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Efficient Test and Visualization of 
Multi-Set Intersections
Minghui Wang, Yongzhong Zhao & Bin Zhang

Identification of sets of objects with shared features is a common operation in all disciplines. Analysis 
of intersections among multiple sets is fundamental for in-depth understanding of their complex 
relationships. However, so far no method has been developed to assess statistical significance of 
intersections among three or more sets. Moreover, the state-of-the-art approaches for visualization 
of multi-set intersections are not scalable. Here, we first developed a theoretical framework for 
computing the statistical distributions of multi-set intersections based upon combinatorial theory, 
and then accordingly designed a procedure to efficiently calculate the exact probabilities of multi-set 
intersections. We further developed multiple efficient and scalable techniques to visualize multi-set 
intersections and the corresponding intersection statistics. We implemented both the theoretical 
framework and the visualization techniques in a unified R software package, SuperExactTest. 
We demonstrated the utility of SuperExactTest through an intensive simulation study and a 
comprehensive analysis of seven independently curated cancer gene sets as well as six disease or 
trait associated gene sets identified by genome-wide association studies. We expect SuperExactTest 
developed by this study will have a broad range of applications in scientific data analysis in many 
disciplines.

“Sets” are a commonly used concept in all disciplines. Classi�cation of distinct objects into sets is a 
basic operation in analyzing and understanding the relationships of the objects. For example, in biology 
sciences, gene signatures, which are lists of genes of common expression patterns with respect to cer-
tain perturbations or phenotypes1,2, can be treated as sets; grouping genes into biologically meaningful 
gene sets facilitates our understanding of the genomes. While identi�cation of sets from a population 
of objects is of primary interest in scienti�c data analysis, it is natural to study the relationships among 
multiple sets via measuring and visualizing their connections by intersecting them. Many similarity 
indices such as Sørensen coe�cient3 and the Jaccard index4 have been proposed to measure the degree 
of commonalties and di�erences between two sets. Assuming independent sampling of a collection of 
objects into each set, the standard Fisher’s exact test (FET)5 or hypergeometric test6 can be employed 
to calculate the statistical signi�cance of the observed overlap (i.e. intersection) between two sets. FET 
has been widely used in evaluating the enrichment of known functional pathways in predicted gene 
signatures7. When the intersection goes beyond two sets, computing the statistical distribution of the 
high-order intersections is not trivial. One solution is to perform repeated simulations1. However, the 
simulation analysis can only give rise to an approximate estimate and is computationally ine�cient when 
the number of sets increases, particularly in cases in which the cardinality of a sample space is large but 
the expected overlap size is small. As the analysis of high-order relationships among multiple sets is fun-
damental for our in-depth understanding of their complex mechanistic interactions, there is an urgent 
need for developing robust, e�cient and scalable algorithms to assess the signi�cance of the intersections 
among a large number of sets.

E�ective visualization of the comprehensive relationships among multiple sets is also of great interest 
and importance8. Venn diagrams have been the most popular way for illustrating the relationships between 
a very small number of sets, but are not feasible for more than �ve sets due to combinatorial explosion 
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in the number of possible set intersections (2n intersections for n sets). Although there is a plethora of 
methods and tools (e.g., VennMaster9,10, venneuler11 and UpSet12) to either axiomatically or heuristically 
resolve the issue of optimized visualization of multi-set intersections, a quantitative visualization of many 
complex relationships among multiple sets remains a challenge. For example, VennDiagram13, a popular 
Venn diagram plotting tool, can plot no more than �ve sets and thus has limited applications. It is even 
more challenging for VennDiagram to draw intersection areas proportional to their sizes. An alterna-
tive approach is to plot area-proportional Euler diagrams by using shapes like ellipses or rectangles to 
approximate the intersection sizes14. However, Euler diagram is only e�ective for a very small number 
of sets and is not scalable. Moreover, it is infeasible to present statistical signi�cance of intersections in 
Venn or Euler diagram. �erefore, it is highly desirable to develop scalable visualization techniques for 
illustrating high-order relationships among multi-sets beyond Venn and Euler diagrams.

In this paper, we developed a theoretical framework to compute the statistical distributions of multi-set 
intersections based upon combinatorial theory and accordingly designed a procedure to e�ciently cal-
culate the exact probability of multi-set intersections. We further developed new scalable techniques for 
e�cient visualization of multi-set intersections and intersection statistics. We implemented the frame-
work and the visualization techniques in an R (http://www.r-project.org/) package, SuperExactTest. We 
demonstrated the utility of SuperExactTest through a comprehensive analysis of seven independently 
curated cancer gene signatures and six disease or trait associated gene sets identi�ed by genome-wide 
association studies (GWAS).

Results
Implementation. We implemented the proposed multi-set intersection test algorithm in an R pack-
age SuperExactTest, which is available at CRAN (http://cran.r-project.org/).

�e inputs for SuperExactTest include a list of vectors corresponding to multiple sets and the size 
of the background population from which the sets are sampled. �e package enumerates the elements 
shared by every possible combination of the sets and then computes FE and the one-side probability for 
assessing statistical signi�cance of each observed intersection. A generic summary function was imple-
mented to tabulate all possible intersections, observed and expected sizes, FE values as well as probability 
values of signi�cance tests.

Effective Visualization of Multi-Set Intersections. To facilitate the e�cient identi�cation and vis-
ualization of relations among a ‘large’ number of sets, we developed novel techniques for presenting 
multi-set intersections and signi�cance tests. Instead of tweaking set bodies in a canvas, we proposed 
to organize all set intersections in a multi-layer circular15 layout or a two-dimensional matrix layout12 
and then plot bars over the intersections (see Figs.  1 and 2 in the following sections). �e bar height 
represents intersection size and the bar color intensity represents statistical signi�cance (P values) of the 
intersections based on the statistical method we described in Methods. �e colored bars can be sorted 
by the intersection size, set con�guration or P value signi�cance of FE. �e matrix layout provides a 
straightforward presentation for a small number of sets while the circle layout is capable of plotting more 
sets with more properties (such as FE) by adding more tracks if needed. �ese visualization techniques 
provide an intuitive display of multi-set intersections in a relatively simple format and are capable of 
encoding more features than the traditional Venn and Euler diagrams. We note that at the time we pre-
pared this manuscript, Lex and Gehlenborg12 introduced a web-based multi-set visualization tool which 
used a similar visualization strategy as our two-dimensional matrix layout. Both multi-set visualization 
approaches were implemented in the SuperExactTest R package so that users can perform the statistical 
test of multi-set intersections and visualize the results seamlessly.

A Simulation Study of Intersection of Multiple Sets with Dependent Samples. �e proposed 
method assumes that the sets under exact test are comprised of independent random samples from a 
population. However such an assumption may not be true in some applications. To explore whether the 
violation of the assumption of unbiased sampling could lead to some serious consequences, in particular 
in�ated false positive rate in statistical tests, we designed a simulation study to assess the performance 
of the present method in analyzing the overlap among multiple sets derived from biased sampling. For 
simplicity, we considered a sampling scheme in which a portion of the elements in a population have a 
higher probability to be sampled than the rest. Speci�cally, we de�ned a weight w ( ≥  1) as the ratio of the 
sampling probability for the group of the dependent elements to that for the rest elements: when w =  1, 
the sampling is unbiased, but when w >  1, some elements have a higher chance to be selected, mimicking 
the scenario that dependent elements are more likely to be sampled together than random. In each sim-
ulation, we sampled independently three sets of sizes 200, 300 and 400, from a population of size n and 
calculated the one-tailed P value signi�cance of the overlap among the three sets. For each con�guration 
of a population size n and a sampling weight w, we repeated the simulations 1,000 times and calculated 
the rate of false positives as the fraction of simulations with P value <  0.05 in the repeated simulations.

As shown in Table 1, the empirical false positive rate (FPR) is no larger than the expected level of 5% 
in the cases of unbiased sampling. Under biased sampling (w >  1), the FPR is well controlled in majority 
of the simulation settings. FPR is in�ated only when the population size is small so that the preferential 
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elements account for a relatively large fraction of the population. For example, when the preferential 
elements constitute 10% of the simulation populations of size 1,000, the empirical FPR departs from 
the expected level of 5% in cases of the sampling bias w ≥  1.4. However, when the sample size is large 
and the fraction of preferential elements is less than 5%, the impact of biased sampling is negligible in 
the simulated populations. Our simulation approximates large scale genomic data analysis in that the 
background population consists of tens of thousands genes while gene sets under test, such as functional 

Figure 1. Visualization of the intersections amongst seven cancer gene sets. A circular plot illustrating all 
possible intersections and the corresponding statistics. �e seven tracks in the middle represent the seven 
gene sets, with individual blocks showing “presence” (green) or “absence” (grey) of the gene sets in each 
intersection. �e height of the bars in the outer layer is proportional to the intersection sizes, as indicated by 
the numbers on the top of the bars. �e color intensity of the bars represents the P value signi�cance of the 
intersections.

Figure 2. A bar chart illustrating all possible intersections among seven cancer gene sets in a matrix 

layout. �e matrix of solid and empty circles at the bottom illustrates the “presence” (solid green) or 
“absence” (empty) of the gene sets in each intersection. �e numbers to the right of the matrix are set sizes. 
�e colored bars on the top of the matrix represent the intersection sizes with the color intensity showing 
the P value signi�cance.
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pathways, typically consist of tens or hundreds of members. �e result demonstrates that the present 
method can be applied to cases when the sampling bias is absent or moderate, and when the population 
size is su�ciently large to mitigate the impact of sampling bias.

Applications
Consensus of cancer gene sets. Cancer genes are de�ned as the mutated genes that are causally 
implicated in oncogenesis16. A�er more than three decades of active searching, even with exploded sys-
tematic studies of the cancer genomes in recent years, the census of cancer genes remains an open 
question17. �ere are a number of cancer gene census sets available but the consistency across them 
has not been formally explored. To evaluate the extent to which existing cancer predisposition gene 
sets agree with each other and the connections between germline mutation of cancer predisposition 
genes and somatic cancer driver genes, we carried out a pan-cancer susceptible gene analysis using the 
SuperExactTest R package developed in this paper. We extensively searched the published large scale 
cancer genome studies and cancer review papers and derived seven core cancer gene census sets, namely 
NRG18, LDG19, GGG17, ELG20, CCG16, BVG21 and NBG22 based on the abbreviations of the correspond-
ing author names (Table 2). NRG is a collection of germline mutated cancer predisposition genes while 
the rest are cancer predisposition gene censuses including both germline and somatic mutations. �e 
sizes of these gene sets varies from 107 (ELG) to 522 (CCG). Assuming the cancer predisposition genes 
were randomly sampled from the population of 20,687 human genes, the intersections between any 
two cancer predisposition gene sets are highly signi�cant (Bonferroni adjusted P values <  2.13 ×  10−18, 
FEs >  11.75). Such signi�cant overlaps among these cancer gene sets are not completely unexpected. As 
illustrated in Table S1 and Figs 1 and 2, we also calculated the intersections among three or more cancer 
predisposition gene sets. All the possible high-order intersections, i.e., the intersections across 3 or more 
sets, are very signi�cant with adjusted P values <  6.05 ×  10−34 and FEs >  529. All the seven sets share 
9 genes including ATM, CDKN2A, EGFR, NF1, PTEN, RUNX1, SMARCA4, STK11 and TP53, and this 
highest order intersection is highly signi�cant, with FE =  5.7 ×  1010 and adjusted P value =  4.3 ×  10−93. 
�is result is consistent with the well-recognized observations in large scale cancer genome discoveries 
that a few cancer genes are mutated in a high proportion of tumors of a given type (> 20%) while most 
cancer gene mutations are less common (2–20%)17. All of these genes, except EGFR, which is a pro-
to-oncogene characterized by gain of function, have been extensively studied as tumor suppressor genes 
characterized by loss of function. �ese genes play a variety of critical functional roles, such as genome 
stability maintenance and accurate cell cycle progression regulation (PTEN and TP53), metabolic regula-
tion (SMARCA4 and STK11), DNA damage sensor (ATM), as well as the cell cycle progression and pro-
liferation (CDKN2A, EGFR, NF1 and RUNX1). �ese are consensus pan-cancer driver genes, mutations 
in which have been found to be critical to the tumorigenesis in a number of malignancies.

As the number of genes shared by all cancer predisposition gene sets is small, it is interesting to �nd 
out to which degree each set is consistent with the rest. We calculated the signi�cance (P values) for all 

Weight(w)

Population Size (n)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1.0 0.036 0.04 0.01 0.009 0.018 0.026 0.01 0.005 0.033 0.024

1.1 0.05 0.035 0.014 0.018 0.015 0.039 0.015 0.01 0.038 0.026

1.2 0.054 0.035 0.023 0.018 0.015 0.038 0.014 0.004 0.03 0.02

1.3 0.052 0.035 0.018 0.024 0.018 0.025 0.017 0.006 0.04 0.021

1.4 0.067 0.053 0.024 0.02 0.013 0.028 0.007 0.006 0.042 0.023

1.5 0.078 0.04 0.021 0.014 0.019 0.027 0.011 0.01 0.036 0.023

1.6 0.084 0.047 0.022 0.02 0.022 0.029 0.012 0.003 0.037 0.024

1.7 0.102 0.062 0.015 0.019 0.013 0.029 0.008 0.009 0.03 0.033

1.8 0.137 0.057 0.029 0.027 0.017 0.033 0.014 0.007 0.041 0.024

1.9 0.157 0.063 0.03 0.021 0.028 0.029 0.013 0.008 0.038 0.031

2.0 0.178 0.078 0.035 0.029 0.022 0.041 0.014 0.008 0.028 0.027

Table 1.  Parameters de�ning weighted sampling and empirical false positive rate of the present method 

for computing signi�cance of overlap among three sets from weighted sampling. �e rate of false positive 
was calculated as the fraction of simulations with P value <  0.05 in 1000 repeated simulations. In each 
simulation, we sampled independently three sets of sizes 200, 300 and 400, from a population of size n. 
In each population, 100 elements had a sampling probability weight of w over the rest of the elements: all 
elements in the population were equally likely to be sampled (i.e. unbiased sampling) if w =  1, while 100 of 
the elements had twice the chance to be sampled compared with the others if w =  2.
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pairwise intersections and then for each set i, we rank-ordered the other six sets by the corresponding 
intersection P values. �e ranking order of the consistency between a given set i and the remaining sets 
is denoted as r ij (for j =  1, …, 6). Following the metric for ranking causal regulatory genes23, we calcu-

lated a cumulative consistency score for each set j as = ∏
−

s j i

r7

6

ij . It is expected that a set consistently 
showing the strongest overlap with other sets will have the highest consistency score while the one with 
the weakest overlap with other sets will have the lowest consistency. As the result, LDG, the cancer pre-
disposition gene set curated by the Washington University Genome Center, has the highest consistency 
score of 0.46, followed by BVG, CCG, GGG, NBG, ELG and NRG, with consistency scores of 0.19, 0.12, 
0.033, 0.028, 0.00034 and 0.000064, respectively (Figs 3 and 4). �is is in agreement with the results for 
the intersections across 5 or 6 sets. Among all the intersections across 6 sets, the one with 34 genes for 
the combination without NRG is the most signi�cant (FE =  1.2 ×  109 and adjusted P value =  3.0 ×  10−302) 
while the one with 59 genes for the combination without ELG and NRG is the most signi�cant 
(FE =  1.1 ×  107 and adjusted P value <  1 ×  10−310) among all the intersections across 5 sets. As NRG is 
the only cancer predisposition gene set with pure germline mutations and there is a very limited number 
of mutation genes shared between germline and soma, it is not surprising that NRG is least consistent 

Geneset Size Reference

BVG 125
Vogelstein, B. et al. Cancer genome landscapes. 
Science 2013, 339:1546-1558

CCG 522
Futreal, P. A. et al. A census of human cancer 
genes. Nature reviews. Cancer 2004, 4:177-183

ELG 107
Garraway, L. A. & Lander, E. S. Lessons from the 
cancer genome. Cell 2013, 153:17-37

GGG 260
Lawrence, M. S. et al. Discovery and saturation 
analysis of cancer genes across 21 tumour types. 
Nature 2014, 505:495-501

LDG 137
Kandoth, C. et al. Mutational landscape and 
signi�cance across 12 major cancer types. Nature 
2013, 502:333-339

NBG 435
Tamborero, D. et al. Comprehensive identi�cation 
of mutational cancer driver genes across 12 tumor 
types. Scienti�c reports 2013, 3:2650

NRG 114
Rahman, N. Realizing the promise of cancer 
predisposition genes. Nature 2014, 505:302-308

Table 2.  Seven cancer predisposition gene sets.

Figure 3. A heat-map illustrating the pairwise cancer gene set similarities as measured by the 

intersection analysis. �e color intensity represents the P value signi�cance of the intersection.



www.nature.com/scientificreports/

6Scientific RepoRts | 5:16923 | DOI: 10.1038/srep16923

with the other sets. �e overlap between the germline cancer predisposition gene set and the somatic 
driver sets suggests that a majority of the intersection genes are gatekeepers maintaining cell survival. 
For example, the intersection of BVG, CCG and NRG includes 36 genes (Table S1), of which 30 genes 
are gatekeepers but only 6 are caretakers for maintaining genome integrity24. Collectively, our analysis 
provides some interesting insights into the relationships among the cancer gene census sets, which is 
otherwise unavailable by simply comparing intersection sizes.

Relations between GWAS based complex phenotype susceptible gene sets. GWAS have been 
widely employed for identifying candidate genetic variants susceptible to complex human common dis-
eases, including diabetes, obesity and cardiovascular disorders. As of July 23, 2014, the GWAS catalog25 
had curated a database of 13,564 single nucleotide polymorphisms (SNPs) which were found to be asso-
ciated with 1,111 complex traits from 1,937 large scale association studies. As the predicted SNPs may be 
generally not the true causal variants for a phenotype, but are in linkage disequilibrium (LD) with one 
or more causal variants26, the genes closest to the predicted SNPs were annotated as the candidate causal 
genes (called the mapped genes) by the GWAS Catalog, resulting in a total of 9,296 mapped genes in 
the database. It is well-recognized that there are genetic connections between distinct complex diseases 
or phenotypes but yet it remains challenging to quantify such connections under the framework of 
genotype-phenotype map. In order to examine the shared genetic component of complex traits, we used 
the package SuperExactTest to exploit the top six complex trait phenotypes which presented the most 
number of candidate genes according to the GWAS Catalog, including neurological diseases (NEU), 
in�ammatory diseases (INF), cardiovascular diseases (CVD), height (HT), IgG glycosylation (IgG), as 
well as obesity (OB) (Table S2). �e sizes of these GWAS gene sets varied from 425 (HT) to 1,207 (OB).

Figures S1A and S1B show the intersections among the six GWAS gene sets in either a circular layout 
or a matrix layout plotted by the package SuperExactTest. Again, we assume the GWAS gene sets were 
randomly sampled from the population of 20,687 human genes. It is interesting to note that all possible 
intersections were observed among the six sets associated with distinct phenotypes. Of all the intersec-
tions, the one between NEU and OB was the most signi�cant (adjusted P value 1.22 ×  10−24, FE =  2.4) 
(Figures S1A and S1B and Table S2). Eating behavior is neurologically associated, which appears to be an 
early predisposition of neurological disorder27. Imbalanced energy expenditure due to over-nutrition is 
linked to obesity, which could complicate neurological disorders. �e genes shared by NEU and OB are 
enriched with a key pathway of axon guidance mediated by semaphorins, in which SEMA3A repels axons 
from the dorsal root ganglia, facial nerves, vagal nerves, olfactory-sensory, cortical nerves, hippocampal 
nerves and cerebellar nerves28. Signi�cant overlap was also observed between NEU and CVD (adjusted 
P value =  2.05 ×  10−5, FE =  1.9). �e implication of nervous system related functional pathways in CVD 
has been con�rmed by the recent integrative network approach29,30, illustrating the power of a simple 
intersection test in revealing the mechanistic connections upon public databases. �e six sets share only 
one gene TRNAI25, transfer RNA (tRNA) isoleucine 25 (adjusted P value =  0.002, FE =  25081). tRNAs 
are the essential components in biological synthesis of new proteins and have been shown to play a 

Figure 4. A network showing pairwise similarities among the seven cancer gene sets. �e node size is 
proportional to the set size in log scale, while the edge width and edge color intensity represent the size and 
the P value signi�cance of an intersection, respectively.
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crucial role in complex traits such as neurodegenerative diseases31,32. �e heat-map in Fig. S1C shows the 
pairwise similarities among the six GWAS gene sets. �e pairwise relationships between the six sets can 
be also depicted by a network where node size represents set size and edge width and edge color intensity 
are weighted by intersection size and P value signi�cance, respectively (Fig. S1D). As expected, HT had 
the weakest overlap with other GWAS gene sets. Both NEU and OB are signi�cantly overlapped with 
IgG (FE >  2.5 and adjusted P value <  2.99 ×  10−11). Immunoglobulin G plays a critical role in chronic 
in�ammatory processes. Many diseases are associated with in�ammation (including obesity and neu-
rological disorders), underscoring the etiological role of in�ammation23,33–36. �e results implicate the 
in�ammatory etiology of the complex diseases that have shared genetic determinants.

Discussion
While the methods for testing the signi�cance of intersection between two sets have long been well estab-
lished5,6, statistical test for multi-set intersections, which is even more essential to many scienti�c studies, 
has received little attention. In this paper, we presented a novel theoretical framework for e�cient com-
putation of probability distributions of multi-set intersections. �is novel approach provides an axiomatic 
solution to perform exact statistical test of the signi�cance of intersections by leveraging combinatorial 
principles. Essentially, this approach assumes the sets are comprised of independent random samples 
recruited from a population. �e probability distribution of an intersection can be calculated through 
enumeration of all possible set con�gurations. Unlike heuristic approaches such as Poisson approxima-
tion, which require a population size to be much larger than set sizes37, the present approach is e�ective 
for any population and set sizes and hence is feasible for a wide range of applications. It must be stressed 
that enumeration of all possible set con�gurations is computationally intensive due to the exponential 
increase of the number of combinations when the number of sets is large. To reduce the computation 
burden, we proposed to use a forward algorithm to integrate the set con�gurations in a hierarchical 
manner, which makes the approach computationally e�cient and scalable.

One big challenge in computing the probability distributions of multi-set intersection is to deal with 
the computational precision for very small intersection sizes and very large set sizes. As indicated in 
equations (4) and (5), calculation of the probability distributions of multi-set intersections requires com-
plicated integration of hypergeometric distribution densities, in which computing binomial coe�cients is 
the most frequent and crucial operation. When set sizes are big, numerical over�ow becomes a critical 
issue due to large factorial numbers in calculating binomial coe�cient terms of the hypergeometric 
function. One solution is to approximate hypergeometric distribution by binomial distribution when 
a population is large with respect to set sizes, such as the dhyper function in R. In the current imple-
mentation of our exact test algorithm, we employed log transformation to calculate binomial coe�cient 
terms and this technique can increase computation e�ciency and alleviate the numerical over�ow issue 
for a vast majority of the scienti�c applications. Neither is perfect in terms of computation precision. 
However, we believe the 64-bit �oating-point arithmetic, as we currently implemented within the popu-
larly used R environment, is su�ciently accurate for a vast majority of scienti�c applications. To assess 
how the error propagation features with our package, we compared multi-set intersection probability 
values computed from implementation using 64-bit �oating-point arithmetic with those from imple-
mentation using 32-bit �oating-point arithmetic. In this analysis, we implemented the programs by C 
programming language. As 32-bit arithmetic is expected to be less accurate, it could lead to large dif-
ference from the more accurate 64-bit arithmetic if errors propage badly. As illustrated in the Fig. S2, 
however, the di�erence in the computed probability values between the two arithmetics is no more than 
three thousandths of that from 64-bit arithmetic in these examples, suggesting error propagation is well 
controlled. �is assures a reasonably good numeric precision of the current package as implemented 
by 64-bit �oating-point arithmetic in the R environment. While exalted levels of numeric precision is 
necessary in practical research or engineering, advanced programming techniques including symbolic 
computation and arbitrary-precision arithmetic can be readily applied to the present package.

�e main interest of the present paper is in developing a statistical model for the test of signi�cance 
of the overlap among n sets (n ≥ 3). In our model, the sizes of lower order overlaps among the sets are 
not of interest and hence their values compatible with the highest order overlap size will be enumerated 
and integrated out from the probability calculation. �e present model is di�erent from the tests of 
contingency tables, e.g. Pearson chi-square test, of which the primary focus is to test for relationships 
between several discrete variables, i.e., whether the levels of one variable are di�erentially distributed 
over the combination of levels of the other variables due to interactions among di�erent variables38–40. 
All observed cell counts in a contingency table will be used in computing the hypothesis test statistics. 
In real data analyses, researchers may also like to test for the signi�cance of overlaps among several sets 
instead of overlap among all n sets. To assist with a comprehensive test and presentation of all possible 
set combinations in the overlap analysis, we have designed a function in the SuperExactTest package to 
count and evaluate the statistical signi�cance of all possible 2n−1 overlap combinations for n sets as exem-
pli�ed in the applications (Fig.  1 and S1). As multiple hypothesis tests are performed, multiple testing 
procedures like Bonferroni correction and false discovery rate (FDR) estimation need to be employed to 
correct for the occurrence of false positives41.
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To facilitate the e�ective visualization of multi-set intersections, we proposed two simple presentation 
techniques, a circular plot (Fig. 1) and a matrix plot (Fig. 2). In both plots, the con�gurations of multi-set 
intersections are plotted in a well-organized array of blocks with binary states (“presence” or “absence”) 
such that the intersections are independent of each other, circumventing the geometric restriction in the 
Venn or Euler diagram. Moreover, intersection size is represented by a bar diagram, with the statistical 
signi�cance (P value) represented by the color intensity of a bar. �e visualization methods are integrated 
with the results from the statistical test of multi-set intersections in an R package SuperExactTest. Users 
have the �exibility to change the con�guration of plots, such as using di�erent color schemes or sorting 
intersections by P value, set, size or degree.

Heat-map (eg, Fig.  3) is perhaps the most widely used technique to present pairwise relationships 
between multiple sets42. Alternatively, we can utilize networks to provide a more intuitive presentation 
of pair-wise intersections43,44. Figure 4 illustrates pairwise intersections between the gene sets in a net-
work, with the edge width and color intensity representing the intersection size and P value signi�cance, 
respectively. In the network presentation, more features (such as set size) can be readily encoded in node 
and edge properties like shape, size and color. �erefore, the network presentation is more advantageous 
to the heat-map in many instances.

We demonstrated the utility of SuperExactTest in two biological studies. �e �rst one composed of 
seven cancer predisposition gene sets, NRG18, LDG19, GGG17, ELG20, CCG16, BVG21 and NBG22. �ese 
cancer predisposition gene sets represented the current understanding of the genetic risk factors in can-
cer. To our knowledge, the present analysis is the �rst comprehensive comparison of existing cancer 
predisposition gene collections. It is intriguing that only nine genes were shared among all seven sets 
though all intersections are over-represented and signi�cant (adjusted P values <  2.13 ×  10−18, FE >  11), 
highlighting the discrepancy in gene selection by independent researchers/groups and the limited com-
prehension about the cancer etiology at the current stage. To provide readers with a practical guideline 
on choosing the best cancer predisposition gene set in regard to the mutual consensus, we sorted the 
gene sets with a simple discriminative metric by integrating statistical tests of all pairwise intersections. 
LDG was ranked the best as it had consistently the highest consistency with other sets.

We also carried out a thorough statistical test of the intersections among six GWAS gene sets asso-
ciated with complex human diseases or traits. One caveat with GWAS based gene mapping is that the 
predicted SNPs are generally not the true causal variants for a phenotype under study, but in LD that 
may harbor true causal genes. In practice, such as in the GWAS Catalog25, the genes adjacent to the SNPs 
are o�en considered as the most probable candidates. While there is no feasible approach to systemat-
ically evaluate every candidate, we performed a simple intersection analysis of six GWAS gene sets to 
check whether the inferred candidates were random genes. Of all the possible intersections among the 
six GWAS gene sets, those among OB, NEU and IgG showed the most signi�cant over-representation 
(adjusted P value <  2.99 ×  10−11), which is consistent with the comprehension that obesity complicates 
neurological disorders, and that both OB and NEU are associated with in�ammation process, in which 
Immunoglobulin G plays a critical role35. While the polygenic feature of complex traits is notoriously 
di�cult to dissect, the results show an interesting connection between in�ammation related diseases (OB 
and NEU) and the immune response molecules (immunoglobulins).

In summary, this study systematically resolves several long-standing key issues regarding theory, imple-
mentation and visualization in multi-set intersection analysis. An R so�ware package, SuperExactTest, 
was accordingly developed to unify the statistical testing and visualization of multi-set intersections. 
For the �rst time, we are able to assess the signi�cance of intersections among a large number of sets 
derived from a large population. Applications of SuperExactTest to multiple gene sets associated with 
complex human diseases or traits revealed novel insights into high-order relationships among these gene 
sets, which are otherwise unavailable through the traditional pair-wise Fisher’s exact test. Integration 
of SuperExactTest with other systems or statistical analyses will yield more in-depth understanding 
of interactions or connections among multiple components involved in complex systems. We expect 
SuperExactTest developed by this study will have a broad range of applications in many disciplines such 
as biological sciences, social sciences, engineering, physics and economics.

Methods
Fold Enrichment. Fold enrichment (FE) is used to evaluate whether there is an overrepresentation or 
underrepresentation of an intersection relative to the random expectation. Given a population of ele-
ments P and its two subsets, A and B, which share a collection of elements ∩=O A B, FE (also known 
as fold change in some literatures) is de�ned as the ratio between the observed and expected fractions 
of intersection (or overlap) elements:

=
/

( / )( / )
=

×

× ( )
FE

O P

A P B P

O P

A B 1

where, |X| denotes the number of elements in a set X. �e standard Fisher’s exact test (FET) or hyper-
geometric test can be employed to calculate the statistical signi�cance of the observed overlap7. �e 
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above equation can be readily generalized as below to analyze the overlap among N ( >  2) sets, 
, , …,S S Sand N1 2 :

=
/

∏ ( / ) ( )
FE

O P

S P 2i i

Exact Test of Multi-Set Intersections. Here, we developed a novel algorithm for fast calculation of 
the exact probability distributions of multi-set intersections. �is algorithm is scalable to any number 
of sets.

Let’s �rst consider a population P of n elements and its two subsets A and B with a and b elements, 
respectively. Assume that all the elements in P are unbiased, i.e., they are equally likely to be sampled into 
each set. �e probability of observing x elements shared by A and B can be calculated by combinatorial 
principles:

( )
( )( )∩( ) = ( = = , = ) =
−
−

( )

x A B x A a B b
n
b

a
x

n a
b x

Pr Pr ;
1

3

Note that this equation is exactly the same as the density function of a hypergeometric model that 
samples x white balls in b draw without replacement from an urn of a white balls and n-a black balls6. 
In R, the hypergeometric density value can be calculated by the function dhyper(x, a, n-a, b). Summing 
up the density values from x to maximum possible overlap size gives rise to the one-tailed probability 
that the cardinality of the intersection equals to or exceeds x. In cases that there are three sets A, B and 
C, with a, b and c elements, respectively (as exempli�ed in Fig.  5), the probability that the three sets 
share x common elements can be calculated by enumerating possible intersections in a hierarchical way:

( ) ( )( )
( )( )

∩ ∩
∩

∩ ∩ ∩

∑

∑

( = = , = , = )

= ( = = , = )

× ( = = , = )

=



−
−




−
−

( )

A B C x A a B b C c

A B j A a B b

A B C x A B j C c

n
b

n
c

a
j

n a
b j

j
x

n j
c x

Pr ;

Pr ;

Pr ;

1

4

j

j

In the equation (4), the sum integrates over all possible values of j, i.e., all possible intersections 
between sets A and B which are compatible with the observed number of intersections between all the 
three sets. Note that the equation (4) is essentially a sum of products of hypergeometric densities. One 
caveat of computing the equation (4) is that a direct calculation of those binomial coe�cients results in 
numeric over�ow for large sets.

�e equation (4) can be readily extended to test for overlaps among four or more sets. For example, 
in the case of �ve sets A, B, C, D and E with a, b, c, d and e elements, respectively, the probability of 
sharing x elements among them can be determined by

Figure 5. A Venn diagram showing intersection among three sets. �e box represents a population P of n 
elements and the three ellipses are three subsets A, B and C, with size a, b and c, respectively. A and B share 
j elements, among which x elements are also shared with C.
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where, the sum traverses all possible intersections of size j between A and B, each of which is further 
intersected with C by size k, later intersected with D by size l, until �nally intersected with the last set 
E. �e order of the sets in the hierarchical intersections does not a�ect the outcome.

Efficient Calculation of the Exact Probability of Multi-Set Intersection. As shown in the equa-
tions (4) and (5), the calculation of the probabilities of multi-set intersections involves integrations over 
all possible hierarchical intersections across all the sets. When the population size and/or the number of 
sets increase, the number of operations in a naïve integration approach increases exponentially, making 
it impractical to calculate probabilities in a reasonable time. To optimize the procedure described in 
the equation (5), we developed a forward algorithm which was originally developed to calculate hidden 
Markov models45.

For simplicity without loss of generality, let’s consider an example of 5 sets with a, b, c, d and e ele-
ments, respectively. As indicated in the equation (5), the inner-most summation over l is a function of k, 
denoted by ( )f k

l
, which, given k, is independent of variables a, b and c, and j. �erefore we can calculate 

( )f k
l

 with respect to all possible k values without considering the actual values of variables a, b, c and j. 
Analogously, we can treat the second inner-most summation as a function of j, say ( )f j

k
, which is inde-

pendent of variables a and b given j. By utilizing the pre-computed function values of ( )f k
l

, ( )f j
k

 can 
be quickly computed without going through the integration of the inner-most summation for each j.  
Finally the outer-most summation can be done e�ciently a�er calculating ( )f j

k
 for all possible j. �is 

procedure is detailed below.

Step 1. Compute the inner-most integration over l as a function of k
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Step 2. Compute the integration over k as a function of j
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Step 3. Compute the multi-set intersection probability from the outer-most integration
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�e computation complexity of this procedure is estimated as follows. Given a population of n ele-
ments, we consider t sets which share x common elements and the smallest set size is m. Equation (6) is 
essentially a sum of a product of two hypergeometric density values. �e loop variable l takes a value 
from x to k, where k takes a value from x to the smallest set size m. �e number of operations in Step 1 
is (m −  x) * (m −  x +  1)/2 ≈  (m^2)/2 when x ≪  m. �erefore, the worst computation complexity for Step 
1 is O(m2). Step 2 has the same computation complexity as Step 1. �e computation time in Equation 
(8) is linear to j (j =  x, x +  1, .., m), so the worst computation complexity of Step 3 is O(m). In total, we 
need to run Step 1 by once, Step 2 by (t − 3) times, and Step 3 by only once. �erefore the overall worst 
computation complexity for the whole procedure is O(t * m2). When m t, the complexity will be 
( )O m2 . Since the computation complexity of the algorithm is linear with respect to the number of sets 

for intersection test, it is feasible to compute intersection probabilities for a large number of sets.

Software Availability.  SuperExactTest is available as R package in CRAN (the Comprehensive R 
Archive Network, https://cran.r-project.org/), a repository of open-source so�ware.

Below is the R code for using the SuperExactTest package to analyze the cancer gene sets.
Step 1. Load the SuperExactTest package. >  library(SuperExactTest)
Step 2. Read in the cancer gene. >  data(Cancer)
Step 3. Check the cancer data object. >  str(Cancer)

https://cran.r-project.org/
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Step 4. Perform the super exact test. >  Result1 = supertest(Cancer, n =  20687)
 Step 5. Visualize the result in a circular layout. >  plot(Result1, degree =  2:7, sort.by = ‘size’, legend.
col =  1)
 Step 6. Visualize the result in a matrix layout. >  plot(Result1, Layout =  ‘landscape’, degree =  2:7, sort.
by =  ‘size’)
 Step 7. Tabulate the analysis result into a �le: >  write.csv(summary(Result1)$Table, �le =  ‘summary.
table.csv’, row.names =  FALSE)
 For more detailed explanation regarding the package usage, please read R help 
documents >  help(package =  ‘SuperExactTest’).
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