
Efficient Testbench Code Synthesis
for a Hardware Emulator System

I. Mavroidis, I. Papaefstathiou

Microprocessor and Hardware Lab (MHL)
Technical University of Crete (TUC)

Kounoupidiana, Crete, GG73100, Greece
{jacob, ygp}@mhl.tuc.gr

Abstract: - The rising complexity of modern embedded

systems is causing a significant increase in the verification
effort required by hardware designers and software
developers, leading to the “design verification crisis”, as it
is known among engineers. Today’s verification challenges
require powerful testbenches and high-performance
simulation solutions such as Hardware Simulation
Accelerators and Hardware Emulators that have been in
use in hardware and electronic system design centers for
approximately the last decade. In particular, in order to
accelerate functional simulation, hardware emulation is
used so as to offload calculation-intensive tasks from the
software simulator. However, the communication overhead
between the software simulator and hardware emulator is
becoming a new critical bottleneck. We tackle this problem
by partitioning the code running on the software simulator
into two sections: the testbench HDL (Hardware
Description Language) code that communicates directly
with the Design Under Test (DUT) and the rest C-like
testbench code. The former section is transformed into
synthesizable code while the latter runs in a general
purpose CPU. Our experiments demonstrate that the
proposed method reduces the communication overhead by a
factor of about 5 compared to a conventional hardware
emulated simulation.

1 Introduction
It has been a common practice for hardware engineers to

build prototype boards in order to test their designs and to
provide the software engineers a platform on which they
could develop their code. Such boards take time to build
and maintain, which significantly impacts project schedules
and budgets. In addition, semiconductor vendors have
always spent a significant amount of resources developing
special-purpose software to accelerate the development
phase of each microprocessor, microcontroller, or
application-specific system.

Moreover, in the last decade, hardware accelerators,
designed primarily to speed-up front-end simulation, have
been available to large design centers with large budgets
and design tool support. Hardware emulators on the other
hand have also been available as a moderate-cost solution,
mainly satisfying the needs of back-end verification.

The hardware accelerator is based on using circuit boards
populated with multiple special-purpose ASICs, each of
which contains a number of specialized processors and lots
of local memory (typically 80% to 90% of these devices are
memory). In this case, the HDL representation of the design

is compiled into machine code, which is subsequently
distributed amongst the various processors. The alternative,
the hardware emulator, is to use circuit boards populated
with FPGAs, in which case the HDL design is typically
synthesized into a gate-level equivalent, which is partitioned
across, and loaded into, the various FPGAs. In this case a
co-processor executes the non-synthesizable code such as
the testbench.

These approaches lighten the burden of hardware design
verification by using custom hardware to aid the verification
process. However both approaches suffer from the
demanding communication between the software and the
hardware sections of the system.

2 Related Work
Hardware simulation accelerators and hardware

emulators have been in use in hardware and electronic
system design centers for approximately the last decade.
Nowadays, with the rising design complexity, there is an
increased interest in such technologies. Speeding up
simulation and verification of complex embedded systems
can save design teams a lot of money and effort. Therefore,
more and more companies build systems for hardware
emulation. On the other hand, the market and relevant
product offerings for simulation acceleration systems is still
quite limited, due to their high cost.

Among the very limited available simulation
acceleration and emulator systems, we note the following:
• The Palladium-II system from Cadence [1], which

supports hardware acceleration and in-circuit
emulation, is speeding up verification 100 to 10000
times when compared with software-based RTL
simulation. Palladium is described as an array of
“massively parallel Boolean compute engines”.

• The Hammer accelerator system from Tharas Systems
[2], which contains up to 128 specialized processors
connected through a proprietary backplane.

• The Vstation Pro from Mentor Graphics [3], which
provides an environment for verifying complex designs
from 1.6 to 120 million gates. The system supports
RTL and gate-level verification at a speed of up to
1MHz within a simulation-like debug environment that
allows 100 percent signal visibility into the design.

• The Zebu-XL system emulator from EVE [4], which
can handle designs from 3M to 50M ASIC gates, and is
aimed primarily at large-scale chip and system
emulation applications. It is offered in a modular, 19

978-3-9810801-2-4/DATE07 © 2007 EDAA

inch rack-mountable configuration, which accepts up to
64 Xilinx Virtex-II XC2V8000 FPGAs.

• The Riviera-IPT system from Aldec [5], an FPGA-
based PCI board, that is tightly coupled to Aldec’s own
software simulator. A single board has a capacity of up
to 12M system gates. Multiple boards can be connected
to the same PCI bus for larger capacity.

The hardware-software communication overhead of these
systems has been addressed in the past. Verisity has
developed eCelerator [6] which reduces this overhead by
using innovative synthesis technology to transform the most
frequently executed sections of e-testbenches in hardware.
By shifting the computationally most expensive parts onto
hardware, the tool achieves significant performance gains in
the verification process.

In [7] the authors propose a methodology to reduce the
communication overhead by exploiting burst data transfer
and parallelism, which are obtained by splitting the
testbench and moving a part of it into a hardware
accelerator.

Moreover, [8] presents a synthesizable testbench
architecture addressing the same problem, which is based
on a defined instruction for standalone mode verification. A
set of instructions describes transitions of a signal.

3 Communication Bottleneck
Hardware emulators allow designers to implement a

circuit using FPGA devices instead of an ASIC, thereby
running simulations of the circuit at a much higher
throughput than a software simulator can provide. When
emulators first became available, all of the circuit had to
reside in FPGAs, but today's emulators can communicate
with a software simulator and allow designers to use all the
models that the software simulator supports.

Although ISS models, TLMs, and pure C or C++ models
all provide system designers with the means to evaluate
basic system architectures, they can not be synthesized and
implemented on an FPGA. In practice, such testbench code
runs in a software simulation environment which is usually
a general purpose CPU that communicates with the
synthesizable DUT. This leads to a communication
overhead between the testbench and the synthesizable DUT.
Using a software testbench in a hardware-assisted
environment is likely to create a major communication
bottleneck. Engineers using a testbench specifically
designed for performance are likely to find that even though
their testbench consumes as little as 10% of the total
simulation time, they are still limited to, at most, 10x
improvement in the emulated environment.

In this paper, we reduce the communication overhead by
synthesizing the portion of the testbench code that directly
communicates with the DUT and involves most of the
transactions. In particular, the proposed process involves the
following steps:

1. Partitioning of the testbench code into the Testbench

HDL code that directly interfaces to the DUT, and the C-

like behavioral models that interface to the Testbench
HDL code.

2. Transform the Testbench HDL code part into
synthesizable code.

The transformed testbench code is synthesized along with

a library that it is provided by a hardware simulator. In this
way, the demanding communication path between the
testbench and the DUT is transformed in hardware and
therefore it is performed in a much faster way.

Figure 1. Splitting of the Testbench.

4 System Architecture
Α high-performance verification system should

incorporate both processors and FPGAs. A processor-only
or FPGA-only solution is limited in terms of performance or
flexibility in simulating various types of models.

First, in terms of the performance achieved, the maximum
clock frequency of FPGAs lags behind that of processors
implemented in contemporary ASIC. Therefore, processors
with higher clock frequency execute behavioral models
faster than FPGAs. On the other hand, FPGAs are more
appropriate for executing simultaneous events and
computation-intensive processes in parallel. Moreover,
testbenches are commonly created using HDL such as
Verilog or VHDL, sometimes including C-like
programming language linked to an HDL simulator through
e.g. the Programming Language Interface (PLI). This
technique is used when the testbench needs to simulate
more complex and more abstract functions. FPGAs are not
capable of simulating models created in C-like languages
and/or behavioral HDL that is not synthesizable. Therefore,
processors and FPGAs have mutually complementary
natures for high-performance verification systems. Modern
large FPGAs incorporate general purpose CPUs which
facilitates the FPGA-CPU communication path.

In the proposed architecture, shown in Figure 2, a built-in
CPU (hardcore) located on the FPGA runs C-like behavioral
testbench code, executes testbench floating point
expressions, holds testbench large arrays, and accesses
external files. Optionally, a memory controller and a FPU
can be used to offload the tasks of this CPU.

The hardware simulator generates a simulation clock that
coordinates the flow of the simulation. The time resolution
of the simulator is defined by that of the testbench. The
transformed HDL testbench block can pause the whole
simulation environment in order to send requests such as

Testbench DUT

HDL
TB DUT

C-like
TB

split
TB

i/f

i/f

H/W
simulator

PLI calls, memory references, file accesses or floating point
execution. The HDL testbench block provides all the input
signals including the clock signals to the DUT.

The server block is responsible to serve the requests from
the HDL testbench block. This block can access a CPU in
order to execute PLI calls. The large arrays of the testbench
code are stored in an external memory.

Figure 2. FPGA Emulator Architecture

In the proposed architecture the communication
bottleneck between the software part and the hardware part
of the simulation is pushed in the server-CPU interface. The
accesses on this interface are infrequent. Moreover, this is a
fixed interface, independent of the emulated DUT.

4.1 Testbench Transformed Structure
The original VHDL testbench is transformed into

synthesizable code that can run in the environment provided
by the hardware simulator. The tool we developed
transforms a testbench written in VHDL language. However
the same concepts can be applied to a Verilog testbench.
The process body of a VHDL testbench includes various
code sections that are not synthesizable. Such portions are
mainly timing statements such as the VHDL wait statement,
large arrays that are impractical or even impossible to be
mapped onto FPGA registers, floating point calculations
and file handling. The large arrays and the files are stored in
the external memory that is accessed by the CPU and the
memory controller. A VHDL process of the transformed
VHDL testbench running in the hardware simulator can
access the CPU and the external memory by sending
requests to the server block of Figure 2.

We have enhanced the functionality of the VHDL
processes in the transformed testbench in such a way that
they can pause the simulation time of the hardware
simulator in order to transfer requests to the server block. In
every clock cycle the hardware simulator serves all the
pending requests before advancing the simulation time
counter. The processes in a VHDL language form a tree
structure. We use this tree structure to transfer the requests
from the body of the process to the server block. A code
that receives requests from the process body and forwards
them to a scheduler block is attached to the process. In
every VHDL module a scheduler block is responsible to
gather the requests from all its processes and advance them

a layer higher in the VHDL hierarchy. This scheduler block
can serve the requests in any order since the simulation is
paused when any request is pending. This process is
illustrated in Figure 3.

Figure 3. Tree-like Scheduling of Requests.

4.2 Simulation Clock
The hardware simulator provides the simulation clock that

coordinates the functions of the simulation. A hardware
counter keeps track of the simulation time. All timing
references in the testbench code are translated to simulation
clock cycles.

The simulation clock depends on the clock of the
synthesized VHDL testbench. In particular, every
simulation cycle is divided into four simulation ticks, and
each tick is equal to one clock cycle of the synthesized
testbench. These four tick time intervals are essential for the
operations performed by a transformed VHDL process
during a simulation cycle as the next section clearly
demonstrates. Upon a request from a process the simulation
stalls and the simulation cycle starts over.

4.3 Testbench Simulation Flow
The transformation of the testbench code is process-

based. During a simulation tick a VHDL process either (a)
executes a code segment or (b) waits for the transition of a
signal or (c) waits for some time interval or (d) sends a
request to the server block. In order to achieve the
aforementioned functionality every VHDL process is
transformed according to the FSM shown in Figure 4.

Figure 4. Process State Transition Diagram

In the EX state the process executes the synthesizable
code of the testbench. A process stays in the EX state for 1
or 2 cycles depending on the original code. On a timing
statement, such as the VHDL wait instruction, the process

server

Module A

scheduler

scheduler

req
proc
ess

req
proc
ess

req
proc
ess

Module B

scheduler

req
proc
ess

req
proc
ess

req
proc
ess

Module C
req
proc
ess

req
proc
essModule D

wt ws

done req

ft & st

 WT WS

 EX

 RQ

ft: first tick of sim cycle
lt: last tick of sim cycle
st: signal transition
tm: timeout
wt: wait for sim time
ws: wait for signal

lt & tm

clocks
HDL

testbench
mem
cntrl

M
E
M
O
R
Y

D
U
T

sim clock

server

out
req reply

FPU

CPU

 FPGA

HW simulator

out

jumps in the WT or WS state. Finally the process enters the
RQ state in order to send a request to the server block.

An example timing diagram that shows three processes
and their state transitions is shown in Figure 5.

Figure 5. Process Timing Diagram.

The clock signals generated from the transformed
testbench are fed to clock buffers of the FPGA that drive in
their turn the clock trees of the DUT. The transition from
the WT state to the EX state can happen in the last tick of a
simulation cycle while the transition from the WS state to
the EX state can happen in the first tick of a simulation
cycle, as shown in Figure 4. In this way, the synchronous
signals of the transformed testbench change their values one
simulation tick after the clock signals change their values
and thus we prevent setup and hold time violations of the
signals sent from the testbench to the DUT. This is depicted
in Figure 6. Assuming that the clk and val signals are sent to
the DUT, the val signal will arrive one tick after the clk
signal which is certainly the correct behavior.

Figure 6. Setup and Hold Time Violations Prevention.

4.4 Pause and Resume Process State
Whenever a VHDL process executes a wait instruction or

sends a request to the server block the process must stall,
pause its state and resume at some time later. In order to add
this functionality to a process all the statements in its body
are transformed to conditional statements. Any point in the

process body can become an exit point by setting an exit
condition at that point. Similarly the last exit point can
become an entry point using conditional instructions.

Take for instance the code segment below and its
transformation. The wait instruction becomes the exit point
when it is first executed and the entry point after 10
simulation cycles, assuming that the simulation cycle is 1
ns.

Original code:
 If clk = ’1’ then
 val <= ’1’;
 wait 10 ns;
 val <= ’0’;
 end if;

Transformed code
 If reset = ’1’ then
 exit_point := 0;
 else
 If (exit_point = 0 or exit_point = 1) and clk = ’1’ then
 if exit_point = 0 then
 val <= ’1’;
 end if;
 if exit_point = 0 then
 proc_state <= WT; -- enter WT state
 wait_time <= 10; -- stay in WT for 10 sim cycles
 exit_point := 1; -- exit point
 elsif exit_point = ’1’ then
 exit_point <= 0; -- entry point
 end if;
 if exit_point = 0 then
 val <= ’0’;
 end if;
 end if;
 end if;

If a process can pause its state at any instruction and

resume it at some time later then non-blocking assignments
may become blocking assignments by mistake. In order to
avoid this erroneous behavior we transformed all the non-
blocking assignments of the original code to blocking
assignments by using extra variables. Every extra variable
corresponds to a variable assigned in a non-blocking
assignment. The extra variable holds the value of its
corresponding variable in the last simulation cycle. A
VHDL process in the transformed code assigns the values
of all the extra variables in the last tick of every simulation
cycle.

Consider the code segment below and its transformation.
All the non-blocking assignments of the original code are
transformed to blocking assignment in order to avoid having
a non-blocking assignment after the wait instruction.

Original code:
 process
 a <= ’1’;
 wait 10 ns;
 b <= a;
 …
 end process;

Transformed code:
 process begin -- fix non-blocking assignments
 if last_tick = ’1’ then -- last tick of simulation cycle
 a_last <= a; -- all variables in non-blocking
 … -- assignments
 end if;
 end process;

process proc1
 begin
 clk <= ’0’; wait for 10 ns;
 clk <= ’1’; wait for 10 ns;
end process;

Original Testbench Code

3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2

2 3 4 5 sim_cnt

tick_cnt

proc1

clk

proc2

 1

WT EX WT EX WT EX WT EX WT

WS EX WS EX WS EX WS EX

val

process proc2
 begin
 val <= ’0’;
 wait until clk’event and clk=’1’
 val <= not val;
end process;

WS EX WS EX1EX2 RQ EX1EX2 WS EX1 WS

3 0 1 2 3 0 1 2 0 1 2 3 0 1 2

2 3 4 sim_cnt

tick_cnt

proc 1

proc 2

proc 3

 1

WT EX1EX2 WT EX1 WS EX1 EX2

WS EX1EX2 WT EX1 WT

 process begin
 If exit_point = 0 then
 a = ’1’;
 end if;
 if exit_point = 0 then
 proc_state <= WT; wait_time <= 10; exit_point <= 1;
 elsif exit_point = 1 then exit_point <= 0;
 end if;
 if exit_point = 0 then
 b <= a_last; -- use the old value of a
 end if;
 …
 end process;

4.5 Testbench code Transformations
Several other functions are performed by the tool we

developed, so as to be able to reduce the communication
overhead in a hardware emulator environment. Briefly, we
mention the following code transformations:

• Timing references are transformed to simulation cycles.
• Large multi-dimensional arrays and their references are

transformed into one-dimensional arrays in order to
simplify their mapping to the external memory.

• VHDL assertion statements are sent to the external
CPU.

• VHDL after statements are transformed into VHDL
processes that are triggered when the after statements
are executed.

• VHDL select statements are transformed into if/else
statements.

• Processes that describe combinational logic which
sends requests to the server block are transformed into
sequential logic that is clocked with the simulation
clock.

5 System Evaluation Environment
In order to evaluate the tool and quantify the proposed

methodology we created a typical hardware emulator
system in which we applied the proposed framework.

In particular, we assumed that the hardware emulator uses
a Xilinx Virtex-2P FPGA which is a widely used state-of-
the-art FPGA. We built an example DUT along with its
testbench in order to measure the performance of the
emulator. The whole system with the transformed testbench
and the DUT was synthesized using the Xilinx ISE 7.1
synthesis tool.

The DUT is a simple VHDL code that accesses a
parameterized number of SRAM chips. The number of
memory chips is defined whenever a new system is built for
evaluation. The original testbench includes the VHDL
model of a 32-bit ZBT SRAM chip from Micron
Technology, Inc [9].

The tool transforms the testbench along with the memory
model to synthesizable code. The large memory arrays of
the model are stored in the external memory of the emulator
that is accessed by the PowerPC. The transformed model
makes memory requests to the server block which in turn
forwards the requests to the PowerPC.

5.1 Measurements and Comparison
The Xilinx ISE tool reports that the FPGA system which

consists of the DUT, the testbench runs at 125 MHz.
Therefore the simulation tick time is 8 ns and the simulation
cycle is 32 ns. The PowerPC can also run at 125 MHz. The
critical path is in the SRAM model as expected. An SRAM
memory request takes 15 cycles in average. The DUT
performs one SRAM request to every SRAM chip every
400 cycles. Taking all the aforementioned parameters in
account we can measure the simulation time and frequency.
The results are depicted in Figure 7.

0

5

10

15

20

25

30

35

1 2 3 4 5 6

SRAM chips

Si
m

ul
at

io
n

Fr
eq

ue
nc

y
(M

H
z)

Figure 7. Simulation Frequency.

We notice that the number of SRAM chips slightly affects
the overall simulation time. This is because the number of
the SRAM devices does affect the number of signals
between the DUT and the testbench, but this is the portion
of the testbench that is transformed to synthesizable code.
As this figure clearly demonstrates we can execute the
testbench of 6 SRAM commercial controllers at a speed of
30MHz. This is certainly a significant improvement over
the execution of the approximately 300 lines of HDL code
of each testbench in a software simulator general-purpose
CPU.

In a conventional emulator the DUT communicates to the
testbench code through a fast off-chip link which connects
the FPGA running the DUT with a stand-alone CPU, such
as the PCI Express, that today has a raw bandwidth of at
most 4Gbytes/sec, or some other fast communication link.
Over this link all the signals of the interface between the
testbench and the DUT should be sent at a rate derived by
the DUT clock speed (i.e. all the signals should be sent
every clock cycle). The number of the interface signals in
the current real-world design we used is sram_chips * 90,
where sram_chips is the number of SRAM chips of the
DUT (since each SRAM chip has about 90 usable I/O pins).
Therefore, in the conventional approach the number of the
SRAM chips heavily affects the communication overhead
and therefore the overall performance of the system, since
the number of the interface signals that should be sent over
a clock cycle is proportional to the number of SRAM
devices. Moreover, on top of those signals there exists
some communication protocol overhead between the DUT
and the testbench that can further limit the performance.
Since we have synthesized the testbench, we have
significantly reduced the communication cost between the

CPU and the DUT; the FPGA which now implements both
the DUT and the synthesized testbench communicates with
the CPU only when a PLI call (or a memory access request)
is issued and this is done very infrequently. We measured
the simulation frequency of the aforementioned system in
order to compare it against our proposed system. In
particular, we measured the communication bandwidth
required by the proposed framework and compared it with
that of a conventional emulator, assuming that in the
standard emulator case the communication protocol
overhead between the DUT and the CPU is negligible.
Figure 8 shows the simulation speed we derived using our
methodology.

0

1

2

3

4

5

6

1 2 3 4 5 6

SRAM chips

Si
m

ul
at

io
n

Sp
ee

d
U

p

Figure 8. Comparison of the proposed architecture.

So assuming our typical DUT with 600 pins, the proposed
architecture can speed-up the simulation by a factor of
about 5 compared to a conventional hardware emulated
simulation, at the cost of only running our simple script and
then synthesize the resulting code using a conventional
FPGA EDA flow.

These results are in favour of the conventional emulator
since it was hard to estimate its performance and therefore
several delays such as the time consumed by the PCI driver
or the Testbench-DUT communication protocol overhead
were assumed to be zero.

6 Future Work
So far we have built a tool that can transform testbench

code with simple VHDL instructions. We plan to extend it
in such way that it can transform any VHDL code. Apart
from the SRAM model it has transformed successfully a
128 Mb SDRAM DDR model from Micron. However, the
tool does not support all VHDL constructs yet.

Moreover, we plan to use more than one embedded CPUs
in the system. The server block can send many requests in
parallel to many CPUs. If the requests sent to each CPU are
independent (they access different memory areas) the CPUs
can work independently.

7 Conclusion
Hardware emulators and FPGA prototypes have long

provided the highest performance when compared with all
the verification approaches in the industry, but they have
also suffered from a number of severe drawbacks. One of
the most important problems is that complex emulator
systems demand high communication throughput between
the testbench and the synthesizable DUT which can
eventually limit the performance of the simulation. To
address the above shortcoming, we proposed to split the
testbench into two sections and transform the portion of the
testbench that communicates very frequently with the DUT
to synthesizable code. We built a tool that provides a way to
synthesize a behavioral VHDL code in a hardware
simulation environment. We claim that we can overcome
the testbench-DUT communication bottleneck and therefore
increase the capabilities of today’s hardware emulators by
up to 500% when applied to real-world systems.

References
[1] Cadence, Palladium Accelerator/Emulator,

http://www.cadence.com/products/functional_ver/palladium/
[2] Tharas Systems, Hammer SX and MX hardware accelerators,

http://www.tharas.com/products/
[3] Mentor Graphics, VStationPro,

http://www.mentor.com/products/fv/emulation/vstation_pro/
[4] EVE, Zebu hardware emulator,

http://www.eve-team.com/products.html
[5] ALDEC, Riviera,

http://www.aldec.com/products/riviera/
[6] Verisity, eCeleretor Testbench Acceleration,

http://www.verisity.com/products/ecelerator.html
[7] Young-Il Kim, Wooseung Yang, Young-Su Kwon, Chong-

Min Kyung, "Communication-Efficient Hardware
Acceleration for Fast Functional Simulation", pp. 293-298,
Design Automation Conference, 41st Conference on
(DAC'04), 2004.

[8] Ho-seok Choi, Seung-beom Lee, Sin-chong Park ,
“Instruction Based Synthesizable Testbench Architecture”,
IEICE TRANSACTIONS on Electronics Vol.E89C No.5
pp.653-657, 2006

[9] Micron Technology, http://www.micron.com/

