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Efficient Techniques for Dynamic Vehicle
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Anna Petrovskaya and Sebastian Thrun

Computer Science Department
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Stanford, California 94305, USA

{ anya, thrun }@cs.stanford.edu

Summary. Fast detection of moving vehicles is crucial for safe autonomous ur-
ban driving. We present the vehicle detection algorithm developed for our entry
in the Urban Grand Challenge, an autonomous driving race organized by the U.S.
Government in 2007. The algorithm provides reliable detection of moving vehicles
from a high-speed moving platform using laser range finders. We present the notion
of motion evidence, which allows us to overcome the low signal-to-noise ratio that
arises during rapid detection of moving vehicles in noisy urban environments. We
also present and evaluate an array of optimization techniques that enable accurate
detection in real time. Experimental results show empirical validation on data from
the most challenging situations presented at the Urban Grand Challenge as well as
other urban settings.

1 Introduction

Self-driving cars promise to bring a number of benefits to society, including
prevention of road accidents, optimal fuel usage, comfort and convenience.
In recent years the U.S. Government has organized a series of competitions
for autonomous vehicles in order to encourage research in this area. In 2005,
autonomous vehicles were able to complete a 131 mile course in the desert.
In the 2007 competition, the Urban Grand Challenge (UGC), robots were
presented with an even more difficult task: autonomous navigation in urban
environments. In this competition the robots had to drive safely with respect
to other robots, human-driven vehicles and the environment. They also had
to obey the rules of the road as described in the California rulebook. One of
the most significant changes from the previous competition is the necessity for
situational awareness in an urban setting, including both static and dynamic
parts of the environment. In this paper we describe dynamic vehicle detec-
tion techniques we developed for our robot Junior (pictured in Fig. 1). Junior
demonstrated safe driving skills and won the second place in the 2007 Urban
Grand Challenge competition. We are concerned with detection of moving
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(a) (b)
Fig. 1. (a) Our robot Junior (blue) negotiates an intersection with human-driven
vehicles at the qualification event for the Urban Grand Challenge in November 2007.
(b) Junior, is equipped with five different laser measurement systems, a multi-radar
assembly, and a multi-signal inertial navigation system.

vehicles from a high-speed mobile platform (the ego-vehicle) using laser range
finders. Detection of vehicles is usually discussed as a sub-problem in vehicle
tracking literature [1, 2, 3, 4]. However, fast and accurate detection of new ve-
hicles is more challenging and more computationally expensive than tracking
of existing targets.

In this paper we focus on the vehicle detection sub-problem alone. A de-
tailed description of the full vehicle tracking module is given in [5]. For au-
tonomous driving, fast detection of new moving vehicles is crucial in order
to avoid dangerous situations and possible collisions. Poor signal-to-noise ra-
tio presents a significant obstacle to fast detection of new moving vehicles.
We present the notion of motion evidence that allows us to quickly and ac-
curately detect new vehicles by effectively pruning false positives caused by
noise. We also present an array of optimization techniques that assures re-
liable real time performance in the challenging traffic conditions, including
situations presented at the Urban Grand Challenge. In the experimental sec-
tion we evaluate the impact of each technique on the overall performance.

The rest of this paper is organized as follows. The next section provides the
necessary background and discusses state-of-the-art in vehicle detection and
tracking. Section 3 introduces notation and describes our models of vehicles,
sensor data, and measurements. Section 4 describes our vehicle detection al-
gorithm, motion evidence notion and optimization techniques. Experimental
results are given in Sect. 5. We conclude with a discussion in Sect. 6.

2 Background

Since vehicle detection is a prerequisite for vehicle tracking, it is often de-
scribed in the vehicle tracking literature [1, 2, 3, 4]. Typically vehicle tracking
approaches proceed in three stages: data segmentation, data association, and
Bayesian filter update. During data segmentation the sensor data is divided
into meaningful pieces (usually lines or clusters). During data association these
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pieces are assigned to tracked vehicles. Next a Bayesian filter update is per-
formed to fit targets to the data.

The second stage - data association - is generally considered the most
challenging stage of the vehicle detection and tracking problem because of the
association ambiguities that arise. Typically this stage is carried out using
variants of multiple hypothesis tracking (MHT) algorithm (e.g. [2, 3]). The
filter update is usually carried out using variants of Kalman filter (KF), which
is augmented by interacting multiple model method in some cases ([1, 3]).

Although vehicle tracking literature primarily relies on variants of KF,
there is also a great body of multiple target tracking literature for other appli-
cations (see [6] for a summary) where parametric, sample-based, and hybrid
filters are used. For example [7] uses a Rao-Blackwellized particle filter for
multiple target tracking on simulated data. A popular alternative to MHT for
data association is the joint probabilistic data association (JPDA) method.
For example in [8] a JPDA particle filter is used to track multiple targets from
an indoor mobile robot platform.

We utilize a model based approach, which uses particle filters and elim-
inates the need for separate data segmentation and association stages. We
described this approach in [5], where we used it to solve the full tracking
problem via a Rao-Blackwellized particle filter that estimated position, veloc-
ity and shape of tracked vehicles.

The main focus of this paper is on techniques for fast and accurate moving
vehicle detection. In the prior art, the detection problem has been solved by
addition of vision sensors (e.g. [4]), although visual classification does not help
distinguish moving vehicles from stationary. Another approach is to sample
frames at lower rates to overcome the low signal-to-noise ratio ([3]), although
it increases the time it takes to detect a new moving vehicle. Other described
approaches detect by scan shape ([1, 2]) or by location ([3]). Due to possible
ambiguities in the range data, these approaches tend to have lower detection
accuracy.

3 Representation

3.1 Vehicle model

We detect each vehicle using a separate particle filter. For each vehicle we es-
timate its 2D position and orientation Xy = (x4, yt, 0:) in world coordinates at
time t, and its forward velocity v;. Figure 2 depicts a dynamic Bayes network
representing the resulting probabilistic model. We assume that the velocity
evolves from one time step to the next by addition of random bounded accel-
eration. Furthermore we utilize a linear motion model for vehicle dynamics:
first the orientation is perturbed slightly, then the vehicle moves forward ac-
cording to its velocity, then the orientation is perturbed slightly again. This
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Fig. 2. Dynamic Bayesian network model of the detected vehicle pose X, forward
velocity v, and measurements Z;.

motion law is often utilized when exact dynamics of the object are unknown,
which happens to be the case in our application.

The exact geometric shape of a vehicle can be complex and difficult to
model precisely. For simplicity we approximate it by a rectangular shape of a
fixed width W and length L'. The 2D representation is sufficient because the
height of the vehicles is not important for driving applications.

At each time step we obtain a new measurement Z;. The measurements
are incorporated into the particle filter according to the measurement model
that we describe in Sect. 3.3.

3.2 Sensor data representation

We use two types of laser range finders for sensing the environment: IBEO
Alasca and Velodyne HDL-64E. These sensors produce range scans at 10Hz.
IBEO produces four horizontal scan lines and performs ground filtering. Velo-
dyne produces unfiltered 3D point clouds consisting of 64 horizontal scan
lines.

2D data sets are more compact than 3D point clouds. Furthermore they are
sufficient for vehicle tracking, provided that ground readings can be filtered
out. To expedite data access, we pre-process the raw data and filter out ground
readings to build 2D wvirtual scans as described in [5]. A virtual scan is a grid
in polar coordinates, which subdivides 360° around a chosen origin point into
angular grids (Fig. 3). In each angular grid we record the range to the closest
obstacle. We will often refer to the cone of an angular grid from the origin
until the recorded range as a ray due to its similarity to a laser ray.

By construction each angular grid contains information about free, occu-
pied, and occluded space. This information is important for detecting changes

! The width and the length of each vehicle can also be estimated as we have shown
in [5].
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in the environment. The changes are computed by differencing two consecu-
tive virtual scans. This computation takes time linear in the size of the virtual
scan and only needs to be carried out once per frame. Figure 3 shows the re-
sults of a virtual scan differencing operation. The classification of space into
free, occupied and occluded also helps us properly reason about what parts
of a vehicle should be visible as we describe in Sect. 3.3.

N7
Fig. 3. A virtual scan constructed from Velodyne data. Yellow line segments rep-
resent virtual rays. Red points are new obstacles, green points are obstacles that
disappeared, and white points are obstacles that remained unchanged or appeared
in previously occluded areas. (Best viewed in color.)

3.3 Measurement model

To complete our probabilistic model, we define the following measurement
model?. Given a vehicle’s pose X and a virtual scan Z we need to compute the
measurement likelihood p(Z|X). We position a rectangular shape representing
the vehicle according to X . Then we build a bounding box to include all points
within a predefined® distance A around the vehicle (see Fig. 4). Assuming that
there is an actual vehicle in this configuration, we would expect that points
within the rectangle to be occupied or occluded, and points in its vicinity
to be free or occluded, because vehicles are spatially separated from other
objects in the environment.

We consider measurements obtained along each ray independent of each
other (a common assumption when dealing with laser range finders). Thus if
we have a total of N rays in the virtual scan Z, the measurement likelihood
factors as follows:

N
p(Z|G, X) = [[ p(zilG, X).
=1

2 We utilize the same measurement model as described in [5].
3 We used the setting of A\ = 1m in our implementation.
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Fig. 4. Measurement likelihood computations. (a) shows the geometric regions in-
volved in the likelihood computations. (b) shows the costs assignment for a single
ray. (Best viewed in color.)
We model each ray’s likelihood as a zero-mean Gaussian of variance o2 com-
puted with respect to a cost ¢; selected based on the relationship between the
ray and the vehicle (7; is a normalization constant):

2
P(z]G, X) = m; exp{ —% 2
1

The costs and variances are set to constants that depend on the region in which
the reading falls into (see Fig. 4 for illustration). coee, Ooce are the settings
for range readings that fall short of the bounding box and thus represent
situations when another object is occluding the vehicle. ¢, and o}, are the
settings for range readings that fall short of the vehicle but inside of the
bounding box. ¢y and o are the settings for readings on the vehicle’s visible
surface (that we assume to be of non-zero depth). ¢,, 0, are used for rays that
extend beyond the vehicle’s surface.

The domain for each range reading is between minimum range 7,,;, and
maximum range 7pyq. of the sensor. Since the costs we select are piece-wise
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constant, it is easy to integrate the unnormalized likelihoods to obtain the
normalization constants 7;. Note that for the rays that do not target the
vehicle or the bounding box, the above logic automatically yields uniform
distributions as these rays never hit the bounding box.

Note that the above measurement model naturally handles partially oc-
cluded objects including objects that are “split up” by occlusion into several
point clusters.

4 Vehicle detection

Accurate moving vehicle detection in laser range data requires three frames.
The first two frames are required to detect motion of an object. The third
frame is required to check that the motion is consistent over time and fol-
lows the vehicle dynamics law. Thus for a 10Hz sensor the minimum vehicle
detection time is 0.3 seconds.

Note that detection based on three frames allows for accurate results,
because we can observe two consecutive motion updates and verify that the
observed motion is consistent with a moving vehicle. For some applications
it may be acceptable to sacrifice accuracy in favor of faster detection based
on just one or two frames. For example in [3] objects that appear in areas
previously seen as empty are detected as “moving”. Often this approach is
adopted when it is desired to filter out moving obstacles to build a static
map.

4.1 The basic algorithm

Our vehicle detection method proceeds in three stages:

1. First a vehicle is fitted using importance sampling in an area where a
change in the environment has been detected by scan differencing. The
scoring is performed using the measurement model described in Sect. 3.3.

2. Next the vehicle’s velocity is estimated by performing a particle filter
update step and scoring using the measurement model in the next frame.

3. During the last stage, another particle filter update is performed and
scored against a third frame.

4.2 Challenges in vehicle detection

The range data in outdoor urban environments contains large amounts of
noise that adds up from a number of sources. The laser range finder produces
readings corrupted by random noise. Environmental factors such as dust and
rain cause false readings. Complex shape of vehicles does not match the box
models precisely. Readings obtained from the same object at a slightly differ-
ent height give different range.
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For the driving application we need to detect vehicles moving at 5mph to
35mph with a 10Hz sensor. Thus a vehicle moves 20 — 150cm per frame. This
signal can be easily overwhelmed by noise especially in the lower range of the
velocities. The poor signal-to-noise ratio makes it difficult to accurately tell a
moving object apart from noise in just three frames.

Although the signal is easier to detect if we use more than three frames,
this solution is undesirable because it increases the detection time and takes
up more computational resources. A more efficient approach, proposed in [3],
is to sample the frames at a lower rate (e.g. 1Hz), so that the signal is prevalent
over the noise. However, this method also increases the total time required for
detection of a vehicle and therefore it is unsuitable for our application.

4.3 Motion evidence

Motion direction

|

\I B Timet

Back B Time t+1

Fig. 5. Diagram representing forward motion of a bus. Green color represents the
position of the bus at time ¢. Red color represents its position at time ¢ + 1. The
green shaded area in the back of the bus frees up as the bus moves forward. The red
shaded area in the front of the bus becomes occupied. Note that these changes are
small compared to the overall area taken up by the bus, which remains occupied in
both frames. (Best viewed in color.)

-

Fron

To overcome the poor signal-to-noise ratio, we turn to the method used by
humans to detect moving vehicles in noisy data. Consider a long bus moving
forward at 5mph (Fig. 5). From one frame to the next it travels 20cm - a
negligible distance compared to the noise and overall size of the vehicle. Since
the middle of the bus appears stationary, a human trying to discern motion
will focus on the front and back of the bus, to see if there is at least a tad of
motion.

To take advantage of the same method for vehicle detection, we define a
score we call motion evidence. To compute this score, we consider the regions
cleared by the vehicle as it moves. The cleared area behind the vehicle should
be occupied in the prior frame and free in the current frame. Similarly the area
in front of the moving vehicle should be free in the prior frame and occupied
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in the current frame. Usually we can only observe the front or the back of the
vehicle, thus only half of the evidence is available due to self-occlusion.

Note that motion evidence score is different from the probabilities obtained
by fitting a vehicle using a particle filter. The particle filter computes the
probability that motion could have happened, whereas the motion evidence
scores the motion that “must have” happened. In the bus example given above
the motion evidence score would ignore the entire bus except 20cm in the front
and in the back.

The motion evidence score can be computed for any pair of consecutive
frames. In our approach we compute it for the first and the second pairs of
frames. Doing so provides a very dramatic decrease in false positives, without
affecting the false negatives rate.

4.4 Optimizations

New vehicle detection is the most challenging and computationally expen-
sive part of tracking dynamic vehicles. Below we describe the optimization
techniques we developed to achieve reliable vehicle detection in real time. In
Sect. 5 we evaluate the impact of each technique on the performance of vehicle
detection.

Road masking

Since a digital road map is available in our application, one simple optimiza-
tion is to restrict the search to the road regions. We do this by marking each
data point as “close to road” or “far from road”. Only the points near the road
are considered for new vehicle detection. This optimization greatly improves
the efficiency of the vehicle detection algorithm.

Cleared area

As we already discussed above, a change in the data can be caused by either
noise or motion. Ultimately the motion evidence score will help disambiguate
motion from noise. However, the motion evidence score can only be used
after the vehicle model has already been fitted to data. To make the search
more efficient we would like to distinguish between noise and motion before
performing any model fittings.

When a vehicle moves forward with a minimum velocity v,,;, for a time
interval At, it clears an area of approximately v,,;, At W. Thus we can
examine each data point to see if enough space has been cleared around it
to allow for motion of a vehicle. If the vehicle is moving away from us, the
cleared area will be in the current frame with respect to the prior frame. If
the vehicle is approaching us, the cleared area will be in the prior frame with
respect to the current frame. Thus we can find both types of cleared area by
performing a symmetric clearing operation between the two frames.
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Even though cleared area logic is not as powerful as the motion evidence
score, it provides a significant speed-up when used as a fast data pre-processing
step.

Scaling Series

The first step of vehicle detection involves fitting the geometric vehicle model
to a virtual scan under conditions of large uncertainty: several meters in posi-
tion and 360° in orientation of the vehicle. Using simple importance sampling
with three state parameters makes the problem intractable within real time
constraints.

To improve performance we turn to Scaling Series, a method first proposed
in [9] for a tactile localization application. In that application the number of
parameters was also too large to perform an importance sampling step in real
time in conditions of global uncertainty. They proposed the Scaling Series
algorithm to efficiently produce a much more informed proposal distribution,
one that is concentrated around the areas of high probability mass. We refer
the reader to [9] for details on Scaling Series, but briefly, the algorithm works
by performing a series of successive refinements, generating an increasingly
informative proposal distribution at each step of the series. The successive
refinements are performed by gradually annealing the measurement model
from artificially relaxed to realistic.

In our setting, we applied the Scaling Series algorithm to choose the pro-
posal distribution for the initial importance sampling step. Using this method
we obtained a very significant improvement in the reliability of the search and
reduced the time it takes to detect a new moving vehicle by a factor of 10.

Backward search

Since vehicle detection takes three frames, the minimum detection time is 0.3
seconds for a sensor with a frame rate of 10Hz. It turns out that if we only
search forward in time, then the minimum detection time is 0.4 seconds for
approaching vehicles, because the first frame is only used to detect dynamic
data points in the second frame. However, if we fit the vehicle in the second
frame and then move it backwards in time, we can utilize the first frame as
well. In this case we use frame number two for the initial vehicle fitting and
frame number one for velocity estimation. As before the third frame is used
to check motion consistency.

5 Experimental Results

The presented vehicle detection algorithm has been used as part of our track-
ing module (described in [5]). The module has proven to be reliable, efficient,
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Fig. 6. Actual scene and tracking results on a test presented in Area A during the
qualification event at the Urban Grand Challenge. During this test robots had to
repeatedly merge into live traffic on a course resembling the Greek letter 6.

and capable of handling complex traffic situations including the most chal-
lenging tests presented during the Urban Grand Challenge and the qualifiers
(see Fig. 6). The average computation time of our approach - including de-
tection and tracking - is 25ms per frame, which is four times faster than the
sensor update rate.

Total|Detected in Frame| False |% Detected by Frame|FP
Data sets||Cars 3 4 5|Detections 3 4 5 %
Area A 713| 596/ 103 14 1 83.6| 98.0| 100.0|0.1
Stanford || 679| 645 32 2 2| 95.0/ 99.7|100.0/0.3
Alameda | 532| 485 45 2 5/ 91.2| 99.6] 100.0/0.9
Overall |/1,924|1,726| 180 18 8 89.7 99.1]100.0|0.4

Table 1. Vehicle detector performance on data sets from three urban environments.
For each car we counted how many frames it took to detect it. By construction of
the algorithm, at least three frames are required. We also counted the number of
false detections. The % Detected’ columns give the percentages of cars detected by
frame three, four and five. 'FP %’ is the false positive rate attained by the vehicle
detection algorithm.

To evaluate the performance of the vehicle detection algorithm empirically
we forced the tracking module to drop each target as soon as it was detected.
We then ran vehicle detection on data sets from three different urban environ-
ments: Area A of the Urban Grand Challenge qualifiers, the Stanford campus,
and a port town in Alameda, CA (see Tbl. 1). In each frame of data we labeled
all vehicles identifiable by a human in the range data. The vehicles had to be
within 50m of Junior, on or near the road and moving with a speed of at least
5mph. For each vehicle we counted how many frames it took to detect it. We
also counted false positives. Overall, all vehicles were detected in five frames
or less and the false positive rate was 0.4%.

To evaluate motion evidence contribution, we ran the algorithm with and
without motion evidence logic on labeled data sets. The use of motion evidence
brought false discovery rate from 60% down to 0.4%. At the same time the
rate of false negatives did not increase.

We used prerecorded data sets to evaluate performance gains from the
optimization techniques. We compared the computation time of the algorithm
with and without road masking. Road masking sped up the algorithm by a
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Fig. 7. Comparison of standard PF to Scaling Series for new vehicle detection.
The horizontal axis denotes time in seconds. The vertical axis has two states: 0 -
target is not tracked, 1 - target is tracked. To verify target acquisition, the code was
specifically modified to discontinue tracking a target after 1 second. By construction
of the algorithm, the minimum possible time spent in non-tracking state is 0.3
seconds. (a) standard PF has a long target acquisition time - too dangerous for
autonomous driving. (b) Scaling Series method has nearly perfect acquisition time.

factor of eight. We also ran the algorithm with and without cleared area logic.
The speed up from this optimization was approximately a factor of three.
The backward search optimization reduced the minimum detection delay for
oncoming traffic by 25%.

To evaluate improvements from Scaling Series, we used a 30 second data set
of our ego-vehicle following another car. For evaluation purposes we modified
the tracker to drop each target after tracking it for 1 second. Figure 7 presents
comparison of results obtained using a standard particle filter and Scaling
Series particle filter. Vehicle detection with the standard particle filter took
4.44 seconds on average and 13.7 seconds in the worst case, which can easily
result in a collision in a real life situation. In contrast the Scaling Series particle
filter took 0.32 seconds on average to detect the vehicle, with the worst case
being 0.5 seconds. Thus the Scaling Series approach performs very close to
the theoretical minimum of 0.3 seconds.

Several videos of vehicle detection and tracking using the techniques pre-
sented in this paper are available at the website

http://cs.stanford.edu/~anya/uc.html
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6 Conclusions

We presented a model based approach to detection of dynamic vehicles from a
high-speed robotic platform equipped with laser range finders. We developed
the notion of motion evidence, which effectively overcomes the low signal-to-
noise ratio for fast and accurate detection of moving vehicles in noisy urban
environments. We also presented an array of optimization techniques that
enable our algorithm to run in real time and provide reliable moving vehicle
detection even in the most challenging conditions presented at the UGC.

A promising direction for future work is to fuse laser range finders with
other sensors such as vision and radar to allow for even faster detection of new
vehicles. Another useful direction is to identify a greater variety of moving
objects in urban settings such as people, bicyclists and animals.
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