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Abstract

As a new form of computing based on the core technology of cloud computing and built on edge infrastructure,

edge computing can handle computing-intensive and delay-sensitive tasks. In mobile edge computing (MEC) assisted

by 5G technology, offloading computing tasks of edge devices to the edge servers in edge network can effectively

reduce delay. Designing a reasonable task offloading strategy in a resource-constrained multi-user and multi-MEC

system to meet users’ needs is a challenge issue. In industrial internet of things (IIoT) environment, considering the

rapid increase of industrial edge devices and the heterogenous edge servers, a particle swarm optimization

(PSO)-based task offloading strategy is proposed to offload tasks from resource-constrained edge devices to edge

servers with energy efficiency and low delay style. A multi-objective optimization problem that considers time delay,

energy consumption and task execution cost is proposed. The fitness function of the particle represents the total cost

of offloading all tasks to different MEC servers. The offloading strategy based on PSO is compared with the genetic

algorithm (GA) and the simulated annealing algorithm (SA) through simulation experiments. The experimental results

show that the task offloading strategy based on PSO can reduce the delay of the MEC server, balance the energy

consumption of the MEC server, and effectively realize the reasonable resource allocation.

Keywords: Mobile edge computing, Task offloading, Particle swarm optimization, Industrial internet of things

Introduction
The fifth-generation mobile communication system, the

so-called 5G, has now become a hot topic in the industry.

The main technical challenges that 5G networks need to

face are high speed, low end-to-end delay, high reliability,

and large-scale connections. In the 5G era, applications

such as HD video, virtual reality (VR), augmented real-

ity (AR) will inevitably bring a massive amount of data to

the network, which not only brings a heavy load to the

backhaul, but also challenges the centralized processing

capabilities of the core network. Due to the low latency

requirements of 5G, edge computing has also been applied

in the industry, whose idea is similar to the concepts of
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memory and cache in computers. The data frequently

used by users are put in the edge of networks closer to

users to reduce the delay while reducing the load on the

core network.

In order to cope with the problems of insufficient pro-

cessing capacity and limited resources of smart devices,

the industry has introduced the concept of computation

offloading in mobile edge computing (MEC) [1, 2]. Com-

putation offloading generally refers to the reasonable allo-

cation of computation-intensive tasks to a proxy server

with sufficient computing resources for processing and

then fetching the calculated results from the proxy server.

Edge computing offloading means that smart devices

offload computing tasks to the MEC server. In response

to the lack of traditional cloud computing capabilities,

edge computing provides cloud computing functions at

the edge of the wireless access network near mobile users
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to meet the needs of rapid interactive response and pro-

vide universal and flexible computing services. In order

to use the services provided by the edge network, how to

offload the tasks undertaken by the smart device to the

edge server and make efficient and reasonable offload-

ing decisions is the main research direction of the current

edge computing problem.

Industrial Internet of Things (IIoT) is the continuous

integration of various acquisition and control sensors or

controllers with perception and monitoring capabilities,

as well as mobile communication, intelligent analysis, and

other technologies into all links of the industrial produc-

tion process, thereby significantly improving manufactur-

ing efficiency, improving product quality, and reducing

products cost and resource consumption. Reliable and

fast network transmission and data processing are two

important technologies in the IIoT [3–5]. In the IIoT envi-

ronment, smart devices need to process a large amount

of data, and it is not realistic to transmit all of them

to the core network for processing. Therefore, how to

quickly upgrade traditional industries in the new era of

edge computing is a challenge.

In this paper, we mainly consider the 5G IIoT environ-

ment, that the 5G smart devices offload a large number of

computing tasks to the MEC server in the smart factories.

As can be seen, Fig. 1 shows a typical example of 5G IIoT.

A computer vision-based product quality detection sys-

tem is deployed in a smart factory. Cameras are connected

to smart devices in order to detect product appearance

images. After the model has been trained using machine

learning, product appearance images are then detected

using the model. By configuring edge servers, detection

tasks can be scheduled to edge servers, and data are trans-

mitted through 5G networks. This process is called task

offloading. The problems that need to be tackled are how

to offload the tasks from smart devices to theMEC servers

nearby, and then allocate the MEC server’s computing

resources to ensure processing efficiency, guaranteeing

the task latency requirements. However, latency require-

ments for task processing are getting higher and higher, so

we need to find an optimal computing offloading strategy.

The main contributions of this paper are summarized as

follows. We consider the application scenarios of indus-

trial IoT production lines, and we utilize the discrete

particle swarm optimization algorithm (PSO) to solve

the minimum delay problem in the computation offload-

ing strategy. We use the offloading strategy based on

PSO to allocate tasks from smart devices to the MEC

server, and finally obtain the task offloading solution

with the smallest total cost under the energy consump-

tion constraint. The PSO-based computing offloading

strategy is compared with simulated annealing algorithm

(SA), and genetic algorithm (GA) to verify the superiority

of PSO.

The rest of this paper is organized as follows: The sec-

ond section surveys related work about edge computing

and computation offloading. Then, we present the prob-

lem definition, and algorithm implementation, followed

by the demonstration of experimental results. The final

section concludes the whole paper.

Related work
Mobile edge computing

Mobile edge computing has been emerged as a new

paradigm of distributed systems [1, 2]. There are many

research topics aboutMEC, for example, server placement

[6], application placement, task offloading [7, 8], network

architecture, and so on [9]. In order to use the services

provided by the edge network, howmobile devices offload

tasks to theMEC server so as to obtain the minimum total

task processing cost and obtain a reasonable offloading

decision is a popular research direction of MEC. With the

development of 5G, it is necessary to combine 5G and arti-

ficial intelligence to optimize the management network.

A deep data-driven anomaly detection learning frame-

work based on mobile edge computing is presented [10].

However, high energy consumption is troublesome. Ren

et al. proposed a novel layered computing architecture to

reduce the high energy consumption ofmobile augmented

reality [11]. Furthermore, A hybrid mobile edge comput-

ing platform is considered [12], which aims to minimize

the energy consumption of user equipment, and a hybrid

online offloading framework based on deep learning is

proposed. The best deployment of MEC server and C-

RAN for delay-sensitive service coordination, which was

studied by Wang et al. [13].

Computation offloading

Aazam et al. proposed the classification of the latest

offloading solutions for fog computing, cloud computing,

and the Internet of Things [14], which also considered sce-

narios for performing computation offloading from dif-

ferent factors. In [15], an energy-efficient task offloading

method optimized by differential evolution was proposed

by Sun et al., which optimizes the energy efficiency of

edge computing systems from an energy perspective. A

new method of offloading annotations to perform het-

erogeneous GPU computing in existing workloads with

almost no code modification was implemented in [16].

Cha et al. [17] proposed Virtual Edge, a new method

to promote collaborative vehicular edge computing. A

reverse offload model was developed to reduce the over-

head of moving data between different memory areas

[18]. In [19], Cheng et al. studied task offloading strate-

gies and wireless resource allocation in multi-user and

multi-MEC server systems based on orthogonal frequency

division multiplexing access. On the basis of the work in

[19], a joint optimization strategy for computing resource
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Fig. 1 Edge computing scenarios in 5G Industrial Internet of Things environment

allocation was proposed in [20]. A deep Q-network

for multi-agent settings (MADQN) based on the pre-

dicted popularity was introduced to solve the caching and

offloading problems [21].

Resource allocation

The resource allocation problem of MEC was solved

using the optimization framework of reinforcement learn-

ing in the context of a multi-user MEC system [22]. A

user pairing algorithm based on the maximum difference

of classification and sub-maximum from the perspec-

tive of downlink non-orthogonal multiple access (NOMA)

system allocation capacity gains was presented [23]. In

[24], Chen et al. used an asynchronous advantage par-

ticipant with excellent performance-criticizing learning

algorithms to solve complex dynamic resource alloca-

tion problems. A new decentralized resource allocation

mechanism for vehicle-to-vehicle communication on the

basis of deep reinforcement learning was studied [25].

Teng et al. studied the resource allocation problem in

ultra-dense network (UDN) [26]. An algorithm based on

the alternating direction multiplier method was imple-

mented to obtain the best resource allocation scheme [27].

How to allocate resources to minimize the average service

response time was elaborated [28].

In [29], Wang et al. used the PSO and game theory-

basedMEC task allocation strategies to minimize the time

delay. A computing algorithm based on genetic algorithm

to allocate computing resources was presented, and the

results showed that the algorithm could minimize the

energy consumption of user equipment [30]. In [31], Chen

et al. studied the data placement strategy of the workflow

in MEC, and adopted a method based on genetic algo-

rithm particle swarm optimization, and the final result

shows that this method can effectively reduce the data

placement cost of MEC.

To sum up, existing research on task offloading pays

more attention to whether tasks can be decomposed

into subtasks, whether tasks should be offloaded or

run locally, how many tasks should be offloaded, and

homogeneous edge server scenarios, etc. In the indus-

trial Internet of Things scenario, how to offload tasks

generated by smart edge devices to heterogenous edge

servers is an challenge issue. However, the existing liter-

ature does not model this multi-objective problem well

and solve the relationship between offloading cost and

time delay well. This is exactly the research work of this

paper.

Problem definition
For the Industrial Internet of Things scenarios in the 5G

environment, the intelligent production line in the factory

environment configures multiple devices such as smart-

phones, smart cameras, and AR devices, which refers to

“multi-user". In the factory environment, due to the data

that needs to be processed, whose amount is so large that

multipleMEC servers are often needed to handle the tasks

of smart devices, which refers to “multi-MEC". This paper

is to verify that by using the PSO offloading strategy to

find the best position for task offloading, and obtain the
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task offloading results, which can minimize the total delay

of task processing.

This paper considers the Industrial Internet of Things

environment, assuming that there are currently M smart

devices and N MEC servers. The tasks on each smart

device will be offloaded to a specific MEC server for cal-

culation. We consider only non-divisible tasks, and one

smart device submits only one task. For one task, it can

be either offloaded to MEC servers or executed locally.

Therefore, there are N + 1 possible positions where each

task can be executed. That is, offloading toN MEC servers

for execution and local execution. This paper considers

three main aspects: the time delay model, energy con-

sumption model, and calculation model. The meanings of

symbols used in system modeling are shown in Table 1.

Time delay model

The total delay to complete the i-th task on the j-th MEC

server includes the transmission delay and theMEC server

calculation delay, which can be calculated as

T
j
i = T

j
tran,i + T

j
mec,i (1)

Table 1 Notations

Symbol Meaning

Di The amount of data for the i-th task

Ci CPU cycles needed to process each bit of data

Cu,i CPU frequency of the i-th device

Cs,j CPU frequency of the j-th MEC server

W Transmission bandwidth

Si Transmission power of the i-th device

Ai,j Channel gain

N0 Noise power spectral density

ri,j Transmission rate from local device i to the MEC server j

E
j
max Maximumenergy consumption constraint of the j-thMEC

server

g Penalty factor

T
j
i The total delay from local device i to the MEC server j

E
j
i The energy consumption from the i-th device to the j-th

MEC server

E
j
calc,i Calculation energy consumption from the i-th device to

the j-th MEC server

E
j
tran,i Transmission energy consumption from the i-th device to

the j-th MEC server

T
j
mec,i Calculation delay from the i-th device to the j-th MEC

server

T
j
tran,i Transmission delay from the i-th device to the j-th MEC

server

M The number of tasks

N The number of MEC servers

We define that Ci presents how many CPU cycles are

needed for each bit of data to be processed, and Di

indicates the amount of data used to process the task.

Therefore, the current task amount calculation is known

as Di ∗ Ci, and the MEC calculation delay is equal to the

task amount divided by the CPU frequency of the MEC

server, which is expressed as:

T
j
mec,i =

Di ∗ Ci

Cs,j
(2)

While considering the transmission delay of MEC, it is

necessary to obtain the channel transmission rate from

Shannon’s formula, and we have

ri,j = W ∗

(

1 +
Si ∗ Ai,j

W ∗ N0

)

(3)

where Si is the transmit power of each local device, Ai,j

means channel gain from the i-th device to the j-th MEC

server, W means transmission bandwidth, and N0 means

noise power spectral density.

Therefore, the transmission delay can be converted into

T
j
tran,i =

Di ∗ Ci

ri,j
(4)

Then, the total delay in completing the i-th task on the

j-th MEC server is calculated by

T
j
i =

Di ∗ Ci

Cs,j
+

Di ∗ Ci

W ∗
(

1 +
Si∗Ai,j

W∗N0

) (5)

Energy consumption model

Energy consumption E
j
i for the i-th task on the j-th MEC

server is divided into two parts, calculation energy con-

sumption and transmission energy consumption.

E
j
i = E

j

calc,i + E
j
tran,i (6)

The energy consumption of calculation will also be

affected by the amount of computing tasks. So, we have

E
j

calc,i = Ri ∗ U2 ∗ Cs,j ∗ Di ∗ Ci (7)

where Ri depends on the effective switching capacitance,

and U means the voltage.

Transmission energy consumption is for the tasks

offloaded to the MEC server. Since the transmission delay

has been calculated in the delay model, the transmission

energy consumption is

E
j
tran,i = Si ∗ T

j
tran,i (8)

where Si represents the transmit power of each local

device.

Then, the total energy consumption is

E
j
i = Ri ∗ U2 ∗ Cs,j ∗ Di ∗ Ci +

Di ∗ Ci

ri,j
∗ Si (9)
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Calculation model

The current scenario is to minimize the delay problem. If

the queuing delay is not considered, there is a situation:

a specific MEC server has better computing performance.

Since queuing delay is not considered, most tasks will be

offloaded to this MEC server. Hence, a server with bet-

ter performance will consume much energy, even higher

than themaximum energy consumption. In this case, if we

offload the task to another MEC server, we can relieve the

pressure of offloading the MEC server with better perfor-

mance. Therefore, we consider adding a penalty function

to balance the load of each MEC server.

F (X) =

N
∑

j=1

M
∑

i=1

T
j
i + penalty (X) (10)

penalty (X) = g ∗

N
∑

j=1

M
∑

i=1

(

E
j
i − E

j
max

)

(11)

We define E
j
max as the maximum energy consumption

constraint of the j-th MEC server. X = {x1, x2, ..., xM}

represents the offloading vector, whose size is the same

as the number of tasks to be processed. The value of

each element xi is defined as xi = 0 (executed locally)

or xi ∈[ 1,N] (means the id of the MEC server which is

used to process the specific task). In order to optimize the

algorithm, consider adding weights before the delay and

penalty functions. The fitness function is as follows:

F (X) = a∗

N
∑

j=1

M
∑

i=1

T
j
i+b∗g∗

N
∑

j=1

M
∑

i=1

(

E
j
i − E

j
max

)

(12)

where a and b are two weights that should be customized,

and g represents the penalty coefficient. The more energy

consumed, the larger the penalty term.

Algorithm implementation
Particle coding

Particle swarm optimization algorithm is an evolutionary

computing technology, originated from the study of bird

predation behavior. The basic idea of the particle swarm

optimization algorithm is to find the optimal solution

through collaboration and information sharing between

individuals in the group.

The particle swarm algorithm simulates the birds in a

flock of birds by designing a massless particle. The par-

ticle has only two attributes: speed and position. Speed

represents the speed of movement, and position repre-

sents the direction of movement. Each particle searches

for the optimal solution individually in the search space,

and records it as the current individual extreme value, and

shares the individual extreme value with other particles

in the entire particle swarm, which aims to find the opti-

mal individual extreme value as the current global optimal

solution of the entire particle swarm, all particles in the

particle swarm adjust their speed and position accord-

ing to the current individual extreme value they find and

the current global optimal solution shared by the entire

particle swarm.

Assuming that the task set is Task, M represents the

number of tasks to be processed,N represents the number

of MEC servers to represent the amount of tasks, E
j
max is

the energy consumption constraint of the j-thMEC server,

Cs =
{

Cs,1,Cs,2,Cs,3 . . .Cs,N

}

represents the CPU clock

frequency of the MEC server, and the channel gain matrix

is defined as:

A =

⎡

⎢

⎢

⎣

A1,1 A1,2 ... A1,N

A2,1 A2,2 ... A2,N

... ... ... ...

AM,1 AM,2 ... AM,N

⎤

⎥

⎥

⎦

(13)

which is used to calculate the maximum transmission

rate when a task is offloaded to of the MEC server. The

channel gain Ai,i is 0, and Ai,j (1 ≤ i ≤ M, 1 ≤

j ≤ N , i �= j) represents the channel gain required for

mobile device i to transmit to the j-th MEC server, Cu =
{

Cu,1,Cu,2,Cu,3 . . .Cu,M

}

represents the CPU frequency of

the local device, and S = {S1, S2, S3 . . . SM} represents the

transmit power of each local device.

Particle coding adopts integer coding, and the element

of each particle can be any integer between 0 and N. The

dimension of the particle is the same as the number of task

sets. As we mentioned in previous section, the particle

position vector X = {x1, x2, ..., xM} is used to indicate that

all tasks are offloaded to the corresponding MEC server,

whose dimension is the same as the number of tasks to

be offloaded and value is initialized randomly. Let’s take

an example, the current task set has 5 tasks, the task set

Task = {t1, t2, t3, t4, t5}. Assuming the particle code is [0,

3, 5, 6, 9], which means, t1 are directly calculated locally,

and t2 are offloaded to the MEC server whose id is 3 for

calculation, and so on.

The particle velocity vector is used to represent the span

of offloading tasks to other servers which is denoted by

V = {v1, v2, ..., vM}. First of all, give all particles a ran-

dom velocity, and update the value of velocity which is

rounded before doing the calculation during the iteration

process. The dimension of the particle velocity vector is

the same as the number of tasks to be offloaded. Let’s take

an example, the particle position vector X is [5, 3, 1, 8,

6], and the particle velocity vector V is [1, 2, 3, 2, 1]. The

first element 5 in the particle position vector X means the

task t1 is offloaded to the MEC server whose id is 5. The

first element in the particle velocity vector V is 1, which

means in the iterative update process, t1 is moved to the

next MEC server, that is, t1 is offloaded to the MEC server

whose id is 6 for calculation. According to this rule, for
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task ti, it is offloaded to the corresponding server whose

id is expressed by x′
i = (xi + vi)%N .

Fitness function

The fitness function of the particle represents the total

cost of offloading all tasks to different MEC servers under

the condition of energy consumption constraints, which is

expressed by Eq. (12).

Algorithm flow

The algorithm flow chart is shown in Fig. 2, and the de-

tailed algorithm of PSO-based task offloading is demon-

strated as follows:

Step 1: Initialization.

Initialize the population, give the particles an initial

velocity and an initial position, and set various parameter

conditions.

Step 2: Calculate fitness value.

Bring the particle position vector into the fitness func-

tion, calculate the particle’s fitness value, and save it with

newFitness.

Step 3: Find the best fitness value of the group.

If newFitness is less than the value of fitness, update the

fitness value and save the corresponding position vector.

Step 4: Update particle speed and position.

xi = Wp ∗ xi + c1 ∗ rand() ∗ (Pbest − vi)

+c2 ∗ rand() ∗ (Gbest − vi)
(14)

vi = vi + xi (15)

The above two equations are used to update the veloc-

ity and position of the particles, where Wp is the inertia

weight used to adjust the search range of the solution

space, Pbest is the optimal value of the current particle,

Gbest is the optimal value found in the cluster, c1 and c2
are the learning factor. In this paper, there are dynamic

multi-local calculations and offloading calculation selec-

tion problems in the MEC calculation offloading decision.

In order to further improve the exploration ability of the

PSO algorithm in the solution space, the acceleration fac-

tor is improved by the angle, and the static acceleration

factor is replaced with a dynamic acceleration factor.

c1 =
ε

h
(16)

c2 = η ∗ h ∗ h (17)

where h is the number of iterations, ε represents the indi-

vidual cognitive impact factor, and the value range in

this scenario is [149, 280]; η represents the social cogni-

tive impact factor, and the value range in this scenario is

[0.00013, 0.000205].

Step 5: Determine whether the algorithm is over.

When the number of iterations is less than or equal to

the maximum number of iterations, repeat Step 2, Step 3,

and Step 4; otherwise, the iteration terminates.

Fig. 2 Algorithm flow chart

Experimental results and analysis
Experimental parameter settings

This section implements the particle swarm optimization

algorithm through java language and simulates the task

offloading scenario under the Industrial Internet of

Things. In this section, the number of MEC servers is

10, and M smart devices respectively initiate offloading

requests to 10 MEC servers. The parameter settings are

listed in Table 2.

Baseline algorithms

(1) Genetic Algorithm

It is a computational model that simulates the biologi-

cal evolution process of natural selection and the genetic

mechanism of Darwin’s biological evolution theory. It is

a method of searching for the optimal solution by sim-

ulating the natural evolution process. According to the

principle of survival of the fittest and survival of the fittest,

successive generations evolve to produce better and better

approximate solutions after the generation of the first-

generation population. In each generation, individuals are
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Table 2 Experimental parameter settings

Parameter Value

Di 7 − 40Mbit

Ci 800 − 1200Cycles/bit

Cu,i 1GHz − 3GHz

Cs,j 4GHz − 8GHz

W 1MHz

Si 100 − 500mW

Ai,j 2 ∗ 10−6 − 2 ∗ 10−5

W ∗ N0 1 ∗ 10−9W

E
j
max 1000J

g 10−2.5

selected according to the fitness of individuals in the prob-

lem domain, and with the help of natural genetics. The

genetic operator combines crossover andmutation to gen-

erate a population representing the new solution set. Like

the natural population evolution, this process will cause

the offspring population more adaptable to the environ-

ment than the previous generation. The optimal individ-

ual in the last generation population can be decoded as the

approximate optimal solution to the problem.

The genetic algorithm includes coding, initializing the

population, evaluating the fitness of individuals in the

population, selection, crossover, and mutation. The oper-

ation of selecting superior individuals in a group and

eliminating inferior individuals is called selection. The

selection operator is sometimes called the regeneration

operator. The purpose of selection is to directly inherit

the optimized individual to the next generation or gener-

ate a new individual through pairing and crossover and

then inheriting it to the next generation. The reorganiza-

tion and mutation of genetic genes play a central role in

the evolution of natural organisms.

Similarly, the critical role in genetic algorithms is the

crossover operator of genetic operations. The so-called

crossover refers to the operation of replacing and recom-

bining the partial structure of two parent individuals to

generate new individuals. Through crossover, the search-

ability of genetic algorithm can be significantly improved.

(2) Simulated Annealing Algorithm

It comes from the process of crystal cooling. If the solid

is not in the lowest energy state, heating and then cooling

the solid, as the temperature slowly decreases, the atoms

in the solid are arranged in a certain shape to form high-

density, low-energy regular crystals, corresponding to the

global optimal solution in the algorithm. If the tempera-

ture drops too fast, it may cause the atoms to lack enough

time to arrange into a crystalline structure, resulting in an

amorphous with higher energy, which is the local optimal

solution.

The simulated annealing algorithm can be decomposed

into three parts: solution space, objective function and

initial solution. First, the initial temperature T, the ini-

tial solution state S, and the number of iterations L for

each T value. In the iterative process, a new solution S′ is

generated, and then the increment �t = C
(

S′
)

− C (S)

is calculated, C (S) is the cost function. If �t < 0 then

S′ is accepted as the new current solution, otherwise S′

is accepted as the new current solution with probability

exp
(

−�t
t

)

. If the termination condition is met, the current

solution is output as the optimal solution, the program is

terminated.

Results and analysis

In this paper, we evaluate three offloading strategies:

offloading strategy based onGA, offloading strategy based

on SA, and offloading strategy based on PSO. The param-

eter settings for simulation experiments are described in

Table 2. In the simulation experiment, it is assumed that

both the local devices and MEC servers can handle tasks.

It is also assumed that each task will be executed upon

arrival, and there will not be task queuing to increase time

delay.

Figure 3 indicates the comparison results of the total

system cost of different offloading strategies under dif-

ferent energy consumption constraints. The number of

devices M is set to 50, and the number of MEC servers N

is set to 10. It can be observed that as energy consump-

tion constraints increase, the total system cost of the three

offloading strategies will decrease. When the energy con-

sumption constraint is 0J/ms, SA is much worse than the

other two strategies. When the energy consumption con-

straint is 600J/ms, the cost of SA begins to be lower than

that of GA, which is due to the increase in energy con-

sumption constraints and the reduced sensitivity of the

model to energy consumption constraints. Therefore, it is

Fig. 3 Comparison of the total cost of the three offloading strategies

with different energy consumption constraints
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necessary to select appropriate energy consumption con-

straints. PSO is better than GA and SA under all different

energy consumption constraints. When the energy con-

sumption constraint is close to 1000J/ms, the effect of GA,

SA and PSO are not much different. Compared with the

original system, PSO reduces the total cost by around 12%.

When the energy consumption constraint is 0J/ms, the

total cost of PSO is 22.3% lower than the total cost of SA

and 8.9% lower than the total cost of GA.

We now evaluate the convergence of the three offload-

ing strategies, and the results are shown in Fig. 4. The

same as before, we have M = 50 and N = 10, and the

data size of each task is configured as Di = 3Mbits. By

changing the number of iterations, we can observe the

total delay of all tasks, considering penalty factors.

It can be observed from Fig. 4 that PSO converges faster

in the first 10 iterations, and the total system cost remains

unchanged after 25 iterations which means the global

optimal solution is found. PSO has a strong global opti-

mization capability, which is constantly searching for the

global optimal solution in the early stage of the algorithm,

and has an excellent global search capability in the later

stage. It can also be seen from the figure that the conver-

gence speed of GA and SA is slower than that of PSO. GA

converges faster in the first 40 iterations. After 75 itera-

tions, the system finds the global optimal solution, which

is close to the PSO algorithm. In contrast, SA algorithm

is inferior, which is not completely guaranteed to find the

global optimal solution.

The maximal number of devices can be configured. In

our experiment, we set the value of maximal number of

devices to 250. The comparison results of the total system

cost of the three offload strategies with different numbers

of the device are shown in Fig. 5. The number of MEC

servers N is set to 10, and the data size of each task is

Di = 3Mbits. It can be observed that when the number

of devices is set to 50, 100, 150, 200, and 250, the average

Fig. 4 Comparison of convergence of the three offloading strategies

Fig. 5 Comparison of the total cost of the three offloading strategies

under different numbers of devices

total delay is increasing, which is due to the increase in

the number of devices, the required processing time and

transmission time also increase. However, as the number

of tasks increases, the increase in the total delay of PSO

is less than the increase in the total delay of GA and SA.

When the number of devices is less than 150, the results

of GA and SA are not much different from that of PSO.

When the number of devices is larger than 150, the total

system cost of GA began to rise rapidly and is much higher

than PSO. It can be observed from the figure that when

the number of devices is 250, PSO is superior to SA and

GA. The total cost of SA is 17.4% higher than that of PSO,

while the total cost of PSO is 26.4% lower than that of GA.

Figure 6 shows the comparison results of the aver-

age delay of the three offloading strategies with different

energy consumption constraints. When the energy con-

sumption constraint is 0J/ms, the average delay of PSO is

much lower than the average delay of GA and SA. As the

energy consumption constraint becomes larger, the aver-

age delay of the three offloading strategies will decrease.

The average delay of PSO has been much lower than

GA and SA. When the energy consumption constraint

is about 850J/ms, the average delay of SA starts to be

lower than that of GA. When the energy consumption

constraint is 0J/ms, considering the average delay, PSO is

about 10% better than GA and SA.

The convergence of the three offloading strategies based

on the average delay has been demonstrated in Fig. 7.

When the number of iterations is 5, the convergence speed

of GA is faster. However, the global optimal solution was

not found. PSO found the global optimal solution after 20

iterations, while the GA and SA strategies stabilized after

nearly 50 iterations. In the iterative process, the average

delay of PSO is lower than that of SA andGA, which shows

the advantages of PSO.
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Fig. 6 Comparison of average delay of the three offloading strategies

under different energy consumption constraints

Figure 8 presents the comparison results of the three

offloading strategies in terms of transmission delay when

the number of devices is varied. The number of devices is

increased from 50, 100, 150, 200 to 250. It can be observed

from Fig. 8, when the number of devices is between 50 and

100, the execution delays of the three offloading strategies

are almost equivalent. With the increase of the number

of devices, the superiority of the PSO algorithm appears.

As the number of devices increases and the data transmit-

ted increases, the delay will inevitably increase. However,

when the number of devices exceeds 150, the execution

delay of PSO is much smaller than that of GA and SA.

When the number of devices is 200, there are signifi-

cant differences in the transmission delay between PSO

and SA. SA is up to 40% worse than PSO, while the

transmission delay of GA is 33.4% higher than that of PSO.

The delay is divided into execution delay and trans-

mission delay. Figure 9 shows the comparison of the

Fig. 7 Comparison of convergence of the three offloading strategies

based on average delay

Fig. 8 Comparison of the delays of the three offloading strategies

under different numbers of devices

execution delay of the three offloading strategies when

the number of devices is different. When the number

of devices is 50, the execution delay of PSO and GA

shows no apparent differences. As the number of devices

increases, the execution delay also increases, because the

number of devices increases and the amount of data to

be processed increases. The extension will become longer.

When the number of devices is less than 200, the execu-

tion delays of the three offloading strategies are similar.

However, the execution delay of PSO is slightly lower

than that of the other two algorithms. When the num-

ber of devices is larger than 200, the execution delay

of GA starts to increase sharply, which is much higher

than the execution delay of SA and PSO. Consider-

ing the execution delay, when the number of devices

is 100, PSO is 16.8% higher than GA and 30.8% faster

than SA.

Fig. 9 Comparison of the execution delay of the three offloading

strategies under different number of devices
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Conclusion
In order to cope with the problems of insufficient process-

ing capabilities of mobile devices and limited resources,

the industry has introduced computing offloading into

mobile edge computing to solve resource storage and

performance problems. In this paper, we introduced

three algorithms: particle swarm optimization algorithm,

genetic algorithm, and simulated annealing algorithm,

and modeled the task offloading problem in the IIoT

environment as a multi-user and multi-MEC problem. In

order to eliminate the queuing delay of task processing,

we added a penalty function to balance the energy con-

sumption and delay. We compare the offloading strategy

based on the PSO with the offloading strategy based on

the GA and the offloading strategy based on SA. Based

on the analysis of experimental results, with the increase

in the number of equipment and the number of tasks,

the strategy of PSO outperforms the strategy of GA and

SA, which can meet the needs of low latency in task pro-

cessing in the context of industrial Internet of Things.

However, it is difficult to control the parameters of PSO.

To deal with different problems, how to choose suitable

parameters to achieve the best results requires certain

experience. This paper simply considers the requirements

for low latency and low energy consumption, and does

not take the service requirements for high reliability into

account.
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