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Background

Secure Computation: Parties P1, P2, . . . , Pn compute some (common)
function f (x1, x2, . . . , xn) while keeping x1, x2, . . . , xn private, even if
n − 1 parties are corrupt!

P1(x1)

P2(x2) P3(x3)

P4(x4)

P5(x5)P6(x6)

f (x1, x2, . . . )

Note: Interested in malicious security, where adversaries can deviate
arbitrarily
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Secure Computation: 2PC vs. MPC

Considered separately in the literature:

2PC

• Two parties, 1 corruption
• Many efficient constructions
• Most based on garbled circuits

• Boolean circuits
• O (1) rounds
• Preprocessing time: none
• Online time: fast

MPC

• n parties, ≤ n − 1 corrupt
• Fewer efficient constructions
• Most efficient scheme: SPDZ

• Arithmetic circuits
• O (depth) rounds
• Preprocessing time: slow
• Online time: fast
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• n parties, ≤ n − 1 corrupt
• Fewer efficient constructions
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Question: Say we want to do secure computation with (fixed) n > 2.
Do we need all the MPC machinery?
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Considered separately in the literature:

2PC

• Two parties, 1 corruption
• Many efficient constructions
• Most based on garbled circuits

• Boolean circuits
• O (1) rounds
• Preprocessing time: none
• Online time: fast

MPC

• n parties, ≤ n − 1 corrupt
• Fewer efficient constructions
• Most efficient scheme: SPDZ

• Arithmetic circuits
• O (depth) rounds
• Preprocessing time: slow
• Online time: fast

Question: Say we want to do secure computation with n = 3.
Do we need all the MPC machinery?
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Three-Party Computation: Challenges

1. Not 2PC, so not clear that two-party protocols/ideas apply
• e.g., cut-and-choose, oblivious transfer, authenticated bits

2. Do not want to resort to complexity/cost of full MPC
• Only need efficiency for three parties, not arbitrary n
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Contribution

Main Contribution
Efficient O (1)-round maliciously-secure 3PC protocol for Boolean circuits

• Tolerates ≤ 2 (static) corruptions
• Lifts existing cut-and-choose 2PC schemes to three-party setting

• Roughly 8× more expensive than underlying 2PC scheme
• Requires almost entirely two-party communication

• Only three broadcasts needed
• Existing schemes require broadcast in every round

• Faster start-to-finish running time versus SPDZ
• SPDZ has faster on-line running time
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Recall: Cut-and-Choose

Cut-and-Choose: Lifts semi-honest 2PC schemes to malicious security
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Cut-and-Choose: Lifts semi-honest 2PC schemes to malicious security

Cut-and-Choose (High-Level Idea) [LP07]:

Garble(C)
Garble(C)

...
Garble(C)

Open half of the circuits

If “checked” circuits constructed correctly, w.h.p. majority of unopened
garbled circuits constructed correctly
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3PC: High-level Idea

How to lift cut-and-choose 2PC protocol to three-party setting:

π̂(S,R): cut-and-choose 2PC protocol between sender S and receiver R
• S generates many garbled circuits using a circuit garbling scheme
• R does cut-and-choose on circuits

S

R
π̂

Note: using generic 2PC schemes for π̂ and π not efficient!

7 / 17



3PC: High-level Idea

How to lift cut-and-choose 2PC protocol to three-party setting:

We emulate π̂ using three parties:
• P1 and P2 run two-party protocol π emulating S

• In particular, the circuit garbling scheme of S
• P3 plays role of R

P3

P1 P2
π

π̂

Note: using generic 2PC schemes for π̂ and π not efficient!
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3PC: Main Steps

Two main steps:

1. Distribute S’s circuit garbling scheme between two parties
2. Modify existing 2PC protocol to use distributed circuit garbling

scheme
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Recall: (Single-Party) Circuit Garbling Scheme

G

α β

γ

Wire Keys Mask Bit
α Kα,0 Kα,1 λα
β Kβ,0 Kβ,1 λβ
γ Kγ,0 Kγ,1 λγ

Garbled Gate:

0 0 EncKα,0,Kβ,0
(
Kγ,G(λα,λβ)⊕λγ‖G(λα, λβ)⊕ λγ

)
0 1 EncKα,0,Kβ,1

(
Kγ,G(λα,λβ⊕1)⊕λγ‖G(λα, λβ ⊕ 1)⊕ λγ

)
1 0 EncKα,1,Kβ,0

(
Kγ,G(λα⊕1,λβ)⊕λγ‖G(λα ⊕ 1, λβ)⊕ λγ

)
1 1 EncKα,1,Kβ,1

(
Kγ,G(λα⊕1,λβ⊕1)⊕λγ‖G(λα ⊕ 1, λβ ⊕ 1)⊕ λγ

)

9 / 17



Recall: (Single-Party) Circuit Garbling Scheme

G

α β

γ

Wire Keys Mask Bit
α Kα,0 Kα,1 λα
β Kβ,0 Kβ,1 λβ
γ Kγ,0 Kγ,1 λγ

Garbled Gate:

0 0 EncKα,0,Kβ,0
(
Kγ,G(λα,λβ)⊕λγ‖G(λα, λβ)⊕ λγ

)
0 1 EncKα,0,Kβ,1

(
Kγ,G(λα,λβ⊕1)⊕λγ‖G(λα, λβ ⊕ 1)⊕ λγ

)
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(
Kγ,G(λα⊕1,λβ)⊕λγ‖G(λα ⊕ 1, λβ)⊕ λγ

)
1 1 EncKα,1,Kβ,1

(
Kγ,G(λα⊕1,λβ⊕1)⊕λγ‖G(λα ⊕ 1, λβ ⊕ 1)⊕ λγ

)
Note: This is standard Yao using point-and-permute
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Recall: (Single-Party) Circuit Garbling Scheme

G

α β

γ

Wire Keys Mask Bit
α Kα,0 Kα,1 λα
β Kβ,0 Kβ,1 λβ
γ Kγ,0 Kγ,1 λγ

Garbled Gate:

0 0 EncKα,0,Kβ,0
(
Kγ,G(λα,λβ)⊕λγ‖G(λα, λβ)⊕ λγ

)
0 1 EncKα,0,Kβ,1

(
Kγ,G(λα,λβ⊕1)⊕λγ‖G(λα, λβ ⊕ 1)⊕ λγ

)
1 0 EncKα,1,Kβ,0

(
Kγ,G(λα⊕1,λβ)⊕λγ‖G(λα ⊕ 1, λβ)⊕ λγ

)
1 1 EncKα,1,Kβ,1

(
Kγ,G(λα⊕1,λβ⊕1)⊕λγ‖G(λα ⊕ 1, λβ ⊕ 1)⊕ λγ

)
Note: Garbling party knows keys/tags being encrypted
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Distributing the Garbling Scheme

Goal: P1 and P2 together compute garbled circuit such that no party
“knows” garbled values

Desired properties:
1. Obliviousness

• Neither party should know key/tag being encrypted
2. Correctness

• If one party malicious, garbled circuit evaluation must either:
• Compute correct answer
• Abort, independent of honest party’s input

Solution: Combine distributed encryption [DI05] with authenticated bit
shares [NNOB12]
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Building Blocks (1): Distributed Encryption Scheme [DI05]

Goal: P1 and P2 want to encrypt secret shared message [m] = m1 ⊕m2
using keys K1, K2

Keys are split into sub-keys: K1 = (s1
1 , s2

1 ), K2 = (s1
2 , s2

2 )

EncK1,K2 ([m]) =
(

m1 ⊕ F 1
s1

1
(0)⊕ F 2

s1
2
(0),m2 ⊕ F 1

s2
1
(0)⊕ F 2

s2
2
(0)
)

Note: Encryption is local!

Note: Cost per party (in PRF calls) to encrypt message of length ` is 2`
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Building Blocks (2): Functionalities Needed

Note: 〈·〉 denotes (form of authenticated and linear) bit secret sharing
Note: [·] denotes (standard) secret sharing
Note: 〈·〉(i), [·](i) denotes Pi s share
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Building Blocks (2): Functionalities Needed

FG
gate(〈a〉, 〈b〉)

〈a〉(1), 〈b〉(1) 〈a〉(2), 〈b〉(2)
P1 P2

〈G(a, b)〉(1) 〈G(a, b)〉(2)

Note: 〈·〉 denotes (form of authenticated and linear) bit secret sharing
Note: [·] denotes (standard) secret sharing
Note: 〈·〉(i), [·](i) denotes Pi s share
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Building Blocks (2): Functionalities Needed

F2
oshare(〈b〉,m0,m1)

〈b〉(1) 〈b〉(2),m0,m1

P1 P2

[mb](1) [mb](2)

Note: 〈·〉 denotes (form of authenticated and linear) bit secret sharing
Note: [·] denotes (standard) secret sharing
Note: 〈·〉(i), [·](i) denotes Pi s share
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Building Blocks (2): Functionalities Needed

Note: efficient maliciously secure constructions exist
• Uses ideas from [NNOB12]
• See paper for details
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Example: Garbling an AND Gate

α

β

γ

λα = 1, λβ = 0, λγ = 1

Standard (single-party) garbling:

Step 1: S computes tags:

i j AND(λα ⊕ i , λβ ⊕ j)⊕ λγ
0 0 AND(1⊕ 0, 0⊕ 0)⊕ 1 = 1
0 1 AND(1⊕ 0, 0⊕ 1)⊕ 1 = 0
1 0 AND(1⊕ 1, 0⊕ 0)⊕ 1 = 1
1 1 AND(1⊕ 1, 0⊕ 1)⊕ 1 = 1
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Example: Garbling an AND Gate

α

β

γ

〈λα〉 = 1, 〈λβ〉 = 0, 〈λγ〉 = 1

Distributed garbling:

Step 1: P1 and P2 compute oblivious sharings of tags:

i j 〈AND(λα ⊕ i , λβ ⊕ j)⊕ λγ〉
0 0 FAND

gate (〈1〉 ⊕ 〈0〉, 〈0〉 ⊕ 〈0〉)⊕ 〈1〉 = 〈1〉
0 1 FAND

gate (〈1〉 ⊕ 〈0〉, 〈1〉 ⊕ 〈1〉)⊕ 〈1〉 = 〈0〉
1 0 FAND

gate (〈1〉 ⊕ 〈1〉, 〈0〉 ⊕ 〈0〉)⊕ 〈1〉 = 〈1〉
1 1 FAND

gate (〈1〉 ⊕ 〈1〉, 〈0〉 ⊕ 〈1〉)⊕ 〈1〉 = 〈1〉
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Example: Garbling an AND Gate

α

β

γ

λα = 1, λβ = 0, λγ = 1

Standard (single-party) garbling:

Step 2: S encrypts key + tag:

i j
0 0 EncKα,0,Kβ,0 (Kγ,1‖1)
0 1 EncKα,0,Kβ,1 (Kγ,0‖0)
1 0 EncKα,1,Kβ,0 (Kγ,1‖1)
1 1 EncKα,1,Kβ,1 (Kγ,1‖1)
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Example: Garbling an AND Gate

α

β

γ

〈λα〉 = 1, 〈λβ〉 = 0, 〈λγ〉 = 1

Distributed garbling:

Step 2a: P1 and P2 compute oblivious sharings of each party’s sub-keys:

i j
0 0 F1

oshare(〈1〉, s1
γ,0, s1

γ,1) =
[
s1
γ,1
]
F2

oshare(〈1〉, s2
γ,0, s2

γ,1) =
[
s2
γ,1
]

0 1 F1
oshare(〈0〉, s1

γ,0, s1
γ,1) =

[
s1
γ,0
]
F2

oshare(〈0〉, s2
γ,0, s2

γ,1) =
[
s2
γ,0
]

1 0 F1
oshare(〈1〉, s1

γ,0, s1
γ,1) =

[
s1
γ,1
]
F2

oshare(〈1〉, s2
γ,0, s2

γ,1) =
[
s2
γ,1
]

1 1 F1
oshare(〈1〉, s1

γ,0, s1
γ,1) =

[
s1
γ,1
]
F2

oshare(〈1〉, s2
γ,0, s2

γ,1) =
[
s2
γ,1
]
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Example: Garbling an AND Gate

α

β

γ

〈λα〉 = 1, 〈λβ〉 = 0, 〈λγ〉 = 1

Distributed garbling:

Step 2b: P1 and P2 use distributed encryption to encrypt:

i j
0 0 EncKα,0,Kβ,0 (

[
s1
γ,1
]
‖
[
s2
γ,1
]
‖〈1〉)

0 1 EncKα,0,Kβ,1 (
[
s1
γ,0
]
‖
[
s2
γ,0
]
‖〈0〉)

1 0 EncKα,1,Kβ,0 (
[
s1
γ,1
]
‖
[
s2
γ,1
]
‖〈1〉)

1 1 EncKα,1,Kβ,1 (
[
s1
γ,1
]
‖
[
s2
γ,1
]
‖〈1〉)
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Example: Garbling an AND Gate

α

β

γ

〈λα〉 = 1, 〈λβ〉 = 0, 〈λγ〉 = 1

Distributed garbling:

Step 2b: P1 and P2 use distributed encryption to encrypt:

i j
0 0 EncKα,0,Kβ,0 (

[
s1
γ,1
]
‖
[
s2
γ,1
]
‖〈1〉)

0 1 EncKα,0,Kβ,1 (
[
s1
γ,0
]
‖
[
s2
γ,0
]
‖〈0〉)

1 0 EncKα,1,Kβ,0 (
[
s1
γ,1
]
‖
[
s2
γ,1
]
‖〈1〉)

1 1 EncKα,1,Kβ,1 (
[
s1
γ,1
]
‖
[
s2
γ,1
]
‖〈1〉)

Note: Cost of encryption 8× cost in 2PC setting
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3PC: Main Steps

Two main steps:
1. Distribute S’s circuit garbling scheme between two parties
2. Modify existing 2PC protocol to use distributed circuit garbling

scheme
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Lifting 2PC Protocols to Three Party Setting

Goal: Construct 3PC scheme using distributed garbling protocol

High-Level Idea
• Take existing cut-and-choose protocol (e.g., [LP07, LP11, Lin13])
• Replace sender’s circuit generation by distributed circuit generation

Note: Not exactly this straightforward; see paper for details

Security Intuition
• Exactly one of P1 or P2 malicious: garbled circuits either correct or

abort independent of input
• Both P1 and P2 malicious: cut-and-choose by P3 detects cheating
• P3 malicious: covered by security of garbling protocol
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Summary

Can “lift” cut-and-choose 2PC protocols to 3PC setting
• Provides efficient constant round 3PC protocol
• Only ≈ 8× slower than underlying 2PC protocol
• Approach works for combination of [LP07, LP11] and [Lin13]
• Only three broadcast calls needed

• Important in WAN settings where broadcast is expensive
• Faster start-to-finish time than existing 3PC solutions

Future Work:
• Support free-XOR
• Optimize distributed encryption scheme (à la JustGarble [BHKR13])
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Thank You

Any questions?

E-mail: amaloz@cs.umd.edu
URL: https://www.cs.umd.edu/˜amaloz

ePrint: https://eprint.iacr.org/2014/128
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