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Abstract
Synapses play a central role in neural computation: the strengths of synaptic
connections determine the function of a neural circuit. In conventional models
of computation, synaptic strength is assumed to be a static quantity that changes
only on the slow timescale of learning. In biological systems, however,
synaptic strength undergoes dynamic modulation on rapid timescales through
mechanisms such as short term facilitation and depression. Here we describe
a general model of computation that exploits dynamic synapses, and use a
backpropagation-like algorithm to adjust the synaptic parameters. We show
that such gradient descent suffices to approximate a given quadratic filter by
a rather small neural system with dynamic synapses. We also compare our
network model to artificial neural networks designed for time series processing.
Our numerical results are complemented by theoretical analyses which show
that even with just a single hidden layer such networks can approximate a
surprisingly large class of nonlinear filters: all filters that can be characterized
by Volterra series. This result is robust with regard to various changes in the
model for synaptic dynamics.

1. Introduction

The brain is able to solve hard computational problems that remain beyond the reach of the
most powerful computers, but the key to its success remains unclear. One possibility is that
the properties of neuronal wetware—as opposed, for example, to the digital hardware found
in a computer—enforce a style of computation that is particularly well suited to solving the
kinds of problems important to survival. If this is true, then we may gain insight into the
strategies employed by neuronal wetware by studying computational models that capture the
essence of neural circuitry. This strategy has motivated the development of artificial neural
network models of computation. Like brains, neural networks are massively parallel networks
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composed of many simple repeating units. Neural networks share a number of characteristics
with brains, including fault tolerance, generalization, and the ability to learn (or adapt) to new
inputs. Neural network models have been useful for understanding what kinds of algorithms
are well suited for brain-style computation.

Neural networks have been widely applied to the processing of static stimuli. In recent
years, however, there has been increasing focus on the dynamic aspects of cortical processing.
Spatiotemporal (Reid et al 1997) and spectrotemporal (Kowalski et al 1996, deCharms and
Merzenich 1998) receptive field analysis, for example, reveal that the cortical neurons are sensi-
tive to the temporal structure of sensory inputs. Processing of real-world time-varying stimuli is
a difficult problem, and represents an unsolved challenge for artificial models of brain function.

More than two decades of research on artificial neural networks has emphasized the
central role of synapses in neural computation (Sejnowski 1977, Hopfield 1982). In a
conventional artificial neural network, all units (‘neurons’) are assumed to be identical, so
that the computation is completely specified by the synaptic ‘weights’, i.e. by the strengths
of the connections between the units. The identity of a neural circuit—including the circuit
connectivity, which can be specified by including null weights—is thereby determined entirely
by the matrix of synaptic connections. The synapses in most artificial neural network models
are static: synaptic strength is fully characterized by a single value that remains fixed except on
the slow timescale of learning. In real nervous systems, by contrast, synapses show dynamics
on short timescales, from milliseconds to seconds (Magleby 1987, Markram and Tsodyks 1996,
Abbott et al 1997, Zador and Dobrunz 1997, Dobrunz and Stevens 1999). Activity-dependent
forms of short-term plasticity such as facilitation and depression modulate synaptic strength
over a wide range.

Here we propose that synaptic dynamics provide a natural substrate for the processing
of dynamic stimuli, and describe a novel artificial neural network architecture that exploits
synaptic dynamics (Little and Shaw 1975, Tsodyks et al 1998, Liaw and Berger 1996). As in
conventional artificial neural networks, synaptic strength determines the computation. In our
framework, however, synaptic strength changes on the short time scale of each computation,
and it is the balance of facilitation and depression that determines the temporal dynamics at
each synapse and thereby forms the basis of each computation. To achieve the appropriate
synaptic dynamics, we have used a conjugate gradient algorithm (Press et al 1992) which
is a generalized form of the backpropagation learning algorithm (Hertz et al 1991). The
architecture we propose represents a step toward understanding how neural circuits might
process complex temporal patterns.

This paper is organized as follows. First we describe the dynamics of the single synapse
model upon which the architecture is based (section 2). Next we show how a small, three-
layer feed-forward network of units connected by such synapses can be trained to approximate
a nonlinear input–output system (section 3). This training involves adjusting, by means of
a conjugate gradient algorithm (Press et al 1992), a subset of the parameters that govern
the synaptic dynamics; these parameters might be subject to plasticity in biological systems
through mechanisms such as long term potentiation and depression. We also show that
a such a three-layer feed-forward network with biologically realistic synaptic dynamics
yields performance comparable to that of artificial networks that were previously designed
to yield good performance in the time series domain without any claims of biological
realism (section 4). We then assess which parameters are essential to produce good network
performance (section 5). Finally we demonstrate that it is the synaptic rather than neuronal
dynamics that are playing the critical role in the computation by showing how the same
computation can be achieved with only two neurons in the hidden layer, as long as the neurons
are connected through multiple synapses (section 6).
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Figure 1. A single synapse can produce quite different outputs for the same input. The response
of a single synapse to a step increase in input activity applied at time step 0 is compared for two
different parameter settings. In (a), the synapse responds with pure depression, while in (b) an
initial facilitation precedes the depression.

2. Single synapse

We begin by describing a formal model of a single synapse. The continuum model we consider
is related to several proposed previously (Abbott et al 1997, Markram et al 1998, Tsodyks
et al 1998, Maass and Zador 1999). It incorporates short term facilitation and depression.

Synaptic strength depends on three quantities: presynaptic activity xj (t); a use-dependent
term pij (t) which may loosely related to presynaptic release probability; and postsynaptic
efficacyWij . Synaptic dynamics arise from the dependence of presynaptic release probability
on the history of presynaptic activity. Specifically, the effect of activity xj (t) in the j th
presynaptic unit on the ith postsynaptic unit is given by the product of the synaptic coupling
between the two units and the instantaneous presynaptic activity, xj (t) · pij (t) · Wij . The
presynaptic activity xj (t) is a continuous value (constrained to fall in the range [0, 1]) rather
than a discrete spike train, and can be considered to represent an instantaneous firing rate.
The coupling is in turn the product of a history-dependent ‘release probability’ pij (t), and a
static scale factor Wij corresponding to the postsynaptic response or ‘potency’ at the synapse
connecting j and i. Note that Wji � 0 for excitatory synapses and Wji � 0 for inhibitory
synapses.

The history-dependent component pij (t) is constrained to fall in the range [0, 1]. This
component in turn depends on two auxiliary history-dependent functions fij (t) and dij (t). The
quantity dij (t) can be interpreted as the number of releasable synaptic vesicles; it decreases
with activity and thereby instantiates a form of use-dependent depression. The quantity fij (t)
represents the propensity of each vesicle to be released; like (Ca2+) in the presynaptic terminal,
it increases with presynaptic activity xj (t) and thereby instantiates a form of facilitation. The
details of the activity-dependence of fij (t) and dij (t) are given in appendix A.

The input–output behaviour of this model synapse depends on the four synaptic parameters
Uij , Fij ,Dij and Wij , as described in appendix A. The same input yields markedly different
outputs for different values of these parameters. Figure 1 compares the output of a single
synapse in response to a step input, i.e. xj (t) = 1 for t > 0, for two sets of synaptic parameters.
In figure 1(a), the output begins at a maximal value and then, declines to nearly zero while in
figure 1(b) the response increases to a maximum and then decreases. These examples illustrate
just two of the range of input–output behaviours that a single synapse can achieve.

Note that the qualitative aspects of the results presented in this paper do not critically
depend on the particular model used for synaptic dynamics. In Natschläger (1999) a continuum
version of the model proposed in Maass and Zador (1999) is considered, and the results are
indeed very similar.
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Figure 2. A network with units coupled by dynamic synapses can approximate randomly drawn
quadratic filters. (a) Network architecture. The network had one input unit, ten hidden units (five
excitatory, five inhibitory), and one output unit. The activation function at the hidden units was
sigmoidal, but linear at the output unit. (b) One of the input patterns used in the training ensemble.
For clarity, only a portion of the actual input is shown. (c) Output of the network prior to training,
with random initialization of the parameters ( � ). Output of the dynamic network (DN) after
learning (——). The target (– – –) was the output of the quadratic filter given by equation (1), the
coefficients hkl (1 � k, l � 10) of which were generated randomly by subtracting µ/2 from a
random number generated from an exponential distribution with mean µ. (d) Performance after
network training. For different sizes of H (H is a symmetricm×mmatrix) we plotted the average
performance (MSE measured on a test set) over 20 different filters Q, i.e. 20 randomly generated
matrices H .

3. Processing dynamic signals

Research on conventional artificial neural networks has emphasized tasks, such as the
classification of static images, in which both the inputs and the outputs are devoid of temporal
structure. However, ecologically relevant signals often have a rich temporal structure, and
neural circuits must process these signals in real time. In many signal processing tasks, such
as audition, almost all of the information is embedded in the temporal structure. In the visual
domain, movement represents one of the fundamental features extracted by the nervous system.
In the following we refer to systems which map a time varying signal onto another time varying
signal as filter.

The dynamic synapses we have described are ideally suited to process signals with
temporal structure (figure 2(a)). To illustrate this, we consider a simple class of signals given
by a quadratic filter4 Q:

Qx(t) =
m∑
l=1

m∑
k=1

hkl x(t − k) x(t − l) (1)

where t is discrete time, andx(t) is the input, and the filter coefficientshkl form a arbitrarym×m
matrix H (we assume in this paper that H is symmetric). An example of the input and output
for one choice of quadratic parameters are shown in figures 2(b) and (c), respectively. The filter

4 We adopt the common notation Fx(t) to denote the output that the filter F gives at time t for the input function x.

N
et

w
or

k 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
T

ec
hn

is
ch

e 
U

ni
ve

rs
ity

 G
ra

z 
on

 0
7/

01
/1

0
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



Efficient temporal processing with biologically realistic dynamic synapses 79

Q is an idealization of the kinds of complex transformations that are important to an organism’s
survival, such as those required for motor control and the processing of time-varying sensory
inputs. For example, the spectrotemporal receptive field of a neuron in the auditory cortex
(deCharms and Merzenich 1998, Kowalski et al 1996) reflects some complex transformation
of sound pressure to neuronal activity. The real transformations actually required for survival
may be very complex, but the simple filter Q provides a useful starting point for assessing the
capacity of this architecture to transform one time-varying signal into another.

Can a network of units coupled by dynamic synapses implement the filter Q? We tested the
approximation capabilities of a rather small network with just ten hidden units (five excitatory
and five inhibitory ones), and one output (figure 2(a)). The output xi(t) of the ith unit is given
by

xi(t) = σ

( ∑
j

Wij · pij (t) · xj (t)
)

(2)

where xj (t) is the input from the previous layers, pij (t) corresponds to the activity-dependent
release probability,Wij to the static postsynaptic efficacy, and σ is either the sigmoid function
σ(u) = 1/(1 + exp(−u)) (in the hidden layers) or just the identity function σ(u) = u (in the
output layer). In the following we refer to such networks as dynammic networks (DNs). The
dynamics of inhibitory synapses is described by the same model as that for excitatory synapses.
For any particular temporal pattern applied at the input and any particular choice of the synaptic
parameters, this network generates a temporal pattern as output. This output can be thought of,
for example, as the activity of a particular population of neurons in the cortex, and the target
function as the time series generated for the same input by some unknown quadratic filter Q.
The synaptic parametersWij ,Dij , Fij and Uij are chosen so that, for each input in the training
set, the network minimized the mean-square error (MSE)

E[z, zQ] = 1

T

T∑
t=1

(z(t)− zQ(t))2 (3)

between its output z(t) and the desired output zQ(t) = Qx(t) specified by the filter Q. To
achieve this minimization, we used a conjugate gradient algorithm, see appendix B for details.

The training inputs were random signals, an example of which is shown in figure 2(b).
The test inputs were drawn from the same random distribution as the training inputs, but
were not actually used during training. This test of generalization ensured that the observed
performance represented more than simple ‘memorization’ of the training set. To avoid
overfitting, minimization of E[z, zQ] was stopped when the error on a validation set (distinct
from training and test set) reached its first minimum. Figure 2(c) compares the network
performance before and after training. Prior to training, the output is nearly flat, while after
training the network output tracks the filter output closely (E[z, zQ] = 0.0032).

Figure 2(d) shows the performance after training for different randomly chosen quadratic
filters Q with different dimensions m of H . Even for larger values of m the relatively small
network with ten hidden units performs rather well. Note that a quadratic filter of dimension
m has m(m + 1)/2 free parameters, whereas the DN has a constant number of 80 adjustable
parameters. This shows clearly that dynamic synapses enable a small network to mimic a wide
range of possible quadratic target filters.

4. Comparison with the model of Back and Tsoi

Our DN model is not the first to incorporate temporal dynamics via dynamic synapses. Perhaps
the earliest suggestion for a role for synaptic dynamics in network computation was by Little
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Figure 3. Performance of our model on the system identification task used in Back and Tsoi
(1993). The network architecture is the same as in figure 2. (a) One of the input patterns used in
the training ensemble. (b) Output of the network after learning (——). The target (– – –) is the
output of the filter function given by equations (4) and (5). (c) Comparison of the MSE (in units
of 10−3) achieved on test data by the model of BT and by the DN. (d) Comparison of the number
of adjustable parameters. The network model of BT utilizes slightly more adjustable parameters
than the DN.

and Shaw (1975). More recently, a number of networks have been proposed in which synapses
implemented linear filters; in particular see Back and Tsoi (1993).

To assess the performance of our network model in relation to the model proposed in
Back and Tsoi (1993) we have analysed the performance of our DN model for the same system
identification task that was employed as benchmark task in Back and Tsoi (1993). The goal
of this task is to learn the filter F

zF (t) = Fx(t) = sin(u(t)) (4)

where u(t) is the solution to the difference equation

u(t)− 1.99u(t − 1) + 1.572u(t − 2)− 0.4583u(t − 3)

= 0.0154x(t) + 0.0462x(t − 1) + 0.0462x(t − 2) + 0.0154x(t − 3). (5)

Hence, u(t) is the output of a linear filter applied to the input x(t).
The result is summarized in figure 3. It can clearly be seen that our network model (see

figure 2(a) for the network architecture) is able to learn this particular filter. The MSE on
the test data is 0.0010, which is slightly smaller than the MSE of 0.0013 reported in Back
and Tsoi (1993). Note that the network Back and Tsoi (BT) used to learn the task had 130
adjustable parameters (13 parameters per IIR synapse, ten hidden units) whereas our network
model had only 80 adjustable parameters (all parameters Uij , Fij , Dij and Wij were adjusted
during learning).

Hence simple feedforward networks with biologically realistic synaptic dynamics are
comparable (no significant differences in performance and network size) to artificial networks
that were previously designed to yield good performance in the time series domain without any
claims of biological realism. This indicates that dynamic synapses entail feedforward networks
with the same computational power as infinite impulse response (IIR) synapses (Back and Tsoi
1993)5.

5. Which parameters matter?

It remains an open experimental question which synaptic parameters are subject to use-
dependent plasticity, and under what conditions. For example, long term potentiation appears

5 Note that empirical comparisons between different models are difficult due to the number of factors that can be
involved.
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(a) (b) (c) (d)

Figure 4. Impact of different synaptic parameters on the learning capabilities of a DN. The area
of a square (the ‘impact’) is proportional to the inverse of the MSE averaged over N trials. (a) In
each trial (N = 100) a different quadratic filter matrix H (m = 6) was randomly generated as
described in figure 2. Along the diagonal one can see the impact of a single parameter, whereas the
off-diagonal elements (which are symmetric) represent the impact of changing pairs of parameters.
(b) The impact of subsets of size three is shown where the labels indicate which parameter is not
included. (c) Same interpretation as for (a) but the results shown (N = 20) are for the filter used
in Back and Tsoi (1993) (equations (4) and (5)). (d) Same interpretation as for (b) but the results
shown (N = 20) are for the same filter as in (c).

to change synaptic dynamics between pairs of layer 5 cortical neurons (Markram and Tsodyks
1996) but not in the hippocampus (Selig et al 1999). We therefore wondered whether plasticity
in the synaptic dynamics is essential for a DN to be able to learn a particular target filter. To
address this question, we compared network performance when different parameter subsets
were optimized using the conjugate gradient algorithm, while the other parameters were
held fixed. In all experiments, the fixed parameters were chosen to ensure heterogeneity
in presynaptic dynamics.

Figure 4 shows that changing only the postsynaptic parameter W has comparable impact
to changing only the presynaptic parameters U or D, whereas changing only F has little
impact on the dynamics of these networks (see diagonal of figures 4(a) and (c)). However, to
achieve good performance one has to change at least two different types of parameters such as
{W,U} or {W,D} (all other pairs yield worse performance). Hence, neither plasticity in the
presynaptic dynamics (U,D,F ) alone nor plasticity of the postsynaptic efficacy (W ) alone
was sufficient to achieve good performance in this model.

6. Multiple neurons and multiple synapses

So far we have assumed that each axon makes only one synapse onto its postsynaptic target.
While such connectivity is common in the hippocampus (Harris and Stevens 1989), in the
neocortex and elsewhere the multiplicity is often higher, so that a single presynaptic axon
makes several independent contact with the postsynaptic target (Markram et al 1997). We
therefore tested a modified architecture in which each axon made several synapses. The
parameters at each synapse were modified independently.

Figure 5 shows a limiting case an architecture with high synapse multiplicity. The number
of plastic synapses is the same as in figure 5, but here instead of ten hidden units there are only
two. The performance of the network is as good as the performance of the network considered
in figure 2 (cf figures 2(d) and 5(d)), emphasizing that it is the synaptic and not the neuronal
dynamics that are the key to this architecture. If, as these results suggest, synapses can under
some conditions replace neurons with little loss of computational power, the strong pressures
to maximise wiring economy (Chklovskii 1998) might favour synapse multiplicity.
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Figure 5. Dynamic synapses can substitute for neurons. (a) Network architecture. In contrast to
the network in figure 2, this network had only two hidden units (one excitatory and one inhibitory),
but with higher synapse multiplicity (five synapses/axon). (b) One of the input patterns used in
the training ensemble. For clarity, only a portion of the actual input is shown. (c) Output of the
network prior to training, with random initialization of the parameters ( � ). Output of the DN
after learning (——). The target (– – –) was the output of the quadratic filter given by equation (1),
the coefficients hkl (1 � k, l � 10) of which were generated randomly by subtracting µ/2 from
a random number generated from an exponential distribution with mean µ. (d) Performance after
network training. For different sizes of H (H is a symmetricm×mmatrix) we plotted the average
performance (MSE measured on a test set) over 20 different filters Q, i.e. 20 randomly generated
matrices H .

7. A universal approximation theorem for dynamic networks

In the preceding sections we have presented empirical evidence for the approximation
capabilities of our DN model for computations in the time series domain. This gives rise
to the question: what are the theoretical limits of their approximation capabilities? The
rigorous theoretical result presented in this section shows that basically there are no significant
a priori limits. Furthermore, in spite of the rather complicated system of equations that defines
DNs, one can give a precise mathematical characterization of the class of filters that can be
approximated by them. This characterization involves the following basic concepts.

An arbitrary filter F is called time invariant if a shift of the input functions by a constant
t0 just causes a shift of the output function by the same constant t0.

Another essential property of filters is fading memory. A filter F has fading memory if and
only if the value of Fx(0) can be approximated arbitrarily closely by the value of F x̃(0) for
functions x̃ that approximate the functions x for sufficiently long bounded intervals [−T , 0].

Interesting examples of linear and nonlinear time invariant filters with fading memory can
be generated with the help of representations of the form

Fx(t) =
∫ ∞

0
· · ·

∫ ∞

0
x(t − τ1) . . . x(t − τk)h(τ1, . . . , τk) dτ1, . . . , dτk

for measurable and essentially bounded functions x : R → R (with h ∈ L1). One refers
to such an integral as a Volterra term of order k. Note that for k = 1 it yields the usual
representation for a linear time invariant filter. The class of filters that can be represented by

N
et

w
or

k 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
T

ec
hn

is
ch

e 
U

ni
ve

rs
ity

 G
ra

z 
on

 0
7/

01
/1

0
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



Efficient temporal processing with biologically realistic dynamic synapses 83

Volterra series, i.e., by finite or infinite sums of Volterra terms of arbitrary order, has been
investigated for quite some time in neurobiology (Rieke et al 1997) and engineering (Schetzen
1980).

Theorem 1. Assume that X is the class of functions from R into [B0, B1] which satisfy
|x(t) − x(s)| � B2 · |t − s| for all t, s ∈ R, where B0, B1, B2 are arbitrary real-valued
constants with 0 < B0 < B1 and 0 < B2. Let F be an arbitrary filter that maps vectors of
functions x = 〈x1, . . . , xn〉 ∈ Xn into functions from R into R.

Then the following are equivalent:

(a) F can be approximated by DNs N defined by equations (2) and (A.1) (i.e., for any ε > 0
there exists such network N such that |Fx(t)−Nx(t)| < ε for all x ∈ Xn and all t ∈ R).

(b) F can be approximated by DNs according to equations (2) and (A.1) with just a single
layer of sigmoidal neurons.

(c) F is time invariant and has fading memory.
(d) F can be approximated by a sequence of (finite or infinite) Volterra series.

The proof of theorem 1 relies on the Stone–Weierstrass theorem, and is contained as the
proof of theorem 3.4 in Maass and Sontag (2000).

The universal approximation result contained in theorem 1 turns out to be rather robust
with regard to changes in the definition of a DN. DNs with just one layer of dynamic synapses
and one subsequent layer of sigmoidal gates can approximate the same class of filters as DNs
with an arbitrary number of layers of dynamic synapses and sigmoidal neurons. For details
we refer the interested reader to Maass and Sontag (2000).

This theoretical analysis does not address the question how large such DNs have to be in
order to approximate a given filter. However, the computer experiments reported in sections
3–6 of this paper provide first (empirical) data regarding these complexity issues.

8. Discussion

Our central hypothesis is that rapid changes in synaptic strength, mediated by mechanisms such
as facilitation and depression, are an integral part of neural processing. We have proposed a
general computational model in which such rapid changes endow a neural circuit with the
capacity to process temporal patterns. This model differs from most conventional models
of neural computation, based on static synapses, in which synaptic strength changes during
learning but not during performance. The architecture we propose provides a framework for
studying how neural circuits compute in real time.

We have used a simple task—a quadratic filter—to illustrate the potential of this
architecture. This task allows us to focus on temporal dynamics, an essential aspect of cortical
computation that is absent from many artificial neural network formulations. In this task, the
goal is to transform a time-varying input into the appropriate time-varying output; our results
thereby complement Buonomano and Merzenich (1995), where synaptic dynamics are used
to transform temporal patterns into spatial patterns. Such a transformation from one time-
varying signal to another must be performed, for example, to generate the motor commands
used involved in reaching, or in the real-time recognition of speech sounds.

Our very general framework differs from the more specific computational roles, such
as gain control (Abbott et al 1997), that have been proposed for synaptic dynamics. Gain
control is a mechanism that allows the input–output transformation to remain invariant over
a wide range of input intensities. To achieve gain control, synaptic efficacy rapidly adapts to
compensate for changes in the neuronal firing rate. Gain control thus represents an important
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special case of the larger role we are proposing for synaptic dynamics. Indeed, the conjugate
gradient algorithm we have used enables the present architecture to implement nearly arbitrary
transformations of one time-varying signal into another.

In the supervised learning paradigm we have explored here, a neural circuit is trained
to approximate a fully specified input–output system, where both the inputs and the outputs
are time-varying functions. We have focused on this paradigm not because we believe it is
necessarily the best model for learning in neural circuits—we are not proposing that synapses
in cortical circuits are subject to modification by the kind of learning algorithm we have
used—but rather because it is the best understood paradigm. Our results represent part of the
larger program of incorporating the key features of neural circuits into simple and tractable
mathematical formulations. Since our formalism is a natural extension of artificial neural
networks, it should be possible to derive comparable results from other paradigms, including
unsupervised and reinforcement learning.

Analytical results show that the class of nonlinear filters that can be approximated by DNs,
even with just a single hidden layer of sigmoidal neurons, is remarkably rich. It contains every
time invariant filter with fading memory, hence arguable every filter that is potentially useful
for a biological organism.

The computer simulations we performed show that rather small DNs are not only able to
perform interesting computations on time series, but their performance is comparable to that of
previously considered artificial neural networks that were designed for the purpose of yielding
efficient processing of temporal signals. We have tested DNs on tasks such as the learning of a
randomly chosen quadratic filter, as well as on the system identification task used in Back and
Tsoi (1993), to illustrate the potential of this architecture. The results are very encouraging.
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Appendix A. Single synapse model

The model is described in detail in Tsodyks et al (1998). For convenience we restate the
equations in our notation, which read as follows

pij (t) = fij (t) · dij (t)
df̄ij (t)

dt
= − f̄ij (t)

Fij
+ Uij · (1 − f̄ij (t)) · xj (t)

ddij (t)

dt
= 1 − dij (t)

Dij

− pij (t) · xj (t)
fij (t) = f̄ij (t) · (1 − Uij ) + Uij

(A.1)

with dij (0) = 1 and f̄ij (0) = 0. fij (t) models facilitation (with time constant Fij > 0 and
the ‘initial release probability’ Uij ∈ [0, 1]), whereas dij (t) models the combined effects of
synaptic depression (with time constant Dij > 0) and facilitation. Hence, the dynamics of a
synaptic connection is characterized by the three parameters Uij ∈ [0, 1], Dij > 0, Fij > 0.
For the numerical results presented in this paper we consider a discrete time (t = 1, . . . , T )
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version of the model defined by equation (A.1). In this setting we consider the dynamics

pij (t) = fij (t) · dij (t)
f̄ij (t + 1) = f̄ij (t)− f̄ij (t)

Fij
+ Uij · (1 − f̄ij (t)) · xj (t)

dij (t + 1) = dij (t) +
1 − dij (t)

Dij

− fij (t) · dij (t) · xj (t)
fij (t) = f̄ij (t) · (1 − Uij ) + Uij

(A.2)

with the initial conditions f̄ij (1) = 0 (i.e. fij (1) = Uij ) and dij (1) = 1. Note that in this case
the time constants Fij and Dij have to be �1.

Appendix B. The learning algorithm

In this section we describe the basics of the conjugate gradient learning algorithm—a
generalized version of simple gradient descent—which we used to minimize the MSE

E[z, zF ] = 1

T

T−1∑
t=0

(z(t)− zF (t))2 (B.1)

between the network output z(t) in response to the input time series x(t) and the target output
zF (t) = (Fx)(t) provided by the target filter F . The mathematical background of such algo-
rithms can be found, for example, in Hertz et al (1991), and an implementation in C is provided
in Press et al (1992). In order to apply a conjugate gradient algorithm ones has to calculate the
partial derivatives δ E[z,zF ]

δ Uij
, δ E[z,zF ]

δ Dij
, δ E[z,zF ]

δ Fij
and δ E[z,zF ]

δ Wij
for all synapses 〈ij〉 in the network.

As an example we state the equations for the partial derivatives δ E[z,zF ]
δ Uij

for the network
architecture shown in figure 2 (i.e. one-dimensional network input and output and a single
synapse between a pair of neurons) where 〈ij〉 is a synapse between a hidden neuron and an
output neuron. To simplify further notation we denote synapses from the input to the hidden
layer by 〈kj〉 and synapses from the hidden layer to the output simply by the index k. Using
this notation the output z(t) is given as

z(t) =
∑
k∈E

Wk · pk(t) · yk(t)−
∑
k∈I

Wk · pk(t) · yk(t) (B.2)

where yk(t) = σ(Wkj ·pkj ·x(t)) is the output of the kth hidden unit (there is only the single input
x(t)). The kth hidden unit is either excitatory (k ∈ E) or inhibitory (k ∈ I ). Hence Wk � 0
for all k ∈ (E ∪ I ). For the partial derivatives δ E[z,zF ]

δ Uk
we get the rather lengthy expressions

δ E[z, zF ]

δ Uk
= 2

T

T−1∑
t=0

(z(t)− zF (t)) · δ z(t)
δ Uk

δ z(t)

δ Uk
= Wk · yk(t) · δpk(t)

δUk
= Wk · yk(t) ·

(
dk(t) · δ fk(t)

δ Uk
+
δ dk(t)

δ Uk
· fk(t)

)

δ fk(t)

δ Uk
= (1 − Uk) · δ f̄k(t)

δ Uk

δ f̄k(t)

δ Uk
=

(
1 − 1

Fk

)
· δ f̄k(t − 1)

δ Uk
+ yk(t) ·

(
1 − f̄k(t − 1)− Uk · δ f̄k(t − 1)

δ Uk

)

δ dk(t)

δ Uk
=

(
1 − 1

Dk

)
· δ dk(t − 1)

δ Uk

−yk(t) ·
(
dk(t − 1) · δ fk(t − 1)

δ Uk
+
δ dk(t − 1)

δ Uk
· fk(t − 1)

)
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and the initial conditions δ dk(1)
δ Uk

= 0 and δ fk(1)
δ Uk

= 1.

Note that these equations relate the derivatives δ fk(t)

δ Uk
and δ dk(t)

δ Uk
at time t to the derivatives

δ fk(t−1)
δ Uk

and δ dk(t−1)
δ Uk

at time t − 1 similar as in real-time recurrent learning; see e.g. Hertz et al
(1991, section 7.3). Hence one can calculate all the derivatives in one ‘sweep’ from t = 1 to
T . Similar equations are obtained for the partial derivatives δ E[z,zF ]

δ Dk
, δ E[z,zF ]

δ Fk
and δ E[z,zF ]

δ Wk
and

for synapses 〈kj〉 connecting the input neuron to the hidden neurons (in this case the equations
get even more complex).

To ensure that the parameters 0 � U � 1, D � 1, F � 1 and W � 0 (indices skipped
for clarity) stay within their allowed range we introduce the ‘unbounded’ parameters Ũ , D̃,
F̃ , W̃ ∈ R with the following relationships to the original parameters: U = 1/(1 + exp(−Ũ )),
D = 1 + exp(D̃), F = 1 + exp(F̃ ), W = exp(W̃ ). The conjugate gradient algorithm was then
used to adjust these unbounded parameters which are allowed to have any value in R. The
partial derivatives ofE[z, zF ] with respect to the unbounded parameters can easily be obtained
by applying the chain rule, e.g.

δ E[z, zF ]

δ Ũ
= δ E[z, zF ]

δ U
· δ U
δ Ũ

= δ E[z, zF ]

δ U
· exp Ũ

(1 + exp(−Ũ ))2 .
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