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Abstract 
In this paper, we present an algorithm that can 

classify large-scale text data with high classification 
quality and fast training speed. Our method is based 
on a novel extension of the proximal SVM mode [3]. 
Previous studies on proximal SVM have focused on 
classification for low dimensional data and did not 
consider the unbalanced data cases. Such methods will 
meet difficulties when classifying unbalanced and high 
dimensional data sets such as text documents. In this 
work, we extend the original proximal SVM by 
learning a weight for each training error. We show 
that the classification algorithm based on this model is 
capable of handling high dimensional and unbalanced 
data. In the experiments, we compare our method with 
the original proximal SVM (as a special case of our 
algorithm) and the standard SVM (such as SVM light) 
on the recently published RCV1-v2 dataset. The results 
show that our proposed method had comparable 
classification quality with the standard SVM. At the 
same time, both the time and memory consumption of 
our method are less than that of the standard SVM. 
 

1. Introduction 
 

Automatic text classification involves first training a 
classifier by some labeled documents and then using 
the classifier to predict the labels of unlabeled 
documents. Many methods have been proposed to 
solve this problem. SVM (Support Vector Machine), 
which is based on the statistical learning theory [11], 
has been shown to be one of the best methods for text 
classification problems [6] [8]. Much research has been 
done to make SVM practical to classify large-scale 

dataset [4] [10]. The purpose of our work is to further 
advance the SVM classification technique for large-
scale text data that are unbalanced. In particular, we 
show that when the text data are largely unbalanced, 
that is, when the positive and negative labeled data are 
in disproportion, the classification quality of standard 
SVM deteiorates. This problem has been solved using 
cross-validation based methods. But cross-validation 
methods are very inefficient due to their tedious 
parameter adjustment routines.  In response, we 
propose a weighted proximal SVM (WPSVM) model, 
in which the weights can be adjusted, to solve the 
unbalanced data problem.  Using this weighted 
proximal SVM method, we can achieve the same 
accuracy as the traditional SVM while requiring much 
less computational time. 

Our WPSVM model is an extended version of the 
proximal SVM (PSVM) model. The original proximal 
SVM was proposed in [3]. According to the 
experimental results of [3], when classifying low 
dimensional data, training a proximal SVM is much 
faster than training a standard SVM and the 
classification quality of proximal SVM is comparable 
with the standard SVM. However, the original 
proximal SVM is not suitable for text classification 
because of the following two reasons: 1), text data are 
high dimensional data, but the method proposed in [3] 
is not suitable for training high dimensional data; 2), 
data are often unbalanced in text classification, but 
proximal SVM does not work well in this situation. 
Moreover, in the experiments we found that the 
classification quality of proximal SVM deteriorates 
more quickly than standard SVM when the training 
data becomes unbalanced. 
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In response, we propose a weighted proximal SVM 
(WPSVM) model in this paper. We show that this 
method can be successfully applied to classifying high 
dimensional and unbalanced text data through the 
introduction of the following two modifications: 1) in 
WPSVM, we added a weight for each training error 
and developed a simple method to estimate the weights. 
We then adjusted the weights automatically solves the 
unbalanced data problem; 2) Instead of solving the 
problem by KKT (Karush-Kuhn-Tucker) conditions 
and Sherman-Morrison-Woodbury formula as shown in 
[3], we use a iterative algorithm to solve WPSVM, 
which makes WPSVM suitable for classifying high 
dimensional data.  

Experimental results on RCV1-v2 [7] [8] show that 
the classification quality of WPSVM are as accurate as 
traditional SVM and more accurate than proximal 
SVM when the data are unbalanced. At the same time 
WPSVM is much more computationally efficient than 
traditional SVM. 

The rest of this paper is organized as follows. In 
Section 2, we review the text classification problems 
and the SVM and proximal SVM algorithms. In 
Section 3, we propose the weighted proximal SVM 
model and explore how to solve it efficiently. In 
Section 4, we discuss the implementation issues. 
Experimental results are given in Section 5. In Section 
6, we give the conclusions and future work. 
 

2. Problem Definition and Related Work 
 
2.1. Problem Definition 
 

In our formulation, text documents are represented 
in the Vector Space Model [1]. In this model, each 
document is represented by a vector of weighted term 
frequencies using the TF*IDF [1] indexing schema. 

For simplicity we first consider the binary 
classification problem, where there are only two class 
labels in the training data: positive (+1) and negative (-
1). Note that multi-class classification problem can be 
solved by combining multiple binary classifiers; this 
will be done in our future work. Suppose that there are 
m documents and n terms in the training data, we 

use >< ii yx ,  to denote each training data, where 

, 1, 2,...,n
i R i m∈ =x  are training vectors and 

{ 1, 1}, 1, 2,...iy i m∈ + − = are their corresponding class 

labels The binary text classification problem can be 
formulated as follows, 

 Given a training dataset 

{ , | , { 1,1}, 1,2... }ny R y i mi i i i< > ∈ ∈ − =x x , finding a 

classifier ( ) : { 1, 1}nf R → + −x , such that for any 

unlabeled data x we can predict the label of x by 
( )f x . 

We first review the standard SVM and proximal 
SVM. More details could be found in [2] and [3]. This 
paper will follow the notations of [2] which may differ 
somewhat from those used in [3]. The SVM algorithms 
introduced in this paper all use the linear kernel; it is 
also possible to use non-linear kernels, but there are no 
significant advantages of using non-linear kernel for 
text classification. 

 
2.2. Standard SVM Classifier 

 
The standard SVM algorithm aims to find an 

optimal hyperplane 0b⋅ + =w x and use this 
hyperplane to separate the positive and negative data. 
The classifier can be written as: 

1,  if 0
( )

1,  if 0

b
f

b

+ ⋅ + ≥⎧
= ⎨

− ⋅ + <⎩

x w
x

x w
 

 The separating hyperplane is determined by two 
parameters w and b . The objective of the SVM 
training algorithm is to find w  and b  from the 
information in the training data. Standard SVM 
algorithm finds w  and b  by solving the following 
optimization problem. 

min 
1 2|| ||
2

C ii
ξ+ ∑w                              (1) 

s.t. ,  ( ) 1ii y bi iξ∀ ⋅ + + ≥w x  

           0iξ ≥  

 The first term 2|| ||w  controls the margin between 

the positive and negative data. iξ represents the 

training error of the ith training example. Minimizing 
the objective function of (1) means minimizing the 
training errors and maximizing the margin 
simultaneously. C is a parameter that controls the 
tradeoff between the training errors and the margin. 
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Figure 1. Standard SVM 
 

The intuition of standard SVM is shown in Figure 1. 
1bi⋅ + =w x  and 1bi⋅ + = −w x  are two bounding 

planes. The distance between the two bounding planes 
is the margin. The optimization problem (1) can be 
converted to a standard Quadratic Programming 
problem. Many efficient methods have been proposed 
to solve this problem on large scale data [2] [4]. 

 
2.3. Proximal SVM Classifier 

 
The proximal SVM also uses a hyperplane 

0b⋅ + =w x  as the separating surface between 
positive and negative training examples. But the 
parameter w  and b are determined by solving the 
following problem. 

min 
1 22 2(|| || )
2

b C ii
ξ+ + ∑w                  (2) 

s. t. ,  ( ) 1ii y bi iξ∀ ⋅ + + =w x  

The main difference between standard SVM (1) and 
proximal SVM (2) is the constraints. Standard SVM 
employs an inequality constraint whereas proximal 
SVM employs an equality constraint. The intuition of 
Proximal SVM is shown in Figure 2. We can see that 
standard SVM only considers points on the wrong side 
of 1bi⋅ + =w x  and 1bi⋅ + = −w x  as training errors. 

However, in proximal SVM, all the points not located 
on the two planes are treated as training errors. In this 
case the value of training error iξ  in (2) may be 

positive or negative. The second part of the objective 

function in (2) uses a squared loss function 2
ii

ξ∑  

instead of ii
ξ∑  to capture this new notion of error.  

 
Figure 2. Proximal SVM 

 
The proximal SVM made these modifications 

mainly for efficiency consideration.  [3] proposed an 

algorithm to solve (2) using KKT conditions and 
Sherman-Morrison-Woodbury formula. This algorithm 
is very fast and has comparable effectiveness with 
standard SVM when the data dimension is far less than 
the number of training data (n << m). However, in text 
classification n usually has the same magnitude with m 
and the condition n << m is not hold anymore. To the 
best of our knowledge, little research works has been 
conducted to show the performance of proximal SVM 
with high dimensional data. 

Although the original PSVM algorithm of [3] is not 
suitable for high dimensional data, Formula (2) can be 
solved efficiently for high dimensional data using 
iterative methods. We have applied the proximal SVM 
for text classification but found that when the data are 
unbalanced, i.e. when the amount of positive data are 
much more than negative data, or vice versa, the 
effectiveness of proximal SVM deteriorates more 
quickly than standard SVM. Data unbalance is 
common in text classification, which motivates us to 
search for an extension to proximal SVM to deal with 
this problem. 
 
3. Weighted proximal SVM Model 
 

We show the reason why the original proximal SVM 
is not suitable for classifying unbalanced data in this 
section. To the unbalanced data, without lose of 
generality, suppose the amount of positive data is much 
fewer than the negative data. In this case the total 
accumulative errors of negative data are much higher 
than that of positive data. Consequently, the bounding 

plane 1bi⋅ + =w x  will shift towards the direction 

opposite to the negative data to produce a larger 
margin at the price of increasing the positive errors.  
Since the positive data are rare, this action will lower 
the value of objective function (2). Then the separating 
plane will be biased to the positive data and result in a 
higher precision and a lower recall for the positive 
training data. 

To solve this problem, we assign a non-negative 

weight iδ  to each training error iξ  and convert the 

optimization problem (2) to the following form: 

 min 
1 12 2 2 2(|| || )
2 2

v b i ii
δ ξ+ + ∑w           (3) 

s. t. ,  ( ) 1i y bi i iξ∀ ⋅ + + =w x  

The differences between (2) and (3) are: 

1. Formula (2) assumes all the training errors iξ  are 

equally weighted, but in Formula (3) we use a non-
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negative parameter iδ   to represent the weight of each 

training error iξ . 

2. In Formula (3), we let v=1/(2C) and move the 

tradeoff parameter C from 2
ii

ξ∑   to 2 2(|| || )b+w . The 

purpose of this movement is for notation simplicity in 
the later development of our solving method. 

 Though (3) can be solved using KKT conditions 
and Sherman-Morrison-Woodbury formula as showed 
in [3], this solving strategy is inefficient for high 
dimensional data like text documents. Instead, we 
convert (3) to an unconstrained optimization problem 
that can be directly solved using iterative methods. 

The constraint of (3) can be written as: 
2 2 2(1 ( )) ( ( ))y b y bi i i i iξ = − ⋅ + = − ⋅ +w x w x      (4) 

Using (4) to substitute iξ  in the objective function 

of (3), we get an unconstrained optimal problem: 

min 1 1 22 2 2( , ) (|| || ) ( ( ))
2 2

f b v b y bi i ii
δ= + + − ⋅ +∑w w w x   (5) 

For notation simplicity, let m nX R ×
∈ denote the 

TF*IDF matrix of documents whose row vectors are ix . 

Suppose e is a vector whose elements are all 1. 

Let ( 1) ( 1)[ ,  ] ,   [ , ]m n nA X R b R× + +
= ∈ = ∈e wββββ  and 

let m mR ×Δ ∈ denotes a diagonal matrix whose non-

zero elements are ii iδΔ =  then (5) can be written as: 

min 2 21 1
( ) || || || ( A ) ||

2 2
f v= + Δ −yβ β ββ β ββ β ββ β β      6  

The gradient of ( )f ββββ  is: 
T

T T

( ) (ΔA) (Δy-ΔA )

            =( (ΔA) (ΔA)) (ΔA) (Δ
f v

v

∇ = −

I + y)β −β −β −β −

β β ββ β ββ β ββ β β
 

The Hessian matrix of ( )f ββββ  is: 

H= T(ΔA) (ΔA)vI +  

From v>0 and the elements of Δ  and A  are non-
negative, it is easy to prove H is positive definite. The 
solution of (6) is found when ( )f β∇ =0, that is: 

T T( (ΔA) (ΔA)) (ΔA) ΔvI + ( y)β =β =β =β =          (7) 

Equation (7) can be generally written as (shift*I + 
A'A)x=A'b, where A is a high dimensional sparse 
matrix. The CGLS /LSQR [9] algorithm is dedicated to 
efficiently solve this problem. 
 
4. Algorithm Design 
 

There are two main concerns in the algorithm design: 
how to set the parameters and how to solve Equation (7) 

efficiently. We will address these concerns in this 
section. 
 
4.1. Parameter Tuning 
 

Several parameters need to be decided in the 
training algorithm. Parameter v controls the tradeoff 
between maximizing the margin and minimizing the 
training errors. Parameters , 1, 2, ...,i miδ =  control the 

relative error weights of each training example. To 
simplify the parameter setting for unbalanced data 
problem, we set the error weight of all positive training 
data to  δ

+
 and all negative training data to δ

−
. Then 

we only need to set three parameters: v, δ
+

and δ
−

. 

These parameters can be decided by statistical 
estimation methods on the training data, such as LOO 
(Leave-One-Out cross-validation), k-fold cross 
validation, etc. If we iteratively update the weights by 
the separating plane obtained from previous round of 
training, we essentially obtain a boosting based method 
such as AdaBoost [13]. However, a disadvantage of 
using these boosting based and cross-validation based 
methods is that they need too much training time for 
parameter estimation.  

To obtain a more efficient method than the boosting 
based methods, we have developed a simple method 
that can estimate the parameters based on the training 
data. It can achieve comparable effectiveness as 
compared to algorithms that using standard SVM plus 
cross validation techniques. Our parameter estimation 
method is as follows. 

To get a balanced accumulative error on both 
positive and negative data, it is better to have the 
following condition: 

 
1 1

2 2 2 2

i i
i iy y

δ ξ δ ξ=
= =−
∑ ∑ −+  

If we assume the error iξ  of both positive and 

negative training data has the same expectation, we can 
get: 

2 2N Nδ δ= −++ −                                  (8) 

where N+ is the number of positive training examples 
and N- is the number of negative training examples. 
Then we set the parameter δ

−
 and δ

+
 as follows. 

Set δ
−

=1 

Set ratio= /N N− +  

Set δ
+

=1+ (ratio-1)/2 

Notice that we do not set δ
+

=ratio to exactly satisfy 

Equation (8). Instead, we use a conservative setting 
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strategy to make the precision of a minor class a little 
higher than recall. This strategy usually results in 
higher accuracy for unbalanced data. 

Parameter v is set as follows. 
2* ( || ||)i iv average δ= x  

When the data are exactly balanced (the number of 
positive examples is equal to the number of negative 

examples), this method will result in δ
−

= δ
+

=1 and 

make WPSVM equal to PSVM. Therefore, PSVM can 
be viewed as a special case of WPSVM. 

To give an intuitive example of the differences 
between WPSVM and PSVM, we manually generated 
a balanced data set and an unbalanced dataset in a two 
dimensional space. Then we calculated the separating 
plane of WPSVM and PSVM respectively. The results 
are shown in Figure 3 and Figure 4. 

Figure 3 shows that the separating planes for PSVM 
and WPSVM are almost the same when the data are 
balanced. Figure 4 shows when the data is unbalanced, 
the separating plane for WPSVM resides in the middle 
of the positive and negative examples, but the 
separating plane for PSVM is inclined to the positive 
examples.  

 
Figure 3. Separating planes for balanced data 

 
Figure 4. Separating planes for unbalanced data 

 
4.2. Training Algorithms 
 

We tried several methods to solve equation (7) and 
found CGLS [9] has the best performance. However, 
many other iterative optimal methods can also be used 
to solve Equation (7). 

The complexity of the training algorithm is 
dominated by the algorithm used for solving Equation 
(7). Usually this kind of algorithms has O(KZ) time 
complexity and O(Z) space complexity where K is the 
number of iterations and Z is the number of non-zero 
elements in the training vectors. 

Iterative method can only find an approximate 
solution to the problem. The more the number of 
iterations is used, the longer the training time is 
required and the iterative solution is closer to the 
optimal solution. However, when the iteration count 
archives a certain number, the classification result will 
not change when the number of iterations continues to 
increase. Therefore it is important to select a good 
terminating condition to obtain a better tradeoff 
between training time and classification accuracy. 
Since the number of required iterations may vary for 
different dataset, we make the terminating condition as 
an adjustable parameter when implementing the 
WPSVM algorithm. 
 
5. Experiments 
 

Rationale: 
Our experiments evaluate the relative merits of 

WPSVM and other SVM based methods.  We will 
verify the following hypotheses for text datasets: 
1. WPSVM (with default parameter settings) has the 
same classification power as standard SVM plus cross-
validation, has slightly better classification power than 
standard SVM (with default parameter settings) and has 
much better classification power than PSVM 
2. WPSVM is much more efficient than standard SVM 

Data sets: 
The dataset that we choose is a textual dataset 

RCV1-v2 [8]. RCV1 (Reuters Corpus Volume I) is an 
archive of over 800,000 manually categorized 
newswire stories recently made available by Reuters, 
Ltd. for research purposes. Lewis, et al [8] made some 
corrections to the RCV1 dataset and the resulting new 
dataset is called RCV1-v2. 

The RCV1-v2 dataset contains a total of 804,414 
documents. The benchmark results of SVM, weighted 
k-NN and Rocchio-style algorithms on RCV1-v2 are 
reported in [8]. The results show that SVM is the best 
method on this dataset. To make our experimental 
results comparable with the benchmark results, we 
strictly follow the instruction of [8]. That is, we use the 

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05) 

1550-4786/05 $20.00 © 2005 IEEE 



same vector files, training/test split and effective 
measures as in [8]. 

Text data representation: 
The feature vector for a document was produced 

from the concatenation of text in the <headline> and 
<text> tags. After tokenization, stemming and 
stopword removal. 47,219 terms that appears in the 
training data are used as features. The features are 
weighted using the TF*IDF indexing schema and then 
being cosine normalized. The resulting vectors are 
published at [7]. We directly use these vectors for our 
experiments. 

Training/test split: 
The training/test split is according to the publishing 

time of the documents. Documents published from 
August 20, 1996 to August 31, 1996 are treated as 
training data. Documents published from September 1, 
1996 to August 19, 1997 are treated as test data. This 
split produces 23,149 training documents and 781,256 
test documents. 

Categories and Effective measures: 
Each document can be assigned labels according to 

three different category sets: Topics, Industries or 
Regions. For each single category, the one-to-rest 
strategy is used in the experiments. In other words, 
when classifying category X, all the examples labeled 
X are defined as positive examples, and the other 
examples are defined as negative examples. 

The F1 measure is used to evaluate the classification 
quality of different methods. F1 is determined by 
Precision and Recall. The Precision, Recall, and F1 
measures for a single category are defined as follows. 

Precision=
# of correctly classified positive examples

# of classifier predicted positive examples
 

Recall =
# of correctly classified positive examples

# of real positive examples
 

F1 = (2*Precision*Recall) / (Precision + Recall) 
The average effectiveness is measured by the 

average micro-F1 and average macro-F1. Average 
macro-F1 is the average value of each single F1 in the 
category set. Average micro-F1 is defined as follows. 

microP= i

i

# of correctly predicted docs for category i

# of docs that are predicted as category i

∑
∑

 

microR= i

i

# of correctly predicted docs for category i

# of docs that truely belong to category i

∑
∑

 

Ave micro-F1=(2*microP*microR)/(microP+microR) 
 
5.1. Experiments on WPSVM’s Effectiveness 
 

In the effectiveness testing experiments, we 
compare the F1 measure on the following:  

WPSVM: Our proposed algorithm, using the 
parameter estimating method presented in section 4.1. 

PSVM: Set all iδ in WPSVM model equal to 1 and 

make it equivalent to the proximal SVM algorithm. 
SVM light: Using SVM light v 6.01 [5] with default 

parameter settings. 
SVM.1: This algorithm is a standard SVM plus 

threshold adjustment. It is a benchmark method used in 
[8]. In this algorithm, SVM light was run using default 
parameter settings and was used to produce the score. 
The threshold was calculated by the SCutFBR.1 [12] 
algorithm. 

SVM.2: This algorithm is a standard SVM plus 
LOO cross validation. It was first introduced in [6] and 
named as SVM.2 in [8]. In this algorithm, SVM light 
was run multiple times with deferent –j parameters and 
the best –j parameter was selected by LOO validation. 
The -j parameter controls the relative weighting of 
positive to negative examples. This approach solved 
the data unbalance situation by selecting the best –j 
parameter. The experiments were separately performed 
on each category using the one-to-rest strategy. The 
dataset scale for each category is shown in table 1. 

Table 1. Dataset scale for each category 
Number of training examples 23149
Number of test examples  781256
Number of features 47219
Average Number of non-zero elements 123.9

We first introduce the results on the Topics 
categories. There are total 101 Topics categories that at 
least one positive example appears in the training data. 
We calculate the F1 value for the five algorithms on 
each category (The F1 value of SVM.1 and SVM.2 is 
calculated by the contingency table published at [7]). 
Figure 5 shows the changes of F1 value from 
unbalanced data to balanced data for the five 
algorithms. Categories are sorted by training set 
frequency, which is shown on the x-axis. The F1 value 
for a category with frequency x has been smoothed by 
replacing it with the output of a local linear regression 
over the interval x−200 to x+200. 

From the results we can see that when the training 
data is relatively balanced (the right part Figure 5), the 
F1 measure for the five algorithms has no big 
differences. When the training data is unbalanced (the 
left part of Figure 5), the classification quality of 
WPSVM is between SVM.1 and SVM.2. Both have 
better classification quality than SVM light and PSVM. 
Figure 5 also shows the classification quality of PSVM 
deteriorates more quickly than that of SVM light when 
the data become unbalanced. 
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Figure 5.  F1 measure for five methods on 101 Topic categories 

 
Table 2 shows the average F1 measure of the 101 

categories. The results of SVM.1 and SVM.2 are the 
values reported in [8]. It can be seen that the overall 
performance of WPSVM, SVM.1 and SVM.2 are better 
than that of SVM light and PSVM. SVM.1 has the best 
average effectiveness, especially in average macro-F1. 
This is mainly because when the training data are 
extremely unbalanced (e.g. the positive ratio is less than 
0.1%), the threshold adjustment method is better than 
both WPSVM and SVM.2.  

Table 2. Average F1 measure for Topics 
Algorithms Average micro-

F1 
Average macro-
F1 

PSVM 0.767 0.354 
SVM light 0.804 0.472 
WPSVM 0.808 0.589 
SVM.2 0.810 0.557 
SVM.1 0.816 0.619 
Table 3. Average F1 for Industries and Regions 

Algorithms Average 
micro-F1 

Average 
macro-F1 

SVM.1  0.513 0.297 Industries 
(313) WPSVM 0.520 0.301 

SVM.1 0.874 0.601 Regions 
(228) WPSVM 0.862 0.558 

 
We also test the effectiveness of WPSVM on the 

313 Industries categories and 228 Regions categories. 
The average F1 measures of these categories are shown 
in Table 3. The results of SVM.1 shown in table 3 are 
the values reported in [8]. We can see that in the 
Industries and Regions Split, the effectiveness of 
WPSVM is also comparable with SVM.1. 

The effectiveness experiments show the overall 
classification quality of WPSVM is comparable with 

SVM.1 and SVM.2, which are the best methods of [8], 
and is better than SVM light and PSVM. However, 
SVM.1 and SVM.2 require training many times to 
estimate a good parameter whereas WPSVM only 
require training once.  

 
5.2. Experiments on Computational Efficiency 
 

The computational efficiency is measured by the 
actual training time and memory usage respectively. 
Since SVM.1 and SVM.2 require running SVM light 
many times, their efficiency must be less than SVM 
light. Thus in the experiments, we only compare the 
efficiency of WPSVM and SVM light. We run each 
algorithm on 5 training dataset with different size. The 
vector files of [8] are published as one training file and 
4 test files. We use the training file as the first dataset 
and then incrementally append the remaining four test 
files to form the other four datasets. The number of 
training examples for the 5 datasets is 23149, 222477, 

421816, 621392 and 804414 respectively. The training 
time is measured in second. Both algorithms ran on an 
Intel Pentium 4 Xeon 3.06G computer.  

We found that when using SVM light for the same 
training size, balanced data required more training time 
than the unbalanced data. Thus, we did two groups of 
efficiency experiments. One group uses category CCAT 
as positive examples. The ratio of CCAT is 47.4% and 
it makes this group as a balanced example. The other 
group is an unbalanced example. It uses GDIP as 
positive examples. The ratio of GDIP is 4.7%. 

Table 4 shows the training time of WPSVM and 
SVM light V6.01 on the two groups. We can see that 
the training time of WPSVM is far less than the training 
time of SVM light and is not affected by the data 
unbalanced-ness problem. 
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Table 4. Training time comparison 

CCAT GDIP No. of 
training 
data WPSVM

SVM 
light WPSVM 

SVM 
light 

23149 1.6 43 2.1 9.1

222477 42.7 1313 35 317

421816 80.5 3306 100 884

621392 194.4 5110 171 1599
804414 273.4 10986 276 2458

The memory usage required for both WPSVM and 
SVM light is determined by the training size, regardless 
of whether the data are balanced or unbalanced. Figure 
6 shows the memory requirements of the two 
algorithms with different training sizes. We can see that 
the memory requirement of WPSVM is slightly less 
than SVM light. This is because WPSVM almost only 
require the memory to store the training data but SVM 
light requires additional working space. 

 
Figure 6. Memory consume comparison 

 
6. Conclusion and Future work 
 

In this paper, we proposed a weighted proximal 
SVM model, which assigns a weight to each training 
error. We successfully applied the WPSVM model to 
text classification problem by a simple parameter 
estimation method and an algorithm for solving the 
equations directly instead of using KKT conditions and 
the Sherman-Morrison-Woodbury formula. The 
experiments showed that our proposed method can 
achieve comparable classification quality as the 
standard SVM when supplemented with validation 
techniques, but is more computationally efficient than 
the standard SVM.  We only validated the effectiveness 
of our algorithm on text classification in this paper. As 
a general linear SVM classification algorithm, it can 
also be used in other classification tasks. It is worth 
pointing out that in this paper we only demonstrated the 
advantage of WPSVM in solving the data unbalanced-
ness problem. However the WPSVM model may have 
other potential use. In WPSVM, the relative importance 

of each training point can be adjusted based on other 
prior knowledge. 
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