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Abstract

Biometric technology is becoming increasingly prevalent in several vital applications that sub-

stitute traditional password and token authentication mechanisms. Recognition accuracy and

computational cost are two important aspects that are to be considered while designing bio-

metric authentication systems. Thermal imaging is proven to capture a unique thermal signa-

ture for a person and thus has been used in thermal face recognition. However, the literature

did not thoroughly analyse the impact of feature selection on the accuracy and computational

cost of face recognition which is an important aspect for limited resources applications like

IoT ones. Also, the literature did not thoroughly evaluate the performance metrics of the pro-

posed methods/solutions which are needed for the optimal configuration of the biometric

authentication systems. This paper proposes a thermal face-based biometric authentication

system. The proposed system comprises five phases: a) capturing the user’s face with a ther-

mal camera, b) segmenting the face region and excluding the background by optimized

superpixel-based segmentation technique to extract the region of interest (ROI) of the face,

c) feature extraction using wavelet and curvelet transform, d) feature selection by employing

bio-inspired optimization algorithms: grey wolf optimizer (GWO), particle swarm optimization

(PSO) and genetic algorithm (GA), e) the classification (user identification) performed using

classifiers: random forest (RF), k-nearest neighbour (KNN), and naive bayes (NB). Upon the

public dataset, Terravic Facial IR, the proposed system was evaluated using the metrics:

accuracy, precision, recall, F-measure, and receiver operating characteristic (ROC) area.

The results showed that the curvelet features optimized using the GWO and classified with

random forest could help in authenticating users through thermal images with performance

up to 99.5% which is better than the results of wavelet features by 10% while the former used

5% fewer features. In addition, the statistical analysis showed the significance of our pro-

posed model. Compared to the related works, our system showed to be a better thermal face

authentication model with a minimum set of features, making it computational-friendly.
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1 Introduction

Facial recognition technology has become a topic of significant interest in recent years, with

wide-ranging applications in fields such as security, surveillance, access control, and human-

computer interaction. The rapid advancements in computer vision, machine learning, and

deep learning have led to significant improvements in the accuracy and reliability of facial rec-

ognition systems, making them a promising solution for real-world scenarios. According to

the International Biometrics + Identity Association (IBIA), facial recognition is one of the

most widely used biometric modalities, with an estimated market size of 7.76 billion US dollars

by 2025, with a compound annual growth rate (CAGR) of 15.3% from 2020 to 2025 [1]. The

increased adoption of facial recognition systems can be attributed to their non-intrusive

nature, ability to operate in real-time, and potential for high accuracy.

Biometric authentication, compared to traditional password or token-based authentication,

can provide a higher level of security because it’s much harder to fake or steal someone’s bio-

metric data than it is to guess or crack a password. Additionally, because biometric data is

unique to each individual, it cannot be lost or forgotten in the same way that a password or

token can be [2].

Biometrics refers to the automated recognition of an individual based on their unique phys-

ical or behavioral characteristics, such as fingerprints, facial features, iris patterns, or even

voice. Biometric technology has gained popularity in recent years due to its ability to enhance

security and improve usability by eliminating the need for passwords or PINs. In biometric

authentication systems, recognition accuracy and security are critical factors that must be

taken into account. The accuracy of biometric recognition depends on factors such as the qual-

ity of the sensors used, the algorithm used for matching biometric data, and the variability of

biometric traits [3].

Biometric authentication systems use a variety of physiological and behavioral characteris-

tics to identify individuals, such as fingerprints, iris patterns, facial recognition, voice recogni-

tion, and even gait analysis [4]. Each biometric characteristic has its own unique strengths and

weaknesses, and the choice of which characteristic to use depends on the specific application

and its requirements. For example, some characteristics may be more accurate or reliable than

others, while others may be more convenient or user-friendly. It’s important to note that no

single biometric characteristic is expected to be effective for all applications. For example, fin-

gerprints may work well for unlocking a smartphone, but may not be sufficient for secure

access to a high-security area. The choice of which biometric characteristic to use must be care-

fully considered based on the specific needs of the application. Ultimately, the effectiveness of

a biometric authentication system depends not only on the choice of biometric characteristics

but also on the operational mode of the application and the properties of the biometric charac-

teristic being used [4].

Deep learning algorithms have outperformed the traditional machine learning algorithms

in many applications including cyber-physical health [5], detection of plant diseases [6], hand-

written recognition [7], recognition of COVID-19 disease [8] and the price estimation [9].

Also, the deep learning-based models for Face recognition, e.g., [9–11], have made a noticeable

advancement in face detection techniques, face matching algorithms. However, a recent study

[12] found that performance (accuracy) enhancement comes at a huge computational expense

required to train and manage deep-learning algorithms. This would hinder the adoption of

deep learning-based face detection models.

Thermal imaging is proven to capture a unique thermal signature for a person, thus has

been used in face recognition as in [10, 11, 13]. This thermal signature is primarily determined

by the pattern of blood vessels that are present just under the surface of the skin, and these
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patterns are unique to each individual. By using a thermal imaging sensor to capture this ther-

mal signature, it is possible to create a digital representation of a person’s face that can be used

for identification and recognition purposes [14]. Thermal-based face recognition overcomes

the challenges of visible face recognition in scenarios like surveillance carried out during the

night when there is either very little or no light available to illuminate the faces, and occlusion

problems [11]. It is also non-invasive and can be performed from a distance, making it more

convenient for use in various applications. Face thermal imaging has several advantages over

visual images including they are independent of lighting conditions and rely on radiations pro-

duced by the body rather than reflected light, making face recognition more robust against

changing conditions [15, 16]. This is due to the fact that thermal imaging relies on thermal

radiation rather than visible light [11].

The main challenge of thermal and visible-based face recognition systems is that they rely

on their computational efficiency. These systems typically require significant computational

resources to perform tasks such as face detection, feature extraction, and matching [14]. Such

high computational costs hinder the adoption of face recognition technology in internet of

things (IoT) applications such as security systems, access control systems, and surveillance sys-

tems. Selecting an optimal set of face features could help address this challenge.

From analysing the machine learning-based face recognition literature, e.g., [10, 17–19], a

research gap was identified where most of the literature did not thoroughly analyse the impact

of features selection (i.e., wavelet/curvelet features) on the accuracy and computational cost of

face recognition. Also, the literature did not thoroughly evaluate the performance metrics of

the proposed methods/solutions. The majority of the proposals only used accuracy as the eval-

uation metric. However, using the accuracy alone could be misleading as it treats false nega-

tives and false positives as having the same costs, and it doesn’t tell very much about the

optimal configuration for the system.

Two main research questions were identified: 1- which is better (wavelet or curvelet trans-

form) in extracting thermal face features to accurately and accurately recognise a user?, 2-

which metaheuristic algorithms, GWO, GA and PSO, can select the minimum set of features

that efficiently and accurately recognise users from their thermal face images?

This paper aims to propose an efficient and accurate thermal face recognition model for

user authentication. This model first extracts the curvelet features from the thermal images,

selects the optimal set of features using GWO with a novel proposed GWO-thermal-face-fea-

ture selection (GWO-TFFS) method, and then feeds the selected features to supervised light-

weight machine learning classifier (the random forest classifier). In more detail, in the feature

extraction phase, wavelet and curvelet features are used and their performance is compared in

the selection phase, to give the most discriminative features with high accuracy without the

need for high computational power using GWO, PSO and GA. In the classification phase,

three learning strategies (instance-based learning (KNN), ensemble-based learning (RF) and

probabilistic-based learning (NB)) are investigated to find out which will give the best perfor-

mance for building thermal-face biometric authentication model.

The main contribution of this paper is summarized below.

1. Proposing a novel GWO-based feature selection method for thermal face recognition

called GWO-thermal-face-feature Selection (GWO-TFFS) method. This is built after care-

fully investigating different features (i.e., wavelet and curvelet features) and using three

different metaheuristic algorithms, GA, GWO and PSO, as feature selectors. The novelty

of this method comes from the small percentage (6%-11%) of features selected by GWO to

accurately identify the individuals using thermal images. This means that our proposed

method could achieve 89%-94%- reduction rate, i.e., a highly efficient method.
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2. Investigating three learning strategies,instance-based, ensemble-based and probabilistic-

based learning, for the classification to build an efficient and accurate thermal-face bio-

metric authentication model. This investigation, in conclusion, is expected to help practi-

tioners and developers to decide which learning strategy will be the best for their

applications.

3. Evaluating the proposed model using different types of performance metrics to ensure the

effectiveness of this model. These metrics include accuracy, precision, recall, F-measure,

and ROC area. Using these metrics, it was shown that our proposed model was compre-

hensively evaluated from different aspects to prove its effectiveness and quality.

4. Conducting statistical analysis of the proposed model to further show the significance

between the different machine learning techniques employed in this study. This further

helps practitioners make decisions (which techniques) based on solid evidence and avoid

taking decisions based on random chance.

The rest of the paper is organized as follows. Section 2 summarizes and analyses the

related work. Section 3 briefs the methods and approaches utilized in the proposed work.

The proposed system is explained in Section 4. The experiment setup and evaluation and dis-

cussion are given in Section 5 and 6 respectively. Finally, the proposed work is concluded in

Section 8.

2 Literature review

Face recognition using conventional visible spectrum heavily depends on illumination condi-

tions, which can affect the accuracy of recognition systems. Therefore, many researchers have

shifted towards thermal infrared recognition, which is less affected by illumination variations.

A short survey of face recognition based on thermal images are summarized below.

Seal et al. [20] suggested a face recognition model using thermal images. They used the dis-

crete wavelet transform (DWT) algorithm for feature extraction and dimensionality reduction.

The experiments were conducted using a private database, and the results showed a recogni-

tion rate of 95%. On the other hand, when the model was tested using the Terravic Facial IR

dataset(TFID), the recognition rate slightly decreased to 93%. This may be due to the differ-

ences between the private database and the TFID. Gaber et al. [13] proposed a thermal infrared

recognition system that uses the segmentation-based fractal texture analysis (SFTA) algorithm

to extract texture features from thermal images of human faces. The extracted features are

then used to distinguish individuals by applying the random linear oracles (RLO) ensembles

technique as a classifier. Their method has shown promising results in recognizing human

faces using thermal images and has the potential for practical application in various fields,

including security and surveillance systems.

In [21], the authors compared thermal-spectrum facial recognition methods. Local binary

pattern (LBP) was used for feature extraction of face images. For dimensionality reduction,

each feature set undergoes principle component analysis (PCA). Finally, a multi-layered feed-

forward neural network and minimal distance classifier were used and achieved an accuracy of

95.09%. Their laboratory database and TFID were used for experiments. [22] introduced an

image fusion technique that takes advantage of visible and thermal IR facial pictures. The

wavelet transform was employed to extract features and RF classifier was applied to determine

users from the thermal face pictures. RF classifier was applied to the fused face image and the

results were 100% and 99.07% on IRIS benchmark face dataset and UGC-JU dataset, respec-

tively. The model suggested by Ibrahim et al. [14] consists of four basic phases. Using the

GWO method, the ideal superpixel values for the quick shift segmentation technique are
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determined. Fractal texture analysis extracts the features, and rough set-based approaches

choose the most discriminating features. AdaBoost is subsequently utilized to complete the

categorization procedure. Their proposed method was evaluated using the TFID images. The

classification accuracy obtained was 99%.

An approach has been proposed by Elbarawy et al. [23] to solve the expression recognition

problem in thermal images using feature extractors and a classifier. The feature extractors used

in their approach were the discrete cosine transform (DCT) and local energy (LE) filters, and

the classifier used was the KNN. The experiments were conducted on the IRIS database, and

the results showed that the approach using the LE filter achieved an accuracy of 90% in expres-

sion recognition. Interestingly, the same approach with additional features like PCA and local

standard deviation (LSD) did not improve the accuracy of expression recognition. Ma et al.

[24] suggested two techniques for identifying thermal facial images using local features. They

started by incorporating feature types into multi-block LBP. In addition to a reasonably con-

stant distribution of face temperature, they accommodate, around the reference, for a margin

of error. This increased the resistance of the features to noise and their efficiency to face recog-

nition in thermal pictures. The authors used AdaBoost to train cascade classifiers with various

local feature types. Haar-like + HOG + AMB LTP achieved the highest f-score of 94% in all

scenarios. Another thermal facial recognition method using gappy-principal component anal-

ysis and linear regression classifier was presented in [25]. Their technique achieved a 98.61%

recognition rate on thermal face photos of the UGC-JU face database, which is set as the initial

benchmark for performance identification for this database.

Mahesh et al. [26] proposed thermal IR face identification using Zernike moment(ZM)

and MLPNN classifier. Their method was evaluated on the Terravic Facial IR Database in

the front, right, and left poses and indoor and outdoor spaces. The rotation invariance and

orthogonality of ZMs enhance capability representation. When ZM from orders 0 to 2 were

concatenated to form a four-dimensional feature vector, the average recognition accuracy

and the FAR rate was 89.5% and 0.365%, respectively. False alarms were lowered. The pro-

posed model also classified images in regulated and real-world contexts with position varia-

tions. In [18] the authors present two infrared facial recognition systems using two

databases. Backpropagation with one hidden layer classified all thermal and NIR database

faces without extracting features. Traditional infrared facial recognition systems involve:

Face data pre-processing, feature identification, dimensionality reduction to reduce data

size, and a classifier to predict the test output. Backpropagation classified the test set by 100%

accuracy with a few data. Rani et al. [17] introduced an infrared thermography(IT)-based

technique that employs two-dimensional discrete wavelet transform (2D-DWT) to decom-

pose thermal pictures of faces of various people and extract features. The dimensionality

reduction of the extracted feature vector was done using PCA, and the selected features were

assessed to find the most relevant feature vector. Artificial neural network(ANN) and sup-

port vector machine (SVM) were used to identify and classify people using a single feature

vector. Using Terravic facial databases, ANN outperforms SVM where the latter achieved

100% accuracy.

The deep learning approaches were also suggested. The work in [19] presents a thermal

facial recognition using convolutional neural network (CNN) architecture. The CNN automat-

ically learns valuable features from raw data. Their CNN architecture outperforms HOG, LBP,

and moments invariant on the RGB-D-T face database with 98% accuracy. Also, the study in

[10] suggested a unique face thermal image feature-based approach that employed facial land-

marks to construct a feature space based on standard-deviation (SD) and mean. Four models

have been trained for the raw thermal, raw RGB, thermal feature and RGB feature pictures.

The experiment employed 800 images for validation and training and 200 for testing. Random
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testing included 40 images. The results of the accuracy range from 85% to 99% based on body

temperature.

The challenges of visible face recognition systems include position fluctuations, occlusion,

ageing, illumination, and resolution [14]. Table 1, summarizing the literature survey above,

three major limitations are identified. First, an efficient feature selection method for thermal

face recognition is not suggested. Such a method should be selecting the smallest set of features

such that it can produce accurate recognition results while not taking a high computational

cost. Second, the literature did not thoroughly evaluate the performance of the proposed meth-

ods/solutions. The majority of the proposals only used accuracy as the evaluation metric. How-

ever, this could be misleading as it treats false negatives and false positives as having the same

costs, and it doesn’t tell very much about the optimal configuration for the system. Third, the

deep learning technique gave excellent results in [10], but a recent study [12] found that per-

formance (accuracy) enhancement comes at a huge computational expense required to train

and manage deep-learning algorithms. Due to this, traditional businesses like European super-

markets have abandoned using deep-learning-based solutions [12]. This paper aims to propose

a solution to address these problems.

3 Preliminary work

The following section presents a brief overview of the methods and algorithms utilized in the

proposed study. The wavelet, curvelet, statistical features calculated, GWO, PSO and GA as

feature selectors are described. In terms of the classification step, random forest, KNN and

naive bayes classifiers are highlighted.

3.1 Wavelet transform

Wavelet transform is the most used method for calculating multi-resolution signal representa-

tions. This is because the wavelet transform approach may localize information in both the

temporal and frequency domains [27]. Equation illustrates the wavelet transform calculation

Table 1. Summary of related work using machine/deep learning techniques.

Year Database Features Extracted Feature Selection Classifiers performance metrics

[10] 10 subjects (1000) facial

images

Statistical N/A GoogleNet Accuracy from 85% to 99% based on

body temperature

[14] Terravic Facial IR N/A Rough Setbased

techniqes

Adaboost Accuracy-99%.

[17] Terravic Facial IR Statistical Features PCA SVM ANN Classifier SVM 99.87% ANN 100%

[18] Terravic Facial IR & NIR

database

N/A N/A HOG-SVM Back-propagation

Classifier

HOG-SVM 98.43% Back-propagation

100%

[19] RGB-D-T based face

recognition

N/A N/A CNN Face recognition rate-98%

[21] Terravic facial IR Haar wavelet transform,LBP N/A ANN, Minimum distance Accuracy -95.09%

[22] UGC-JU IRIS face invariant à-trous wavelet

transform

N/A Random Forest Accuracy- 99.07%

[23] IRIS PCA LSD LE N/A KNN based on DCT Accuracy PCA 60% LSD 80% LE 90%

[24] UCH Thermal Face NVIE Multi-Block LBP, HAAR-like,

HOG, AMB,LTP

N/A CASCAD Classifier Fscore, Time, Precision and Recall

[25] UGC-JU face Gappy Principal Component

Analysis

N/A Linear Regression Classifier Accuracy- 98.61%

[26] Terravic Facial IR Zernike moments N/A MLPNN Classifier Accuracy 89.5%

https://doi.org/10.1371/journal.pone.0287349.t001
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formula (1).

ci;j ¼
1
ffiffiffiffiffiffiffi
j i j

p c
x � j

i

� �

ð1Þ

In Eq (1), j and i are the location parameter and the scaling factor, respectively. The primary

goal of this transform is to approximate and interpret the signal using a collection of funda-

mental mathematical operations. An example of a function’s wavelet transform is shown in Eq

(2):

Ci i; jð Þ ¼
1
ffiffiffiffiffiffiffi
j i j

p

Z 1

� 1

f ðxÞc
x � j

i

� �

dx ð2Þ

The function f(x) can be presented in the equation by its wavelet coefficients Cf(i, j) where

i> 0, j 2 R. The discrete wavelet transform is performed by i = 2h, j = k2h = ka for k, h 2 Z2.

The method used to represent images is called a discrete curvelet transform. Image codes can

edge more effectively using this method. This is due to the geometric component of the curve-

let transform method. As a feature vector, the discrete curvelet transform approach’s coeffi-

cients are employed. A fast discrete curvelet transform (FDCT) technique was the focus of

research by [28].

The variables used in this study include x as the spatial variable, w as the frequency domain

variable, and r and θ as the polar coordinates in the frequency domain. Additionally, the study

defines a pair of windows, namely W(r) and V(t). They serve, respectively, as radial and angu-

lar windows. While both W and V use real parameters supplied by t 2 [−1, 1] and r 2 (1/2, 2),

respectively, all of the vectors are real, smooth, and positive, values. Non-negative real inputs

are used by W(r) and V(t) respectively. Windows complies with the entrance requirements

listed in [27]. Eqs (3) and (4) provide the following formulas for these windows:

X1

h¼� 1

W2ð2hrÞ ¼ 1; r 2
3

4
;
3

2

� �

ð3Þ

X1

h¼� 1

V2ðt � 1Þ ¼ 1; t 2 �
1

2
;
1

2

� �

ð4Þ

For every h� h0, a window of frequency in the Fourier domain, Uh is defined by

Uhðr; yÞ ¼ 2�
3
4
hWð2� hrÞV

2b
h
2
cy

2p

 !

ð5Þ

Eq (5) uses the integer bh/2c. The data from the radial window, W and angular window, V are

also used to compute the polar wedge, Uh. The symmetrized form of Eq (5) can be derived by

combining Uh(r, θ) + Uh(r, θ + π) to produce real-valued curvelets. Similarly, the Fourier trans-

form can be used to define the waveform φh(x) as illustrated in Eq (6). Uj(w1, w2) can be found

using Eq (5), where the windows specified in the polar coordinate system are w1, w2. The

major curvelet φh is utilized in Eq (6) to represent all curvelets of scale 2−h that can be obtained

by rotating and translating φh. Now, we add rotation angles with l = 0, 1, . . . such that 0� θ�
2π. These angles are θl = 2π.2b−h/2c.l. k = (k1, k2) 2 Z2, reveals the order of the translational

parameters. The curvelets are thereby defined as a function of scale 2−h, orientation angle
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thetal, and position xðh;lÞk ¼ R� 1ylðk1:2
� h; k2:2

� h=2Þ

φh;l;kðxÞ ¼ φhðRyl
ðx � xðh;lÞk ÞÞ ð6Þ

The rotation by θ radians can be calculated by Rθ and its inverse by R� 1
y

Ry ¼
cosy siny

� siny cosy

 !

;R� 1
y
¼ RT

y
¼ R� y ð7Þ

The inner product of an element f 2 L2(R2) and a curvelet φh,l,k, is defined as curvelet coeffi-

cient.

cðh; l; kÞ :¼

Z

R2

f ðxÞφh;l;kðxÞdx ð8Þ

where R denotes the real line. Length� 2−h/2, width = 2−h, i.e., width� length2, known to be

the anisotropy scaling relation or curve scaling law [28].

3.2 Wavelet and curvelet statistical characteristics

The proposed model utilizes ten descriptors or features to represent the coefficients in each

sub-band of both wavelet and curvelet. These features are created based on the image’s overall

distribution of grey levels. The ten features in our proposed strategy are statistical ones and are

formally detailed below [29]. Mean is the mathematical average of a set of numeric data, z1, z2,

. . ., zm. [30]:

�z ¼
1

m
ðz1 þ z2 þ :::þ zmÞ ¼

1

m

Xm

i¼1

zi ð9Þ

Variance is a measure that illustrates the spread of the histogram, indicating the extent to

which the grey levels (I[x, y]) differ from their mean (�I ½x; y�). Also, the variance provides

insight into the range of a random variable’s values. The square of the deviations from the

mean are averaged to create the variance. The square root of variance is known as the standard

deviation [30].

Var ¼
1

m � 1

X
ðI½x; y� � �I ½x; y�Þ2 ð10Þ

STD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m � 1

X
ðI½x; y� � �I ½x; y�Þ2

r

ð11Þ

The third moment μ3 of a standardized random variable is referred to as skewness, which

determines the degree of asymmetry in the histogram around the mean. The clarity of the his-

togram is measured using kurtosis, denoted as μ4. If significant skewness and kurtosis are

present, the data may not be considered normal [29]. Eqs (12) and (13) define skewness and
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kurtosis as:

S ¼ E
X � m
s

� �3
" #

ð12Þ

K ¼ E
X � m
s

� �4
" #

ð13Þ

Energy is a statistical feature that represents the sum of the squared magnitude of coeffi-

cients in a sub-band. It is often used to measure the amount of signal content in a particular

sub-band. The following formula [30] can be used to compute Energy:

Energy ¼
XR

x

XC

y

I2½x; y� ð14Þ

The measure of entropy is employed to assess the degree of randomness in an image, with

smoother images resulting in lower entropy and rougher images resulting in higher entropy.

The formula used to calculate entropy is presented below [30]:

Entropy ¼ �
XR

x

XC

y

I½x; y� log I½x; y� ð15Þ

The highest value in the provided matrix is referred to as the maximum value. The calcula-

tions are as follows. Where R and C represent rows and columns respectively:

R;C

Max ¼ max I½x; y�

x; y

ð16Þ

The consistency of the element distribution in the different shades of grey is measured

using the term “homogeneity.” Its value ranges from 0 to 1. A smoother texture image results

from a value that is near to 1, and so on. The definition of an image’s homogeneity in mathe-

matics is [29]:

Homogeneity ¼
XR

x

XC

y

1

1þ ðx � yÞ2
� Iðx; yÞ ð17Þ

Moment is a property of a picture that is utilized widely in image classification and pattern

recognition [29].

moment ¼
XR

x

XC

y

Iðx; yÞ
ðx � yÞ2

ð18Þ

3.3 Grey wolf optimizer (GWO)

Mirjalili et al. [31] proposed the grey wolf optimizer (GWO), which is a type of metaheuristic

optimization approach. The algorithm’s leadership pyramid and hunting strategy are similar

to those of grey wolves, therefore the name. A grey wolf pack typically has five to twelve mem-

bers and is organized into the social classes alpha, beta, delta, and omega. Here, alpha is

regarded as the alpha dog. All of the pack’s crucial decisions are made by the alpha. The alpha
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wolf is supported by the beta wolf in decision-making and other activities as it moves down

the food chain. Delta wolves also referred to as sub-ordinate wolves, are dominant over omega

wolves yet work closely with alpha and beta wolves.

The alpha and beta wolves provide guidance and safety to the pack, while the omega wolves

are regarded as disposable members or scapegoats. Nonetheless, omega wolves play a critical

role in scouting, warning the pack of potential threats, and defending against external threats.

The symbols used to represent alpha, beta, delta, and omega are α, β, δ, and ω, respectively. To

use the GWO for addressing the feature selection problem, the study in [32], proposed a com-

petitive binary grey wolf optimizer. In our study, the GWO was modeled as given in Algorithm

1 which illustrates how GWO was used as a feature selection technique.

Algorithm 1 The pseudo-code for GWO for feature selection:
1: Initialize the population:
• Generate random binary strings of length N (where N is the number

of features) to form the initial population.
2: Define the fitness function: KNN (classification accuracy)
• Evaluate the fitness of each individual in the population using a

classification accuracy of KNN.
3: Initialize the positions of the alpha, beta, and delta wolves.
• Select three individuals with the highest fitness scores and

assign them as alpha, beta, and delta wolves.
4: Update the positions of the wolves.
• Update the position of each individual in the population. using

the following equations:

• For alpha wolf: x_alpha = x_alpha + A * D_alpha

• For beta wolf: x_beta = x_beta + A * D_beta

• For delta wolf: x_delta = x_delta + A * D_delta

• For the rest of the population: x_i = (x_alpha + x_beta + x_delta
+ x_i) / 4 + rand() * (x_alpha—x_beta)
• where x_i is the position of the i th individual, A is the step

size, and D_alpha, D_beta, and D_delta are the distance vectors of the
alpha, beta, and delta wolves, respectively.
5: Evaluate the fitness of the new population.
• Calculate the fitness of each individual in the population using

the fitness function.
6: Repeat steps 4–5 for a certain number of iterations or until a sat-
isfactory solution is found.
7: Select the best feature subset.
• Select the individual with the highest fitness score as the best

feature subset.
8: Return the best feature subset.

3.4 Particle swarm optimizer (PSO)

Kennedy and Eberhart [33] introduced PSO as a swarm-based algorithm that imitates animal

social behavior such as bird flocking and fish schooling. Each potential solution is represented

as a fast-moving particle, similar to a swarm of birds, traversing the problem space. The parti-

cle combines a portion of its best historical position and current location, determined by one

or more agents of the swarm, with random disturbances to determine its future path through

the search space. Once all particles have moved, the next iteration begins. PSO’s main advan-

tage is that it requires fewer tuning parameters. However, the high-dimensional search space
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can slow down the convergence to the global optimum [34]. In our paper, the PSO was mod-

eled as a feature selector as given in Algorithm (2).

Algorithm 2 The pseudo-code for a particle swarm optimization (PSO) algorithm for fea-

ture selection:
1: Initialization: Generate a population of particles, each represent-
ing a set of features.
2: Define the fitness function: KNN (classification accuracy)
• Evaluate the fitness of each particle in the population using a

classification accuracy of KNN.
3: Initialization: Set the best position (set of features) and fitness
value found so far for each particle and the entire swarm.
4: Repeat steps 5–8 for a number of iterations or until maximum number
of iterations.
5: Update particle velocity: For each particle, update its velocity
based on its previous velocity, its distance to its best position and
the swarm’s best position, and two tuning parameters (inertia weight
and acceleration coefficients).
6: Update particle position: For each particle, update its position by
adding its new velocity to its current position.
7: Evaluation: Evaluate the fitness of each particle’s new position.
8: Update best position: For each particle, update its best position
and fitness value found so far, and update the swarm’s best position
and fitness value if the particle’s fitness is better than the swarm’s
best fitness.
9: Return the best position found, which represents the best subset of
features for the classification task.

3.5 Genetic algorithms optimizer (GAO)

Genetic algorithms simulate biological evolution and model evolutionary processes to solve

problems. Genetic algorithms can evolve sophisticated and intriguing structures in a simple

computational framework. Population genetics is the basis for genetic algorithms. The popula-

tion is randomly constructed, with each individual represented by a bit string that represents a

potential answer to the problem at hand. Some individuals are fitter than others due to genetic

variation within the population. Selection biases the next group of potential solutions based on

these differences. By copying and eliminating successful individuals, selection creates a new

population with some differences among its members. During this copying process, mutation,

crossover, and other bit-string changes may occur. Mutation and crossover procedures create

new samples with a better-than-average likelihood of being good by changing the existing

group of good individuals. After many generations of appraisal, selection, and genetic opera-

tions, the population’s fitness improves, and its members become better “solutions” to the fit-

ness function’s problem [35]. In our paper, the GAO was modeled as a feature selector as given

in Algorithm (3).

Algorithm 3 The pseudo code for Genetic Algorithm (GA) for feature selection:
1: Initialize a population of chromosomes with random values within
the search space. each representing a set of features.
2: Define the fitness function: KNN (classification accuracy)
3: Evaluation: Evaluate the fitness of each chromosome by measuring
the classification accuracy rate of KNN on the subset of features it
represents.
4: Selection: Select a subset of chromosomes to mate based on their
fitness.
5: Crossover: Create new chromosomes by combining the features of the
selected chromosomes.
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6: Mutation: Randomly mutate some of the chromosomes by changing the
value of some of their genes.
7: Evaluation: Evaluate the fitness of each particle’s new position.
8: Repeat steps 3–6 for a number of generations (maximum number of
generations).
9: Return the best chromosome found, which represents the best subset
of features for the classification task.

3.6 Classification: Random forests (RF)

Random forest method is a strategy for ensemble learning that combines many classifiers to

improve a model’s performance. It is a decision tree-based supervised machine learning tech-

nique and is employed for both regression and classification issues [36]. The random forest’s

ensemble notion states that merging a number of ineffective classifiers could result in a high

classification rate. Multiple decision trees’ outputs were blended by random forest to increase

prediction accuracy. The classification stage in this study was carried out using 10-fold cross-

validation to evaluate the efficacy of the suggested methodology.

3.7 Classification: K-nearest neighbors (KNN)

The K-Nearest Neighbors classifier is a straightforward, yet powerful, classification algorithm

that falls under the category of instance-based learning or lazy learning algorithms. During the

training phase, KNN only stores the data without constructing any explicit models. To classify

a new instance, KNN calculates its similarity with its K-nearest neighbors in the training set.

KNN offers several benefits, such as being simple to implement, tolerant of noisy data, and

capable of handling multi-class classification. However, KNN also has some drawbacks, such

as its sensitivity to the choice of K and the distance metric employed.

3.8 Classification: Naive bayes (NB)

The Naive Bayes classifier is a well-known machine learning and data analysis algorithm that

uses the Bayes theorem of conditional probability to make predictions. It is a probabilistic

model that assumes the features are independent of each other, hence the name “naive”.

Despite this simplifying assumption, the algorithm exhibits impressive performance in a broad

range of applications, such as text classification, spam filtering, and sentiment analysis. One of

the Naive Bayes’s significant advantages is its simplicity and speed, making it an efficient algo-

rithm for handling large datasets. Additionally, it requires minimal training data and can work

well even with high-dimensional data. While NB may not be the optimal algorithm for every

problem, it is still a popular choice for many machine learning tasks.

4 Proposed approach

The proposed thermal face-based biometric authentication system, as shown in Fig 1,

would have five phases. The first phase involves capturing the user’s face image using a

thermal camera. In the second phase, an optimized superpixel-based segmentation tech-

nique [14] was used to extract the ROI of the face from the captured image. In this tech-

nique, GWO was employed to locate the optimal superpixel settings of the quick-shift

segmentation algorithm. The GWO algorithm was used to search for the optimal values of

the quick-shift parameters that result in the best segmentation performance of the face ther-

mal images. The results in [14] have shown that the optimized superpixel-based segmenta-

tion technique has produced the best ROI which has improved the classification rate [14].

Based on these results, superpixel-based segmentation technique was used to extract the
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ROI from the thermal image to minimize the processing time and to extract the most

related facial features.

In the feature extraction phase, the curvelet and wavelet are used to transform the ROI into

the frequency domain. The aim is to compare these two techniques in extracting a set of accu-

rate features that enable a high accuracy of users’ authentication.

The curvelet and wavelet transforms are mathematical techniques used to analyze signals

and images in the frequency domain. Both transforms decompose an image into several sub-

bands, which contain different frequency components of the image. In the case of the curvelet

Fig 1. Schematic architecture of the proposed approach.

https://doi.org/10.1371/journal.pone.0287349.g001
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transform, the decomposition is achieved by dividing the image into small wedges, each of

which is represented by a set of curvelet coefficients. These coefficients capture the local fre-

quency information of the image in a directional manner. Ten statistical features, as described

in Section 3.2, are then computed from each curvelet sub-band or wedge, which are used to

construct feature vectors for the region of interest. The curvelet transform is designed and uti-

lized using four scales and sixteen angles, which means that the input data is being decom-

posed into a set of sub-bands with different levels of frequency and orientation. Each sub-band

is then further decomposed into a set of small regions called wedges, which capture the local

curvature and texture of the data. In this case, there are 81 wedges in total, which are formed

by combining the four scales and sixteen angles. From these wedges a feature vector is con-

structed by concatenating all of the wedge coefficients into a single vector of length 810.

The wavelet transform, on the other hand, decomposes the image into sub-bands using a

set of basis functions known as wavelets. These basis functions are designed to capture the

local frequency information of the image in a multiscale manner. Statistical features are also

calculated from each wavelet sub-band and used to construct feature vectors for each ROI of

the thermal face images, as in Section 3.2.

The efficiency of the Daubechies 4 (DB4) wavelet has been established according to the

findings in [37, 38]. As a result, we utilised this wavelet in our proposed technique to decom-

pose the ROI image into four distinct levels. Hence, the (DB4) wavelet was used to decompose

the image i.e, the ROI into four levels, each level consisting of four sub-bands: approximation

(A), horizontal (H), vertical (V), and diagonal (D), resulting in a total of 16 sub-bands for each

image. From each sub-band, ten features are calculated. Thus, a total of 160 features being

extracted from each ROI. These features are used to produce the wavelet feature vector, which

is used for further analysis or classification purposes.

The feature selection phase is proposed to boost learning accuracy and quality of classifica-

tion performance by only selecting the most discriminative features while removing irrelevant,

redundant and noisy ones. Metaheuristic-based feature selection techniques have shown to be

efficient in this space [39, 40]. So, in this paper, two types of metaheuristic algorithms (evolu-

tionary or swarm) were used as feature selection techniques. For the evolutionary type, we

used GA while for the swarm type, we used PSO and GWO. The main goal was to identify the

best set of features which improve thermal face recognition accuracy while minimizing the

computational time.

In the classification phase, the best set of features, selected by the metaheuristic technique,

was given to a supervised classifier to identify users given their thermal images. Based on three

different learning strategies (instance-based learning (K-Nearest Neighbour), an ensemble-based

learning (Random forest) and probabilistic based learning (Naive Bayes) were used. Each of

these three classifiers was applied to three sets of features produced by GA, GWO, and PSO. The

best results were then reported to build the final model. See the results section for more details.

5 Experimental setup

This section describes the dataset and performance metrics used in evaluating the proposed

method. It also presents parameters of the used classifiers as well as experiments environment

settings.

5.1 Dataset

The public dataset, Terravic Facial infrared (IR) [41], was adopted in the evaluation of the pro-

posed models. The dataset contains 4000 images for 20 different classes. In each of the classes,

there is a total of 200 black-and-white images. The photos are JPEG files that are 8 bits
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grayscale and 320 pixels by 240 pixels in size. Each class is meant to represent a unique individ-

ual. Every individual possesses certain images that can be viewed in a variety of configurations

(front, left, right; indoors/outdoors; glasses) to represent different life scenarios. As a result of

the corruption that occurred in the fifth and sixth classes, this evaluation only utilised a total of

18 classes (i.e., 3600 images were used).

5.2 Performance metrics

The effectiveness of the proposed method was assessed utilizing a series of commonly-used

benchmark metrics that were derived from the confusion matrix obtained during the classifi-

cation stage. These metrics include:

Accuracy is a metric that quantifies the percentage of accurate predictions made during the

classification process.

Accuracy ¼
TPþ TN

TP þ TN þ FP þ FN
ð19Þ

where TP is the number of true positive instances, TN is the number of true negative instances,

FP is the number of false positive instances, and FN is the number of false negative instances.

Precision is a metric that determines the ratio of true positive outcomes to all the predicted

positive outcomes.

Precision ¼
TP

TP þ FP
ð20Þ

Recall, also known as Sensitivity or True Positive Rate, is a performance metric that quanti-

fies the ability of a model to correctly identify the positive instances.

Recall ¼
TP

TP þ FN
ð21Þ

The F-Measure is a performance metric which combines the values of precision and recall

into a single score. It is computed as the harmonic mean of precision and recall and can be

expressed mathematically as follows:

FMeasure ¼
2∗ðPrecision∗RecallÞ
ðPrecisionþ RecallÞ

ð22Þ

The Receiver Operating Characteristic (ROC) curve’s Area Under the Curve (AUC) is a

widely-used metric that assesses the effectiveness of classification models. The ROC curve

illustrates the true positive rate (sensitivity) versus the false positive rate (1-specificity) at vari-

ous classification thresholds. An AUC score of 1.0 indicates that the model has a perfect per-

formance, whereas an AUC score of 0.5 suggests a random guess. The ROC curve provides a

comprehensive summary of the classifier’s overall performance.

The Matthews Correlation Coefficient (MCC) is a performance metric utilized to assess the

binary classifier’s effectiveness. It depends on the entries in the confusion matrix and measures

the correlation between the observed and predicted binary classifications. The MCC is mathe-

matically expressed as:

MCC ¼
TP∗TN � FP∗FN

ffiffi
ð

p
TPþ FPÞ∗ðTP þ FNÞ∗ðTN þ FPÞ∗ðTN þ FNÞ

ð23Þ

The MCC can take values from -1 to 1, where -1 indicates a completely incorrect classifier,

1 indicates a perfect classifier, and 0 indicates a random classifier. The MCC is a robust metric
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that provides a balanced evaluation of the performance of a classifier, taking into account both

false positive and false negative errors. These metrics provide a comprehensive evaluation of

the performance of the proposed method.

5.3 Experiments environment setting

All the experiments in this paper were executed under the following settings. The specification

of the used PC was: Intel(R) Core(TM) i7–10700 CPU @ 2.90GHz with 8.00 GB RAM and the

experiments were implemented using MATLAB R2019a under Windows 10. Also, all the

experiments in the scenarios below were conducted in 10 independent runs because the opti-

mization process starts with random solution(s) in Meta-Heuristic. Hence, it is basically

affected by the parameter’s initialization. Therefore, ten independent runs were conducted.

The average of the ten runs was then calculated and reported.

A good training approach for a model with a dataset must be found. The model should

have enough instances to train on without over-fitting it, but if there aren’t enough, the model

won’t be properly trained and will perform poorly when tested [42, 43]. Using the k-fold cross-

validation, with a large value of k (i.e., k approaching the number of instances in the dataset)

or leave-one-out cross-validation can help ensure that the model is evaluated on as much of

the data as possible. This can provide a more accurate estimate of the model’s performance

than a simple train-test split, as each data point is used for both training and validation [42]. It

was justified in [42] that the k-fold cross-validation is better to be used over hold-out valida-

tion. Therefore, in our case, k-fold cross-validation has been used to evaluate the performance

of the proposed models.

Unlike, splitting the dataset into 70% for training and 30% for testing a model, in a k-fold

cross-validation the dataset is split into k subsets, or folds, of approximately equal size. The

model is then trained on k-1 folds, and the remaining fold is used for validation/testing. This

process is repeated k times, with each fold used as the validation set exactly once. The results of

the k-folds are then averaged to obtain an overall estimate of the model’s performance. This

approach is useful because it allows for a more accurate estimation of the model’s performance,

as each data point is used both for training and validation at some point in the process [42,

43].

5.4 Parameter settings

This section presents an explanation of the values of the parameters used in each classifier and

feature selection method. An experiment was conducted to determine the best value of KNN

parameter, k. The results, given in Table 2, show that the best value of k is 5 which was then

used in all experiments of KNN below.

Random Forest parameters are given in Table 3. The Max_Depth parameter can affect the

performance of random forest, so we run an experiment aimed at finding the best value and

giving the best results. It was observed that the best value of Max_Depth is to make it as long as

possible, meaning that Nodes are expanded until all leaves are pure, as shown in Table 4. Con-

sequently, this value was adopted for all subsequent experiments involving random forest. The

parameters values of the feature selection algorithms used in the proposed method are given in

Tables 5–7.

6 Results and analysis

To evaluate the proposed model, we designed four experimental scenarios.
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1. Minimum set of feature identification: The goal of this investigation is to determine which

category of meta-heuristic algorithms (GA, PSO, or GWO) is the most effective for per-

forming feature selection.

2. Best learning strategy of classifiers: The purpose of this scenario is to study the most accu-

rate learning strategy among instance-based, ensemble-based and probabilistic-based

learning approach, for thermal face image classification.

3. Best classifier performance: The objective of this scenario is to analyze and compare the

performance of different metaheuristic algorithms such as GA, GWO, and PSO, in terms

of selecting the optimal set of features (from wavelet and curvelet) that can achieve the

highest classification accuracy using the best classifier identified in Scenario 2.

4. Most efficient model: This scenario aims to compare between the computational time

required for the model when using GA, GWO, or PSO as feature selector.

In the following subsections, each scenario is described in detail.

6.1 Scenario 1: Identification of the minimum set of features

The aim of this scenario was to investigate which type of meta-heuristic algorithms (evolution-

ary or swarm) would be the best feature selection technique. For the evolutionary type, we

used GA while for the swarm type, we used PSO and GWO. The main goal was to identify the

best set of features which improve face recognition accuracy while minimizing the computa-

tional time. To achieve this goal, GA, PSO, and GWO were used as feature selection techniques

on the features extracted by the wavelet and curvelet transformation.

Table 3. Parameter settings of random forest.

Parameter Explanation Value applied

N Estimators Number of trees in the forest 100

Max depth the longest path between the root node and the leaf

node

Unlimited: Nodes are expanded until all

leaves are pure

Min samples

split

Minimum number of samples requiredto split an

internal node

2

Min samples

leaf

Minimum number of samples required to be at a

leaf node

1

Max leaf nodes Maximum no of leaf nodes generated Unlimited number of leaf nodes

https://doi.org/10.1371/journal.pone.0287349.t003

Table 2. Impact of K value on the KNN performance.

Number of K Nearest Neighbours Accuracy Precision Recall F-Measure MCC ROC Area PRC Area

K = 1 0.991 0.991 0.991 0.991 0.991 0.996 0.984

K = 2 0.988 0.989 0.988 0.988 0.988 0.999 0.995

K = 3 0.991 0.991 0.991 0.991 0.99 0.999 0.998

K = 4 0.991 0.991 0.991 0.991 0.99 0.999 0.998

K = 5 0.993 0.993 0.993 0.993 0.992 1 0.999

K = 6 0.992 0.992 0.992 0.992 0.991 1 0.999

K = 7 0.992 0.993 0.992 0.992 0.992 1 0.999

K = 8 0.99 0.991 0.99 0.99 0.99 1 0.999

K = 9 0.99 0.991 0.99 0.99 0.99 1 0.999

K = 10 0.99 0.99 0.99 0.99 0.989 1 0.999

https://doi.org/10.1371/journal.pone.0287349.t002
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The experiment was conducted in ten independent steps because the optimization process

in metaheuristic starts with random solutions. Hence, it is basically affected by the parameter’s

initialization. Therefore, ten independent experiments were conducted, and the average of the

ten runs was calculated. The average accuracy of each optimizer was recorded and compared

as well as the time CPU taken was also calculated and compared. In addition, the percentage of

the selected features for each method was reported. This was to show the amount of feature

reduction each algorithm (GA, PSO, and GWO) can make. The summary of the results of this

scenario is given in Table 8.

From these results, presented in this table, the following remarks can be made. Firstly, the

results of all algorithms (GA, PSO, and GWO) using curvelet features were better than using

Table 4. Impact of changing the Max_Depth value on the performance.

Max_Depth TP Rate Precision Recall F-Measure MCC ROC Area

2 0.888 0.901 0.888 0.885 0.883 0.992

4 0.96 0.96 0.96 0.96 0.957 0.998

6 0.98 0.98 0.98 0.98 0.979 0.999

8 0.988 0.988 0.988 0.988 0.988 1

10 0.992 0.992 0.992 0.992 0.992 1

Unlimited 0.993 0.993 0.993 0.993 0.993 1

https://doi.org/10.1371/journal.pone.0287349.t004

Table 5. Parameter settings of grey wolf optimizer.

Parameter Explanation Value applied

Population

size

The number of wolves in the search space at each iteration 10

Search space The range of possible solutions for the problem being

optimized

The number of features in the given

space

Iteration The number of iterations or generations that the algorithm

will run

100

https://doi.org/10.1371/journal.pone.0287349.t005

Table 6. Parameter settings of particle swarm optimizer.

Parameter Explanation Value

applied

inertia weight (w) balance the global exploration and local exploitation 0.9

best personal

solutions (C1)

It determines the weight given to the particle’s personal best position in

determining its next move

2

best global solution

(C2)

It determines the weight given to the best position found by the entire swarm

in determining its next move

2

https://doi.org/10.1371/journal.pone.0287349.t006

Table 7. Parameter settings of genetic algorithms.

Parameter Explanation Value

applied

Population Size The number of individuals in each generation of the GA 10

Crossover Rate

(CR)

The probability of performing a crossover operation between two parents to

create offspring.

0.8

Mutation Rate

(MR)

the probability of introducing random changes to an individual’s genetic

material during reproduction.

0.01

https://doi.org/10.1371/journal.pone.0287349.t007
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wavelet features for thermal face images. The curevelet-based results were better than the

wavelet-based results with about %12 on average (98% for curvelet and 86% for wavelet). This

superiority of curvelet transformation is attributed to its ability to divide the image into 16

angles, as opposed to wavelet transformation which only divides the image into a few horizon-

tal, vertical, and diagonal directions. Thus, the curvelet can extract more discriminating fea-

tures than wavelet can.

Table 8. Feature selection by GA, GWO and PSO.

GA as a feature selection technique

Feature Selection Curvelet Wavelet

Accuracy Time(s) Features Percentage Accuracy Time(s) Features Percentage

GA_1 98.87% 165.47295 262 32.35% 86.17% 30.758998 20 12.50%

GA_2 98.58% 177.517759 239 29.51% 86.18% 21.09969 13 8.13%

GA_3 98.15% 164.092158 259 31.98% 86.45% 23.162714 19 11.88%

GA_4 98.86% 160.75248 245 30.25% 86.18% 25.076062 20 12.50%

GA_5 98.26% 176.462746 288 35.56% 86.12% 25.816473 19 11.88%

GA_6 98.86% 168.719418 266 32.84% 86.22% 24.018041 21 13.13%

GA_7 98.72% 173.59331 278 34.32% 86.87% 22.558828 15 9.38%

GA_8 98.72% 164.100608 260 32.10% 86.43% 23.460321 18 11.25%

GA_9 98.80% 164.149605 266 32.84% 86.32% 25.025994 23 14.38%

GA_10 98.29% 163.861135 274 33.83% 86.70% 21.401498 13 8.13%

Average 98.61% 167.8722169 263.7 32.56% 86.36% 24.2378619 18.1 11.31%

Grey Wolf as a feature selection technique

Feature Selection Curvelet Wavelet

Accuracy Time(s) Features Percentage Accuracy Time(s) Features Percentage

GWO_1 99.12% 78.096678 198 24.44% 86.12% 11.520921 11 6.88%

GWO_2 98.15% 68.817696 151 18.64% 87.15% 11.485777 10 6.25%

GWO_3 99.28% 64.037209 155 19.14% 86.20% 11.75062 16 10.00%

GWO_4 99.18% 58.503095 129 15.93% 86.26% 10.380232 9 5.63%

GWO_5 99.25% 55.753692 114 14.07% 87.11% 11.380216 14 8.75%

GWO_6 99.18% 57.869282 121 14.94% 86.28% 11.327911 13 8.13%

GWO_7 98.24% 51.652055 91 11.23% 86.43% 11.352478 16 10.00%

GWO_8 99.16% 63.736463 133 16.42% 86.39% 12.245027 15 9.38%

GWO_9 98.21% 66.524285 158 19.51% 86.26% 12.940165 25 15.63%

GWO_10 98.52% 55.55739 94 11.60% 87.05% 11.542802 10 6.25%

Average 98.83% 62.0547845 134.4 16.59% 86.53% 11.5926149 13.9 8.69%

Particle Swarm as a feature selection technique

Feature Selection Curvelet Wavelet

Accuracy Time(s) Features Percentage Accuracy Time(s) Features Percentage

PSO_1 98.72% 116.530399 343 42.35% 87.45% 21.404575 57 35.63%

PSO_2 98.72% 118.344307 336 41.48% 83.50% 21.054404 65 40.63%

PSO_3 98.72% 111.705514 346 42.72% 87.22% 18.085649 45 28.13%

PSO_4 98.86% 120.335204 370 45.68% 86.88% 20.592737 59 36.88%

PSO_5 98.72% 108.794494 331 40.86% 86.32% 22.839912 67 41.88%

PSO_6 98.58% 119.825416 351 43.33% 86.31% 21.259194 62 38.75%

PSO_7 98.58% 117.606615 374 46.17% 87.31% 20.604929 62 38.75%

PSO_8 98.15% 122.397801 367 45.31% 87.42% 23.949061 70 43.75%

PSO_9 98.58% 118.55687 370 45.68% 86.04% 20.910869 59 36.88%

PSO_10 98.95% 121.054354 381 47.04% 86.18% 20.708786 64 40.00%

Average 98.66% 117.5150974 356.9 44.06% 86.46% 21.1410116 61 38.13%

https://doi.org/10.1371/journal.pone.0287349.t008
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Secondly, the average reduction rate of the wavelet features was much better higher than

that of the cuverlet features. For the wavelet features, the average reduction rate was 89.69%,

91.31%, and 61.87% for GA, GWO, and PSO, respectively. For the curevelt features, the aver-

age reduction rate was 67.54%, 83.41%, and 55.94% for GA, GWO, and PSO, respectively. It

was also noticed the GWO has achieved the highest reduction rate for both type of features

while giving the highest accuracy too.

Thirdly, the results in Table 8 indicate that GWO was the best in terms of accuracy, time

consumption, and percentage of the selected features (i.e., selected the minimum set of features

giving the highest accuracy). The average accuracy achieved by the GWO was 98.83%, while

the average time taken was 62.05 seconds. Furthermore, the average number of features

selected was 134.4, which constituted only 16.59% of the total features. On the other hand, the

GA gave an average accuracy of 98.61%, an average time consumption of 167.87 and an aver-

age number of 263.70 for selected features. These results demonstrate that the GWO method

outperforms the GA in terms of both accuracy and time consumption, i.e., the swarm methods

is better than the evolutionary method.

6.1.1 Convergence analysis. Convergence of metaheuristics algorithms is a very impor-

tant indicator of their performance. Thus, an experiment was conducted to investigate the rela-

tion between fitness value against the number of iterations of each of the used algorithms (GA,

GWO, and PSO). Note that in this study, the fitness function was to minimize this error rate

which is calculated for the classification accuracy of the model on the dataset, i.e., maximizing

the accuracy. The best way to illustrate this relation is by plotting it. Figs 2–4 show the conver-

gence of each method in finding the best solution. The x-axis represents the number of

Fig 2. The convergence of GWO to find the best set of features.

https://doi.org/10.1371/journal.pone.0287349.g002
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iterations, and the y-axis represents the best fitness value achieved by the algorithm at that

iteration.

From these figures, it can be seen that as the number of iterations increases, there is a

decreasing trend in the fitness value, indicating that the algorithm is making progress towards

finding a good solution. When comparing the three convergence curves, it can been noticed

that the GWO is the best solution with a fitness value of 0.002, while PSO and GA found solu-

tions with fitness values of 0.0074 and 0.0043, respectively. These results suggest that GWO

outperforms both PSO and GA as feature selection methods.

Overall, the results of this scenario support the conclusion that the GWO-based method is a

superior feature selection method in terms of accuracy, time consumption, and the number of

selected features. Also, the best accuracy, 99.28% was achieved by the set of features, GWO_3.

Furthermore, the results showed that our proposed method could achieve 89% (using GWO_7

and GWO_10) and 94% (using GWO_4 and and GWO_10) reduction rate by GWO-based

method for curvelet features and wavelet features respectively. Such high reduction rate of the

features will not require high computation cost to recognise users. This means that our pro-

posed GWO-based features selection method for thermal face recognition could supports lim-

ited resources, e.g., IoT applications.

6.2 Scenario 2: Best learning strategy of classifiers

Given the best-selected features (i.e., curvelet features from Scenario 1), in Scenario 2 it was

aimed to investigate the best-supervised learning strategy. Those strategies are instance-

Fig 3. The convergence of PSO to find the best set of features.

https://doi.org/10.1371/journal.pone.0287349.g003
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based learning, ensemble-based learning and probabilistic-based learning, and the classifi-

ers are KNN, RF and NB, respectively. From the first experiment, it was proved that the

GWO was the best feature selector for both wavelet and curvelet features in terms of the

minimum number of features and the highest accuracy rate. So, in Scenario 2, we designed

two sub-experiments (wavelet-based features and curvelet-based features) in which the

three classifiers were applied to the sets of features produced by GWO. In both sub-experi-

ments, the classifiers, KNN, RF, and NB were applied to wavelet and curvelet features

selected by GWO and the results were reported as given in Figs 5 and 6. The presented fig-

ures illustrated the average of ten runs for each classifier with best selected features from

GWO method.

From Figs 5 and 6, two main remarks can be noticed. Firstly, the RF classifier outperformed

the other classifiers in all performance metrics. RF achieved average results of 99.4% with

some set of features achieving above 99.6% by all evaluation metrics. In other words, the

ensemble-based learning strategy was better than the instance-based learning and probabilis-

tic-based learning in identifying users through their thermal faces. Secondly, like in Scenario 1,

the curvelet features showed to give classification results better than the wavelet features in all

evaluation metrics although the wavelet features can identify the users using a number of fea-

tures less than that are needed by curvelet features. In conclusion, the results of all classifiers

can be sorted as follows, RF, KNN and NB. The results of this scenario motivated us to further

apply the random forest classifier over the features selected by three optimization algorithms

as presented in Scenario 3.

Fig 4. The convergence of GA to find the best set of features.

https://doi.org/10.1371/journal.pone.0287349.g004

PLOS ONE Efficient thermal face recognition method using optimized curvelet features for biometric authentication

PLOS ONE | https://doi.org/10.1371/journal.pone.0287349 June 26, 2023 22 / 33

https://doi.org/10.1371/journal.pone.0287349.g004
https://doi.org/10.1371/journal.pone.0287349


6.3 Scenario 3: Best classifier performance

The aim here is to investigate which metaheuristic algorithm among GA, GWO and PSO

would select the set of features (from wavelet and curvelet) which can give the highest clas-

sification performance using the best classifier identified from Scenario 2 (i.e., RF). In

other words, this scenario does not consider the computational time nor the minimum

number of features as in Scenario 1, the only concerned with the accuracy and other perfor-

mance metrics. To achieve this, in Scenario 3, we designed two sub-experiments (wavelet-

based features and curvelet-based features) in which, the features selected by three meta-

heuristic algorithms (GA, GWO and PSO) were given to the RF classifier (best classifier

from Scenario 2) and the results of these two experiments were reported as given in Figs 7

and 8.

The obtained results, from the curvelet features, showed that the average of the performance

metrics of PSO features is outperforming the other two feature selectors, i.e., GWO and GA.

The GWO and GA came second and third, respectively. Although the GWO was not the best

in accuracy and other measures, it gave comparable results with the smallest average of the

number of features needed to accurately identify the users. On the other hand, the area under

curve in ROC showed an equal performance for the three FS methods reaching 100%. This

means that the three-feature selection (FS) methods being compared in the study performed

equally well in terms of their ability to discriminate between the different classes. An AUC of

100% indicates perfect discrimination between all users, which means that the classifier is able

to correctly authenticate all users without any errors.

Fig 5. Results of KNN, RF and NB classifiers using wavelet features.

https://doi.org/10.1371/journal.pone.0287349.g005
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6.4 Scenario 4: Most efficient model

This scenario conducted to measure the relation between the number of iteration of each algo-

rithm (GA, GWO, and PSO) and the CPU time needed to reach the highest accuracy (i.e., to

find out the most efficient model). As the random forest classifier with the curvelet features

gave the highest results, see Table 8, we used them in measure the computational time of using

GA, GWO, and PSO as feature selection. Fig 9 illustrates that the GWO outperformed both

GA and PSO in the computational time consumed. This confirms the results presented and

discussed in Scenario 1. This scenario provides additional insights into the computational effi-

ciency of the algorithms, which is an important factor to consider when selecting an optimiza-

tion algorithm for a particular application. The findings suggest that GWO may be a good

choice for applications where computational efficiency is a critical factor.

6.5 Statistical analysis

In general, the significance analysis provides a rigorous evaluation of the proposed methods

and helps to ensure the reliability of the results obtained. By using appropriate statistical tests,

the authors would be able to draw robust conclusions about the performance of the different

methods and their relative strengths and weaknesses. In this study, due to the diversity of the

obtained results (see results of Scenario 1–3), the authors conducted a significance analysis to

evaluate the differences between the proposed methods. This analysis was conducted in two

phases. In the first phase, the authors investigated whether the data follow a normal distribu-

tion or not. This was done by using the Shapiro-Wilk test. The results of this test showed that

Fig 6. Results of KNN, RF and NB classifiers using curvelet features.

https://doi.org/10.1371/journal.pone.0287349.g006
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the data did not follow a normal distribution. Therefore, in the second phase, the authors pro-

ceeded to conduct a non-parametric test, namely the Wilcoxon signed-rank test, to determine

if the differences between the employed algorithms were statistically significant. The results of

the Wilcoxon test are presented in Tables 9–14, and a level of confidence of 95% was used for

the statistical analysis. Note that the significance analysis was not done for the accuracy of the

algorithms but also for all other performance metrics (precision, recall, F-Score, and MCC and

ROC). This would further increase the confidence of selecting an algorithm of the other.

The statistical analysis was done for Scenarios 1–3 (presented above). For these scenarios,

both wavelet and curvelet features were employed to study their classification performance.

The first scenario is aiming to compare the three feature selection methods (i.e., GA, GWO

and PSO-based methods). A comparison of the significance of the three methods was con-

ducted in terms of accuracy, time consumed to determine the set of features and the number

of selected features. The aim of this step was to study whether the average performance of the

three feature selection methods is equal or not using Wilcoxon test. Table 9 shows that there is

no statistically significant difference in accuracy between GAO, GWO, and PSO. Howver, in

terms of time consumed, the results showed that there is statistical significance between GWO

versus PSO or GAO. Hence, it generally seems that GWO was able to outperform both PSO

and GAO when employing wavelet features. Moreover, in the case of the curvelet feature,

GWO was better than PSO and GAO in terms of time consumed and the number of features

as shown in Table 10.

Scenario 2 aims to study the performance of three different learning strategies (see above).

An statistical analysis of their significance, as given in Table 11, shows that there is a statistical

Fig 7. Comparing GA, GWO and PSO as feature selectors using the random forest classifier on wavelet features.

https://doi.org/10.1371/journal.pone.0287349.g007
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Fig 8. Comparing GA, GWO and PSO as feature selectors using the random forest classifier on curvelet features.

https://doi.org/10.1371/journal.pone.0287349.g008

Fig 9. The computational time between three different feature selection methods GA, GWO and PSO.

https://doi.org/10.1371/journal.pone.0287349.g009
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Table 9. Statistical analysis Scenario 1 using wavelet features.

Feature Selection Optimizer The difference is statistically significant

P-Value Accuracy P-Value Time P-Value Number of features

GWO Vs. GA 0.38396 No 0.00018267 Yes 0.033687 Yes

GAO Vs. PSO 0.32484 No 0.0036105 Yes 0.00017761 Yes

GWO Vs. PSO 0.57061 No 0.00018267 Yes 0.00017861 Yes

https://doi.org/10.1371/journal.pone.0287349.t009

Table 14. Statistical analysis of Scenario 3 using Curvelet features.

Feature Selection Optimizer The difference is statistically significant

P-Value Accuracy P-Value Precision P-Value Recall P-Value F-Measure P-Value MCC P-Value ROC

GWO Vs. GAO 0.46009 No 0.43682 No 0.46009 No 0.46009 No 0.25973 No NaN N/A

GWO Vs. PSO 0.6091 No 0.57858 No 0.6091 No 0.6091 No 0.75699 No NaN N/A

PSO Vs. GAO 0.097034 No 0.088674 No 0.097034 No 0.097034 No 0.1264 No NaN N/A

https://doi.org/10.1371/journal.pone.0287349.t014

Table 10. Statistical analysis Scenario 1 using curvelet features.

Feature Selection Optimizer The difference is statistically significant

P-Value Accuracy P-Value Time P-Value Number of features

GWO Vs. GA 0.25612 No 0.00018267 Yes 0.00018165 Yes

GAO Vs. PSO 0.96927 No 0.00018267 Yes 0.00018063 Yes

GWO Vs. PSO 0.32282 No 0.00018267 Yes 0.00018165 Yes

https://doi.org/10.1371/journal.pone.0287349.t010

Table 11. Statistical analysis of Scenario 2 using wavelet features.

Calssifer The difference is statistically significant

P-Value Accuracy P-Value Precision P-Value Recall P-Value F-Measure P-Value MCC P-Value ROC

RF Vs. KNN 0.013732 Yes 0.012346 Yes 0.013732 Yes 0.01537 Yes 0.012379 Yes 0.00012698 Yes

KNN Vs. NB 0.93963 No 0.67713 No 0.93963 No 0.44867 No 0.67678 No 0.00012934 Yes

RF Vs. NB 0.0035102 Yes 0.0035602 Yes 0.0035102 Yes 0.0012766 Yes 0.0016654 Yes 0.81462 No

https://doi.org/10.1371/journal.pone.0287349.t011

Table 12. Statistical analysis of Scenario 2 using curvelet features.

Calssifer The difference is statistically significant

P-Value Accuracy P-Value Precision P-Value Recall P-Value F-Measure P-Value MCC P-Value ROC

RF Vs. KNN 0.0016252 Yes 0.0014201 Yes 0.0016252 Yes 0.0016252 Yes 0.0010652 Yes 6.1133e-05 Yes

KNN Vs. NB 0.00018063 Yes 0.00017962 Yes 0.00018063 Yes 0.00018063 Yes 0.00017962 Yes 0.13416 No

RF Vs. NB 0.00017861 Yes 0.00017661 Yes 0.00017861 Yes 0.00017861 Yes 0.00017661 Yes 6.1133e-05 Yes

https://doi.org/10.1371/journal.pone.0287349.t012

Table 13. Statistical analysis of Scenario 3 using wavelet features.

Feature Selection Optimizer The difference is statistically significant

P-Value Accuracy P-Value Precision P-Value Recall P-Value F-Measure P-Value MCC P-Value ROC

GWO Vs. GAO 0.39831 No 0.42367 No 0.35961 No 0.40248 No 0.34123 No 0.30056 No

GWO Vs. PSO 0.00094304 Yes 0.00093881 Yes 0.00094304 Yes 0.00093881 Yes 0.00062385 Yes 0.076716 No

PSO Vs. GAO 0.00019088 Yes 0.00025197 Yes 0.00025197 Yes 0.00025753 Yes 0.00028139 Yes 0.36812 No

https://doi.org/10.1371/journal.pone.0287349.t013
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difference between RF and KNN or NB in the case of using wavelet features. While in the case

of using curvelet features, as illustrated in Table 12, the difference is significant between RF

against both KNN and NB.

In Scenario 3, the objective was to check the performance of using RF classifier with the dif-

ferent feature selection methods (i.e., GAO, PSO, and GWO-based methods), see above. The

statistical analysis of the these results are summarized in Tables 13 and 14. The obtained results

show that in the case of using wavelet features, the difference between GWO and PSO is statis-

tically significant and also between the PSO and GAO methods. While in the case of using cur-

velet features, there is no statistical significance between the three methods since all P-values

are greater than 0.05.

7 Discussion

In this section, the results reported above will be discussed in terms of the research questions,

possible applications, and comparison with most related work.

7.1 Research questions discussion

In the introduction, we identified two research questions (RQ1- which is better (wavelet or

curvelet transform) in extracting thermal face features to accurately and accurately recognise

a user? and RQ2- which metaheuristic algorithms, GWO, GA and PSO, can select the mini-

mum set of features that efficiently and accurately recognise users from their thermal face

images?).

For RQ1, the results, reported above section, showed all curvelet-based experiments were

better than the results of wavelet-based experiments. In other words, the curvelet transforma-

tion was found more effective at producing discriminative features that can accurately describe

the curves in thermal face images, which in turn led to higher classification performance in all

evaluation metrics. One reason for this improved performance is that curvelet analyzes images

from more angles than wavelet, which only analyze images in three directions (horizontal, ver-

tical, and diagonal). Curvelets also have scale, location, and orientation parameters that allow

them to tune to various orientations and scales, while wavelets only have scale and location

parameters. Additionally, the curvelet covers the entire spectrum in the frequency domain.

This means that there is no loss of information when capturing frequency information from

the face images. Furthermore, the curvelet is particularly useful for representing singularities

over geometric structures in images, whereas wavelet is better suited for point singularities

[37]. Overall, the results of the scenarios above suggest that curvelet transforms offer advan-

tages over wavelet transforms when it comes to accurately describing curves in thermal face

images and extracting discriminative features for the classification of thermal face images (i.e.,

authenticating users through their thermal face).

For RQ2, the results obtained from Scenario 3 show two remarks. First, PSO could select a

set of features which can achieve slightly higher classification performance than the cases of

using GWO and GA. However, this higher performance required more number of features

than the case of GWO and GA. Thus, the model with PSO-based features could be adopted by

applications where high computational cost is not an issue (e.g., cloud-based face recognition

applications). Second, with the minimum set of features, GWO could achieve the second-best

classification performance, 99.5% accuracy. This accuracy is less than the PSO result by only

0.02% but GWO results were achieved by features less PSO results with 30%, see Table 8. This

means that the model with GWO-based features could be adopted by limited resources appli-

cations such as IoT applications.
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7.2 Possible applications

Thermal face recognition has a wide range of applications in different industries, particularly

in situations where traditional face recognition technology may not be effective, such as in

low-light or high-contrast environments. In security applications, thermal face recognition

with high performance, like the proposed models, can detect and identify individuals wearing

masks or other face coverings, which can be difficult for traditional visible light face recogni-

tion systems. This makes thermal face recognition an important tool for law enforcement. The

wavelet-based model (see Table 8) could be a good candidate for this application as it is light-

weight enough to be installed on a portable camera. In addition, thermal face recognition can

be used to identify individuals at a distance, which can be useful for security applications in

large areas such as airports, train stations, or sports stadiums. The proposed curvelet-based

model (see Table 8) would be an ideal solution in such applications where it can be deployed

on a cloud or fog computing model.

However, there are some limitations to thermal face recognition technology. For example,

it may not be as effective in identifying individuals with similar thermal signatures, such as

twins, and it may not be able to accurately identify individuals who have undergone plastic

surgery or other facial alterations.

7.3 Comparison with related work

We compared the results of the proposed approach with the results of the related works that

used the same public dataset (Terravic Facial I) and a summary of this comparison is given in

Table 15.

From the table below, two main remarks can be noticed. Firstly, the impact of the proposed

GWO-thermal-face-feature selection (GWO-TFFS) on the computation time and the effi-

ciency of the thermal face-based authentication method. Our proposed model is the only

model which gave above 99.5% for all evaluation metrics with only 16% of the features space.

This would lead to less computational cost which makes our proposed authentication method

energy efficient and suitable for IoT applications. Secondly, the suggested model has been

thoroughly evaluated using the benchmark evaluation metrics (accuracy, precision, recall,

F1-Score, MCC, and ROC curve) but all other related work has only been evaluated using

accuracy which is not enough to assess the rigour of the face-based biometric authentication.

A recent work [17] has reported very good results (100% accuracy) but the proposed

method not clearly described. It was not clear how the ROI (Face area) was extracted, the

purpose of wavelet was not clear, the parameter of SVM and ANN were not specified, finally

Table 15. Comparison with related work used Terravic Facial IR dataset.

Year Feature Extracted Feature Selection Classifiers Performance

[21] 2012 Haar wavelet,LBP N/A ANN Minimum distance Accuracy -95.09%

[14] 2018 N/A Rough Set-based Adaboost Accuracy-99%

[26] 2018 Zernike moments N/A MLPNN Accuracy 89.5%

[18] 2019 N/A N/A HOG-SVM and Back-propagation HOG-SVM 98.43%, Back-propagation 100%

[17] 2022 Statistical Features PCA SVM, ANN Classifier SVM 99.87%

ANN 100%

Proposed system Curvelet Features GWO RF Classifier Acc: 99.7%

Precision = 99.44%

Recall = 99.43%

F-Score = 99.43%

https://doi.org/10.1371/journal.pone.0287349.t015
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the reduction percentage of feature selection was not reported. Thus, the results seem not

reliable.

8 Conclusion and future work

This paper proposed a biometric authentication system using thermal images. The system is

divided into five phases: (1) capturing a user’s face with a thermal camera; (2) segmenting the

face region with an optimized superpixel-based segmentation technique; (3) extracting face

features with wavelet and curvelet; (4) selecting best features with GWO, PSO, and GA; and

(5) classifying or identifying the user with classifiers such as Random Forest, KNN, and Naive

Base. The public dataset, Terravic Facial IR, was in the evaluation of the proposed. The results

showed that curvelet-based features gave better results than that of wavelet-based features in

terms of: accuracy, precision, recall, F-measure, and ROC area. Also, the GWO showed to the

best feature selectors among PSO and GA. The GWO was able to select a set of feature less

than 20% of the total curevlet features and still gave 99.5% accuracy and other above metrics.

Also, it was proved that the ensemble-based learning strategy (i.e., RF) is better than the

instance-based learning (i.e., KNN), and and probabilistic-based learning (i.e., NB) in the clas-

sification results. In short, it was shown that the GWO-optimized curvelet features of thermal

face images can accurately be identified and authenticate users using RF with accuracy, preci-

sion, recall, F-measure, and ROC area over 99.5%.

In the future, it is worth to investigate more bio-inspired algorithms from the evolutionary

and the swarm classes to build a strong conclusion of which class is better in selecting the most

discriminative features for thermal face recognition.

additionally, the proposed models could be investigated under real time conditions. Face

recognition in real-time has various applications across a range of industries, including secu-

rity, retail, and entertainment. It is worthwhile to investigate how thermal face recognition

would address the real time visible face recognition challenges including low-memory portable

devices, such as microcontrollers which require careful consideration of memory utilisation

and the prioritisation of tasks. Also, using different public datasets collected under different

conditions would be interesting to see how the proposed models would work and how they

can be modified to achieve better results.

The limitations of the study are as follows: (1) the proposed models can take a longer time

when tested on big data with millions of instances, and (2) if the problem size is too large, it

might not be possible to store the processing data in the memory of the computer running

these models.
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