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ABSTRACT

Recently, as interest in electrocardiogram monitoring has increased, research on real-time ECG signal

analysis in daily life using lightweight embedded devices has increased. Abnormal beat detections in ECG

signal analysis are an important research area to reduce processing time and cost for cardiac arrhythmia

diagnosis. Abnormal beat detections can be divided into feature-based detection and shape-based detection.

Feature-based detection finds it difficult to detect reliable fiducial points, and shape-based detection has

difficulty detecting abnormal beats that are similar to normal beats. In this paper, we propose template cluster

generation and abnormal beat detection using both detection methods. The proposed method shows robust

detection of distorted normal beats by generating a template cluster rather than a single template. Moreover,

abnormal beats that have normal shape can be detected using the RR interval, which is a highly reliable

feature. Experiment results using the MIT-BIH arrhythmia database, provided by Physionet, showed the

average processing times to generate a template cluster and detect abnormal beats for the 30-minute signal

length were 1.21 seconds and 0.14 seconds, respectively. With manually adjusted thresholds, the specificity

and accuracy achieved 93.00% and 97.94%, respectively. In the case of group 1 records obtained relatively

stably, the specificity and accuracy achieved 99.27% and 99.44%.

INDEX TERMS Electrocardiogram, embedded system, template cluster, RR interval, abnormal beat

detection

I. INTRODUCTION

Recently, average life expectancy has been prolonged with

the development of medical technology. With an increasing

older population, the percentage of deaths due to heart dis-

ease increases. Thus, research on early detection and mon-

itoring of heart disease through electrocardiogram (ECG)

signal analysis is of interest [1], [2]. Recent studies on the

measurement and analysis of ECG signals using embed-

ded devices are actively being conducted using lightweight

wearable systems [3], [4]. In particular, a real-time signal

processing technique in a low-power and low-memory envi-

ronment is required [5], [6]. In addition, in the case of the

ECG monitoring system, the beat detection and abnormal

beat classification in real-time are important. The beat can

be reliably detected using Pan’s method [7]. In the case of

abnormal beat detection, detection methods can be roughly

divided into feature-based detection using the fiducial points

[8]–[11] and shape-based detection using the shape of a beat,

centered on R-peak [12]–[14].

In general, the normal beats have similar features or shape

because beats with a similar shape periodically repeated. On

the other hand, the abnormal beats have features outside the
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FIGURE 1. The fiducial points and features of an ECG signal.

normal distribution or low shape similarity to normal beats.

The abnormal beat detection proceeds based on these char-

acteristics. Feature-based detection is based on the detection

of fiducial points such as the onset, peak, and offset of each

waveforms. Then, the feature values of fiducial points, such

as intervals, segments, and amplitudes, are used to detect

abnormal beats. Fig. 1 shows the generally used fiducial

points and feature values in feature-based abnormal beat

detection.

The beats are divided around the QRS complex because

they are generated in the order of P-wave, QRS complex, and

T-wave [15]. In particular, the R-peak has the highest ampli-

tude, so it is easy to detect and generally used to separate

beats. Pan’s method is a typical QRS detection method and

has high detection accuracy.

In abnormal beat detection, premature ventricular contrac-

tion (PVC) and premature atrial contraction (PAC), which

have the highest frequencies, can be detected using the RR

interval and the amplitude of R-peak. R-peak has local ex-

treme amplitude. Reliable R-peak detection is possible by

calibrating to local extrema point. However, the onset and

offset of QRS complex and P-wave are hard to calibrate

because these fiducial points are ambiguous rather than R-

peak. Therefore, an error occurs in detection of the fiducial

points [16], [17], and the error of feature value is more

large because the feature value uses the interval between the

fiducial points. These make it difficult to detect an abnormal

beat based on feature values.

Shape-based detection generates a template to store shape

information on a normal beat and measure similarity with the

generated template to detect an abnormal beat.

Fig. 2 shows the cluster of input signals and the template.

The detection is easy and reliable based on the shape

deformation caused by the abnormal beat. However, shape-

based detection requires a manually determined template or

it requires a great deal of memory to determine the template

from the input signals.

Fig. 3 summarizes the weakness of the existing template

generating methods and the techniques proposed in this paper

for improvement.

FIGURE 2. Example of signal cluster and template.

As shown in Fig. 3, the manual template determination

method has to be applied each signal because the shape of

the beat varies depending on the individual. As a method for

automatically determining a template, there is a method using

a mean and a median of input beats [18]. However, when

a mean is used in template generation, a distorted template

might be acquired due to an abnormal beat. If the median

is used in template generation, then distortion caused by

abnormal beats can be minimized based on the characteristic

in which the normal beats are the majority in the general ECG

signals. However, it is not suitable for embedded devices

because all input beats must be stored in memory. In addition,

the technique is vulnerable to the detection of abnormal beats

that have no shape deformation, such as PACs. PACs can be

detected using the RR interval deformation. The proposed

method solves these problems through the template-cluster

generation.

In this paper, we propose a template-based abnormal

beat detection method in a real-time lightweight embedded

device. The proposed method uses feature-based detection

using RR interval and shape-based detection using template.

Feature-based detection using the RR interval can detect

PVCs and PACs. However, in the case of a fusion beat

in which ventricular and normal beat are mixed, it cannot

be detected because the RR interval is similar to normal.

Shape-based detection can detect PVCs and fusion beats, but

cannot detect PACs because their shape is similar to normal.

Therefore, a template applied with RR interval and shape

is generated to detect PVCs, PACs, and fusion beats. The

similarity used in the process of generating the template and

detecting abnormal beats is based on the similarity of RR

intervals and the shape of the waveform. The similarity of the

RR intervals uses the ratio, and the shape similarity uses the

Pearson similarity. We propose a template cluster rather than

a single template to improve the problem caused by misiden-

tification of normal beats with slight shape deformations

as abnormal beats. In addition, an independent template-

cluster update process for each beat minimizes memory

usage and processing time. Then, the cluster is optimized
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FIGURE 3. Summary of existing methods and proposed method.
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FIGURE 4. Algorithm flowchart.

by removing unnecessary templates from it, and templates

are sorted according to importance. After generating the

template cluster, an input beat is sequentially compared with

the sorted templates, and it is determined to be normal if a

similar template exists. In the most case of the normal beat,

it is determined as the normal beat through the similarity to

the first template with the highest importance. Thus, time

complexity of abnormal detection can be reduced.

Fig. 4 shows the algorithm flow of the proposed method.

The composition of paper is as follows. In Section 2,

the characteristics of abnormal beats in the ECG signal are

analyzed. In Section 3, the pre-processing, R-peak detection,

and Pearson similarity are introduced, and then the proposed

algorithm is described in Section 4. Section 5 shows the

experiment results in MIT-BIH arrhythmia database (MIT-

BIH ADB) [19] and Section 6 concludes the paper.

II. ABNORMAL BEATS IN ECG SIGNAL

ECG signals show various types of abnormal beats. ANSI-

AAMI EC57: 1998 of the American Medical Association

categorizes into five categories that include normal beat (N),

upper ventricular arrhythmia beat (S), ventricular arrhythmia

beat (V), mixed arrhythmia beat (F), and unclassified beat

(Q) [20], [21].

Physionet provides 19 categories of MIT-BIH ADB as a

method of subdividing the type of beat, which is a widely

used method. Table 1 shows the distribution of 19 type

categories of 48 records in MIT-BIH ADB.

In this paper, we detect V, A, and F type abnormal beats

with high frequency.

Fig. 5 shows examples of abnormal beats.

Fig. 5(a) is an example of a PVC called type V. The RR

interval becomes shorter, and shape deformation occurs. Fig.

5(b) is an example of a PAC called type A. The RR interval

becomes shorter, but the shape is similar to normal. Fig.

5(c) is a deformed V-type beat called type F. The shape

deformation occurs, but the RR interval is similar to normal.

Based on these characteristics, when detecting only the V-

type abnormal beat, both feature-based detection and shape-

based detection are effective. However, type A is difficult to

detect using shape-based detection. On the other hand, type

F is difficult to detect using a feature-based detection.

To solve this diversity of abnormal beats, this paper pro-

poses an effective detection method by mixing feature-based

detection and shape-based detection.
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TABLE 1. Distribution of beats in MIT-BIH ADB.

Code Total number Description Class

N 75052 Normal beat Normal

L 8075 Left bundle branch block beat
Bundle 

branch block
R 7259 Right bundle branch block beat

B 0 Bundle branch block beat

A 2546 Atrial premature beat

Premature

a 150 Aberrated atrial premature beat

J 83 Junctional premature beat

S 2 Supraventricular premature beat

V 7130 Premature ventricular contraction

r 0 R-on-T premature ventricular contraction

F 803 Fusion of ventricular and normal beat

e 16 Atrial escape beat

Escape
j 229 Junctional escape beat

n 0 Supraventricular escape beat

E 106 Ventricular escape beat

/ 7028 Paced beat
Paced

f 982 Fusion of paced and normal beat

Q 33 Unclassifiable beat
Else

? 0 Beat not Classified during learning

(a)

(b)

(c)

FIGURE 5. Examples of abnormal beats: (a) V, (b) A, (c) F.

III. MATERIALS AND METHODS

A. PREPROCESSING

In ECG signals, various noises are mixed in the measurement

process because the ECG is an electrical signal generated

from the activity of the heart [22]–[24]. Typical noise is as

follows: 1) power line interference, 2) baseline movement, 3)

miscellaneous noise.

(a) (b)

FIGURE 6. Examples of ECG signal noise suppression: (a) the suppression

of baseline movements, (b) the suppression of high frequency noises.

The power line interference noise appears as high fre-

quency noise of 30 Hz or higher. In 46 records of MIT-BIH

ADB used in this paper, 19 records have 30 Hz noise and

27 records have 60 Hz noise. Baseline movement caused by

breathing appears as low frequency noise of 0.1 Hz or lower.

Therefore, preprocessing using a band-pass filter is generally

used, and in this paper, a 1-25 Hz third-order Butterworth

band-pass filter was used to suppress noises.

Fig. 6 shows the input signal including low- and high-

frequency noises and the filtered result.

B. PAN’S METHOD

In the ECG signal, R-peak generally has the highest ampli-

tude among the fiducial points. Most ECG signal analysis is

performed based on the detection of the R-peak because R-

peak is relatively easy to detect compared to other fiducial

points. Various methods exist for the detection of R-peak, of

which Pan’s method is the most representative.

The signal is variously filtered using band-pass filter, dif-

ferential filter, average filter, etc., and a QRS complex is

detected using an adaptively determined threshold according

to these filtered signals. This method has an excellent ability

to detect a 99.3% QRS complex for 24 hours of MIT-BIH

ADB signal, so it is used as a preprocess for R-peak detection

in various ECG signal analyses.

C. RR INTERVAL RATIO

The obtained R-peak is not only used as a reference for

acquiring the waveform shape, but also the RR interval from

the previous R-peak to the present R-peak can be used as

an important feature value. In general, a normal beat has a

constant R-peak interval. However, when an abnormal beat

occurs, deformation occurs in the RR interval, and premature

contraction generally shortens the RR interval. Therefore,

when measuring the ratio (RRRatio) of the RR interval of

a normal beat (RRN ) and abnormal beat (RRA) as shown in

(1), the ratio is less than 1, and generally, it is less than 0.9.

RRRatio =
RRA

RRN

(1)

A normal beat that occurs after an abnormal beat has a

characteristic in which the RR interval is longer than normal

4 VOLUME 4, 2016
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due to the compensatory pause. In this case, the RR interval

ratio has a value lager than 1, and it is modified to have a

smaller value compared to 1 as shown in (2) so that it is

similar to the RR interval ratio of other normal beats.

RRRatio = min

(

1,
RRA

RRN

)

(2)

Based on this, the RR interval of the abnormal beat can be

emphasized and easier to detect. However, in the case of an

abnormal beat that occurs continuously more than 3 times at

a time, the RR interval ratio of the internal section is close

to 1, so the internal abnormal beats are detected as normal

beats. To solve this problem, a reclassification process for the

internal section is required, but it makes real-time processing

difficult. Thus, the RR interval is used instead of the RR

interval ratio in this paper.

D. PEARSON SIMILARITY

To measure the similarity between the template and the

input signal, the Pearson similarity is used in this paper.

The Pearson similarity is well known in statistics as the

Pearson correlation coefficient, which is a value quantified

for linear distributions for two distributions X and Y , with a

value between 1 and –1. The value indicates perfect positive

linear correlation at 1, no linear correlation at 0, and perfect

negative linear correlation at –1. The Pearson similarity is the

value obtained by the covariance of two distributions X and

Y , which is divided by the product of the standard deviations

as shown in (3).

ρ(X,Y ) =
1

N − 1

N
∑

i=1

(

X − µX

σX

Y − µY

σY

)

(3)

As shown in (3), by subtracting the mean and dividing

by the standard deviation, the Pearson similarity is robust to

baseline movements and amplitude scale changes. Thus, it is

suitable for measuring the similarity of ECG signals.

IV. PROPOSED ALGORITHM

The proposed algorithm uses feature values and shape. If both

are normal, then a beat is classed as normal; otherwise, it is

classed as abnormal. Unlike the existing method in which a

single template of a normal beat is used, this paper suggests a

template-cluster generation method that considers the slight

change in the normal beat or the distortion of feature values

caused by a neighboring abnormal beat. Accordingly, the

proposed algorithm is divided into 3 steps to generate the

template cluster: 1) initialize the template cluster, 2) update

the template cluster, and 3) optimize the template cluster.

A. INITIALIZATION

In this paper, the template is composed of three data points

that consists of shape, RR interval, and a counting number of

the template. From the first input signal, the shape and RR

interval of the first beat are input as the first data point of the

Algorithm 1: Template cluster initialization.

1 Si : ith input beat

2 RRi : RR interval of ith input beat

3 Cj
T : jth template of cluster

4 Cj
RR : RR interval of jth template

5 Cj
C : count of jth template

6 N : number of template in cluster

7 % Initialization

8 C1

T = S1

9 C1

RR = RR1

10 C1

C = 1
11 N = 1

first cluster of templates, and the counting number of the first

template is initialized to 1. The counting number indicates the

weight of the weighted mean in the template update process

and it is used to gauge the importance of the template in the

template sorting process.

Alg. 1 shows the pseudo-code for the initialization process

of the template cluster.

B. UPDATE

After entering the initial template, clusters are updated from

the sequentially input beats. The input beats measure the

RR interval ratio and shape similarity with each template in

the template cluster using (2) and (3), respectively. Then, a

template with the highest shape similarity among templates

satisfying the threshold value of the RR interval ratio is de-

tected. At this time, if shape similarity exceeds the threshold,

then the matched template is updated, otherwise, the input

beat is added as a new template.

The weighted mean of the RR interval and shape is used

to update the template. The counting number of jth template

(Cj
C) is used as the weight of the weighted mean as shown in

(4) and (5).

Cj
T (k) =

Cj
C × Cj

T (k) + Si(k)

Cj
C + 1

(4)

Cj
RR =

Cj
C × Cj

RR +RRi

Cj
C + 1

(5)

where Cj
T (k) and Si(k) indicate the kth samples of the

jth template and ith input beat, respectively. In this way,

the processed beat information can be deleted to minimize

memory usage because the template cluster is sequentially

updated for each beat.

Alg. 2 shows the pseudo-code for the updating process of

the template cluster.

C. OPTIMIZATION

The updated template cluster not only has normal beat tem-

plates, but also various abnormal beat templates. Therefore,
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Algorithm 2: Template cluster update.

1 M : maximum similarity

2 p : template number at M
3 RRR : ratio of RR interval

4 PS : Pearson similarity

5 TU
RR : RR interval ratio threshold for update

6 TU
P : Pearson similarity threshold for update

7 % Update

8 M = 0, p = 1 % Initialize

9 foreach j from 1 to N do

10 Calculate RRR and PS between Si and Cj
T

11 if RRR > TU
RR & PS > M then

12 M = PS

13 p = j

14 if M > TU
P then

15 % Update by using weighted mean

16 Cp
T = (Cp

C × Cp
T + Si)/(Cp

C + 1)
17 Cp

RR = (Cp
C × Cp

RR + Si)/(Cp
C + 1)

18 Cp
C = Cp

C + 1

19 else

20 % Add as a new template

21 N = N + 1
22 CN

T = Si

23 CN
RR = RRi

24 CN
C = 1

removing the abnormal beat templates is necessary. In gen-

eral, normal beats occupy the majority of the signals, and

the template with the highest counting number is likely to

be a representative template of a normal beat. Thus, after

determining the template with the highest counting number

as the representative template, the template with similarity to

the representative template below the threshold is classed as

the abnormal beat template and removed from the template

cluster. Next, the template is sorted according to the counting

number of each template, which makes it possible to classify

a normal beat quickly using the abnormal beat detection step,

thereby saving processing time.

Alg. 3 shows the pseudo-code for the optimization process

of the template cluster.

Fig. 7 shows the sequential results of applying the pro-

posed algorithm to Datum 119 of MIT-BIH ADB.

As shown in Fig. 7, even if the abnormal beat is selected

as the initial beat, only the templates of the normal beat

comprise the cluster through the update and optimization

process.

D. ABNORMAL BEAT DETECTION

By using the template cluster, beats are classed as normal

if there is a similar template and abnormal if not. Fig. 8 is

the result of detecting normal and abnormal beats using the

Algorithm 3: Template cluster optimization.

1 mp : position of maximum in CC

2 TO
RR : RR interval ratio threshold for optimization

3 TO
P : Pearson similarity threshold for optimization

4 % Optimization

5 foreach j from 1 to CN do

6 Calculate RRR and PS between Cmp
T and Cj

T

7 if RRR < TO
RR & PS < TO

P then

8 Remove jth template

9 Sort templates according to CC

(a) (b) (c)

FIGURE 7. Examples of template cluster generation: (a) total beat and initial

template, (b) updated template cluster, (c) optimized template cluster.

(a) (b)

FIGURE 8. Examples of abnormal beat detection results of Fig. 7: (a) normal

beats, (b) abnormal beats.

template cluster in Fig. 7(c).

V. EXPERIMENTS

We conducted experiments to confirm the performance of

the proposed algorithm. The template cluster and abnormal

beat detection were generated for each MIT-BIH ADB record

Physionet provided. The experimental environment of MIT-

BIH ADB was Windows 10 64-bit OS, Intel i7-7700 3.60

GHz CPU, and MATLAB R2016.

6 VOLUME 4, 2016
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TABLE 2. Classification of MIT-BIH ADB annotation.

Group 1

Record
Normal

Abnormal

V A F

100 2236 1 33 0

101 1857 0 3 0

102 2025 4 0 0

103 2079 0 2 0

104 1377 2 0 0

105 2523 41 0 0

106 1504 520 0 0

107 2075 59 0 0

108 1736 17 4 2

109 2489 38 0 2

111 2120 1 0 0

112 2534 0 2 0

113 1786 0 0 0

114 1817 43 10 4

115 1950 0 0 0

116 2299 109 1 0

117 1531 0 1 0

118 2163 16 96 0

119 1541 443 0 0

121 1858 1 1 0

122 2473 0 0 0

123 1512 3 0 0

124 1528 47 2 5

Total 45013 1345 155 13

Group 2

Record
Normal

Abnormal

V A F

200 1741 825 30 2

201 1622 198 30 2

202 2058 19 36 1

203 2526 444 0 1

205 2568 71 3 11

207 1457 104 106 0

209 2618 1 383 0

210 2420 194 0 10

212 1823 0 0 0

213 2638 220 25 362

214 2000 256 0 1

215 3192 164 3 1

217 1539 162 0 0

219 2079 64 7 1

220 1951 0 94 0

221 2028 396 0 0

222 2059 0 208 0

223 2026 473 72 14

228 1685 362 3 0

230 2252 1 0 0

231 1251 2 1 0

233 2228 830 7 11

234 2697 3 0 0

Total 48458 4789 1008 417

Overall

total
93471 6134 1163 430

A. MIT-BIH ADB

Each MIT-BIH ADB record is 30 minutes long with high

sampling frequency of 360 Hz, including arrhythmias. MIT-

BIH ADB is widely used for the study of ECG signal analysis

because the locations and types of beats are annotated.

In Table 1, 19 types of beat were introduced, but in

this paper, experiments were conducted to detect V, A, and

F type abnormal beats. In the case of left bundle branch,

right bundle branch, and pacemaker beat, these beats were

regarded as normal because they occurred instead of normal

beats. Among the records, Datum 208 and Datum 232 were

excluded from the experiment because of the proportions

of abnormal beats were abnormally large (46% and 78%),

which were difficult to apply to the proposed algorithm.

Accordingly, the overall beat distribution of the data used in

the experiment is shown in Table 2.

The Datum of 113, 122, and 212 were used to confirm

the incidence of false detections from the normal beat to

the abnormal beat, although there are no V, A, and F type

abnormal beats.

B. EXPERIMENTS

1) Processing Time

The processing time can largely be divided into the template

cluster generation step and the abnormal beat detection step.

The processing time of each step increases according to

the number of templates because the main process is the

similarity calculation with each template in the template

cluster.

The distribution of processing time for 46 records of MIT-

BIH ADB is shown as Fig. 9.

In the template generating process, Datum 203 (which

is the 27th record in the experiment) has the longest pro-

(a) (b)

FIGURE 9. Processing times for 46 thirty-minute records in MIT-BIH ADB: (a)

template cluster generation, (b) abnormal beat detection.

cessing time of 10.23 seconds, which takes about 8.5 times

the average processing time (1.21 seconds). This is because

various types of beats appear due to unstable measurements,

and 159 templates are generated after the cluster update pro-

cess, resulting in a rapid increase in unnecessary comparison

calculations. After removing the abnormal beat templates,

the number of templates become 15. The processing time of

abnormal beat detection of Datum 203 is also longest (0.62

seconds) because the number of templates is about 3.2 times

more than the average number of templates (4.7 templates).

However, considering that the input signal is thirty-minutes

long, even for the data that took the longest time, it took

only 10.23 seconds and 0.62 seconds for the template cluster

generation and abnormal beat detection process, respectively.

Thus, real-time learning and detection of the proposed algo-

rithm is possible.

In the case of algorithm convergence, the number of tem-

plates in the update step is important as shown in Fig. 9.

In extreme case, every beat forms an individual template,

causing a problem that the execution time and memory usage

increase exponentially. In general, since the normal beats of

similar shape occupy most of the signals, in the experimental

process of this paper, the process of generating a template

cluster for the 30 minutes lengthy data only took about

10 seconds and 159 templates for the worst data. If it is

implemented in an embedded device with limited memory,

stable operation will be possible by converging the algorithm

by limiting the number of templates and merging similar

templates.

2) Detection performance

Confirming the performance of abnormal beat detection re-

quires sensitivity (Se), specificity (Sp), and accuracy (Ac).
Se, Sp, and Ac are expressed as (6).

Se =
TP

TP + FN

Sp =
TN

TN + FP

Ac =
TP + TN

TP + TN + FP + FN

(6)

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3077628, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TP indicates true positive, which is the number of nor-

mal beats detected as normal beats, and TN indicates true

negative, which is the number of abnormal beats detected

as abnormal beats. FP indicates false positive, which is the

number of abnormal beats detected as normal beats, and

FN indicates false negative, which is the number of normal

beats detected as abnormal beats. That is, the higher the Se,

the fewer undetected beats; the higher the Sp, the fewer

over-detected beats; and the higher the Ac, the better the

overall performance. In addition, the overall performances

are calculated by (6) after adding all the detected beats for

each record because each record has different number of

normal and abnormal beats as shown in Table 2.

Table 3 shows the overall detection performance with fixed

threshold.

There is no clear detection in the same threshold and mea-

surement environment because the feature value and shape of

a normal beat are different for each individual, and the type of

abnormal beat is different. Therefore, the thresholds should

be determined individually for each record. In this paper,

we change the thresholds according to the record, obtain the

thresholds with the highest detection rate, and analyze the

detection result at this time to confirm the possibility of the

automated abnormal beat detection algorithm.

The results of learning and detection with manual thresh-

olds for each individual are shown in Table 4.

It can be confirmed that the ratio of the existing undetected

and over-detected beats was significantly reduced. Using the

fixed threshold, Se, Sp, and Ac showed low detection rates

of 93.96%, 80.35%, and 92.92%, respectively, but using

the manually determined thresholds individually, they were

greatly improved to 98.35%, 93.00%, and 97.94%. There-

fore, we enable to detect abnormal beat through appropriate

threshold determination with stably acquired ECG signal.

In particular, the proposed method is stable even for

continuous abnormal beats input, because template cluster

updates and abnormal beat detection are performed inde-

pendently for the input beats. In the case of datum 124, 17

consecutive abnormal beats are input, but it can be confirmed

that excellent abnormal beat detection is possible as shown in

Table 4. In datum 124, the false detected two abnormal beats

are the F-type and A-type abnormal beats, respectively. They

are the exceptions that were erroneously detected because

they are very similar to the normal beat.

However, there are still data with a high ratio of undetected

and over-detected beats. This is a case where a large amount

of over-detection occurs because the shape or interval infor-

mation of the normal beat is significantly changed from a

specific section as shown in Fig. 10.

Another cause is a large signal distortion even after pre-

processing due to sudden baseline change as shown in Fig.

11.

Pearson similarity is robust to change of amplitude scale

and average amplitude, but false detection occurs when base-

line is inclined as shown in Fig. 11.

FIGURE 10. Example of RR interval error in Datum of 202.

FIGURE 11. Example of baseline error in Datum of 203.

(a)

(b)

FIGURE 12. Examples of abnormal beats: (a) a, (b) J.

C. FURTHER WORKS

In this paper, we proposed the abnormal beat detection of V,

A, F types using shape of waveform and RR interval feature.

If we can acquire reliable P-wave features, such as PR inter-

val and P-wave direction, using P-wave’s fiducial points, we

can expand the algorithm to detect type ‘a’, aberrated atrial

premature beat, and J, junctional premature beat, abnormal

beats shown in Table 1. Fig. 12 is the examples of ‘a’ and J

type abnormal beats.

As shown in Fig. 12(a), ‘a’ type abnormal beat is similar to

A or V type abnormal beat. It has short RR interval and small

deformation at R-peak. Since the deformation occurs only
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TABLE 3. The abnormal beat detection results of MIT-BIH ADB with fixed thresholds, 0.9 in template generation and 0.8 in abnormal beat detection.

Group 1

Record
Normal Abnormal TP TN FP FN Se Sp Ac

100 2270 34 2236 20 14 0 100.00% 58.82% 99.38%

101 1860 3 1854 2 1 3 99.84% 66.67% 99.78%

102 2029 4 1995 4 0 30 98.52% 100.00% 98.52%

103 2081 2 2079 0 2 0 100.00% 0.00% 99.90%

104 1379 2 1374 1 1 3 99.78% 50.00% 99.71%

105 2564 41 2461 40 1 62 97.54% 97.56% 97.54%

106 2024 520 1489 520 0 15 99.00% 100.00% 99.26%

107 2134 59 2075 57 2 0 100.00% 96.61% 99.91%

108 1759 23 882 23 0 854 50.81% 100.00% 51.45%

109 2529 40 2480 35 5 9 99.64% 87.50% 99.45%

111 2121 1 2070 1 0 50 97.64% 100.00% 97.64%

112 2536 2 2534 1 1 0 100.00% 50.00% 99.96%

113 1786 0 1768 0 0 18 98.99% NaN 98.99%

114 1874 57 1636 57 0 181 90.04% 100.00% 90.34%

115 1950 0 1950 0 0 0 100.00% NaN 100.00%

116 2409 110 2278 109 1 21 99.09% 99.09% 99.09%

117 1532 1 874 1 0 657 57.09% 100.00% 57.11%

118 2275 112 2161 60 52 2 99.91% 53.57% 97.63%

119 1984 443 1538 443 0 3 99.81% 100.00% 99.85%

121 1860 2 1828 2 0 30 98.39% 100.00% 98.39%

122 2473 0 2473 0 0 0 100.00% NaN 100.00%

123 1515 3 1423 3 0 89 94.11% 100.00% 94.13%

124 1582 54 1528 44 10 0 100.00% 81.48% 99.37%

Total 46526 1513 42986 1423 90 2027 95.50% 94.05% 95.45%

Group 2

Record
Normal Abnormal TP TN FP FN Se Sp Ac

200 2598 857 1693 817 40 48 97.24% 95.33% 96.61%

201 1852 230 748 230 0 874 46.12% 100.00% 52.81%

202 2114 56 1112 55 1 946 54.03% 98.21% 55.20%

203 2971 445 1954 442 3 572 77.36% 99.33% 80.65%

205 2653 85 2562 75 10 6 99.77% 88.24% 99.40%

207 1667 210 1452 198 12 5 99.66% 94.29% 98.98%

209 3002 384 2617 314 70 1 99.96% 81.77% 97.63%

210 2624 204 2411 187 17 9 99.63% 91.67% 99.01%

212 1823 0 1823 0 0 0 100.00% NaN 100.00%

213 3245 607 2637 61 546 1 99.96% 10.05% 83.14%

214 2257 257 1971 257 0 29 98.55% 100.00% 98.72%

215 3360 168 3173 146 22 19 99.40% 86.90% 98.78%

217 1701 162 1538 162 0 1 99.94% 100.00% 99.94%

219 2151 72 1920 55 17 159 92.35% 76.39% 91.82%

220 2045 94 1949 87 7 2 99.90% 92.55% 99.56%

221 2424 396 2028 12 384 0 100.00% 3.03% 84.16%

222 2267 208 1437 193 15 622 69.79% 92.79% 71.90%

223 2585 559 2026 338 221 0 100.00% 60.47% 91.45%

228 2050 365 1679 347 18 6 99.64% 95.07% 98.83%

230 2253 1 1936 1 0 316 85.97% 100.00% 85.97%

231 1254 3 1251 2 1 0 100.00% 66.67% 99.92%

233 3076 848 2225 804 44 3 99.87% 94.81% 98.47%

234 2700 3 2697 3 0 0 100.00% 100.00% 100.00%

Total 54672 6214 44839 4786 1428 3619 92.53% 77.02% 90.77%

Overall

total
101198 7727 87825 6209 1518 5646 93.96% 80.35% 92.92%

TABLE 4. The abnormal beat detection results of MIT-BIH ADB with manually given thresholds for each record.

Group 1

Record
Normal Abnormal TP TN FP FN Se Sp Ac

100 2270 34 2229 34 0 7 99.69% 100.00% 99.69%

101 1860 3 1857 2 1 0 100.00% 66.67% 99.95%

102 2029 4 2025 4 0 0 100.00% 100.00% 100.00%

103 2081 2 2009 2 0 70 96.63% 100.00% 96.64%

104 1379 2 1374 2 0 3 99.78% 100.00% 99.78%

105 2564 41 2523 41 0 0 100.00% 100.00% 100.00%

106 2024 520 1504 520 0 0 100.00% 100.00% 100.00%

107 2134 59 2075 59 0 0 100.00% 100.00% 100.00%

108 1759 23 1704 22 1 32 98.16% 95.65% 98.12%

109 2529 40 2472 38 2 17 99.32% 95.00% 99.25%

111 2121 1 2117 1 0 3 99.86% 100.00% 99.86%

112 2536 2 2534 2 0 0 100.00% 100.00% 100.00%

113 1786 0 1786 0 0 0 100.00% NaN 100.00%

114 1874 57 1772 56 1 45 97.52% 98.25% 97.55%

115 1950 0 1950 0 0 0 100.00% 100.00% 100.00%

116 2409 110 2299 109 1 0 100.00% 99.09% 99.96%

117 1532 1 1531 1 0 0 100.00% 100.00% 100.00%

118 2275 112 2090 109 3 73 96.63% 97.32% 96.66%

119 1984 443 1541 443 0 0 100.00% 100.00% 100.00%

121 1860 2 1858 2 0 0 100.00% 100.00% 100.00%

122 2473 0 2473 0 0 0 100.00% NaN 100.00%

123 1515 3 1512 3 0 0 100.00% 100.00% 100.00%

124 1582 54 1528 52 2 0 100.00% 96.30% 99.87%

Total 46526 1513 44763 1502 11 250 99.44% 99.27% 99.44%

Group 2

Record
Normal Abnormal TP TN FP FN Se Sp Ac

200 2598 857 1717 820 37 24 98.62% 95.68% 97.65%

201 1852 230 1599 205 25 23 98.58% 89.13% 97.41%

202 2114 56 1636 54 2 422 79.49% 96.43% 79.94%

203 2971 445 2401 428 17 125 95.05% 96.18% 95.22%

205 2653 85 2561 78 7 7 99.73% 91.76% 99.47%

207 1667 210 1449 210 0 8 99.45% 100.00% 99.52%

209 3002 384 2577 360 24 41 98.43% 93.75% 97.83%

210 2624 204 2404 199 5 16 99.34% 97.55% 99.20%

212 1823 0 1823 0 0 0 100.00% NaN 100.00%

213 3245 607 2633 318 289 5 99.81% 52.39% 90.94%

214 2257 257 2000 257 0 0 100.00% 100.00% 100.00%

215 3360 168 3158 168 0 34 98.93% 100.00% 98.99%

217 1701 162 1538 162 0 1 99.94% 100.00% 99.94%

219 2151 72 2078 62 10 1 99.95% 86.11% 99.49%

220 2045 94 1947 93 1 4 99.79% 98.94% 99.76%

221 2424 396 2028 396 0 0 100.00% 100.00% 100.00%

222 2267 208 1498 188 20 561 72.75% 90.38% 74.37%

223 2585 559 2021 474 85 5 99.75% 84.79% 96.52%

228 2050 365 1672 365 0 13 99.23% 100.00% 99.37%

230 2253 1 2252 1 0 0 100.00% 100.00% 100.00%

231 1254 3 1251 2 1 0 100.00% 66.67% 99.92%

233 3076 848 2225 841 7 3 99.87% 99.17% 99.67%

234 2700 3 2697 3 0 0 100.00% 100.00% 100.00%

Total 54672 6214 47165 5684 530 1293 97.33% 91.47% 96.67%

Overall

total
101198 7727 91928 7186 541 1543 98.35% 93.00% 97.94%

around the R-peak, the QRS duration is normal and P-wave

is also normally generated. To classify the ‘a’ type abnormal

beat from A or V type abnormal beat, it is important to

determine the presence of P-wave. As shown in Fig. 12(b),

J type abnormal beat has short PR interval and downward P-

wave. So P-wave fiducial points are important to classify the

J type abnormal beat.

With various abnormal beat detection, future research aims

at detailed abnormal beat classification. Fig. 13 summaries

the two steps of further works of this paper.
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VI. CONCLUSION

In this paper, we proposed a method for detecting abnormal

beats by using feature values and shape together. In par-

ticular, during the template cluster generating process, the

template was updated using a weighted mean according to

the counting number of the template, and a stable normal beat

template could be generated through the template cluster.

By using RR interval and shape together, it was confirmed

that V, A, and F types of abnormal beat can be effectively

detected. However, an adaptive determination of a threshold

for learning and detection has not been made because the

characteristics of beats are different for each individual.

Future experiments could expand to include an automatic

detection algorithm for abnormal beat detection through

adaptive threshold determination based on the similarity

distribution between templates in the template cluster. In

addition, the detection of other types of abnormal beats

not detected in this paper could be achieved through the

refinement of additional feature values or shapes other than

the RR interval.
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