as well as the FCFS service

discipline and the i.i.d. assumption on the introduction of failures. Similar arguments

will be used below (see, e.g., equation (73)), without detailed explanation.

4.2.2 Departures from Inspection Stations

Next we analyze the status of units departing from inspection station Ii. At this

point, we already know the fractions πI
i,j, j ∈ D, and the input rate λO

i to Ii.

Let N̂ I
i (t) denote the total number of departing units inspected at Ii, so that fi =

limt→∞ N̂ I
i (t)/N I

i (t). To make the analysis easier, we define the vector Wi = (Wi,1,

Wi,2, . . . , Wi,|D|) that holds information on the current defect state for a unit arriving
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at inspection station Ii, so that

Wi,j =





1 if the unit arriving at Ii has defect j,

0 otherwise.

It is possible for the inspection station Ii to make classification errors on each

defect j ∈ Di. Consequently, we let Ei = (Ei,1, Ei,2, . . . , Ei,|D|) be a vector that holds

information on whether the inspection station Ii made an inspection error for the

defects j ∈ D, so that

Ei,j =





1 if there is an inspection error on defect j ∈ D at station Ii,

0 otherwise.

Let P̃ (Wi = w) represent the long-run average fraction of parts having the particular

defect structure w. We will use the tilde notation whenever we refer to such fractions.

We have assumed that (Wi,j, Ei,j) are independent for different j ∈ D (see Section

4.1.1). We have

P̃ (Wi = w) =
∏
j∈D

P̃ (Wi,j = wj), (72)

where P̃ (Wi,j = 1) = πI
i,j and P̃ (Wi,j = 0) = 1 − πI

i,j a.s. To see this, consider a

case with |D| = 2, and let us obtain the fraction of items with a particular defect

structure Wi,1,Wi,2. Now, in the whole population, a fraction πI
i,1 will have Wi,1 = 1.

By independence, among those items, a fraction πI
i,2 will satisfy Wi,2 = 1. Hence

the fraction of items with both defects is given by the product πI
i,1 × πI

i,2. Similar

arguments are used to derive other needed quantities (see, e.g., equation (74)) without

detailed explanation.

The probability of Type 1 and Type 2 errors as well as the fraction of units having

the particular inspection event is given by

αi,j = P (Ei,j = 1|Wi,j = 0) = P̃ (Ei,j = 1|Wi,j = 0), j ∈ Di;

βi,j = P (Ei,j = 1|Wi,j = 1) = P̃ (Ei,j = 1|Wi,j = 1), j ∈ Di;

1 = P (Ei,j = 0|Wi,j) = P̃ (Ei,j = 0|Wi,j), j ∈ D \Di.

Also, by the independence properties of the inspection process, the fraction of

units having particular defect structures and inspection events is given by

P̃ (Wi = w, Ei = e) = P̃{Wi = w}
∏
j∈D

P̃ (Ei,j = ej|Wi,j = wj), ∀w, e ∈ {0, 1}|D|.

55



Next we find the routing rates from inspection station Ii. For this, let di,j be

the fraction of units that inspection station Ii classifies as nonconforming in defect j

given that it is inspected. Then we have

di,j =





πI
i,j(1− βi,j) + (1− πI

i,j)αi,j j ∈ Di,

0 otherwise.
(73)

An inspected unit is scrapped when it is classified as having at least one of the

defects j ∈ DS
i . Therefore, the fraction of inspected units that are scrapped at

inspection station Ii is given by subtracting those classified as defect free from the

whole population, i.e.,

sI
i = 1−

∏

j∈DS
i

(1− di,j). (74)

Among those units that pass all defects j ∈ DS
i , the ones classified as having at least

one defect j ∈ DR
i would be routed to the repair station Ri, so that the total fraction

routed to Ri is given by

rI
i = [1− sI

i ][1−
∏

j∈DR
i

(1− di,j)]. (75)

Finally, the following fraction of inspected parts is routed to the next operation station

Oi+1 from Ii

oI
i = 1− rI

i − sI
i . (76)

Since not all units are inspected, general routing fractions out of Ii can be calculated

as follows

P̃ (unit is routed from Ii to Oi+1) = 1− fi(1− oI
i ) a.s.,

P̃ (unit is routed from Ii to Ri) = fir
I
i a.s.,

P̃ (unit is scrapped at Ii) = fis
I
i a.s.,

resulting in the following flow rates out of inspection station Ii

λI
i = min(λO

i , µI
i /fi), (77)

λIO
i = λI

i [1− fi(1− oI
i )], (78)

λIR
i = λI

i fir
I
i , (79)

νI
i = λI

i fis
I
i . (80)
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After inspection station Ii, those units that are routed to repair station Ri, a

fraction πR
i,j of them will have defect j ∈ D. For j ∈ DS

i , this happens when the

unit is selected for inspection, has an undetected defect j ∈ DS
i , but is sent to repair

station Ri for some defect j ∈ DR
i . For j ∈ DR

i , this happens when a unit which

actually has defect j ∈ DR
i is selected for inspection, passes the inspection for all

j ∈ DS
i , but either fails for defect j ∈ DR

i (i.e., no inspection error), or passes for the

defect j ∈ DR
i (i.e., inspection error) but is sent to the repair station for some other

defect k ∈ DR
i \ {j}. Finally, a unit might also have defect j ∈ D \Di, when such a

unit is selected for inspection, passes for all j ∈ DS
i , but fails for some k ∈ DR

i . Then,

to calculate πR
i,j, we need to know the fraction of units that are sent to repair station

Ri for some defect other than j ∈ DR
i , which will be represented by rI

i,j, and is given

by

rI
i,j =





∏
k∈DS

i
(1− di,k)[1−

∏
k∈DR

i \{j}(1− di,k)] j ∈ DR
i ,

∏
k∈DS

i \{j}(1− di,k)[1−
∏

k∈DR
i
(1− di,k)] j ∈ DS

i ,

rI
i j ∈ D \Di.

(81)

Then the fraction of units that have defect j ∈ D, πR
i,j, out of all the units that are

routed to repair station Ri, is given by

πR
i,j =





πI
i,j(1− βi,j)(1− sI

i ) + πI
i,jβi,jr

I
i,j

rI
i

j ∈ DR
i ,

πI
i,jβi,jr

I
i,j

rI
i

j ∈ DS
i ,

πI
i,j otherwise.

(82)

The ratios in the above equalities follow because when taking the limits, we divide

the total number of units with the required characteristics by the total number of

units routed to repair station Ri (similar arguments are used elsewhere, e.g., (83)).

A fraction πIO
i,j of units that are sent to the following operation station Oi+1 directly

from inspection station Ii might also have defect j ∈ D. This happens for j ∈ Di

when a unit that actually has defect j ∈ Di is not selected for inspection, or when it

is selected but passes the inspection for all k ∈ Di (i.e., there is an inspection error).

For defects j ∈ D\Di, this fraction does not depend on whether the unit was selected

for inspection. Therefore, among all units that are routed to operation station Oi+1,

the fraction that will have defect j ∈ D is given by

πIO
i,j =





πI
i,j(1− fi) + πI

i,jfiβi,j

∏
k∈Di\{j}(1− di,k)

oI
i

j ∈ Di,

πI
i,j otherwise.

(83)
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4.2.3 Departures from Repair Stations

Our next analysis involves units that are routed to repair station Ri from inspection

station Ii. At this point, we already have information on the input rate λIR
i to repair

station Ri and the fraction of units with defect j, πR
i,j, ∀j. Since the repair probability

depends on whether the unit is actually defective, we need to retain information on

whether there has been a classification error for any defect that fails inspection.

However, since repair is not attempted for defects passing inspection, we do not need

to know whether or not the unit actually has those defects. Let F0 and F1 denote the

outcome that a unit fails inspection for a particular defect but is actually nondefective

or defective, respectively, and let P be the outcome that the unit passes the inspection

for the defect. Then we have 3|D
R
i | − 1 possible repair configurations for a unit at a

repair station. Let the set of these configurations at repair station Ri be denoted by

Zi. For instance, if four defects are inspected for with two of them considered serious

and the other two minor, then the set Zi has the eight elements shown in Table 1.

Table 1: Defect classifications for a unit arriving at Ri with |Di| = 4 and |DS
i | =

|DR
i | = 2.

j ∈ DS
i j ∈ DR

i

PP PF0

PP PF1

PP F0P
PP F1P
PP F0F0

PP F0F1

PP F1F0

PP F1F1

Let z(j) denote the event status for defect j in the element z ∈ Zi. Note that

P̃ (z(j) = P ) = P̃ (Wi,j = 0, Ei,j = 0) + P̃ (Wi,j = 1, Ei,j = 1)

= (1− πI
i,j)(1− αi,j) + πI

i,jβi,j a.s. (84)

Similarly, for j ∈ DR
i , we have

P̃ (z(j) = F0) = P̃ (Wi,j = 0, Ei,j = 1) = (1− πI
i,j)αi,j a.s., (85)

P̃ (z(j) = F1) = P̃ (Wi,j = 1, Ei,j = 0) = πI
i,j(1− βi,j) a.s. (86)

Since the inspection process is independent for different defects, we can calculate the

occurrence frequency of any element z of the set Zi by multiplying the appropriate

58



fractions for the defects j ∈ Di. For instance, for the units inspected at Ii, the fraction

for the first element in Table 1, z = PPPF0, can be calculated as

P̃ (z) = P̃ (z = PPPF0) = [(1− πI
i,1)(1− αi,1) + πI

i,1βi,1][(1− πI
i,2)(1− αi,2) + πI

i,2βi,2]

×[(1− πI
i,3)(1− αi,3) + πI

i,3βi,3][(1− πI
i,4)αi,4] a.s.

Let 1{·} denote the indicator function. Since the repair process on all the defects

are independent, we can calculate the fraction of units sR
i that are scrapped at the

repair station as follows

sR
i =

∑
z∈Zi

P̃ (z)[1−∏
j∈DR

i
qi,j(z)]

rI
i

, (87)

where qi,j(z) = (qi,j1{z(j)=F1}+1{z(j)=F0}+1{z(j)=P}) is the repair probability for defect

j ∈ DR
i corresponding to element z ∈ Zi. The fraction of units routed from repair

station Ri to the following operation Oi+1 is simply given by oR
i = 1− sR

i . Then, the

rates out of repair station Ri are given by

λR
i = min(λIR

i , µR
i ), (88)

λRO
i = λR

i oR
i , (89)

νR
i = λR

i sR
i .

Next we calculate the defect fractions πRO
i,j of units that are routed from repair

station Ri to the following operation station Oi+1. Even if a unit is successfully

repaired, they might still be defective due to undetected defects. More specifically,

for j ∈ Di, this happens when a unit has defect j, passes the inspection for all defects

in DS
i and for defect j (i.e., inspection error), but fails for some defect k ∈ DR

i (and

is hence sent to the repair station Ri for defect k), and the repair activity on all such

defects k ∈ DR
i is successful (so that the unit is sent to the next operation station

Oi+1). Let the set Zi,j ⊆ Zi denote the instances in Zi such that the unit has defect j

but passes the inspection for defect j, and P1 denote the corresponding outcome. For

instance for the example of Table 1, zi,3 = {PPP1F0, PPP1F1}. Moreover, P̃ (z(j) =

P1) = πI
i,jβi,j and P̃ (z(j)) for z(j) = P , F0, and F1 are calculated as before. We can

calculate the occurrence frequency of any element of the set Zi,j by multiplying the

appropriate fractions for each j ∈ Di. For instance,

P̃ (z = PPP1F0) =

[(1− πI
i,1)(1− αi,1) + πI

i,1βi,1][(1− πI
i,2)(1− αi,2) + πI

i,2βi,2][π
I
i,3βi,3][(1− πI

i,4)αi,4].
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The fraction of units that are routed from repair station Ri to the operation station

Oi+1 and have defect j is given by

πRO
i,j =





∑
z∈Zi,j

P̃ (z)
∏

k∈DR
i
(qi,k1{z(k)=F1} + 1{z(k)=F0} + 1{z(k)=P1})

rI
i o

R
i

j ∈ Di,

πI
i,j j ∈ D \Di.

(90)

4.2.4 Arrivals to Operation Stations

In this section, we characterize the units arriving at operation station Oi+1. At this

point, we already know the fraction of units πIO
i,j and πRO

i,j that are incoming from

inspection station Ii or repair station Ri and have defect j in Sections 4.2.2 and 4.2.3,

respectively. We also know the flow rates λIO
i and λRO

i into operation station Oi+1

from Ii and Ri, respectively. Then πO
i+1,j is simply a weighted average given by

πO
i+1,j =





λIO
i πIO

i,j + λRO
i πRO

i,j

λIO
i + λRO

i

j ∈ Di,

πI
i,j j ∈ D \Di,

(91)

This follows because when taking the limits, we divide the total number of defective

units from both Ii and Ri by the total number of units arriving at Oi+1. Also, the

total flow rate into Oi+1, needed to start the (i + 1)th stage analysis, is given by

λi+1 = λIO
i,j + λRO

i,j .

4.3 Throughput Analysis and Cost Figures

In this section, we analyze the cost structure of the inspection model developed in

Section 4.2, with the objective of comparing different scenarios on the basis of profit

per unit time. Inspection and repair activities incur costs for the production system

in addition to the production and goodwill costs. Let EO
i (t), EI

i (t) and ER
i (t) denote

the cumulative production, inspection, and repair costs for stations Oi, Ii, and Ri

during (0, t], respectively. Scrapping units at station Ii and Ri results in cumulative

costs SI
i (t) and SR

i (t) until time t. At the end of the production process, let TR(t)

and EG(t) be the cumulative revenue and goodwill cost generated until time t. Then

the total profit TP (t) is the remaining revenue after accounting for all costs involved,

given by

TP (t) = TR(t)− EG(t)−
N∑

i=1

[
EO

i (t) + EI
i (t) + SI

i (t) + ER
i (t) + SR

i (t)

]
. (92)
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We are interested in the long-run average profit per unit time for the system, TP =

limt→∞ TP (t)/t. Next we look at the different costs in detail. We start with inspection

station Ii in Section 4.3.1, and continue with repair station Ri in Section 4.3.2. Finally,

we obtain the total profit for the system in Section 4.3.3.

4.3.1 Inspection Cost Computation

In this section, we derive the inspection and scrap costs incurred at inspection station

Ii. Note that inspection cost for each item might be item-dependent, even though all

items are inspected for the same set of defects at Ii, and it depends on the inspection

policy. One good policy is to first inspect for defects in DS
i that require scrapping,

and scrap the item as soon as one such defect is found. The policy might order the

defects in DS
i based on inspection cost and occurrence frequency. For a given policy,

inspecting the nth unit at inspection station Ii incurs random inspection cost XI
i (n) ≥

0. We assume that the sequence {XI
i (n)} is i.i.d. with finite mean E[XI

i (n)] = EI
i .

This means that EI
i (t) =

∑N̂I
i (t)

n=1 XI
i (n). Hence the unit time inspection cost is given

by

lim
t→∞

EI
i (t)

t
= lim

t→∞
EI

i (t)

N̂ I
i (t)

× N̂ I
i (t)

N I
i (t)

× N I
i (t)

t
= EI

i fiλ
I
i a.s.

For a given policy, disposing of the nth unit at inspection station Ii incurs a

possibly random scrap cost U I
i (n) ≥ 0. We assume that the sequence {U I

i (n)} is i.i.d.

with finite mean E[U I
i (n)] = U I

i . The scrap costs U I
1 . . . U I

N include any auxiliary

costs related with disposing the unit. Hence one would generally expect that U I
1 ≤

. . . ≤ U I
N . Let N̂ IS

i (t) be the total number of units scrapped at Ii until time t. Then,

in terms of the cumulative processes, this means

lim
t→∞

SI
i (t)

t
= U I

i lim
t→∞

N̂ IS
i (t)

N̂ I
i (t)

× N̂ I
i (t)

N I
i (t)

× N I
i (t)

t
= U I

i sI
i fiλ

I
i = U I

i νI
i a.s.

Then the total limiting inspection and scrap costs per unit time, EI and SI , for the

whole system are

EI =
N∑

i=1

EI
i fiλ

I
i and SI =

N∑
i=1

U I
i νI

i . (93)

For example, a simple policy could be to inspect for all defects in DS
i until a

detect is defected, and then if the unit passes we inspect for all the defects in DR
i .

Let the constant Hi,j be the inspection cost per unit for inspecting a unit for defect j
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at inspection station Ii. Hi,j might inversely depend on the inspection errors αi,j and

βi,j to reflect the cost of inspection quality (the lower the inspection error values, the

higher the inspection cost). Then the limiting inspection cost at Ii is given by

EI
i =

∑

j∈DS
i

∏

k∈DS
i

k<j

(1− di,k)Hi,j + (1− sI
i )

∑

j∈DR
i

Hi,j.

4.3.2 Repair Cost Computation

In this section, we derive repair and scrap costs incurred at repair station Ri. All

units arriving at the repair station incur the repair cost since repair is attempted for

all of them. Note that the cost of repairing a unit depends on defect classification

information, and may also depend on the particular repair policy selected. One good

policy is to order the defects in DR
i based on repair cost and repair success probability,

and scrap units as soon as repair for a particular defect is unsuccessful. For a given

policy, repairing the nth unit with defect information z ∈ Zi at repair station Ri

incurs random repair cost XR
i (n|z) ≥ 0. We assume that the sequence {XR

i (n|z)} is

i.i.d. with finite mean E[XR
i (n|z)] = ER

i (z) for all z ∈ Zi. From Section 4.2.3, we

know the fraction of items P̃ (z) with particular defect information z ∈ Zi. Then we

obtain

lim
t→∞

ER
i (t)

t
= λR

i

∑
z∈Zi

P̃ (z)ER
i (z) a.s.

For a given policy, disposing of the nth unit at repair station Ri incurs random

scrap cost UR
i (n) ≥ 0. We assume that the sequence {UR

i (n)} is i.i.d. with finite

mean E[UR
i (n)] = UR

i . Then, we get

lim
t→∞

SR
i (t)

t
= UR

i sR
i λR

i = UR
i νR

i a.s.

Then the total limiting repair and scrap costs ER and SR for the whole system are

given by

ER =
N∑

i=1

λR
i

∑
z∈Zi

P̃ (z)ER
i (z) and SR =

N∑
i=1

UR
i νR

i . (94)

For example, a simple policy could be to attempt repair for all defects in DR
i until

the first failed repair. Repair cost might depend on both defect types and the repair

station. Let Ci,j be the unit repair cost at repair station Ri for defect j whenever the

unit is classified to be nonconforming in defect j by the ith inspection station and the
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unit is actually defective. Similarly, C ′
i,j is the unit repair cost at repair station Ri

for defect j whenever the unit is classified to have defect j but the unit actually is

not defective. Then we have

{Repair Cost for defect j at Ri per unit|Wi,j = wj, Ei,j = ej} =



0 if (Wi,j, Ei,j) = (0, 0), (1, 1),

Ci,j if (Wi,j, Ei,j) = (1, 0),

C ′
i,j if (Wi,j, Ei,j) = (0, 1),

so that limiting repair cost at Ri is given by

ER
i (z) =

∑

j∈DR
i

∏

k∈DR
i

k<j

qi,k(z)(1− qi,j(z))
∑

l∈DR
i

l≤j

(Ci,l1{z(l)=F1} + C ′
i,l1{z(l)=F0}).

4.3.3 Total Profit Computation

In this section, we derive total revenue, production cost, and goodwill cost per unit

time, and also compute the total profit rate. Note that the fraction of departing

units that will have defect j at station ON+1, πO
N+1,j, as well as the throughput λN+1

of the system, are determined in Section 4.2. For the revenue calculations, the nth

departing unit from station ON+1 incurs random revenue XO
N+1(n). We assume that

the sequence {XO
N+1(n)} is i.i.d. with finite mean E[XO

N+1(n)] = R. Then the revenue

per unit time is given by

lim
t→∞

TR(t)

t
= λN+1R a.s. (95)

Processing the nth unit at operation station Oi incurs random operation cost

XO
i (n) ≥ 0, including raw material cost. We assume that the sequence {XO

i (n)} is

i.i.d. with finite mean E[XO
i (n)] = EO

i . This means that EO
i (t) =

∑NO
i (t)

n=1 XO
i (n).

Hence the unit time operation cost is given by

lim
t→∞

EO
i (t)

t
= lim

t→∞
EO

i (t)

NO
i (t)

× NO
i (t)

t
= EO

i λO
i a.s. (96)

Also, let EO represent the total limiting operation cost throughout the production

line so that

EO =
N∑

i=1

EO
i λO

i . (97)
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Goodwill cost depends on the combination of defects and final recipient’s quality

perception. For instance, a minor defect along with a major defect might add no

or little cost to the total goodwill cost. At the same time, a defect perceived to be

minor for one customer might be major for another. Let XG(n|w) ≥ 0 represent the

random goodwill cost associated with the nth completed unit having defect structure

WN+1 = w for all w ∈ {0, 1}|D|. We assume that the sequence {XG(n|w)} is i.i.d.

with mean E[XG(n|w)] = EG(w) for all w ∈ {0, 1}|D|. As in Section 4.2.2, we can

obtain the fraction of items P̃ (WN+1 = w) at station ON+1 with a particular defect

structure w. Finally, by a similar analysis as in the previous section, we obtain the

limiting goodwill cost

EG = lim
t→∞

EG(t)

t
= λN+1

∑

w∈{0,1}|D|
P̃ (WN+1 = w)EG(w). (98)

For example, a simple model for calculating the goodwill cost is the additive model,

where each defect j ∈ D is associated with an expected goodwill cost Gj, so that

EG(w) =
∑
j∈D

πO
N+1,jGj.

For the general model, combining the results from equations (92) − (94) and

(95)− (98), we obtain the limiting total profit per unit time

TP = λN+1R− EO − EI − SI − ER − SR − EG a.s. (99)

4.4 Inspection Location and Admission Control

In real-life production lines, manufacturing and inspection operations can require

considerably different amounts of time. For instance, in traditional manufacturing

processes such as automobile assembly lines, manufacturing operations take much

longer than inspections, because the inspection activity is simpler and consists of

activities like visual inspection or simple functionality check. For example, laser and

vision-based inspection systems can supply huge amounts of data about form, fit,

and contour in only a few minutes (see Tolinski [89]). In such cases, the cycle time

of products would be determined primarily by the production operations. In other

cases, especially in the electronics industry, inspection might take considerably longer

than the actual production. An example is surface mount technology (SMT) for the

assembly of printed circuit boards (see Bai and Yun [9]). An SMT circuit board is very

compact and complex, consisting of hundreds or thousands of components. Compared
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to actual production, inspection of these individual components for conformance is

complicated. In such cases, inspection primarily determines production cycle time.

Our aim in Section 4.4.1 is to determine an inspection plan and admission policy

for the general case where any of the stations can be the bottleneck. This will involve

stating some assumptions about the characteristics of the production process and

identifying whether or not to stabilize the individual stations in the line. Then we

consider the special case where all repair stations are balanced in Section 4.4.2.

4.4.1 General Case

Consider the serial production system described in Section 4.1.1, where any of the

operation, inspection, and repair stations could be a bottleneck for the system. We

now show that a serial line operating under optimal conditions may indeed have

unstable repair stations; however, all inspection and operation stations should be

balanced. First, we state the following assumptions.

Assumption 4.4.1. The inspection process satisfies αi,j + βi,j ≤ 1 for all i and j.

Assumption 4.4.2. The inspection process satisfies Di ∩Di′ = ∅ for all stages i, i′

with i 6= i′.

Assumption 4.4.3. For all stages i and units n, the operation, inspection, and repair

station costs XO
i (n), XI

i (n), and XR
i (n|z), where z ∈ Zi, and scrap costs U I

i (n) and

UR
i (n) do not depend on the set of defects D\Di not inspected for at stage n. Similarly,

the revenue XO
N+1(n) for the nth unit does not depend on unit’s defect status for all

j ∈ D and n. Finally, the limiting goodwill cost EG is nondecreasing with the fraction

of defective units πO
N+1,j for all j.

Assumption 4.4.1 is a natural one and is needed to make sure that the inspection

stations function for the benefit of the system. To see this, consider the fraction

di,j of items classified to be nonconforming in defect j by inspection station Ii, as

given in (73). Rearranging the terms, we get di,j = πI
i,j(1 − βi,j − αi,j) + αi,j for

j ∈ Di. If αi,j + βi,j > 1, then as the fraction of defective units increases, the

fraction classified as nonconforming decreases. As we pointed out in Section 4.2.2,

various inspection policies are possible, and Assumption 4.4.1 is a refinement about

the structure of these policies. Assumption 4.4.2 ensures that each defect type can be

inspected for at most once. This is assumption is not very restrictive. For example, if

the same defect can be introduced at different locations, then we can give the defect

a different number depending on the location where it is introduced and then inspect
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for the defect in multiple locations without violating Assumption 4.4.2. Also, even

though Assumption 4.4.2 implies that we cannot inspect for a defect introduced at

one location in several places downstream, this does not seem restrictive because

if it is important to inspect for this defect, we would want to detect it as soon as

possible to avoid incurring additional production costs on the defective item. Finally,

Assumption 4.4.3 ensures that the cost functions depend in a sensible way on a unit’s

defect status. In particular, Assumption 4.4.3 states that revenue from each unit is

independent of its defect structure and that goodwill cost increases as items become

more defective. Assumption 4.4.3 also ensures that all costs in a given stage depend

only on the set of defects inspected for at that stage (and not on other defects).

Under the above assumptions, it is beneficial to balance all operation and inspec-

tion stations in the production line, as stated in the next theorem.

Theorem 4.4.1. Under Assumptions 4.4.1, 4.4.2, and 4.4.3, the objective function

TP (99) is maximized when all operation and inspection stations are balanced (i.e.,

λi = λO
i = λI

i for all i = 1, . . . , N).

The proof of Theorem 4.4.1 can be found in Appendix A, and includes showing

that it is better to use admission control than to allow operation or inspection stations

to be unstable. However, other mechanisms, such as changing the inspection policy,

may be preferable to admission control.

We note that although all operation and inspection stations should be stable, one

or more of the repair stations could be unstable under the optimal conditions. This

involves discarding the excess units to be repaired. To see this, consider a simple

example with one operation station and associated inspection and repair stations.

Minor defects are introduced at the operation station with probability p and the

inspection and repair stations are error free. Also, assume that the goodwill cost is

very high, so that it is optimal to inspect all units after the operation station (hence

f1 = 1), and that the input λ to the system yields stable operation and inspection

stations, but λp > µR
1 , so that the repair station is the bottleneck. When we have a

push forward scheme without stabilizing the repair station, the total throughput of

the system is given by λ(1 − p) + µR
1 . However when the repair station is stabilized

through admission control, the throughput reduces to µR
1 (1 − p)/p + µR

1 . Hence, if

the units are highly profitable, it is possible for the limiting profit to decrease when

the repair station is stabilized.

To determine the best possible inspection points, we maximize the total profit rate

function TP (99) that combines the effects of throughput with the product quality

66



(our problem formulation does not take into account any fixed costs associated with

including an inspection station in a particular location). In light of Theorem 4.4.1,

we can adjust the flow rate calculations at each stage to stabilize the inspection and

operation stations (so that λi = λO
i = λI

i for all i, resulting in fewer constraints and

variables). Then we can determine the flow rates, inspection locations, admission

control, and desired status of repair stations (stable or unstable) using the following

Nonlinear Program (NLP) whose decision variables include the inspection plan fi,

i = 1, . . . , N , and the optimal amount λ1 to admit to the system given the incoming

defect information πO
1,j for all j.

max TP s.t.

λ1 ≤ λ; (100)

λi ≤ µO
i , i = 1, . . . , N ; (101)

fiλi ≤ µI
i , i = 1, . . . , N ; (102)

λR
i = min(λifir

I
i , µ

R
i ), i = 1, . . . , N ; (103)

λi+1 = λR
i (1− sR

i ) + λi[1− fi(r
I
i + sI

i )], i = 1, . . . , N ; (104)

Equations (70), (72)− (75), (81)− (87), (90)− (91), i = 1, . . . , N ; (105)

Equations (93)− (94), (97)− (99) for i = 1, . . . , N ; (106)

0 ≤ fi ≤ 1, i = 1, . . . , N ; (107)

0 ≤ λN+1, λi, i = 1, . . . , N. (108)

The objective TP is the general total profit rate function. The constraints (100)−(104)

represent balance equations for the flow in the serial line, allowing only the repair

stations to become unstable. The constraints (105)-(106) are needed because some

of the model parameters depend on the decision variables fi, i = 1, . . . , N . We also

need to substitute λRO
I = λR

i (1 − sR
i ) and λIO

i = λi[1 − fi(r
I
i + sI

i )] in (91); λI
i = λi

and νI
i = λifis

I
i in (93); νR

i = λR
i sR

i in (94); and finally λO
i = λi in (97). Let the

solution be given by f̄i, λ̄i, and λ̄R
i for i = 1, . . . , N . Then the repair station Ri is

stable if λ̄R
i ≤ µR

i and unstable if λ̄R
i > µR

i in the allocation scenario that maximizes

the return. We also reject at the rate νO
0 = λ− λ̄1 at the dummy operation node O0,

and stages i with f̄i > 0 are assigned an inspection station.

4.4.2 Operation or Inspection Constrained Case

In this section, we consider a serial production system as described in Section 4.1.1,

under the assumption that the production capacity is determined by the operation
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and inspection stations (so that all repair stations are always stable). Note that when

manufacturing operations constrain the capacity of the system, the operation station

Ob with the slowest production rate (so that µO
b ≤ µO

i , for all i) is not necessarily

the bottleneck due to the effects of inspection through scrapped units. In particular,

any other operation station Oi with i < b could be the bottleneck if enough units

are scrapped between operation stations Oi and Ob. Similarly, the inspection station

Ib with the slowest inspection rate (so that µI
b ≤ µI

i , for all i) is not necessarily the

bottleneck because of the effects of fractional inspection and scrapped units.

As in the general case, ensuring stability through admission control is preferred

over a push forward scheme, where every operation or inspection node processes as

much as possible. The next result provides the admission control that balances the

operation and inspection stations for a given inspection policy f1, . . . , fN when repair

stations never constrain the system productivity.

Theorem 4.4.2. Suppose that µR
i ≥ λN+1fir

I
i /

∏N
n=i(1 − fnsn) for all i, where si =

sI
i + rI

i s
R
i is the total fraction of inspected units scrapped at the ith stage and

λN+1 = min

{
λ

N∏
n=1

(1− fnsn); µO
1

N∏
n=1

(1− fnsn); µO
2

N∏
n=2

(1− fnsn); . . . ; µO
N(1− fNsN);

µI
1

f1

N∏
n=1

(1− fnsn); . . . ;
µI

N

fN

(1− fNsN)

}
. (109)

Then the line can be balanced through admission control at the dummy operation

station O0 at the rate

νO
0 = λ− λN+1∏N

n=1(1− fnsn)
, (110)

and λN+1 is the maximum possible throughput.

Proof. When all stations are stable under the arrival rate λ, the total fraction of units

scrapped at the ith stage is given by fisi, and the remaining fraction 1−fisi is routed

to Oi+1. In order to achieve the throughput λN+1, we must have

λN =
λN+1

1− fNsN

.

Continuing this argument backwards, we have at the ith stage

λi =
λN+1∏N

n=i(1− fnsn)
.
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Then by equation (79), the condition on µR
i ensures the stability of all repair sta-

tions. Each operation node is constrained by its production capacity, and the dummy

operation node O0 is constrained by the arrival rate λ, so stability requires

λN+1∏N
n=i(1− fnsn)

≤ µO
i , i = 1, . . . , N ;

λN+1∏N
n=i(1− fnsn)

≤ µI
i

fi

, i = 1, . . . , N ;

λN+1∏N
n=1(1− fnsn)

≤ λ.

Hence the equalities (109) and (110) follow.

Finally, based on the previous two theorems and the incoming defect information

πO
1,j for all j, we construct the following NLP for finding the best inspection policy

when all repair stations are known to be stable. This would be the case, for instance,

when all defects are considered major.

max λN+1R− λN+1

∑

w∈{0,1}|D|
P̃ (WN+1 = w)EG(w)

−
N∑

i=1

λN+1∏N
n=i(1− fnsn)

[
rI
i fi

( ∑
z∈Zi

P̃ (z)ER
i (z) + sR

i UR
i

)
+ EO

i + fiE
I
i + fis

I
i U

I
i

]
(111)

where

λN+1 ≤ λ

N∏
n=1

(1− fnsn); (112)

λN+1 ≤ µO
i

N∏
n=i

(1− fnsn), i = 1, . . . , N ; (113)

λN+1 ≤ µI
i

fi

N∏
n=i

(1− fnsn), i = 1, . . . , N ; (114)

the set of constraints (105); (115)

si = sI
i + rI

i s
R
i for i = 1, . . . , N ; (116)

0 ≤ fi ≤ 1, i = 1, . . . , N ; (117)

0 ≤ λN+1. (118)

Constraint (112) means that the throughput for the system is limited by the total

available demand λ. Similarly, constraints (113) and (114) represent the capacity
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limitations at each of the operation and inspection stations, respectively. Let the

solution be given by f̄i and λ̄N+1. If the system is profitable, so that λ̄N+1 > 0,

then λ̄N+1 can be obtained as in Theorem 4.4.2 since the objective function in (111)

is linear in λN+1 given fi for all i; otherwise we have λ̄N+1 = 0. Note that this

NP is simpler than the general problem in (100) − (108), with fewer variables and

constraints, as a result of the assumption that repair stations are never unstable.

4.5 A Numerical Example

In this section, our aim is to gain insights into the behavior of the optimal inspection

allocation strategy, as well as to demonstrate the effects of throughput considerations

on the optimal inspection allocation. We consider a basic model with N = 2 operation

stations O1 and O2 in tandem and two possible inspection locations after the operation

stations. We have two types of defects that can be introduced independent of each

other in the production process with p1,1 = p1, p1,2 = 0 and p2,1 = 0, p2,2 = p2. The

inspection process is assumed to be all or none, i.e., f1, f2 ∈ {0, 1}. For simplicity

we assume that defective units are detected during inspection without any error (i.e.,

αi,j = βi,j = 0, ∀i, j). Moreover, both defect types are assumed to be major, so that

all defective units are scrapped without any repair attempt, and unit inspection costs

are additive. Our aim is to find an inspection allocation policy with admission control

that maximizes the profit rate of the system. Then the possible actions are

a0 = No inspection (f1 = f2 = 0);

a1 = Inspect for defect 1 after operation station 1 (f1 = 1, f2 = 0);

a2 = Inspect for defect 2 after operation station 2 (f1 = 0, f2 = 1);

a3 = Inspect for defect 1 after operation station 1 and for defect 2

after operation station 2 (f1 = 1, f2 = 1).

Note that, we do not consider inspecting for defect 1 only after operation station

2 since action a1 will always outperform this case in our model. Similarly, action a3

is always better than inspecting for both defects 1 and 2 after the operation station

2 (since we assume that inspection costs are additive and that there are no fixed

costs associated with inspecting in two locations). As in the general model, each unit

generates a revenue R, as well as goodwill costs G1 and G2 depending on whether it

has defect 1 or defect 2, respectively. If a unit has both defects, we assume a goodwill

cost of G1 + G2 is introduced. Processing costs at operation stations 1 and 2 include

any cost associated with production and are represented by C1 and C2, respectively.
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Inspecting at location 1 (2) incurs an inspection cost of H1 (H2) per unit. Each

scrapped unit incurs a scrap cost given by U1 or U2 depending on whether it was

scrapped at the first or second inspection location. Since the scrap cost U2 includes

both U1 and the processing cost at operation station 2, we assume that U2 ≥ U1.

Given the above assumptions, we can formulate the profit rate function TP de-

pending on the inspection strategy as well as the input parameters, R, Ci, Gi, Hi, and

Ui, i = 1, 2. Let λ0 = λ denote the arrival rate to the system and µO
1 = µ1, µO

2 = µ2

be the processing capacities at stations 1 and 2, respectively. To observe the effects

of inspection operations on a system constrained by the capacity of a bottleneck op-

eration station, we assume that µI
1, µI

2 ≥ λ0, so that the inspection operations never

constrain the system. The throughput λN+1 of the system is denoted by µ.

The optimal inspection locations are determined based on the NLP (111)− (118),

except fi, i = 1, 2, are now constrained to be integers. Since all defects are major

and inspection is error free, we have sI
i = si = pi, and also rI

i = sR
i = 0 for i = 1, 2.

Moreover, EO
i = Ci, EI

i = Hi, U I
i = Ui, πO

1,1 = 0, πI
1,1 = p1, πO

1,2 = πI
1,2 = 0,

πO
2,1 = πI

2,1 = p1(1 − f1), πO
2,2 = 0, πI

2,2 = p2, and πI
3,j = πO

3,j = pj(1 − fj) for i = 1, 2

and j = 1, 2. Hence NLP (111)− (118) becomes

max µR−
2∑

i=1

µfi∏2
n=i(1− fnsn)

(
Ci

fi

+ Hi + piUi

)

−µ

(
G1p1(1− f1) + G2p2(1− f2)

)
(119)

such that

µ ≤ λ(1− f1p1)(1− f2p2), (120)

µ ≤ µ1(1− f1p1)(1− f2p2), (121)

µ ≤ µ2(1− f2p2), (122)

f1, f2 ∈ {0, 1}, and µ ≥ 0. (123)

Note that in the above allocation NLP, all variables are known except for the decision

variables f1, f2 and the throughput µ. Goodwill cost in the objective function (119)

results from the fact that goodwill costs are additive and we have no inspection

errors. Since the problem size is small, we can easily solve the NLP in (119)− (123)

by enumerating all four possible solutions and obtain the profit function TP (f1, f2).

71



In particular,

TP (0, 0) = min{λ, µ1, µ2}(R− C1 − C2 −G1p1 −G2p2), (124)

TP (1, 0) = min{(1− p1)λ, (1− p1)µ1, µ2}
(

R− C1 + H1 + p1U1

1− p1

− C2 −G2p2

)
, (125)

TP (0, 1) = (1− p2) min{λ, µ1, µ2}
(

R− C1

1− p2

− C2 + H2 + p2U2

1− p2

−G1p1

)
, (126)

TP (1, 1) = (1− p2) min{(1− p1)λ, (1− p1)µ1, µ2}
×

(
R− C1 + H1 + p1U1

(1− p2)(1− p1)
− C2 + H2 + p2U2

1− p2

)
. (127)

However, since these functions involve many variables, it is not trivial to obtain

general structural results. Instead, we will visualize the optimal actions as functions

of p1 and p2 given the input parameters λ, µi, R, Gi, Hi, and Ui, i = 1, 2.

We will consider two cases. In the first case, production is constrained by the

arrival rate λ to the system, and in the second case, the second operation station is

a bottleneck and determines the throughput. In this case, as shown in Section 4.4,

we control the input rate to the system to balance the operation stations (note that

the rejection of arriving units does not incur any penalty costs in our model). We

do not consider the case where the first station is the bottleneck because this case is

the same as the first case except that the arrival rate is now controlled to equal the

processing capacity of the first station.

Next, we provide the total profit functions in input and capacity constrained sys-

tems. For the first case where the system is constrained by the arrival rate, equations

(124)− (127) become

TP (0, 0) = λ(R− C1 − C2 −G1p1 −G2p2),

TP (1, 0) = λ(1− p1)

(
R− C1 + H1 + p1U1

1− p1

− C2 −G2p2

)
,

TP (0, 1) = λ(1− p2)

(
R− C1

1− p2

− C2 + H2 + p2U2

1− p2

−G1p1

)
,

TP (1, 1) = λ(1− p2)(1− p1)

(
R− C1 + H1 + p1U1

(1− p2)(1− p1)
− C2 + H2 + p2U2

1− p2

)
.

Note that the actual value of λ and the capacity of the operation stations have no

effect on the optimal decision, since we can always compare the functions TP (·)/λ.

In this case, we cannot see the side benefit of having inspection before the bottleneck

on the optimal decision and our inspection allocation decision agrees with traditional

wisdom in that we choose to inspect whenever the expected inspection cost for a

unit is less than the expected cost of not inspecting (see, e.g., Bai and Yun [9], Chen

72



[22], Eppen and Hurst [56], Lindsay and Bishop [66], and Raz and Kaspi [81]). More

specifically, rearranging the profit functions, we obtain

TP (1, 0)− TP (0, 0)

λ
= p1(C2 + G2p2 + G1)− (H1 + p1R + p1U1), (128)

TP (0, 1)− TP (0, 0)

λ
= p2(G1p1 + G2)− (H2 + p2R + p2U2),

TP (1, 1)− TP (0, 0)

λ
= (G1p1 + G2p2 + C2p1)

−(H1 + p1U1 + (H2 + p2U2)(1− p1) + R[p1 + p2 − p1p2]),

where (Hi +piR+piUi), i = 1, 2, can be considered as the expected cost of inspection

for defect i only per unit, and (H1+p1U1+(H2+p2U2)(1−p1)+R[p1+p2−p1p2]) as the

expected cost of inspection when inspecting both defects simultaneously. Similarly,

p1(C2+G2p2+G1), p2(G1p1+G2), (G1p1+G2p2+C2p1) can be viewed as the expected

cost of not inspecting at locations 1, 2 and, 1 and 2 together, respectively.

Next we derive the profit functions for the interesting case where the production

line is constrained by the capacity of the second operation station having processing

rate µ2, assuming that µ1 > λ > µ2/(1−p1). The first condition ensures that O1 is not

a bottleneck, and the second condition ensures that we have in all cases enough input

for O2 to be a bottleneck. Hence, as a result of Theorem 4.4.1, we reject any incoming

job with probability (λ−µ2/(1−p1f1))/λ to stabilize the system. In this case, we can

observe the effects of throughput considerations on the inspection allocation decision.

In particular, the profit functions are given by

TP (0, 0) = µ2(R− C1 − C2 −G1p1 −G2p2), (129)

TP (1, 0) = µ2

(
R− C1 + H1 + p1U1

1− p1

− C2 −G2p2

)
, (130)

TP (0, 1) = µ2(1− p2)

(
R− C1

1− p2

− C2 + H2 + p2U2

1− p2

−G1p1

)
,

TP (1, 1) = µ2(1− p2)

(
R− C1 + H1 + p1U1

(1− p2)(1− p1)
− C2 + H2 + p2U2

1− p2

)
.

As before, the actual value of µ2 has no effect on the optimal decisions as long as

O2 remains a bottleneck, because we can always compare the functions TP (·)/µ2.

Note that, by inspecting for defect one after the first operation station and scrapping

defective items, we not only remove the defective items but also increase the capacity

of the production line from µ2 to µ2/(1 − p1). Thus, in the capacity constrained

case, inspecting after the first operation has gained an advantage with magnitude

depending on the value p1. In all prior works on inspection allocation, this secondary
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effect is neglected, although the production line might be constrained by one of the

operation stations and not the external input. Because of this secondary effect, we

will see that even under the same defect distribution and cost parameters, inspecting

after operation station 1 for defect 1 becomes more beneficial as compared to the first

case.

Goodwill cost is a good measure of how important certain quality characteristics

are to customers. Our experience with solving the NLP (119)− (123) reveals that the

relative values of G1, G2, and R are important factors in inspection allocation deci-

sions. Hence, we compare the inspection allocation decisions in capacity constrained

and input constrained systems with different relative values for G1, G2, and R, namely

when there is at least one serious defect (i.e., max{G1, G2} > R) and when both de-

fect types are considered not serious (i.e., max{G1, G2} < R), in Figures 10 and 11,

respectively. The specific values for G1, G2, and R are chosen so that a number of

different optimum actions are observed. Each shaded region in Figures 10 and 11 is

labeled with the optimal actions for the corresponding defect probabilities p1 (shown

on the x-axis) and p2 (shown on the y-axis); unshaded regions correspond to the case

when the system is not profitable under any of the actions a0, . . . , a3 (so that µ = 0).

Note that the possibility of having at least one serious defect such that the associated

goodwill cost is higher than the revenue is possible, for instance, when the defect

causes the company not only to lose the revenue but also to incur some additional

costs, like repair and shipping costs or loss of company reputation. In both figures,

the left column shows the optimal actions when the system is input constrained and

the right column depicts the optimal actions when the second station is a bottle-

neck. Note that the arrival rate λ and processing capacities µ1, µ2 do not affect the

optimal decisions beyond determining whether the system is arrival constrained or

constrained by the capacity of the second station. Throughout we choose µ1 = 110,

µ2 = 1, H1 = H2 = 2, U1 = U2 = 4, and C1 = C2 = 5. Moreover, λ = 1 for input

constrained systems, and λ = 100 when the second station is a bottleneck.

In all cases, whether input or capacity constrained, we observe that there is no

inspection when the defect probabilities p1 and p2 are low. However, as defect prob-

abilities associated with high goodwill costs increase, we choose to add inspection

stations.

In Figure 10, we study cases where at least one of the defects is serious. In

particular, we consider G2 < R < G1 in parts (a)-(b) of the figure, G1 < R < G2 in

parts (c)-(d), and R < G1 < G2 in parts (e)-(f); the case R < G2 < G1 produces a

graph that is very similar to the one in Figure 10 (e)-(f), and hence is not included.
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We note that even in this case, inspecting for both defects is not the best option

for the demand constrained system, unless G1 and G2 are both high compared to R

and the defect probabilities p1 and p2 are large. This does not necessarily hold for

the capacity constrained system, as shown in Figure 10 (d), where G1 < R < G2

and inspecting for both defects is desirable for some values of p1, p2. The fact that

actions a1 and a3 are in some instances optimal in the capacity constrained case,

but not in the corresponding demand constrained case, even when G1 is not high, is

intuitive because inspecting for defect 1 has the additional benefit of increasing system

capacity. Existence of a serious defect implies inspection for that defect unless the

associated defect fraction is low, see Figure 10 (a)-(b), (c)-(d), and (e)-(f), where

defect 1, defect 2, and defects 1 and 2 are serious, respectively. Thus, when both

defect types are serious, as in Figure 10 (e)-(f), then inspection at both locations

is required when both defect fractions are large. Also, note that the region where

inspecting for both defects is best is never adjacent to the no inspection region, see

parts (d)-(f) of Figure 10, which means that as the defect probabilities change, we

never jump from no inspection to inspection for both defects (there is always an

intermediate step, where we inspect for only one of the defects).

In Figure 11, we consider cases where both of the defect types are not serious,

i.e., when G2 < G1 < R (parts (a) and (b)) and when G1 < G2 < R (parts (c) and

(d)). We note that when the goodwill costs are low, the decision not to inspect is

often optimal, even if the inspection costs are low, because we do not want to scrap

units without any revenue. As a result, no inspection is preferred for all values of the

defect probabilities in Figure 11 (a) and for most values of the defect probabilities in

Figure 11 (c) when the system is input constrained. Note that we choose to inspect

for defect 1 for some values of defect probabilities in Figure 11 (c), but not in Figure

11 (a), even though the goodwill cost G1 is higher in case (a). This behavior is

explained by the fact that the choice to inspect at location 1 is also affected by the

value of goodwill cost 2, see (128). However, when the system is capacity constrained,

even though goodwill costs are low, inspection decision after O1 is favored, see Figure

11 (b) and (d). This is a result of increasing production capacity by scrapping or

repairing defective items before a bottleneck operation station, and hence reducing

the waste of operation capacity on defective products. Finally, inspecting for both

defects is not preferred in all cases since both defects are not serious.

In both Figures 10 and 11, we can clearly see the effects of throughput consid-

eration when allocating the inspection stations. In particular, since the throughput

increases only if we inspect after the first operation station, actions a1 and a3 are
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optimal for larger ranges of defect probabilities in the capacity constrained case. In

Figure 10, part (d), we observe that it is more beneficial to inspect after operation

station 1 when the defect probability p1 is not close to one of the extreme points 0 or

1. This is due to the fact that while the gain associated with inspecting after O1 is

linear in p1, the loss grows exponentially as p1 increases in the capacity constrained

case. In particular, when µ1 > λ > µ2/(1− p1), we have

TP (1, 0)− TP (0, 0)

µ2

= p1G1 − C1p1 + H1 + U1p1

1− p1

, (131)

see (129) − (130). The value of p1 where the difference in (131) is maximized is

p∗1 = 1−
√

(C1 + H1 + U1)/G1. For the example in Figure 10, part (d), this point is

given by p∗1 = 0.475. Hence, contrary to what might be expected, action a1 is most

beneficial when the defect probability p1 is within a certain range, and as p1 gets

closer to 1, action a1 ceases to be optimal. Similar behavior is observed in Figure 11

(b) and (d), where a1 is not optimal for high and low values of p1.

Finally, parts (a) and (b) of Figure 12 show the difference in profit between the

capacity constrained and input constrained cases under optimal inspection decisions

as functions of the defect fractions p1 and p2 when defect 2 is the only serious defect (as

in parts (c) and (d) of Figure 10) and when there are no serious defects (as in parts (c)

and (d) of Figure 11), respectively. In both cases, darker regions correspond to higher

difference values. For instance, in Figure 5 (a), when p1 = 0.45 and p2 = 0.02, the

total profits are 30.4 and 37.4 in the input (no inspection) and capacity constrained

(inspect at location 1) cases, respectively. Thus, we observe an increase of 23% in

profit when we take the capacity of the system into account in making inspection

decisions. Similarly, when p1 = 0.5 and p2 = 0.4, the total profits are 36.5 and 46

in the input (no inspection) and capacity constrained (inspect at location 1) cases,

respectively, corresponding to a increase of 26% in profit. Thus, taking capacity

considerations into account while making inspection allocation decisions can have a

substantial impact on profit. The increase in total profit is attributed to the fact that

inspection before a bottleneck station can improve the throughput of the system.

4.6 Conclusion

Product quality is a vital consideration for any manufacturing firm aiming to keep

a competitive edge. However, maintaining high product quality can be expensive.

As a result, effective inspection location choices have traditionally depended on the

tradeoff between inspection costs and goodwill costs incurred as a result of poor
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product quality. However, this ignores the secondary effects of inspection on the

production capacity of a system. By contrast, our analysis accounts for the effects of

inspection on both quality and quantity simultaneously. More specifically, we showed

how to calculate product flows and fraction of defective units at each production

stage in a step-by-step manner. Using the flow and defect information, we computed

the various costs incurred throughout the serial line, as well as the resulting profits.

Moreover, our model is more general than any model considered previously in the

literature, including multiple defect types, defect classifications (major and minor),

defect-dependant inspection errors, fractional inspection, probabilistic repairs that are

defect dependent, and stochastic operation, inspection, repair, and goodwill costs, as

well as revenue.

Under mild assumptions, we showed that under the optimal inspection policy, op-

eration and inspection stations should be stable, while repair stations can be unstable.

We also formulated nonlinear programs for determining the optimal inspection alloca-

tion and admission policies for both the general case and when all stations are stable.

Finally, through numerical examples, we studied the effects of taking capacity into

account when choosing an inspection policy. Our numerical results show that ignor-

ing the effects of inspection on capacity can result in suboptimal inspection location

decisions, leading to substantial decreases in profit.
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Figure 10: Comparison of optimal inspection allocation strategies as a function of
p1 and p2 for systems with at least one serious defect
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Figure 11: Comparison of optimal inspection allocation strategies as a function of
p1 and p2 for systems without a serious defect
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Figure 12: Magnitude of the difference for the profit functions in input and capacity
constrained cases
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CHAPTER V

CAPACITY SIZING AND PRICING WITH

HETEROGENOUS PRODUCTS AND RESOURCES

In today’s highly competitive market, the capacity investment decision is an im-

portant factor affecting a firm’s profitability and competitiveness. At the time of

the capacity decision, uncertainty in demand results from consumer preferences not

being observable and uncertainty in economic conditions (see Bish, Liu, and Suwan-

dechochai [16]). Firms are increasingly resorting to flexibility, on both the supply

and demand sides, to effectively match their supply with demand. In this chap-

ter, we study the capacity sizing problem faced by a price setting and monopolistic

firm producing two substitutable/complementary products with flexible and dedi-

cated technologies.

The problem of determining the optimal capacity under demand uncertainty has

received significant attention in the literature under various assumptions (see Section

2.3). However, past research assumes that products and resources are homogenous

in that all processing rates are equal. Thus, the effects of differences in flexible and

dedicated resources’ service rates at the product groups have been ignored. The

assumption that all processing rates are equal is reasonable when resources are con-

sidered as inventories that supply all product groups indifferently, but it is restrictive

when the resources have varying capabilities at the two product groups. Our aim is

to explicitly model the different rates at which flexible and dedicated resources can

supply the product classes, along with product substitutability and demand correla-

tion, and see the effects of substitutability and correlation on the optimal capacity,

allocation decisions, prices, and the corresponding expected profits.

More specifically, consider a firm selling two products that needs to determine

the amount of production capacity to acquire at a time when little information on

product demand is available. The capacity decision made at this first strategic stage

constrains the firm’s capabilities when demand information becomes available. We

use a linear demand model, where the demand for each product is inversely related

to its own price, with possible cross-price effects from the other product. Demand

uncertainty is modeled as uncertainty about the location of demand lines. This

problem can be formulated as a two-stage stochastic program. In the first stage,
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before the uncertainty is resolved, the firm needs to determine the amount of dedicated

capacity for products 1 and 2, as well as the flexible capacity, so as to maximize its

expected profit. Then, in the second stage after the demands are observed, the

production quantities, the corresponding prices, and the allocation of the servers

are determined to maximize the revenue. Note, however, that the prices may be

determined by market conditions, and hence it is not always possible to alter prices

to change demand.

The outline of this chapter is as follows. In Section 5.1, we provide our problem

formulation, including the model description and assumptions. In Section 5.2, we

classify the optimal actions for the general case of our problem with dedicated and

flexible servers and substitutable products. Then, we look at the special case where

there is only a finite set of possibilities for the random demand intercept in Section

5.3. In Section 5.4, we present our numerical results. Finally, we summarize our

findings in Section 5.5 and provide proofs of most of our results in Appendix B.

5.1 Problem Formulation

Consider a firm selling two products that needs to determine the amount of pro-

duction capacity to acquire at a time when little information on product demand is

available. The capacity decision made at this first strategic stage constrains the firm’s

capabilities when demand information becomes available. This problem can be for-

mulated as a two-stage stochastic program. In the first stage, before the uncertainty

is resolved, the firm needs to determine the amount of dedicated capacity n1 and n2

for products 1 and 2, as well as the flexible capacity nf , with unit costs c1, c2, and

cf , respectively, so as to maximize its expected profit V (n), where n = (n1, n2, nf ).

For simplicity, the capacities n are allowed to be fractional and not restricted to be

integers. At the time of the capacity investment decision, uncertainty in demand

results from consumer preferences not being observable and uncertainty in economic

conditions (see Bish, Liu, and Suwandechochai [16]). Expected profit is the expected

optimum revenue minus the capacity investment costs. We assume that c1, c2 < cf

and cf < c1 + c2, because otherwise some resource type is automatically ignored in

the optimal solution. As in the earlier literature (see Bish and Wang [18], Chod and

Rudi [28], Fine and Freund [38], and Van Mieghem and Dada [92]), we assume a

linear form for the cost of capacity acquisitions. This is without loss of generality

as long as the cost of capacity acquisitions can be represented by a convex function,

so that the concavity of the objective function is preserved and the KKT conditions
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hold (see the proof of Theorem 5.3.1). Then, in the second stage after the demand

uncertainty is resolved, the production quantities Q1, Q2, the corresponding prices

P1, P2, and the allocations of the servers are determined to maximize the revenue,

which is a function of n and the random demand intercepts.

Each product can be manufactured by both dedicated and flexible resources.

Servers have different capabilities at the two product groups. A server dedicated

to product i ∈ {1, 2} can work at rate µi per production period. We assume, without

loss of generality, that µ1 ≥ µ2. Similarly, the service rate for a flexible server is fµi

for product i ∈ {1, 2}, where f > 0. In practice, flexible servers are usually slower

than the corresponding dedicated ones, hence we will be primarily interested in the

case where f ≤ 1. Thus our model allows both the products and the servers to be

heterogenous, a major extension over prior works that only consider the case where

µ1 = µ2 and f = 1.

We assume that the uncertain demand for each product can be represented as a

linear function of its own price and the price of the other product, with known slopes

but random y-intercepts. That is, the demand Di for product i = 1, 2, is given by

D1 = ξ1 − α1P1 + βP2, (132)

D2 = ξ2 − α2P2 + βP1, (133)

where Pi is the price for product i, αi > 0 and β are the known own-price and cross-

price elasticity parameters, respectively, and ξi ≥ 0 is the random demand intercept,

or the potential market size for product i when both prices are zero. We allow the

products to have different own-price elasticities α1 and α2, but as in the related

literature (see, e.g., Birge, Drogosz, and Duenyas [14], Bish and Suwandechochai

[17], and Chod and Rudi [28]), the cross-price effects between the two products are

symmetric, modelled by the parameter β. The cross-price elasticity β takes into

account the substitutability and complementary effects across products. A positive

β indicates that two products are substitutes, while negative β indicates that two

products are complements. Throughout the chapter we focus on the case with β ≥ 0.

The case with β < 0 is covered in the numerical results section. Since the effects of

a product’s own price on its demand should be more than the effects of the other

product’s price, we assume αi > |β| for i = 1, 2.

The demand uncertainty is included in the model through the random demand

intercepts ξ1 and ξ2, where ξi is a non-negative random variable with mean mi and

standard deviation σi for i ∈ {1, 2}. Note that the demand intercepts ξ1 and ξ2 for the

products might be correlated with correlation coefficient ρ. Without loss of generality,
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we do not include unit production costs, because they can always be incorporated by

modifying the demand intercepts ξ (i.e., if k1 and k2 are unit production costs for

products 1 and 2, respectively, then we would use the modified demand intercepts

ξ′1 = ξ1 + (βk2 − α1k1) and ξ′2 = ξ2 + (βk1 − α2k2). We let ε = (ε1, ε2)
′ represent a

realization for (ξ1, ξ2), where ′ denotes the transpose of a matrix. This demand model

is commonly used in the literature (see, e.g., Bish and Wang [18], Chod and Rudi

[28], Fine and Freund [38], Goyal and Netessine [44, 45], and Van Mieghem and Dada

[92]).

Responsive production and pricing ability for the firm implies that prices can be

modified after the demand curve intercepts ξ = (ξ1, ξ2)
′ are realized. Hence, under

the assumptions (132) − (133), it is always best for the firm to match supply and

demand (so that Qi = Di for i = 1, 2) to maximize revenue for substitutable products.

Similarly, for complementary products, we assume that all the demand is satisfied.

Given the output vector Q = (Q1, Q2)
′, the corresponding prices P = (P1, P2)

′ can

be determined from (132)− (133) as

P = H[ξ − Q], where H =
1

d

(
α2 β

β α1

)
and d = α1α2 − β2. (134)

Note that H is symmetric with diagonal entries that are positive and larger than the

absolute value of the off-diagonal entries (because α1, α2 > |β|). It follows that H is

positive definite.

Let x = (y1, y2, z1, z2) denote the product quantity vector in stage 2, where yi

and zi represent the amount of product i ∈ {1, 2} produced by dedicated and flexible

resources, respectively. Also let δi denote the fraction of a flexible server’s time

devoted to product i ∈ {1, 2}. Given the capacities n, demand intercepts ξ, and

δ = (δ1, δ2)
′, the optimal price and output quantities can be determined in stage 2 by

R∗(n, ε) = max
x,δ,P

R(n, ε) =

(
y1 + z1

y2 + z2

)′

P (135)

s.t.

yi ≤ niµi, i = 1, 2; (136)

zi ≤ fnfδiµi, i = 1, 2; (137)

δ1 + δ2 ≤ 1; (138)

yi + zi = εi − αiPi + βPj, i = 1, 2; j = 3− i; (139)

yi, zi, Pi, δi ≥ 0, i = 1, 2. (140)

In the above formulation, constraints (136), (137), and (138) result from capacity
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limitations. The constraints in (139) imply that the production quantity should be

equal to the total demand. Finally, the constraints in (140) are the nonnegativity

constraints for quantities, prices, and allocations. Note (139) and (140) imply that

demand cannot be negative. Moreover, quantities produced and sold are not restricted

to be integer.

Let nie = ni + fnf and ne = n1 + n2 + fnf be the total effective capacity for

product i ∈ {1, 2} when all flexible capacity is assigned to product i and total effective

capacity, respectively. Noting that Qi = yi + zi, we can construct the following

equivalent formulation, where the decision variables are the production quantities,

Qi, i = 1, 2.

R∗(n, ε) = max
Q

R(Q) =
(

Q1 Q2

)
H

(
ε1 −Q1

ε2 −Q2

)
(141)

s.t.

Q1 ≤ µ1n1e; (142)

Q2 ≤ µ2n2e; (143)

Q1

µ1

+
Q2

µ2

≤ ne; (144)

H[ε − Q] ≥ 0; (145)

Q1, Q2 ≥ 0. (146)

Then in stage 1, the capacity sizing problem can be formulated as

max
n

E[R∗(n, ξ)]−
∑

i=1,2,f

cini (147)

s.t.

ni ≥ 0, i = 1, 2, f. (148)

5.2 Optimal Pricing and Production Decisions

In this section, given the capacity n and realization of demand intercepts ε, we char-

acterize the optimal production vector and associated resource allocation decisions

and derive the resulting revenues for two substitutable products. In other words, we

solve the stage 2 problem (141) − (146), a deterministic nonlinear program. Note

that for substitutable products, constraint (145) can be ignored because the prices

will always be nonnegative, as will be shown later. Analysis is complicated for com-

plementary products (i.e., β < 0) by the fact that the prices can take negative values.

We partition the state space for ε into six regions corresponding to different resource
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allocation choices, as in the following theorem whose proof is provided in Appendix

B.

Theorem 5.2.1. Let γ1 = α2µ1 − βµ2 and γ2 = α1µ2 − βµ1. Given demand realiza-

tions ε ≥ 0 and resource capacities n for two substitutable products (so that β ≥ 0),

the optimal revenue R∗(n, ε) and optimal production quantity Q∗ can be uniquely

determined as R∗(n, ε) = Q∗′H(ε − Q∗) and

• Q∗ = ε
2

for ε ∈ Ω1(n), where

Ω1(n) =
{

ε : ε ≥ 0; ε1 < 2µ1n1e; ε2 < 2µ2n2e;
ε1

2µ1

+
ε2

2µ2

< ne

}
;

• Q∗
1 = ε1

2
+ β

α2
( ε2

2
− µ2n2e) and Q∗

2 = µ2n2e for ε ∈ Ω2(n), where

Ω2(n) =
{

ε : ε ≥ 0; ε2 ≥ 2µ2n2e; ε1 +
β

α2

ε2 < 2µ1n1 +
β

α2

2µ2n2e

}
;

• Q∗
1 = µ1n1e and Q∗

2 = ε2

2
+ β

α1
( ε1

2
− µ1n1e) for ε ∈ Ω3(n), where

Ω3(n) =
{

ε : ε ≥ 0; ε1 ≥ 2µ1n1e; ε2 +
β

α1

ε1 < 2µ2n2 +
β

α1

2µ1n1e

}
;

• Q∗
1 = µ1n1e and Q∗

2 = µ2n2 for ε ∈ Ω4(n), where

Ω4(n) =
{

ε : ε ≥ 0; ε2 +
β

α1

ε1 ≥ 2µ2n2 +
β

α1

2µ1n1e; ε1γ1 − ε2γ2 ≥ 2µ1n1eγ1 − 2µ2n2γ2

}
;

• Q∗
1 = µ1n1 and Q∗

2 = µ2n2e for ε ∈ Ω5(n), where

Ω5(n) =
{

ε : ε ≥ 0; ε1 +
β

α2

ε2 ≥ 2µ1n1 +
β

α2

2µ2n2e;−ε1γ1 + ε2γ2 ≥ 2µ2n2eγ2 − 2µ1n1γ1

}
;

• Q∗
1 =

µ1(2neµ2γ2 − ε2γ2 + ε1γ1)

2(µ1γ1 + µ2γ2)
> µ1n1 and Q∗

2 =
µ2(2neµ1γ1 + ε2γ2 − ε1γ1)

2(µ1γ1 + µ2γ2)
>

µ2n2

for ε ∈ Ω6(n), where

Ω6(n) =
{

ε : ε ≥ 0;
ε1

2µ1

+
ε2

2µ2

≥ ne; ε1γ1 − ε2γ2 < 2µ1n1eγ1 − 2µ2n2γ2;

−ε1γ1 + ε2γ2 < 2µ2n2eγ2 − 2µ1n1γ1

}
.

Note that the optimum prices corresponding to each of the six cases in Theorem

5.2.1 are provided in the theorem’s proof in Appendix B. We now show that whenever

a firm invests in all three resource types (so that n1, n2, nf > 0), the six regions spec-

ified in Theorem 5.2.1 are always nonempty. The proof of the following proposition

can be found in Appendix B.
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Proposition 5.2.1. For any choice of model parameters and capacity choices n1, n2, nf >

0, the regions Ω1(n) through Ω6(n) are not empty, and hence P (ξ ∈ Ωi(n)) > 0 for

i = 1, . . . , 6 when ξ1 and ξ2 have a joint probability density function g satisfying

g(ε1, ε2) > 0 for all (ε1, ε2) ≥ 0.

The regions of ε values defined in Theorem 5.2.1 corresponding to different pro-

duction quantity choices are depicted in Figure 13 for γ2 > 0. When γ2 < 0, the

slope of the parallel lines defining region Ω6(n) will be negative. Note that if we had

unlimited capacity, the optimal production decision would be Q∗
i = εi/2 for i = 1, 2

(see (141)). As a result of volume flexibility, the firm has the option to produce below

the installed capacity. The region Ω1(n) in Figure 13 corresponds to the uncon-

strained solution where we have enough capacity to produce both products optimally

at Q∗
i = εi/2 for i = 1, 2. The region Ω2(n) in Figure 13 corresponds to the case

where all flexible capacity is assigned to product 2 and there is enough capacity to

produce the first product optimally. Note that the optimum production quantity for

product 1 is greater than ε1/2 in this case because of the cross-price effects and the

fact that product 2 cannot be produced at the level ε2/2. Similarly, when ε ∈ Ω3(n),

all flexible capacity is assigned to product 1, and there is enough capacity to produce

product 2 optimally. On the other hand, when ε ∈ Ω4(n), then all flexible capacity is

assigned to product 1, but there is not enough capacity for product 2, hence all of the

dedicated capacity n2 is used for production. Similarly, in region Ω5(n), all flexibility

is assigned to product 2, and all the dedicated capacity n1 is used for production.

Finally, when ε ∈ Ω6(n), the flexible capacity is shared between the two product

groups.

Next, we consider the special cases where there is no investment in one or more

of the capacity types. Then, some regions in the definition of Theorem 5.2.1 can

be empty. For instance, when n1 = 0, it is easy to see that Ω2(n) = ∅, since we

cannot produce product 1 optimally while assigning all flexible capacity to product

2. Similarly, when n2 = 0 or nf = 0, we have Ω3(n) = ∅ and Ω6(n) = ∅, respectively.

Finally, when n1 = 0 and µ1 6= µ2, depending on the elasticity parameters, Ω5(n) can

be a singleton as stated in the following proposition.

Proposition 5.2.2. Assume that n1 = 0 and γ2 = µ2α1 − µ1β ≤ 0. Then P (ξ ∈
Ω5(n)) = 0 when ξ1 and ξ2 have a joint probability density function g, implying that

all flexible capacity is never assigned to product 2.

Proof. Note that when γ2 < 0, the two lines defining region Ω5(n) intersect at the

point (0, 2n2eµ2) and have negative slopes given by γ1/γ2 and −α2/β. It follows from
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Figure 13: Characterization of optimal resource allocations with respect to demand
intercepts.

(172) and ε ≥ 0 that Ω5(n) = {(0, 2n2eµ2)} when γ2 < 0. Similarly, when γ2 = 0,

the line with slope γ1/γ2 is vertical and overlaps the ε2-axis, again implying that

Ω5(n) = {(0, 2n2eµ2)}. In both cases, we have P (ξ ∈ Ω5(n)) = 0.

Theorem 5.2.1 generalizes earlier results of Bish and Wang [18] and Chod and

Rudi [28] to the case where we have both dedicated and flexible capacities, along

with product substitutability and varying price elasticities and server capabilities.

By contrast, Bish and Wang [18] consider independent products (β = 0) with equal

price elasticities (α1 = α2), where servers have the same capability at both products

(µ1 = µ2 and f = 1). Chod and Rudi [28] consider substitutable products (β ≥ 0),

but they allow investment only in flexible servers (n1 = n2 = 0) that have the same

capability at both product groups (µ1 = µ2) with equal price sensitivities (α1 = α2).

Our results show that server capabilities and price elasticities have significant impact

on the form of the optimal solution by affecting the region definitions, and hence

where given demand intercept observations fall.

In particular, when β = 0 (the case considered in [18]), the line separating regions

Ω2(n) and Ω5(n) is always vertical, the line separating regions Ω3(n) and Ω4(n) is

always horizontal, and when α1 = α2 and µ1 = µ2 (the case considered in [18, 28]), the

slope of the lines separating region Ω6(n) from regions Ω4(n) and Ω5(n) is always
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1 (because γ1/γ2 = 1). As a result, regions Ω4(n), Ω5(n), and Ω6(n) are always

unbounded, regions Ω2(n) and Ω3(n) are unbounded when β = 0 and n1, n2 > 0, and

region Ω1(n) is bounded. By contrast, in our case, regions Ω2(n), Ω3(n), Ω5(n), and

Ω6(n) can be bounded (region Ω1(n) is always bounded and region Ω4(n) is always

unbounded since we assume throughout the chapter that µ1 ≥ µ2 and hence γ1 > 0).

More specifically, regions Ω2(n) and Ω3(n) are bounded when β > 0, and regions

Ω5(n) and Ω6(n) are bounded when γ2 < 0. Thus, if server capabilities are ignored,

a high demand intercept value for only one product means that all flexible capacity is

assigned to that product, and flexible capacity is shared between the products when

both demand intercepts are simultaneously high. When we consider server capabilities

and µ1 > α1µ2/β, so that µ1 is significantly larger than µ2 (because α1/β > 1), then

γ2 < 0, and we observe that it is possible to share the flexible capacity between the

products even when ε2 is much higher than ε1. In fact, when µ1 > α1µ2/β, then

for most values of ε1 and ε2, all flexible capacity is assigned to product 1. Finally,

modifying the flexible capacity capability parameter f affects the parameters n1e, n2e,

and ne but not the slopes γ1/γ2, −β/α1, and −α2/β of the lines in the definitions of

the regions Ω2(n), . . . , Ω6(n). As a result, when f decreases, the general structure of

the regions remains the same, but the regions Ω1(n) and Ω6(n) become smaller. This

is expected because reducing f means reduced total available capacity for satisfying

both demands optimally (i.e., decrease in Ω1(n)) and also reduced flexible capacity

to share between the products (i.e., decrease in Ω6(n)).

5.3 Optimal Capacity Decision

In this section, we analyze the capacity investment decision in the first stage under

a general demand model with cross-price effects when the demand intercepts ξ =

(ξ1, ξ2)
′ are discrete (or have been discretized, as in Biller, Muriel, and Zhang [13]

and Lus and Muriel [67]). In other words, there are S possible demand scenarios

εs = (εs
1, ε

s
2)
′, each occurring with probability rs, for s = 1, . . . , S. This will facilitate

obtaining insights into when it is optimal to invest in flexible capacity, as well as

identifying the expected values of the optimal quantities and prices.

Let Qs = (Qs
1, Q

s
2)
′ and P s = (P s

1 , P s
2 )′ be the optimum production quantities

and prices in scenario s = 1, . . . , S, and let Q and ε be the S × 2 matrices with (s, i)

entry Qs
i and εs

i , respectively. Then, the objective is to jointly determine the optimal

dedicated and flexible capacities, along with production levels and prices, resulting
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in the following stage 1 problem

V ∗(ε) = max
Q,n

V (Q, n) =
∑
s∈S

rs

[ (
Qs

1 Qs
2

)
H

(
εs
1 −Qs

1

εs
2 −Qs

2

)]

−c1n1 − c2n2 − cfnf s.t. (149)

Qs
1 ≤ µ1n1e, s = 1, . . . , S; (150)

Qs
2 ≤ µ2n2e, s = 1, . . . , S; (151)

Qs
1

µ1

+
Qs

2

µ2

≤ ne, s = 1, . . . , S; (152)

n1, n2, nf ≥ 0; (153)

H [εs −Qs] ≥ 0, s = 1, . . . , S; (154)

Qs
1, Q

s
2 ≥ 0, s = 1, . . . , S. (155)

Note that this optimization problem is obtained by combining the stage 1 problem

(147) − (148) with the stage 2 problem (141) − (146). Lus and Muriel [67] also

considered a similar optimization problem for the specific case when f = 1 and µ1 =

µ2 with general model parameters α1, α2, and β ≥ 0 (the case with β = 0 is considered

in [13]). They obtained the expected optimal quantities E[Q∗
i ] =

∑S
s=1 Qs

irs and prices

E[P ∗
i ] =

∑S
s=1 P s

i rs for i = 1, 2 given that the firm invests either in both products

(i.e., either n1, n2 > 0 or nf > 0) or in only one product (i.e., either n1 or n2 > 0,

nf = 0). Based on the nonlinear program (149) − (155), we determine the optimal

expected quantities and prices for heterogenous products and resources, show that

there are only five possible scenarios in terms of optimal capacity investment, and

provide a condition under which we do not invest in a given product. The proof of

the following theorem is provided in Appendix B.

Theorem 5.3.1. (a) If it is optimal for the firm to invest in only one product

i ∈ {1, 2} (i.e., n∗i > 0 and n∗j = n∗f = 0 for j = 3 − i), then the expected

optimal production quantities and prices are

E[Q∗
i ] =

E[αjξi + βξj]µi − cid

2αjµi

, (156)

E[P ∗
i ] =

E[αjξi + βξj]µi + cid

2dµi

. (157)

(b) Assume that cf/f ≥ c1, c2, so that flexible capacity is relatively more expensive

than dedicated capacity. If it is optimal for the firm to invest in both products

(i.e., either n∗1, n
∗
2 > 0 or n∗f > 0), then the optimal dedicated resource capacities

n∗1, n
∗
2 will always be positive. Hence, the cases where the firm invests only in the
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flexible resource (n∗1 = 0, n∗2 = 0, n∗f > 0), or in the flexible and one dedicated

resource (n∗1 = 0 or n∗2 = 0, n∗f > 0) are not possible. The expected optimal

production quantities and prices when n∗1, n
∗
2 > 0 are

E[Q∗
i ] =

E[ξi]µiµj + βcjµi − αiciµj

2µiµj

for i = 1, 2, i 6= j, (158)

E[P ∗
i ] =

E[αjξi + βξj]µi + dci

2dµi

for i = 1, 2, i 6= j. (159)

(c) If ci > µiE[αjξi + βξj]/d, then the firm should not invest in product i (i.e.,

n∗i = 0 and n∗f = 0).

Remark 5.3.1. Through a case by case study as in the proof of Theorem 5.2.1,

we can obtain the optimal quantities and prices for each demand intercept scenario,

and hence the corresponding expected optimal profit. For instance, assume that the

investment decision is of the form n1 > 0 and n2 = nf = 0. Then there are two cases

depending on whether we produce below the installed capacity or at the maximum

possible capacity. Let ε̄s = (α2ε
s
1 + βεs

2)/2α2 for s = 1, . . . , S. Then we have Qs
1 = ε̄s

and Qs
2 = 0 for εs ∈ {εs : εs ≥ 0; ε̄s < µ1n1} and Qs

1 = µ1n1 and Qs
2 = 0 for

εs ∈ {εs : εs ≥ 0; ε̄s ≥ µ1n1} (this follows from equations (184)− (185) in Appendix

B with Qs
2 = 0 and λs

3 = 0 for all s since constraint (152) is redundant). Equation

(149) now yields that the resulting profit is given by

V (Q, n) =
α2

d

(
2E[ε̄s ×min{ε̄s, µ1n1}]− E[(min{ε̄s, µ1n1})2]

)
− c1n1,

allowing for the comparison of different n1 values.

In this section, we have identified the expected optimal quantities and prices for

the general case with both dedicated and flexible resources and processing rates that

depend on both the product and resource type, along with product substitutability

and arbitrary price elasticities, under finite number of scenarios. By contrast, the

previous literature only considers models where servers have similar capabilities. We

have shown that if it is optimal to produce a given product, we need to invest in

the corresponding dedicated capacity (as opposed to producing it exclusively using

the flexible resources). This is intuitive for substitutable products because pricing

can be effectively used to match demand with supply, thus reducing the need for

flexible capacity. Hence, there are five possible investment strategies for substitutable

products, namely n∗1, n
∗
2, n

∗
f > 0; n∗1, n

∗
2 > 0, n∗f = 0; n∗1 > 0, n∗2 = n∗f = 0; n∗2 >

0, n∗1 = n∗f = 0; and n∗1 = n∗2 = n∗f = 0, and we have identified the expected optimal
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production quantity and price of each product in all cases. We observe that the

price cf and performance ratio f of the flexible capacity do not have an effect on the

expected optimal production quantity and price of each product. This is consistent

with the results of Lus and Muriel [67] who observe that E[Q∗
1] and E[P ∗

i ] do not

depend on cf when µ1 = µ2 and f = 1. We also observe that the expected optimal

production quantity and price of each product only depend on the costs c1, c2 and rates

µ1, µ2 through the effective cost ratio ci/µi, i = 1, 2. More specifically, the expected

optimal production price of a product only depends on its own effective cost ratio and

increases with that parameter, while the expected optimal production quantity of a

product is inversely affected by its own effective cost ratio and will increase with the

effective cost ratio of the other product when it is optimal to produce both products.

Finally, we have categorized when we would not produce a given product, showed

that a necessary condition for investing in flexible capacity is that the costs c1 and c2

of both dedicated capacities be simultaneously small, and provided the bounds on c1

and c2 in terms of model parameters.

5.4 Numerical Analysis

In this section, we numerically study the pricing and capacity planning problem to

better understand how the optimal solution depends on various model parameters.

The most closely related works include Biller, Muriel, and Zhang [13] who numeri-

cally study the benefits of postponed pricing (as compared to fixed pricing) for two

independent products, and Lus and Muriel [67] who conduct a numerical analysis

to determine the effects of the substitutability parameter β ≥ 0 in the specific case

when µ1 = µ2, f = 1, α1 = α2, and σ1/m1 = σ2/m2. Others numerically study the

effects of demand variance and correlation on expected capacity and profit (see, e.g.,

Fine and Freund [38] and Goyal, Netessine, and Randall [47]). By contrast, we study

the effects of all model parameters on the optimum capacity and expected optimum

production quantities and prices for a more general model. More specifically, our aim

is to determine the effects of product substitutability (β), demand variability (σ1,

σ2), correlation (ρ), server capabilities (µ1, µ2, f), and price sensitivity (α1, α2) on

the optimal capacity, production decisions, and the resulting expected profits. Note

that since we can revise the product prices after the planning stage to match market

conditions, actual profits may differ from the expected profit.

We analyze a specific problem with a discrete set of possible values for ξ1 and ξ2.

To determine the possible scenarios, we proceed as in Biller, Muriel, and Zhang [13]
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and discretize normally distributed random variables. Note that we could discretize

any continuous distribution, and the normality assumption is a convenient special case

that is easily amenable to analysis with respect to means, variances, and correlation.

Specifically, consider normally distributed random variables X1 and X2 with means

m1,m2, standard deviations σ1, σ2, and correlation coefficient ρ. We discretize this

normal distribution by dividing the range (mi ± 2σi) into 10 equal intervals and

using the midpoint of each interval as the value of εi for i ∈ {1, 2} in that interval,

resulting in 100 scenarios (see Biller, Muriel, and Zhang [13]). The corresponding

probability for each scenario is then calculated by the probability that (X1, X2) falls in

the corresponding range, scaled by an appropriate factor so that the total probability

adds up to one. We choose the means m1, m2 and standard deviations σ1, σ2 so that

all (εs
1, ε

s
2) values obtained from the the range (mi ± 2σi) will be positive.

In the following numerical examples, we consider two types of products. In most

cases, product 1 has a larger customer base who are more price sensitive than the

customers for product 2 (so that m1 ≥ m2 and α1 ≥ α2) with equal predictability

(σ1 = σ2). At the same investment level, more of product 1 can be produced than

product 2 (so that µ1 ≥ µ2). Flexible servers are slower than the dedicated ones (so

that f < 1). In all examples, given the demand scenarios and model parameters,

we solve the optimization problem (149) − (155) to obtain the optimal capacities,

quantities, prices, and expected profit. Note that β ∈ (−2, 2) when α1 = 3 and

α2 = 2 because |β| < min{α1, α2}. We first conduct the analysis for independent

products (i.e., ρ = 0), then study the effects of correlation on optimum solutions. In

all cases, we let m1 = 500, m2 = 300, c1 = c2 = 100, and cf = 110. Unless otherwise

specified, we will use the following default values for our model parameters α1 = 3,

α2 = 2, β ∈ {−1, 0, 1}, µ1 = 15, µ2 = 10, f = 0.95, σ1 = σ2 = 75, and ρ = 0.

The general model has many variables that interact and affect the optimal deci-

sions differently. To be able to better understand the effects of these parameters, we

consider various situations in Tables 2 through 4, where n∗ = n∗1 + n∗2 + n∗f is the

total capacity. In particular, we consider pairs (α1, α2) ∈ {(2, 2), (2, 3), (3, 2)}, and

obtain the optimal solutions for β ∈ {−1, 0, 1}, f = 0.95, ρ = 0, and equal variances

σ1 = σ2 = 75 when µ1 = µ2 = 10 in Table 2, µ1 = 15, µ2 = 10 in Table 3, and

µ1 = 10, µ2 = 15 in Table 4 (relaxing the assumption that µ1 ≥ µ2 in Table 4). This

allows us to consider all possible cases with respect to the relative values of the price

sensitivities α1, α2 under various situations.

First we look at the sensitivity of the optimal capacities and corresponding profits

to the price elasticity parameters α1 and α2 in Tables 2-4 while other parameters are
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Table 2: Sensitivity of the solution to α1, α2, and β with σ1 = σ2 = 75, µ1 = 10,
µ2 = 10, and ρ = 0.

α1 α2 β n∗1 n∗2 n∗f n∗ E[Q∗
1] E[Q∗

2] E[P ∗
1 ] E[P ∗

2 ] profit

2.00 2.00 -1.00 21.14 7.87 9.86 38.86 236.50 130.57 119.19 25.12 28696.81
2.00 3.00 -1.00 21.31 7.17 9.68 38.15 236.50 125.94 123.29 16.92 28272.52
3.00 2.00 -1.00 20.38 11.25 6.26 37.89 230.00 134.81 74.96 45.12 20375.16
2.00 2.00 0.00 22.41 12.41 5.45 40.26 240.00 140.00 130.00 80.00 39207.89
2.00 3.00 0.00 22.47 11.59 5.32 39.38 240.00 135.00 130.00 55.00 35344.62
3.00 2.00 0.00 21.59 12.47 5.32 39.38 235.00 140.00 88.33 80.00 28677.95
2.00 2.00 1.00 24.31 14.31 4.00 42.61 245.00 145.00 221.67 188.33 78574.93
2.00 3.00 1.00 24.06 13.03 4.21 41.30 245.00 140.00 185.00 115.00 58142.64
3.00 2.00 1.00 23.03 14.06 4.21 41.30 240.00 145.00 135.00 145.00 50142.64

Table 3: Sensitivity of the solution to α1, α2, and β with σ1 = σ2 = 75, µ1 = 15,
µ2 = 10, and ρ = 0.

α1 α2 β n∗1 n∗2 n∗f n∗ E[Q∗
1] E[Q∗

2] E[P ∗
1 ] E[P ∗

2 ] profit

2.00 2.00 -1.00 13.90 10.63 6.78 31.30 239.25 131.71 117.74 25.27 29541.19
2.00 3.00 -1.00 14.04 9.77 6.63 30.43 239.25 126.78 121.81 17.14 29123.73
3.00 2.00 -1.00 13.55 12.17 5.10 30.83 235.00 136.47 73.29 45.12 21175.86
2.00 2.00 0.00 14.92 13.12 4.38 32.41 243.33 140.00 128.33 80.00 40065.08
2.00 3.00 0.00 14.91 12.17 4.35 31.44 243.33 135.00 128.33 55.00 36206.98
3.00 2.00 0.00 14.51 13.16 4.29 31.96 240.00 140.00 86.67 80.00 29501.61
2.00 2.00 1.00 16.23 14.44 3.43 34.10 248.33 143.33 220.00 188.33 79475.55
2.00 3.00 1.00 15.96 13.09 3.74 32.78 248.33 138.33 183.33 115.00 59045.00
3.00 2.00 1.00 15.66 14.39 3.37 33.43 245.00 143.33 133.33 145.00 50996.45

fixed. Intuitively, more price sensitive customers means less business for the firm,

as can be observed in Tables 2-4 by a decrease in the optimum profits as α1 or α2

increases for all β and µ1 and µ2 pairs. Optimum expected profit is more sensitive to

product 1 elasticity than that of product 2, since mean demand for product 1 (i.e.,m1)

is higher than the one for product 2. For all levels of β in Tables 2-4, expected price,

quantity and dedicated resource capacity for product i are decreasing with its own

sensitivity parameter αi for i = 1, 2. For substitutable products (i.e., β ≥ 0), the

change in expected prices and quantities can be explained by Theorem 5.3.1. The

decrease in the dedicated resource capacity for the product for which price elasticity is

increasing is a response to the fact that less of that product is required in the optimal

solution. The change in the optimum dedicated resource capacity for the product

whose price elasticity stays constant and change in the flexible resource capacity

are less obvious and depends on whether products are substitutes or complements.

For complementary products in all three tables, optimal flexible capacity is always
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Table 4: Sensitivity of the solution to α1, α2, and β with σ1 = σ2 = 75, µ1 = 10,
µ2 = 15, and ρ = 0.

α1 α2 β n∗1 n∗2 n∗f n∗ E[Q∗
1] E[Q∗

2] E[P ∗
1 ] E[P ∗

2 ] profit

2.00 2.00 -1.00 22.14 3.86 8.80 34.80 238.21 133.96 119.18 23.43 29189.23
2.00 3.00 -1.00 22.25 3.51 8.69 34.44 238.21 130.92 123.26 15.27 28737.09
3.00 2.00 -1.00 21.28 7.38 5.05 33.71 231.67 138.14 74.96 43.45 20875.46
2.00 2.00 0.00 23.12 8.25 4.38 35.75 240.00 143.33 130.00 78.33 39731.75
2.00 3.00 0.00 23.16 7.84 4.29 35.29 240.00 140.00 130.00 53.33 35834.95
3.00 2.00 0.00 22.17 8.25 4.36 34.77 235.00 143.33 88.33 78.33 29206.98
2.00 2.00 1.00 24.44 9.56 3.43 37.43 243.33 148.33 221.67 186.67 79142.22
2.00 3.00 1.00 24.39 9.00 3.37 36.76 243.33 145.00 185.00 113.33 58663.11
3.00 2.00 1.00 23.09 9.29 3.74 36.12 238.33 148.33 135.00 143.33 50711.67

decreasing in all cases whenever one of the products become more sensitive to its

price.

Next we analyze the effects of the server capabilities µ1, µ2 at the two product

groups using Tables 2, 3, and 4. For all cases, we note that the results are consistent

with Theorem 5.3.1 for substitutable products. That is, for β ≥ 0, as µi increases,

expected product i price is decreasing, while expected product j price is not affected.

Similarly, expected product i quantity is increasing with µi, while expected product

j quantity is decreasing for β ≥ 0 and is constant for β = 0. Even though Theorem

5.3.1 only applies for substitutable products, equation (158) can be used to interpret

the behavior for the complementary products such that expected product j quantity

increases for β < 0 as µi increases. The fact that expected profit is increasing with

µi in all cases is also expected since the effect of increasing the server capability is

similar to adding some free dedicated servers. As a result, we observe that optimum

dedicated resource i capacity, flexible capacity, total capacity are decreasing with

increasing µi. This is expected since as the server becomes faster, the need for the

capacities n∗i and n∗f is reduced and more can be produced with the same installed

capacity. However, the increase in the optimum dedicated resource j capacity with

an increase in µi is interesting to note. Even though E[Q∗
2] is decreasing with µ1 when

β = 1, see Tables 2 and 3, we observe that n∗2 increases in all cases. This is in part

attributed to the fact that flexible capacity n∗f is decreasing with µ1, hence to cope

with that n∗2 increases.

We also conducted a similar analysis for the case when µ1 = µ2 = 10 and the

variances for the two products are not equal. In particular, we let σ1 = 150, σ2 = 75

in Table 5 and σ1 = 75, σ2 = 150 in Table 6. We choose the same service rate

to isolate and study the effect of variance better. By comparing Tables 5 and 6

95



with Table 2, we observe that for substitutable products, increasing the variability of

the demand intercept for product i results in increased investment for the resource

dedicated to that product and the flexible resource, but decreased investment in the

resource dedicated to the other product. The increase in investment for dedicated

resource ni is intuitive because the firm does not want to miss the opportunity to meet

higher demand levels. Since the difference between the demand intercept realizations

are higher, flexible capacity becomes more attractive. Similarly, the decrease in the

investment for dedicated resource nj is intuitive because given the increase in capacity

of dedicated resource ni, more of the flexible server time now can be spared for product

j. As expected, the optimal prices and quantities for substitutable products are not

affected, as explained in Theorem 5.3.1. Finally, we obtain a new insight from Tables

5 and 6 that for complementary products (i.e., β < 0), it is possible to invest in

flexible capacity even if the optimal dedicated resource 2 capacity is zero. Hence

Theorem 5.3.1 (a) does not necessarily hold when β < 0. This is expected because

pricing is a less effective tool for shifting demand to match the available capacity for

complementary products than for substitutable products (increasing the price of one

product inversely affects the demand of the other), increasing the need for flexible

capacity.

Table 5: Sensitivity of the solution to α1, α2, and β with σ1 = 150, σ2 = 75, µ1 = 10,
µ2 = 10, and ρ = 0.

α1 α2 β n∗1 n∗2 n∗f n∗ E[Q∗
1] E[Q∗

2] E[P ∗
1 ] E[P ∗

2 ] profit

2.00 2.00 -1.00 25.53 0.00 19.45 44.97 243.69 134.62 115.75 24.82 30177.35
2.00 3.00 -1.00 26.11 0.00 18.83 44.94 244.47 133.22 119.96 15.61 29564.69
3.00 2.00 -1.00 21.53 9.52 8.81 39.86 230.00 134.37 74.88 45.38 21340.74
2.00 2.00 0.00 24.46 10.81 7.79 43.06 240.00 140.00 130.00 80.00 40446.80
2.00 3.00 0.00 24.13 9.57 8.21 41.91 240.00 135.00 130.00 55.00 36598.34
3.00 2.00 0.00 23.24 11.09 7.43 41.76 235.00 140.00 88.33 80.00 29400.86
2.00 2.00 1.00 27.31 13.18 5.63 46.12 245.00 145.00 221.67 188.33 80301.66
2.00 3.00 1.00 26.43 11.30 6.73 44.46 245.00 140.00 185.00 115.00 59675.83
3.00 2.00 1.00 25.59 13.05 5.66 44.29 240.00 145.00 135.00 145.00 51039.55

Next, we investigate the effect of the substitutability/complementary parameter

β ∈ {−1.8,−1.6, . . . , +1.8} on the optimum solution for independent products (ρ = 0)

with price elasticities α1 = 3 and α2 = 2 in Table 7. Since the parameter β has the

biggest impact on the optimal profits, we choose a wide range of possible β values

for independent products to remove any affect from correlation. Note that as β

increases, products gradually change from most complementary to most substitutable.

The effect of β on the optimal flexible capacity and profits are consistent with the
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Table 6: Sensitivity of the solution to α1, α2, and β with σ1 = 75, σ2 = 150, µ1 = 10,
µ2 = 10, and ρ = 0.

α1 α2 β n∗1 n∗2 n∗f n∗ E[Q∗
1] E[Q∗

2] E[P ∗
1 ] E[P ∗

2 ] profit

2.00 2.00 -1.00 32.61 0.00 26.20 58.81 259.95 136.71 105.60 28.85 27529.54
2.00 3.00 -1.00 33.44 0.00 25.33 58.77 259.95 135.92 111.22 17.62 26458.35
3.00 2.00 -1.00 29.65 0.00 26.16 55.81 254.80 144.61 67.00 44.20 20225.21
2.00 2.00 0.00 20.81 14.46 7.79 43.06 240.00 140.00 130.00 80.00 40446.80
2.00 3.00 0.00 21.09 13.24 7.43 41.76 240.00 135.00 130.00 55.00 36067.53
3.00 2.00 0.00 19.57 14.13 8.21 41.91 235.00 140.00 88.33 80.00 29931.68
2.00 2.00 1.00 23.18 17.31 5.63 46.12 245.00 145.00 221.67 188.33 80301.66
2.00 3.00 1.00 23.05 15.59 5.66 44.29 245.00 140.00 185.00 115.00 59039.55
3.00 2.00 1.00 21.30 16.43 6.73 44.46 240.00 145.00 135.00 145.00 51675.83

results of Birge, Drogosz, and Duenyas [14], Biller, Muriel, and Zhang [13], Bish and

Suwandechochai [17], and Lus and Muriel [67] in that the optimal flexible capacity

is decreasing in β while the optimal profit is increasing. Another striking change is

observed in the choice of dedicated vs flexible capacities. Even though we observe an

increase in the total capacity of 17.7%, the flexible capacity decreases from 39.8% of

the total to 0.06% as β increases. Thus the increase in the total capacity investment

is attributed to an increase in both dedicated capacities. This is expected because

as the products become more substitutable, pricing can be used effectively to shift

the demand from one product to the other to fit the available fixed capacity, hence

reducing the need for the flexible capacity. However, the most striking change is

observed in the prices P1, P2 and the expected profit. We observe a total increase of

269% for the price of product 1, 1462% for the price of product 2, and 528% for the

expected profit. This is expected and can be explained mathematically by the form

of demand functions (132) and (133). In particular, the demand Di for product i is

affected by the price of the other product Pj by an amount βPj. If β is negative (i.e.,

complementary), increasing the price Pj, inversely affects the demand for product i,

Di. Hence, we are constrained to choose low prices for both products, resulting in

low profit. On the other hand, when β is positive (i.e., substitutable), increasing the

price Pj for product j has a positive effect on the demand for product i, Di, resulting

in higher prices and expected profit.

Next, we would like to study the effects of improving the capability of the flexible

servers from 60% of the dedicated capacities to 100% of the dedicated ones (i.e.,

f ∈ {0.6, 0.8, 1}) in Table 8. Other parameters are at their default values except the

variances. We choose the maximum possible variances for both products σ1 = 250 and

σ2 = 150 so that flexible capacity becomes an attractive option and the parameter f
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Table 7: Sensitivity of the solution to β with σ1 = σ2 = 75, α1 = 3, α2 = 2, µ1 = 15,
µ2 = 10, and ρ = 0.

β n∗1 n∗2 n∗f n∗ E[Q∗
1] E[Q∗

2] E[P ∗
1 ] E[P ∗

2 ] profit

-1.80 12.66 5.35 11.94 29.94 232.71 120.13 76.38 21.19 18594.18
-1.60 12.99 8.18 9.18 30.35 233.59 127.62 74.71 26.42 18978.73
-1.40 13.22 11.44 5.83 30.49 233.57 132.10 73.71 32.35 19541.37
-1.20 13.37 12.01 5.24 30.63 234.00 134.86 73.21 38.65 20258.12
-1.00 13.55 12.17 5.10 30.83 235.00 136.47 73.29 45.12 21175.86
-0.80 13.75 12.34 4.95 31.03 236.00 137.33 74.23 51.64 22310.17
-0.60 13.94 12.51 4.79 31.24 237.00 138.00 76.03 58.19 23677.30
-0.40 14.12 12.71 4.64 31.47 238.00 138.67 78.68 64.93 25301.66
-0.20 14.30 12.93 4.48 31.71 239.00 139.33 82.19 72.11 27223.24
0.00 14.51 13.16 4.29 31.96 240.00 140.00 86.67 80.00 29501.61
0.20 14.72 13.39 4.11 32.22 241.00 140.67 92.26 88.89 32221.87
0.40 14.93 13.61 3.95 32.49 242.00 141.33 99.22 99.18 35505.47
0.60 15.16 13.85 3.77 32.78 243.00 142.00 107.94 111.38 39528.72
0.80 15.40 14.11 3.58 33.09 244.00 142.67 119.01 126.27 44555.44
1.00 15.66 14.39 3.37 33.43 245.00 143.33 133.33 145.00 50996.45
1.20 15.95 14.72 3.13 33.80 246.00 144.00 152.46 169.47 59526.97
1.40 16.26 15.07 2.88 34.21 247.00 144.67 179.08 203.02 71338.15
1.60 16.61 15.47 2.60 34.68 248.00 145.33 218.45 252.09 88743.96
1.80 17.09 15.94 2.22 35.24 249.00 146.00 282.32 331.09 116910.65

has a stronger effect on the optimal solution. As expected, for substitutable products

(i.e., β ≥ 0), as the flexible server capability improves, investment in flexible servers

increases while investment in the dedicated capacities decreases. The increase in

resulting profits is also expected since we can produce more at the same investment

level if needed, as the server capability improves. The change in expected quantities

and prices for both types of products can be explained by Theorem 5.3.1.

Next, we look at the sensitivity of the optimal capacities and corresponding profits

with respect to demand variability. For this case we assume σ1 = σ2 = σ and all the

other parameters are at their default values. To see the effect of demand variability

on capacity choices, we generate demand scenarios for independent products with

σ1 = σ2 = σ ∈ {25, 75, 125, 150} and obtain the optimal solutions for β ∈ {−1, 0, 1} in

Table 9. Variances are chosen so that nonnegativity of the demand intercept scenarios

is preserved. For all levels of β values, we observe, as expected, that expected profit,

total flexible capacity, and total capacity are increasing with σ. This is consistent

with the existing literature (see, e.g., Chod and Rudi [28], Fine and Freund [38], Goyal

and Netessine [44, 45], and Lus and Muriel [67]) and results from the fact that extra
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Table 8: Sensitivity of the solution to f and β with σ1 = 250, σ2 = 150, α1 = 3,
α2 = 2, µ1 = 15, µ2 = 10, and ρ = 0.

f β n∗1 n∗2 n∗f n∗ E[Q∗
1] E[Q∗

2] E[P ∗
1 ] E[P ∗

2 ] profit

0.60 -1.00 10.33 0.00 78.33 88.67 256.05 146.58 66.90 43.26 20340.51
0.60 0.00 23.29 18.94 0.96 43.18 240.00 140.00 86.67 80.00 33422.92
0.60 1.00 24.31 20.07 0.00 44.38 245.00 143.33 133.33 145.00 56023.28
0.80 -1.00 10.33 0.00 58.75 69.08 256.05 146.58 66.90 43.26 22494.68
0.80 0.00 17.80 13.90 9.43 41.12 240.00 140.00 86.67 80.00 33613.23
0.80 1.00 20.35 16.24 6.84 43.43 245.00 143.33 133.33 145.00 56118.41
1.00 -1.00 10.33 0.00 47.00 57.33 256.05 146.58 66.90 43.26 23787.18
1.00 0.00 14.06 10.35 13.63 38.04 240.00 140.00 86.67 80.00 33893.16
1.00 1.00 16.42 12.78 11.68 40.88 245.00 143.33 133.33 145.00 56343.97

revenue when demand and prices are high dominates the loss in revenue when demand

and prices are low. To deal with high levels of demand, the total capacity and flexible

capacity are increasing with demand variance for any β. Effects on other parameters

depend on whether the products are substitutes or complementary. When β ≥ 0,

expected prices and quantities do not depend on the demand variance, as shown in

Theorem 5.3.1. As in Tables 5 and 6, we observe that the result of Theorem 5.3.1 (a)

does not hold for β < 0, since we have n∗2 = 0 while n∗f > 0 for σ = 125 and β = −1.

Table 9: Sensitivity of the solution to σ and β with σ1 = σ2 = σ ∈ {25, 75, 125, 150},
α1 = 3, α2 = 2, µ1 = 15, µ2 = 10, and ρ = 0.

σ β n∗1 n∗2 n∗f n∗ E[Q∗
1] E[Q∗

2] E[P ∗
1 ] E[P ∗

2 ] profit

25 -1.00 14.99 13.03 1.44 29.45 235.00 136.67 73.33 45.00 20504.12
75 -1.00 13.55 12.17 5.10 30.83 235.00 136.47 73.29 45.12 21175.86
125 -1.00 12.82 0.00 21.59 34.41 238.94 135.15 71.46 46.70 22433.49
150 -1.00 20.69 0.00 25.95 46.63 255.08 143.78 66.72 44.75 22347.28
25 0.00 15.50 13.56 1.10 30.16 240.00 140.00 86.67 80.00 29025.06
75 0.00 14.51 13.16 4.29 31.96 240.00 140.00 86.67 80.00 29501.61
125 0.00 13.81 13.40 7.51 34.73 240.00 140.00 86.67 80.00 30704.76
150 0.00 13.56 13.52 9.21 36.30 240.00 140.00 86.67 80.00 31592.54
25 1.00 16.09 14.16 0.73 30.98 245.00 143.33 133.33 145.00 50408.68
75 1.00 15.66 14.39 3.37 33.43 245.00 143.33 133.33 145.00 50996.45
125 1.00 15.52 15.20 6.07 36.79 245.00 143.33 133.33 145.00 52478.69
150 1.00 15.50 15.67 7.47 38.64 245.00 143.33 133.33 145.00 53568.30

Finally, we examine the sensitivity of the optimal capacities and corresponding

profits with respect to demand correlation. In particular, we generate demand scenar-

ios for ρ ∈ {−0.5, +0.5} and obtain the optimal solutions for (α1, α2) ∈ {(2, 2), (2, 3), (3, 2)}
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and β ∈ {−1, 0, 1} in Tables 10 and 11, respectively. Even though correlation is com-

parable to β in terms of its effects on the optimal flexible capacity, it has only a slight

effect on the expected profits. We observe that as the product correlation increases,

the optimum flexible capacity decreases while total capacity investment increases.

Even though the need for capacity increases to take advantage of a potentially large

market as the products become more correlated, the value of the flexible resource is

reduced because relative values of demand for both products become more predictable

as the correlation ρ increases. We do not observe a substantial effect of demand corre-

lation on the optimal profit. For β ≥ 0, we note that the expected prices for products

1 and 2, and expected quantities remain the same as ρ increases. This is expected

since, as we obtained in Theorem 5.3.1, expected prices and quantities do not depend

on the demand correlation.

Table 10: Sensitivity of the solution to α1, α2, and β with µ1 = 15, µ2 = 10,
σ1 = σ2 = 75, and ρ = −0.5.

α1 α2 β n∗1 n∗2 n∗f n∗ E[Q∗
1] E[Q∗

2] E[P ∗
1 ] E[P ∗

2 ] profit

2.00 2.00 -1.00 12.89 9.90 7.84 30.63 239.12 129.85 117.20 26.48 29817.82
2.00 3.00 -1.00 13.16 9.22 7.55 29.93 239.12 125.21 121.57 17.74 29311.01
3.00 2.00 -1.00 12.66 11.27 6.43 30.36 235.00 136.26 73.25 45.24 21396.22
2.00 2.00 0.00 13.87 12.10 5.74 31.71 243.33 140.00 128.33 80.00 40127.38
2.00 3.00 0.00 13.96 11.27 5.63 30.85 243.33 135.00 128.33 55.00 36264.33
3.00 2.00 0.00 13.52 12.18 5.62 31.32 240.00 140.00 86.67 80.00 29563.53
2.00 2.00 1.00 15.03 13.30 4.80 33.12 248.33 143.33 220.00 188.33 79251.71
2.00 3.00 1.00 14.89 12.15 4.94 31.98 248.33 138.33 183.33 115.00 58935.92
3.00 2.00 1.00 14.49 13.27 4.79 32.55 245.00 143.33 133.33 145.00 50892.46

Table 11: Sensitivity of the solution to α1, α2, and β with µ1 = 15, µ2 = 10,
σ1 = σ2 = 75, and ρ = 0.5.

α1 α2 β n∗1 n∗2 n∗f n∗ E[Q∗
1] E[Q∗

2] E[P ∗
1 ] E[P ∗

2 ] profit

2.00 2.00 -1.00 15.02 11.22 5.59 31.83 239.36 133.95 118.41 23.82 29217.85
2.00 3.00 -1.00 15.10 10.30 5.51 30.91 239.36 128.96 122.18 16.29 28904.75
3.00 2.00 -1.00 14.59 13.15 3.44 31.18 235.00 136.63 73.33 45.02 20926.42
2.00 2.00 0.00 16.01 14.10 2.82 32.93 243.33 140.00 128.33 80.00 39980.30
2.00 3.00 0.00 15.96 13.04 2.86 31.86 243.33 135.00 128.33 55.00 36132.18
3.00 2.00 0.00 15.58 14.20 2.65 32.42 240.00 140.00 86.67 80.00 29425.31
2.00 2.00 1.00 17.49 15.43 1.89 34.80 248.33 143.33 220.00 188.33 79664.61
2.00 3.00 1.00 17.08 13.92 2.38 33.38 248.33 138.33 183.33 115.00 59131.11
3.00 2.00 1.00 16.83 15.45 1.78 34.05 245.00 143.33 133.33 145.00 51082.31

Note that in the examples for substitutable products, we always observe n∗1 > 0

and n∗2 > 0, i.e., in all cases there is investment in both dedicated capacities. This is
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due to the way we construct the demand scenarios since the minimum value for both

demand intercepts is greater than 0 for both products with probability 1.

In this section, we observe that taking the server capabilities into account has an

impact on the form of optimal capacity investment decisions as well as the optimal

expected prices and output quantities. Similarly, the fact that flexible servers might

be slower than the dedicated ones also reduces the value of the flexible servers, which

in turn affects the form of optimal solutions.

5.5 Conclusion

In this chapter, we have studied a two stage stochastic capacity sizing and pricing

problem for a two product firm under a linear demand model with substitutability and

with an emphasis on the differences in the service capacities of flexible and dedicated

resources. We formulated nonlinear programs to determine the optimal production,

pricing, and resource allocation decisions given the available capacity, and derived

the resulting revenues as functions of demand intercepts in six regions. We showed

that taking the server capabilities into account significantly affects the form of these

regions and hence the resulting optimal allocations. For instance, we identified cases

where flexible capacity is never assigned to one product for any demand realization;

such cases are not possible when the service rates are assumed to be equal.

For the specific case with a discrete demand intercept distribution, we showed

that there are only five possible capacity investment scenarios that can be optimal

and we identified the expected optimal quantities and prices corresponding to each

of these scenarios. We concluded that the expected optimal prices and quantities are

determined by the effective cost ratio of the dedicated servers, defined as the ratio of

the server’s cost to its service rate, and that the flexible server’s cost and performance

ratio have no effect. We also showed that investment in the resource dedicated to a

given product is a prerequisite for the production of that product to be optimal, and

provided an upper bound on the dedicated server’s cost that should be satisfied if we

are to invest in the corresponding product.

Finally, through numerical examples, we studied the effects of various model pa-

rameters on the optimal capacity, pricing, and quantity decisions, as well as the

expected optimal profits. We showed that the results for substitutable products do

not necessarily hold for complementary products and that server capabilities have a

significant effect on the form of the optimal solution by affecting the capacity decision,

as well as the resulting expected quantities, prices, and profits.
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CHAPTER VI

SUMMARY AND DIRECTIONS FOR FUTURE

RESEARCH

In this chapter we summarize the major contributions of this dissertation and suggest

possibilities for future research. For more detailed information, the reader is referred

to Chapters 3, 4, and 5.

In Chapter 3, we studied the effects of server flexibility for a multi-class queueing

network that can be unstable. We allowed multiple arrival streams, as well as servers

who cooperate or work in parallel when multiple servers are assigned to a class.

Moving a server is also assumed to incur a random switching time that can depend on

the origin and destination. We showed that the classes can be uniquely classified into

stable and unstable sets and also developed server allocation policies that can achieve

throughput arbitrarily close to the maximum throughput achievable given sufficient

offered demand. Similarly, we provided the minimum offered demand required to

achieve a feasible target throughput. Our numerical results suggest that system

throughput can be significantly improved by allowing instability.

Another performance measure of interest is the total number of items processed

during each server visit to a given class (i.e., the lot sizes). In general, low switching

rates are effective with respect to throughput, but they can result in the production

of large lots, which in turn implies longer lead times and higher inventories. Hence,

in future work it would be interesting to design policies that simultaneously consider

throughput and lot sizes.

In Chapter 4, we studied the effects of inspection location decisions on product

quality and quantity for a general model with multiple defect types, defect depen-

dent inspection errors, fractional inspection, probabilistic repair stations, scraps at

inspection and repair stations, and stochastic costs. Our model is more general than

any model considered in the inspection location literature, and also incorporates the

system capacity into the inspection location determination. More specifically, we ana-

lyzed the defect propagation and flow of parts through each system stage sequentially,

and also showed how to obtain the long-run profit rate for the system. Considering

the general case where any of the stations can be the bottleneck, we developed an

admission control policy that results in cost reduction for given inspection locations
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and levels, and also introduced methods for determining the optimal inspection loca-

tions and levels. Finally, we provided numerical results that show how the inspection

location decisions are made under different parameter values for a system with two

production stations. We demonstrated that taking bottleneck considerations into ac-

count when determining the best inspection locations can lead to different inspection

decisions than do previous models (that do not take the capacity of the system into

account).

In some systems, defect causes in the production line can be traced. Then another

method for quality improvement is to stop the production line until a source of defects

is removed from the system, instead of scrapping or repairing the defective units, also

known as “continuous improvement.” It would be a nice future research topic to study

the effects of inspection on system capacity under our inspection model framework

when continuous improvement is employed.

Finally, in Chapter 5, we analyzed the capacity and pricing decisions made by a

monopolistic firm producing two heterogenous products under demand uncertainty.

The objective is to maximize the firm’s profit. Our model incorporates dedicated

and flexible resources, product substitutability, and processing rates that depend

on the product and resource type. We provided the optimum prices and production

quantities as functions of resource capacities and demand intercepts, and showed that

incorporating server-dependent processing rates results in a significant shift towards

assigning flexible servers to the product that can be produced faster. When the

demand uncertainty has only a finite set of possible values, we showed that there

are five possible capacity investment scenarios that can be optimal and identified the

expected optimal quantities and prices for each of these scenarios. We also showed

that investment in flexible capacity is only desirable when it is optimal to invest in

dedicated capacities for both products. We concluded with numerical examples that

provide insights into how the optimal capacities and expected production quantities,

prices, and profit depend on various model parameters.

In our problem, we assumed that it is possible for the firm to install fractional

capacity. However, in real-life applications, installed capacity might be constrained

to be integer (as in an integer number of machines). It would be an interesting future

research topic to optimize discrete capacity. Also, the effects of demand variance and

correlation on the optimum capacities, prices, and profit could be studied rigorously

for the special case where the firm only has flexible capacity.
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APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER 4

Before proving Theorem 4.4.1, we need a preliminary result about the relation between

the incoming fraction of defective units at different stations and the system input λ.

Proposition A.0.1. Under Assumptions 4.4.1 and 4.4.2, let UR(λ) be the set of

stages i with an unstable repair station under input rate λ. Suppose λ1 ≤ λ2 ≤ λ.

Then we have UR(λ1) ⊆ UR(λ2). Moreover, πO
i,j, πI

i,j, and πR
i,j are nondecreasing in

λ2 if j ∈ ∪i′∈UR(λ),i>i′Di′ and are constant in λ2 otherwise.

Proof. First observe that defect fraction propagation only depends on the system

rates when outputs of inspection and repair stations join, as shown in Section 4.2.4.

Hence instability of inspection and operation stations has no effect on the defect

structure (due to the use of the FCFS discipline). From the flow equations in Section

4.2, it is easy to see that flow rates to each stage λi are nondecreasing in the input

rate λ to the system. Moreover, by equations (71) and (77), the outflow rate λI
i from

Ii is also nondecreasing in λ. From equations (78), (79), (88), (89), and (91), we see

that if Ri is stable, then as λI
i increases, so do λIO

i and λRO
i proportionally, and πO

i+1,j

is not affected. However, if Ri becomes unstable before Ii, then as λI
i increases, πO

i+1,j

will eventually get closer to πIO
i,j .

We analyze the system in a step by step manner starting with the first bottleneck

repair station. Let lλ be the first stage with a repair station that is unstable under

the input rate λ to the production line. Next we show that πRO
lλ,j ≤ πIO

lλ,j for j ∈ D.

For defect types j ∈ D \Dlλ , we already have πRO
lλ,j = πIO

lλ,j = πI
lλ,j by equations (83)

and (90). The only way a unit routed from Rlλ to Olλ+1 will have defect j ∈ Dlλ is

when this defect is not detected by the inspection station Ilλ . Otherwise, it would be

either repaired by Rlλ or scrapped by Rlλ or Ilλ . Let uR
lλ,j and uO

lλ,j be the fractions

of units routed to Rlλ and Olλ+1 from Ilλ that have an undetected defect j ∈ Dlλ ,

respectively. Then we have
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uR
lλ,j =

πI
lλ,jβlλ,jr

I
lλ,j

rI
lλ

=





πI
lλ,jβlλ,j[1−

∏
k∈DR

lλ
\{j}(1− dlλ,k)]

1−∏
k∈DR

lλ

(1− dlλ,k)
, j ∈ DR

lλ
,

πI
lλ,jβlλ,j

∏
k∈DS

lλ
\{j}(1− dlλ,k)

∏
k∈DS

lλ

(1− dlλ,k)
, j ∈ DS

lλ
,

and

uO
lλ,j =

πI
lλ,j[1− flλ + flλβlλ,j

∏
k∈Dlλ

\{j}(1− dlλ,k)]

oI
l

=
πI

lλ,j[1− flλ + flλβlλ,j

∏
k∈Dlλ

\{j}(1− dlλ,k)]∏
k∈Dlλ

(1− dlλ,k)
, j ∈ Dlλ .

To see the relations between the above defect probabilities, let MR
lλ

=
∏

k∈DR
lλ

(1−
dlλ,k), MS

lλ
=

∏
k∈DS

lλ

(1 − dlλ,k), MR
lλ,j =

∏
k∈DR

lλ
\{j}(1 − dlλ,k), and finally MS

lλ,j =∏
k∈DS

lλ
\{j}(1− dlλ,k). Then we get

uR
lλ,j =





πI
lλ,jβlλ,j[1−MR

lλ,j]

1−MR
lλ

, j ∈ DR
lλ
,

πI
lλ,jβlλ,jM

S
lλ,j

MS
lλ

, j ∈ DS
lλ
,

(160)

and

uO
lλ,j =





πI
lλ,j[1− flλ + flλβlλ,jM

R
lλ,jM

S
lλ

]

MR
lλ

MS
lλ

, j ∈ DR
lλ
,

πI
lλ,j[1− flλ + flλβlλ,jM

R
lλ

MS
lλ,j]

MR
lλ

MS
lλ

, j ∈ DS
lλ
.

(161)

Since MR
lλ
≤ MR

lλ,j, MR
lλ,jM

S
lλ
≤ 1, and MR

lλ
MS

lλ,j ≤ 1, we have

1−MR
lλ,j

1−MR
lλ

≤ MR
lλ,j

MR
lλ

and uO
lλ,j ≥





πI
lλ,jβlλ,jM

R
lλ,j

MR
lλ

, j ∈ DR
lλ
,

πI
lλ,jβlλ,jM

S
lλ,j

MS
lλ

, j ∈ DS
lλ
.

(162)

By equations (160) and (162), we now obtain uR
lλ,j ≤ uO

lλ,j for all j ∈ D. This means

that the units routed to repair stations have fewer undetected defects than units

routed to operation stations. Since repair stations do not introduce any defects and

units routing from a repair station to the next operation station do not have any

detected defects, this implies πRO
lλ,j ≤ πIO

lλ,j for j ∈ D. Hence, as λ2 increases and Rlλ2
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becomes unstable, the defect fractions to the next operation station πO
lλ+1,j for j ∈ Dlλ

is nondecreasing, while πO
lλ+1,j for j ∈ D \Dlλ remains unaffected.

Note that even though the input to the system is increased, the routing probabili-

ties out of all stations in all stages are unaffected. This is due to the fact that routing

probabilities in a given stage i depend only on the fraction of units having the set of

defects Di, and by Assumption 4.4.2, this fraction cannot be modified at any stage

other than stage i. Even if this fraction is modified at stage i by an unstable repair

station Ri, this occurs only after the stage i is completed for parts that already left

stage i. Then it is easy to see that UR(λ1) ⊆ UR(λ2) for λ1 ≤ λ2, since flow through

all stations increases proportionally as the input flow is increased.

After stage lλ, there can be either no more bottleneck repair stations or one or more

bottleneck repair stations. In the first case, the defect fractions for j ∈ D \Dlλ stay

constant throughout the production line. In the second case, let l′λ be the second stage

with a bottleneck repair station under λ. Similar to the analysis in the lλth stage,

the fraction of units having defect j ∈ Dl′λ is nondecreasing throughout stages i > l′λ.

Continuing sequentially, it is easy to see that πO
i,j, πI

i,j, and πR
i,j are nondecreasing in

λ2 if j ∈ ∪i′∈UR(λ),i>i′Di′ and are constant otherwise.

We are now ready to prove Theorem 4.4.1.

Proof of Theorem 4.4.1. We show, by contradiction, that under the optimal policy,

no operation or inspection station can have λi > λO
i or λO

i > λI
i , respectively, because

we can always improve the total profit by stabilizing the operation and inspection

stations in the production line. For this, assume that there exists a stage i such

that λi > λO
i and/or λO

i > λI
i , and let stage b be the first such stage. We start by

considering the case when λb > λO
b , so that after Ob, the arrival rate to inspection

station Ib is λO
b = µO

b . Later, we discuss the case when λb ≤ λO
b and λO

b > λI
b , so that

the first bottleneck is an inspection station.

Note that each unit generates a revenue of R only if it reaches the end of the

line. Otherwise, it incurs various nonnegative costs throughout the serial line. Let

λ be the current input rate to the system and λ1 < λ be the smallest input rate to

operation station O1 such that λb = λO
b = µO

b . Note that the inflow rate to operation

station Ob is a continuous and nondecreasing function of λ and is null when λ = 0

(see Section 4.2), implying that λ1 exists. We compare the system with input rate

λ1 to the system with input rate λ. For this, we study the effects of increasing the

arrival rate λ2 ∈ [λ1, λ] on the first part of the production line (up to the bottleneck

station Ob) and on the second part (after the bottleneck station Ob).
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Note that increasing the input flow not only affects the flow of parts at various

stations in the line, but also the quality characteristics of the products. Let lλ be

the first stage with a repair station that is unstable under the input rate λ. We first

consider the case with lλ ≥ b, so that there are no bottleneck repair stations before

stage b, and then the case with lλ < b, so that there is one or more bottleneck repair

station before the bth stage.

If lλ ≥ b, then, by Proposition A.0.1 and Assumption 4.4.2, the fraction of units

having defects in Di for i < b, is constant in the input rate λ. Since routing probabil-

ities out of all stations in a given stage i depend only on the set of defects Di and are

not affected by the set of defects D \Di, the routing probabilities at stages 1 through

b− 1 are unchanged. Hence, as the input rate λ increases, while the flow through all

these stations increases proportinally, resulting in higher production cost for the first

part of the line (up to stage b).

On the other hand, if lλ < b, let U ′
R(λ) be the set of stages i < b with a bottleneck

repair station for input rate λ. Then by Proposition A.0.1 and Assumption 4.4.2, we

have that UR(λ1) ⊆ UR(λ), that the fraction of units having the defects in Di′ for

i′ ∈ U ′
R(λ) is nondecreasing in λ2 for stages i > i′, and the fraction of units having

defects in D \ ∪i∈U ′R(λ)Di are not affected. Thus, the change in defect fractions for

j ∈ Di′ , where i′ ∈ U ′
R(λ) is propagated until the end of the line, and not affected by

any other stage. However, under Assumption 4.4.2, the routing probabilities out of

all stations in stage i′ /∈ U ′
R(λ) are unaffected by the change in the fraction of units

having defects in Di′ for i′ ∈ U ′
R(λ). This implies that increasing the flow through

the stations i < b results in higher production cost for the first part of the line (up

to stage b) under Assumption 4.4.3.

Summarizing the effects on the first part of the line, we observe that the flow

through all the stations up to and including the operation station Ob is nondecreasing

in λ, along with the fraction of units having defects in Di for i ∈ U ′
R(λ). The next

step is to study the effects of increased input flow on the second part of the line, after

the bth stage. Note that even though the input flow is increased, the outflow from

operation station Ob is constant at µO
b , as well as the fraction of units having defects

in Di for i ≥ b (under Assumption 4.4.2). This means that for the second part of the

line, there are no changes that would affect the flow of parts or costs (by Assumption

4.4.3), except for the fact that the fraction of units having defects in Di for i ∈ U ′
R(λ)

is nondecreasing through the end of the production line.

Hence by stabilizing operation station Ob, we can reduce the total cost incurred

up to stage b, while improving product quality at stage b. For the second part of
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the line, after the bottleneck station b, the production, inspection, and repair costs

are not affected. By Assumption 4.4.3, reduced final product quality together with

increased production cost for the first part of the line and unaffected revenue implies

decreased profitability of the system. The same argument applies if the first unstable

operation or inspection station is an inspection station. Repeating this process for

all unstable operation and inspection stations shows that stabilizing all such stations

improves the total profit rate for the system.
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER 5

Proof of Theorem 5.2.1. Note that the objective function R∗(n, ε) in (141) is concave

since H is positive definite. Moreover, the constraints (142)− (146) are linear. Hence

the first order KKT conditions are necessary and sufficient for optimality. Let λ1, λ2,

and λ3 be the Lagrangian multipliers associated with the constraints (142) − (144),

respectively. Note that we can ignore the nonnegativity constraints (145) − (146),

because the optimum quantities and prices will always be nonnegative. Expanding

the objective function in (141) yields

−R(Q) =
1

d

(
− (α2ε1 + βε2)Q1 + α2Q

2
1 + 2βQ1Q2 − (α1ε2 + βε1)Q2 + α1Q

2
2

)
,

and the KKT conditions become

−µ1(
α2

d
ε1 +

β

d
ε2) + 2

α2

d
µ1Q

∗
1 + 2

β

d
µ1Q

∗
2 + λ1 + λ3 = 0; (163)

−µ2(
α1

d
ε2 +

β

d
ε1) + 2

α1

d
µ2Q

∗
2 + 2

β

d
µ2Q

∗
1 + λ2 + λ3 = 0; (164)

λ1(
Q∗

1

µ1

− n1e) = 0; (165)

λ2(
Q∗

2

µ2

− n2e) = 0; (166)

λ3(
Q∗

1

µ1

+
Q∗

2

µ2

− ne) = 0; (167)

λ1, λ2, λ3 ≥ 0. (168)

The first two conditions (163)−(164) are obtained by taking the derivatives of (141)−
(144) with respect to Q1 and Q2, respectively, modified by the appropriate Lagrangian

multipliers. The conditions (165)−(167) are the complementary slackness conditions,

and (168) provides the nonnegativity conditions for the Lagrangian multipliers.

Then we can solve equations (163)− (164) for the optimum quantities in terms of

λ1, λ2, and λ3 as follows

Q∗
1 =

ε1

2
− α1

2µ1

λ1 − γ2

2µ1µ2

λ3 +
β

2µ2

λ2, (169)

Q∗
2 =

ε2

2
− α2

2µ2

λ2 − γ1

2µ1µ2

λ3 +
β

2µ1

λ1. (170)
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Equation (134) now yields

P ∗
1 =

µ1(
α2

d
ε1 + β

d
ε2) + λ1 + λ3

2µ1

,

P ∗
2 =

µ2(
α1

d
ε2 + β

d
ε1) + λ2 + λ3

2µ2

.

Note that P ∗
i ≥ 0 for i = 1, 2 since d > 0. To see that Q∗

i , for i = 1, 2, can not be

negative, assume that Q∗
i < 0. Then Q∗

i < µinie and Q∗
3−i ≤ µ3−in(3−i)e, implying

that Q∗
i /µi + Q∗

3−i/µ3−i < n(3−i)e ≤ ne, and hence λi = λ3 = 0. It now follows from

equations (169) and (170) that Q∗
i ≥ 0, a contradiction. In the optimum solution,

the constraints (142) − (144) can be binding or non-binding with the corresponding

multipliers nonnegative and zero, respectively. We analyze each case to construct

different optimality scenarios.

First assume that all constraints are non-binding at the optimal solution, so that

λi = 0 for all i. Then solving (169) − (170) for Q∗
1 and Q∗

2, we obtain Q∗
i = εi/2.

The production quantities Q1 and Q2 also need to satisfy the primary constraints

(142)− (144) strictly, so that

ε ≥ 0; ε1 < 2µ1n1e; ε2 < 2µ2n2e;
ε1

2µ1

+
ε2

2µ2

< ne,

corresponding to the solution in Ω1(n).

Secondly, consider the case where (142) and (144) are non-binding and (143) is

binding, so that λ1 = λ3 = 0 and λ2 ≥ 0. Then solving (169)−(170) for Q∗
1 and λ2 with

Q∗
2 = µ2n2e, we obtain Q∗

1 = ε1/2+β(ε2/2−µ2n2e)/α2 and λ2 = µ2(ε2−2µ2n2e))/α2.

We also need to satisfy the primary constraints (142) and (144) strictly, so that

Q∗
1 < µ1n1, and ensure the nonnegativity of λ2 ≥ 0. These two conditions translate

into Ω2(n).

Thirdly, consider the case where (143) and (144) are non-binding and (142) is

binding, so that λ2 = λ3 = 0 and λ1 ≥ 0. Then solving (169)−(170) for Q∗
2 and λ1 with

Q∗
1 = µ1n1e, we obtain Q∗

2 = ε2/2 + β(ε1/2−µ1n1e)/α1 and λ1 = µ1(ε1− 2µ1n1e)/α1.

We also need to satisfy the primary constraints (143) and (144) strictly, so that

Q∗
2 < µ2n2, and ensure the nonnegativity of λ1 ≥ 0. These two conditions translate

into Ω3(n).

Now consider the case where nf = 0. Then (144) is binding if and only if (142)

and (143) are binding. Thus (144) is not needed, and we can assume λ3 = 0. It

remains to consider the case where (142) and (143) are binding. Equations (163) and

(164) with Q∗
1 = µ1n1, Q∗

2 = µ2n2, λ1 ≥ 0, and λ2 ≥ 0 yield that this solution is
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optimal on

Ω45(n) =
{

ε : ε ≥ 0; ε2 +
β

α1

ε1 ≥ 2µ2n2 +
β

α1

2µ1n1; ε1 +
β

α2

ε2 ≥ 2µ1n1 +
β

α2

2µ2n2

}
.

Note that Ω6(n) = ∅ when nf = 0 and that Ω45(n) is the intersection of two half-

planes defined by lines with negative slopes −β/α1 and −α2/β, respectively, where

− β

α1

−
(
− α2

β

)
=

d

α1β
> 0.

It remains to show that Ω45(n) = Ω4(n) ∪ Ω5(n). Let Ω0(n) = {ε : ε ≥ 0; ε1γ1 −
ε2γ2 ≥ 2µ1n1γ1−2µ2n2γ2} and Ω′

0(n) = {ε : ε ≥ 0; ε1γ1−ε2γ2 ≤ 2µ1n1γ1−2µ2n2γ2}
be half-planes defined by a line with slope γ1/γ2, where

γ1

γ2

−
(
− β

α1

)
=

µ1d

α1γ2

, (171)

γ1

γ2

−
(
− α2

β

)
=

µ2d

βγ2

. (172)

The lines in the definitions of Ω45(n), Ω0(n), and Ω′
0(n) intersect at the point

(2µ1n1, 2µ2n2). It follows that Ω4(n) = Ω45(n)∩Ω0(n) and Ω5(n) = Ω45(n)∩Ω′
0(n),

both when β ≥ 0 and γ2 > 0 and when β > 0 and γ2 ≤ 0 (note that the case β = 0

and γ2 ≤ 0 is not possible). This proves the optimality of the specified solution on

Ω4(n) and Ω5(n).

For the remainder of the proof, we assume that nf > 0. Then (142) and (143)

cannot be simultaneously binding. Next, consider the case where (142) and (144)

are binding and (143) is non-binding, so that λ1, λ3 ≥ 0 and λ2 = 0, and hence

Q∗
1 = µ1n1e and Q∗

2 = µ2n2, meaning that all flexible capacity is assigned to product

1 and all of the dedicated capacity for product 2 is also used. Equations (169)− (170)

with Q∗
1 = µ1n1e, Q∗

2 = µ2n2, and λ2 = 0 now yield

−2µ1n1eγ1 = −γ1ε1 +
γ1α1

µ1

λ1 +
γ1γ2

µ1µ2

λ3,

2µ2n2γ2 = γ2ε2 − γ1γ2

µ1µ2

λ3 +
βγ2

µ1

λ1,

so that

λ1 =
µ1(2µ2n2γ2 − 2µ1n1eγ1 − γ2ε2 + γ1ε1)

βγ2 + α1γ1

.

Also, it follows from (164) that

λ3 =
µ2

d
(α1ε2 + βε1 − 2α1µ2n2 − 2βµ1n1e).
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Note that βγ2 + α1γ1 = µ1(α1α2 − β2) = µ1d > 0. The nonnegativity of λ1 and λ3

conditions for optimality translate into Ω4(n).

Next, consider the case where (143) and (144) are binding and (142) is non-

binding, so that λ2, λ3 ≥ 0 and λ1 = 0, and hence Q∗
1 = µ1n1 and Q∗

2 = µ2n2e,

meaning that all flexible capacity is assigned to product 2 and all of the dedicated

capacity for product 1 is used. Then solving (169) − (170) for λ2 with Q∗
1 = µ1n1,

Q∗
2 = µ2n2e, and λ1 = 0, we obtain

λ2 =
µ2(2µ1n1γ1 − 2µ2n2eγ2 − γ1ε1 + γ2ε2)

βγ1 + α2γ2

.

It follows from (163) that

λ3 =
µ1

d
(α2ε1 + βε2 − 2α2µ1n1 − 2βµ2n2e).

Note that βγ1 + α2γ2 = µ2d > 0. The nonnegativity conditions for λ2 and λ3 translate

into Ω5(n).

Next, consider the case where (142) and (143) are non-binding and (144) is bind-

ing, so that λ1 = λ2 = 0 and λ3 ≥ 0, meaning that all the flexible capacity is shared

between the two product groups. Let a > 0 be the amount of flexible capacity used

for product 1, so that the remaining flexible capacity fnf − a > 0 is reserved for

product 2. Equations (169) − (170) with Q∗
1 = µ1(n1 + a), Q∗

2 = µ2(n2e − a), and

λ1 = λ2 = 0 yield

2γ1µ1(n1 + a) = γ1ε1 − γ1γ2

µ1µ2

λ3, (173)

−2γ2µ2(n2e − a) = −γ2ε2 +
γ1γ2

µ1µ2

λ3,

so that

a =
ε1γ1 − ε2γ2 + 2µ2n2eγ2 − 2µ1n1γ1

2(µ1γ1 + µ2γ2)
.

This yields

Q∗
1 = µ1(n1 + a) =

µ1(2neµ2γ2 − ε2γ2 + ε1γ1)

2(µ1γ1 + µ2γ2)
,

Q∗
2 = µ2(n2e − a) =

µ2(2neµ1γ1 + ε2γ2 − ε1γ1)

2(µ1γ1 + µ2γ2)
.

Moreover, it follows from (173) that

λ3 =
µ1µ2(ε1µ2 + ε2µ1 − 2µ1µ2ne)

µ1γ1 + µ2γ2

.
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To see that the denominator for a and λ3 above can not be negative, note that the

function µ1γ1 + µ2γ2 = µ1(α2µ1 − βµ2) + µ2(α1µ2 − βµ1) is minimized with respect

to µ2 when µ2 = βµ1/α1. Hence, µ1γ1 + µ2γ2 ≥ µ2
1d/α1 > 0. The optimality condi-

tions a > 0, a < fnf , and λ3 ≥ 0 define the region corresponding to Ω6(n).

Proof of Proposition 5.2.1. The result follows from the definition of the regions Ωi(n)

for i = 1, . . . , 6. It is easy to see that regions 1, 2, and 3 are not empty. To see that

region 6 is also not empty, first note that the planar strip

−2µ2n2eγ2 + 2µ1n1γ1 < ε1γ1 − ε2γ2 < 2µ1n1eγ1 − 2µ2n2γ2

is always nonempty because

2µ1n1eγ1 − 2µ2n2γ2 − (−2µ2n2eγ2 + 2µ1n1γ1) = 2fnf (µ1γ1 + µ2γ2) > 0,

see the last paragraph of the proof of Theorem 5.2.1. Furthermore, the line ε1/2µ1 +

ε2/2µ2 = ne intersects the boundaries of the above nonempty strip at the points

(2n1µ1, 2n2eµ2) and (2n1eµ1, 2n2µ2) in the positive quadrant, respectively, implying

that Ω6(n) is not empty.

Finally, note that the two lines defining each of regions Ω4(n) and Ω5(n) intersect

in the positive quadrant at the points (2n1eµ1, 2n2µ2) and (2n1µ1, 2n2eµ2), respec-

tively. The lines defining Ω4(n) have slopes −β/α1 and γ1/γ2, and the lines defining

Ω5(n) have slopes −α2/β and γ1/γ2. It now follows from (171) and (172) that Ω4(n)

and Ω5(n) are non-empty in all possible cases (i.e., when β ≥ 0 and γ2 > 0 and when

β > 0 and γ2 ≤ 0).

Proof of Theorem 5.3.1. Similar to the proof of Theorem 5.2.1, this result follows by

analyzing the first order KKT conditions for the nonlinear programming problem

(149) − (155). More specifically, let λs
1, λs

2, and λs
3, s = 1, . . . , S, be the Lagrangian

multipliers associated with the constraints (150)−(152), respectively. Similarly, let u1,

u2, and u3 be the Lagrangian multipliers associated with the nonnegativity constraints

in (153) for n1, n2, and nf , respectively. We ignore the nonnegativity constraints

(154)− (155), because the optimum quantities and prices will always be nonnegative

(see below). As in the proof of Theorem 5.2.1, since the objective function V ∗(n, ε)

in (149) is concave and the set of constraints (150)− (155) are linear, the first order

KKT conditions are necessary and sufficient for optimality, implying that any optimal

solution should satisfy the primary conditions (150)− (155) as well as the associated
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KKT conditions. Expanding the objective function in (149) yields

−V (Q, n) =
∑
s∈S

rs

d

(
− (α2ε

s
1 + βεs

2)Q
s
1 + α2(Q

s
1)

2 + 2βQs
1Q

s
2 − (α1ε

s
2 + βεs

1)Q
s
2 + α1(Q

s
2)

2

)

+c1n1 + c2n2 + cfnf ,

and the KKT conditions become

−rsµ1(
α2

d
εs
1 +

β

d
εs
2) + 2rs

α2

d
µ1Q

s
1 + 2rs

β

d
µ1Q

s
2 + λs

1 + λs
3 = 0,∀s; (174)

−rsµ2(
α1

d
εs
2 +

β

d
εs
1) + 2rs

α1

d
µ2Q

s
2 + 2rs

β

d
µ2Q

s
1 + λs

2 + λs
3 = 0,∀s; (175)

u1 +
S∑

s=1

(λs
1 + λs

3) = c1; (176)

u2 +
S∑

s=1

(λs
2 + λs

3) = c2; (177)

u3 + f

S∑
s=1

(λs
1 + λs

2 + λs
3) = cf ; (178)

λs
1(

Qs
1

µ1

− n1e) = 0,∀s; (179)

λs
2(

Qs
2

µ2

− n2e) = 0,∀s; (180)

λs
3(

Qs
1

µ1

+
Qs

2

µ2

− ne) = 0,∀s; (181)

u1n1 = 0, u2n2 = 0, u3nf = 0; (182)

u1, u2, u3, λ
s
1, λ

s
2, λ

s
3 ≥ 0,∀s. (183)

Then the optimum quantities Qs
1, Q

s
2 and prices P s

1 , P s
2 for each scenario s can be

found as in the proof of Theorem 5.2.1, and are given by

Qs
1 =

εs
1

2
− α1

2rsµ1

λs
1 −

γ2

2rsµ1µ2

λs
3 +

β

2rsµ2

λs
2

=
εs
1

2
− α1

2rsµ1

(λs
1 + λs

3) +
β

2rsµ2

(λs
2 + λs

3), (184)

Qs
2 =

εs
2

2
− α2

2rsµ2

λs
2 −

γ1

2rsµ1µ2

λs
3 +

β

2rsµ1

λs
1

=
εs
2

2
− α2

2rsµ2

(λs
2 + λs

3) +
β

2rsµ1

(λs
1 + λs

3), (185)

P s
1 =

rsµ1(
α2

d
εs
1 + β

d
εs
2) + λs

1 + λs
3

2rsµ1

, (186)

P s
2 =

rsµ2(
α1

d
εs
2 + β

d
εs
1) + λs

2 + λs
3

2rsµ2

. (187)
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Note that the prices P s
1 , P s

2 in each scenario s are always positive. By a similar

argument as in the proof of Theorem 5.2.1, the quantities Qs
1 and Qs

2 for each scenario

s are also positive. Then, using equations (176)−(177) and (184)−(187), the expected

optimal quantities and prices can be calculated as

E[Q∗
i ] =

S∑
s=1

Qs
irs =

1

2

S∑
s=1

rsε
s
i −

αi

2µi

S∑
s=1

(λs
i + λs

3) +
β

2µj

S∑
s=1

(λs
j + λs

3)

=
E[ξi]

2
− αi(ci − ui)

2µi

+
β(cj − uj)

2µj

for i = 1, 2, j = 3− i, (188)

E[P ∗
i ] =

S∑
s=1

P s
i rs =

1

2d

S∑
s=1

rs(αjε
s
i + βεs

j) +
1

2µi

S∑
s=1

(λs
i + λs

3)

=
E[αjξi + βξj]

2d
+

ci − ui

2µi

for i = 1, 2, j = 3− i. (189)

(a) If the firm chooses to invest only in product i, then ui = 0 and it is obvious

that Qs
j = 0 for j 6= i and all s. Hence E[Q∗

j ] = 0, implying that (cj − uj)/µj =

(E[ξj]µi + βci)/(µiαj). Then equations (156) − (157) follow from equations

(188)− (189) by letting ui = 0.

(b) For contradiction, assume that the firm will introduce both products without

investing in both of the dedicated capacities. First, consider the case where

n∗1, n
∗
f > 0 and n∗2 = 0. By (182), this implies that u1 = u3 = 0, and the set

of constraints (150) is redundant, implying that λs
1 = 0 for all s. Then from

equations (177) − (178), we have c2 = cf/f + u2. However, it is impossible

to satisfy the last equality with u2 ≥ 0, since by assumption cf/f > c2. By

similar reasoning, the case where n∗2, n
∗
f > 0 and n∗1 = 0 is also impossible,

because it implies c1 = cf/f + u1. Finally, consider the case where n∗1 = n∗2 = 0

and n∗f > 0, so that u3 = 0, the constraints (150) − (151) are redundant,

and λs
1 = λs

2 = 0. This implies that c1 = cf/f + u1 and c2 = cf/f + u2,

a contradiction. Therefore, n∗1, n
∗
2 > 0 if the firm produces both products,

and hence u1 = u2 = 0. Then equations (158) − (159) follow from equations

(188)− (189) by letting u1 = u2 = 0.

(c) The expected optimal production quantities clearly satisfy E[Q∗
i ] ≥ 0 for i =

1, 2. First consider the case where it is optimal to invest in both products. Then

by (158), we have

E[ξ1]µ1µ2 + βc2µ1 − α1c1µ2 ≥ 0,

E[ξ2]µ1µ2 + βc1µ2 − α2c2µ1 ≥ 0.
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Multiplying the first inequality by α2, the second one by β, and summing, we

obtain c1 ≤ µ1E[α2ξ1 + βξ2]/d. Similarly, multiplying the first inequality by β,

the second one by α1, and summing, we obtain c2 ≤ µ2E[α1ξ2 + βξ1]/d. This

shows that ci > µiE[αjξi + βξj]/d implies that either n∗i = 0 or n∗j = 0, where

j = 3 − i. Suppose now that n∗i > 0 and n∗j = 0. Then (156) implies that

E[Q∗
i ] < 0, a contradiction. Hence ci > µiE[αjξi + βξj]/d implies that n∗i = 0.
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[5] Andradóttir, S., Ayhan, H., and Down, D. G., “Server assignment policies
for maximizing the steady-state throughput of finite queueing systems,” Man-
agement Science, vol. 47, pp. 1421–1439, 2001.
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