
Efficient Three-Party Computation from
Cut-and-Choose

Seung Geol Choi1 and Jonathan Katz2 and Alex J. Malozemoff2

and Vassilis Zikas3

1United States Naval Academy
2University of Maryland

3ETH Zurich

Presented at CRYPTO, Santa Barbara, California, USA, August 17–21, 2014.



Background

Secure Computation: Parties P1, P2, . . . , Pn compute some (common)
function f (x1, x2, . . . , xn) while keeping x1, x2, . . . , xn private, even if
n − 1 parties are corrupt!

P1(x1)

P2(x2) P3(x3)

P4(x4)

P5(x5)P6(x6)

f (x1, x2, . . . )

Note: Interested in malicious security, where adversaries can deviate
arbitrarily

2 / 17



Secure Computation: 2PC vs. MPC

Considered separately in the literature:

2PC

• Two parties, 1 corruption
• Many efficient constructions
• Most based on garbled circuits

• Boolean circuits
• O (1) rounds
• Preprocessing time: none
• Online time: fast

MPC

• n parties, ≤ n − 1 corrupt
• Fewer efficient constructions
• Most efficient scheme: SPDZ

• Arithmetic circuits
• O (depth) rounds
• Preprocessing time: slow
• Online time: fast

3 / 17



Secure Computation: 2PC vs. MPC

Considered separately in the literature:

2PC

• Two parties, 1 corruption
• Many efficient constructions
• Most based on garbled circuits

• Boolean circuits
• O (1) rounds
• Preprocessing time: none
• Online time: fast

MPC

• n parties, ≤ n − 1 corrupt
• Fewer efficient constructions
• Most efficient scheme: SPDZ

• Arithmetic circuits
• O (depth) rounds
• Preprocessing time: slow
• Online time: fast

Question: Say we want to do secure computation with (fixed) n > 2.
Do we need all the MPC machinery?

3 / 17



Secure Computation: 2PC vs. MPC

Considered separately in the literature:

2PC

• Two parties, 1 corruption
• Many efficient constructions
• Most based on garbled circuits

• Boolean circuits
• O (1) rounds
• Preprocessing time: none
• Online time: fast

MPC

• n parties, ≤ n − 1 corrupt
• Fewer efficient constructions
• Most efficient scheme: SPDZ

• Arithmetic circuits
• O (depth) rounds
• Preprocessing time: slow
• Online time: fast

Question: Say we want to do secure computation with n = 3.
Do we need all the MPC machinery?

3 / 17



Three-Party Computation: Challenges

1. Not 2PC, so not clear that two-party protocols/ideas apply
• e.g., cut-and-choose, oblivious transfer, authenticated bits

2. Do not want to resort to complexity/cost of full MPC
• Only need efficiency for three parties, not arbitrary n

4 / 17



Contribution

Main Contribution
Efficient O (1)-round maliciously-secure 3PC protocol for Boolean circuits

• Tolerates ≤ 2 (static) corruptions
• Lifts existing cut-and-choose 2PC schemes to three-party setting

• Roughly 8× more expensive than underlying 2PC scheme
• Requires almost entirely two-party communication

• Only three broadcasts needed
• Existing schemes require broadcast in every round

• Faster start-to-finish running time versus SPDZ
• SPDZ has faster on-line running time

5 / 17



Contribution

Main Contribution
Efficient O (1)-round maliciously-secure 3PC protocol for Boolean circuits

• Tolerates ≤ 2 (static) corruptions

• Lifts existing cut-and-choose 2PC schemes to three-party setting
• Roughly 8× more expensive than underlying 2PC scheme

• Requires almost entirely two-party communication
• Only three broadcasts needed

• Existing schemes require broadcast in every round
• Faster start-to-finish running time versus SPDZ

• SPDZ has faster on-line running time

5 / 17



Contribution

Main Contribution
Efficient O (1)-round maliciously-secure 3PC protocol for Boolean circuits

• Tolerates ≤ 2 (static) corruptions
• Lifts existing cut-and-choose 2PC schemes to three-party setting

• Roughly 8× more expensive than underlying 2PC scheme

• Requires almost entirely two-party communication
• Only three broadcasts needed

• Existing schemes require broadcast in every round
• Faster start-to-finish running time versus SPDZ

• SPDZ has faster on-line running time

5 / 17



Contribution

Main Contribution
Efficient O (1)-round maliciously-secure 3PC protocol for Boolean circuits

• Tolerates ≤ 2 (static) corruptions
• Lifts existing cut-and-choose 2PC schemes to three-party setting

• Roughly 8× more expensive than underlying 2PC scheme
• Requires almost entirely two-party communication

• Only three broadcasts needed
• Existing schemes require broadcast in every round

• Faster start-to-finish running time versus SPDZ
• SPDZ has faster on-line running time

5 / 17



Contribution

Main Contribution
Efficient O (1)-round maliciously-secure 3PC protocol for Boolean circuits

• Tolerates ≤ 2 (static) corruptions
• Lifts existing cut-and-choose 2PC schemes to three-party setting

• Roughly 8× more expensive than underlying 2PC scheme
• Requires almost entirely two-party communication

• Only three broadcasts needed
• Existing schemes require broadcast in every round

• Faster start-to-finish running time versus SPDZ
• SPDZ has faster on-line running time

5 / 17



Recall: Cut-and-Choose

Cut-and-Choose: Lifts semi-honest 2PC schemes to malicious security

6 / 17



Recall: Cut-and-Choose

Cut-and-Choose: Lifts semi-honest 2PC schemes to malicious security

Semi-Honest 2PC (High-Level Idea):

Garble(C)

6 / 17



Recall: Cut-and-Choose

Cut-and-Choose: Lifts semi-honest 2PC schemes to malicious security

Semi-Honest 2PC (High-Level Idea):

Garble(C ′)

6 / 17



Recall: Cut-and-Choose

Cut-and-Choose: Lifts semi-honest 2PC schemes to malicious security

Cut-and-Choose (High-Level Idea) [LP07]:

Garble(C)
Garble(C)

...
Garble(C)

Open half of the circuits

If “checked” circuits constructed correctly, w.h.p. majority of unopened
garbled circuits constructed correctly

6 / 17



Recall: Cut-and-Choose

Cut-and-Choose: Lifts semi-honest 2PC schemes to malicious security

Cut-and-Choose (High-Level Idea) [LP07]:

Garble(C)
Garble(C)

...
Garble(C)

Open half of the circuits

If “checked” circuits constructed correctly, w.h.p. majority of unopened
garbled circuits constructed correctly

6 / 17



Recall: Cut-and-Choose

Cut-and-Choose: Lifts semi-honest 2PC schemes to malicious security

Cut-and-Choose (High-Level Idea) [LP07]:

Garble(C)
Garble(C)

...
Garble(C)

Open half of the circuits

If “checked” circuits constructed correctly, w.h.p. majority of unopened
garbled circuits constructed correctly

6 / 17



3PC: High-level Idea

How to lift cut-and-choose 2PC protocol to three-party setting:

π̂(S,R): cut-and-choose 2PC protocol between sender S and receiver R
• S generates many garbled circuits using a circuit garbling scheme
• R does cut-and-choose on circuits

S

R
π̂

Note: using generic 2PC schemes for π̂ and π not efficient!

7 / 17



3PC: High-level Idea

How to lift cut-and-choose 2PC protocol to three-party setting:

We emulate π̂ using three parties:
• P1 and P2 run two-party protocol π emulating S

• In particular, the circuit garbling scheme of S
• P3 plays role of R

P3

P1 P2
π

π̂

Note: using generic 2PC schemes for π̂ and π not efficient!

7 / 17



3PC: High-level Idea

How to lift cut-and-choose 2PC protocol to three-party setting:

We emulate π̂ using three parties:
• P1 and P2 run two-party protocol π emulating S

• In particular, the circuit garbling scheme of S
• P3 plays role of R

P3

P1 P2
π

π̂

Note: using generic 2PC schemes for π̂ and π not efficient!

7 / 17



3PC: Main Steps

Two main steps:

1. Distribute S’s circuit garbling scheme between two parties
2. Modify existing 2PC protocol to use distributed circuit garbling

scheme

8 / 17



3PC: Main Steps

Two main steps:
1. Distribute S’s circuit garbling scheme between two parties

2. Modify existing 2PC protocol to use distributed circuit garbling
scheme

8 / 17



3PC: Main Steps

Two main steps:
1. Distribute S’s circuit garbling scheme between two parties
2. Modify existing 2PC protocol to use distributed circuit garbling

scheme

8 / 17



3PC: Main Steps

Two main steps:
1. Distribute S’s circuit garbling scheme between two parties
2. Modify existing 2PC protocol to use distributed circuit garbling

scheme

8 / 17



Recall: (Single-Party) Circuit Garbling Scheme

G

α β

γ

Wire Keys Mask Bit
α Kα,0 Kα,1 λα
β Kβ,0 Kβ,1 λβ
γ Kγ,0 Kγ,1 λγ

Garbled Gate:

0 0 EncKα,0,Kβ,0
(
Kγ,G(λα,λβ)⊕λγ‖G(λα, λβ)⊕ λγ

)
0 1 EncKα,0,Kβ,1

(
Kγ,G(λα,λβ⊕1)⊕λγ‖G(λα, λβ ⊕ 1)⊕ λγ

)
1 0 EncKα,1,Kβ,0

(
Kγ,G(λα⊕1,λβ)⊕λγ‖G(λα ⊕ 1, λβ)⊕ λγ

)
1 1 EncKα,1,Kβ,1

(
Kγ,G(λα⊕1,λβ⊕1)⊕λγ‖G(λα ⊕ 1, λβ ⊕ 1)⊕ λγ

)

9 / 17



Recall: (Single-Party) Circuit Garbling Scheme

G

α β

γ

Wire Keys Mask Bit
α Kα,0 Kα,1 λα
β Kβ,0 Kβ,1 λβ
γ Kγ,0 Kγ,1 λγ

Garbled Gate:

0 0 EncKα,0,Kβ,0
(
Kγ,G(λα,λβ)⊕λγ‖G(λα, λβ)⊕ λγ

)
0 1 EncKα,0,Kβ,1

(
Kγ,G(λα,λβ⊕1)⊕λγ‖G(λα, λβ ⊕ 1)⊕ λγ

)
1 0 EncKα,1,Kβ,0

(
Kγ,G(λα⊕1,λβ)⊕λγ‖G(λα ⊕ 1, λβ)⊕ λγ

)
1 1 EncKα,1,Kβ,1

(
Kγ,G(λα⊕1,λβ⊕1)⊕λγ‖G(λα ⊕ 1, λβ ⊕ 1)⊕ λγ

)
Note: This is standard Yao using point-and-permute

9 / 17



Recall: (Single-Party) Circuit Garbling Scheme

G

α β

γ

Wire Keys Mask Bit
α Kα,0 Kα,1 λα
β Kβ,0 Kβ,1 λβ
γ Kγ,0 Kγ,1 λγ

Garbled Gate:

0 0 EncKα,0,Kβ,0
(
Kγ,G(λα,λβ)⊕λγ‖G(λα, λβ)⊕ λγ

)
0 1 EncKα,0,Kβ,1

(
Kγ,G(λα,λβ⊕1)⊕λγ‖G(λα, λβ ⊕ 1)⊕ λγ

)
1 0 EncKα,1,Kβ,0

(
Kγ,G(λα⊕1,λβ)⊕λγ‖G(λα ⊕ 1, λβ)⊕ λγ

)
1 1 EncKα,1,Kβ,1

(
Kγ,G(λα⊕1,λβ⊕1)⊕λγ‖G(λα ⊕ 1, λβ ⊕ 1)⊕ λγ

)

Keys

9 / 17



Recall: (Single-Party) Circuit Garbling Scheme

G

α β

γ

Wire Keys Mask Bit
α Kα,0 Kα,1 λα
β Kβ,0 Kβ,1 λβ
γ Kγ,0 Kγ,1 λγ

Garbled Gate:

0 0 EncKα,0,Kβ,0
(
Kγ,G(λα,λβ)⊕λγ‖G(λα, λβ)⊕ λγ

)
0 1 EncKα,0,Kβ,1

(
Kγ,G(λα,λβ⊕1)⊕λγ‖G(λα, λβ ⊕ 1)⊕ λγ

)
1 0 EncKα,1,Kβ,0

(
Kγ,G(λα⊕1,λβ)⊕λγ‖G(λα ⊕ 1, λβ)⊕ λγ

)
1 1 EncKα,1,Kβ,1

(
Kγ,G(λα⊕1,λβ⊕1)⊕λγ‖G(λα ⊕ 1, λβ ⊕ 1)⊕ λγ

)

Tags

9 / 17



Recall: (Single-Party) Circuit Garbling Scheme

G

α β

γ

Wire Keys Mask Bit
α Kα,0 Kα,1 λα
β Kβ,0 Kβ,1 λβ
γ Kγ,0 Kγ,1 λγ

Garbled Gate:

0 0 EncKα,0,Kβ,0
(
Kγ,G(λα,λβ)⊕λγ‖G(λα, λβ)⊕ λγ

)
0 1 EncKα,0,Kβ,1

(
Kγ,G(λα,λβ⊕1)⊕λγ‖G(λα, λβ ⊕ 1)⊕ λγ

)
1 0 EncKα,1,Kβ,0

(
Kγ,G(λα⊕1,λβ)⊕λγ‖G(λα ⊕ 1, λβ)⊕ λγ

)
1 1 EncKα,1,Kβ,1

(
Kγ,G(λα⊕1,λβ⊕1)⊕λγ‖G(λα ⊕ 1, λβ ⊕ 1)⊕ λγ

)
Note: Garbling party knows keys/tags being encrypted

9 / 17



Distributing the Garbling Scheme

Goal: P1 and P2 together compute garbled circuit such that no party
“knows” garbled values

Desired properties:
1. Obliviousness

• Neither party should know key/tag being encrypted
2. Correctness

• If one party malicious, garbled circuit evaluation must either:
• Compute correct answer
• Abort, independent of honest party’s input

Solution: Combine distributed encryption [DI05] with authenticated bit
shares [NNOB12]

10 / 17



Distributing the Garbling Scheme

Goal: P1 and P2 together compute garbled circuit such that no party
“knows” garbled values

Desired properties:

1. Obliviousness
• Neither party should know key/tag being encrypted

2. Correctness
• If one party malicious, garbled circuit evaluation must either:

• Compute correct answer
• Abort, independent of honest party’s input

Solution: Combine distributed encryption [DI05] with authenticated bit
shares [NNOB12]

10 / 17



Distributing the Garbling Scheme

Goal: P1 and P2 together compute garbled circuit such that no party
“knows” garbled values

Desired properties:
1. Obliviousness

• Neither party should know key/tag being encrypted

2. Correctness
• If one party malicious, garbled circuit evaluation must either:

• Compute correct answer
• Abort, independent of honest party’s input

Solution: Combine distributed encryption [DI05] with authenticated bit
shares [NNOB12]

10 / 17



Distributing the Garbling Scheme

Goal: P1 and P2 together compute garbled circuit such that no party
“knows” garbled values

Desired properties:
1. Obliviousness

• Neither party should know key/tag being encrypted
2. Correctness

• If one party malicious, garbled circuit evaluation must either:
• Compute correct answer
• Abort, independent of honest party’s input

Solution: Combine distributed encryption [DI05] with authenticated bit
shares [NNOB12]

10 / 17



Distributing the Garbling Scheme

Goal: P1 and P2 together compute garbled circuit such that no party
“knows” garbled values

Desired properties:
1. Obliviousness

• Neither party should know key/tag being encrypted
2. Correctness

• If one party malicious, garbled circuit evaluation must either:
• Compute correct answer
• Abort, independent of honest party’s input

Solution: Combine distributed encryption [DI05] with authenticated bit
shares [NNOB12]

10 / 17



Building Blocks (1): Distributed Encryption Scheme [DI05]

Goal: P1 and P2 want to encrypt secret shared message [m] = m1 ⊕m2
using keys K1, K2

Keys are split into sub-keys: K1 = (s1
1 , s2

1 ), K2 = (s1
2 , s2

2 )

EncK1,K2 ([m]) =
(

m1 ⊕ F 1
s1

1
(0)⊕ F 2

s1
2
(0),m2 ⊕ F 1

s2
1
(0)⊕ F 2

s2
2
(0)
)

Note: Encryption is local!

Note: Cost per party (in PRF calls) to encrypt message of length ` is 2`

11 / 17



Building Blocks (1): Distributed Encryption Scheme [DI05]

Goal: P1 and P2 want to encrypt secret shared message [m] = m1 ⊕m2
using keys K1, K2

Keys are split into sub-keys: K1 = (s1
1 , s2

1 ), K2 = (s1
2 , s2

2 )

EncK1,K2 ([m]) =
(

m1 ⊕ F 1
s1

1
(0)⊕ F 2

s1
2
(0),m2 ⊕ F 1

s2
1
(0)⊕ F 2

s2
2
(0)
)

Note: Encryption is local!

Note: Cost per party (in PRF calls) to encrypt message of length ` is 2`

11 / 17



Building Blocks (1): Distributed Encryption Scheme [DI05]

Goal: P1 and P2 want to encrypt secret shared message [m] = m1 ⊕m2
using keys K1, K2

Keys are split into sub-keys: K1 = (s1
1 , s2

1 ), K2 = (s1
2 , s2

2 )

EncK1,K2 ([m]) =
(

m1 ⊕ F 1
s1

1
(0)⊕ F 2

s1
2
(0),m2 ⊕ F 1

s2
1
(0)⊕ F 2

s2
2
(0)
)

Note: Encryption is local!

Note: Cost per party (in PRF calls) to encrypt message of length ` is 2`

11 / 17



Building Blocks (1): Distributed Encryption Scheme [DI05]

Goal: P1 and P2 want to encrypt secret shared message [m] = m1 ⊕m2
using keys K1, K2

Keys are split into sub-keys: K1 = (s1
1 , s2

1 ), K2 = (s1
2 , s2

2 )

EncK1,K2 ([m]) =
(

m1 ⊕ F 1
s1

1
(0)⊕ F 2

s1
2
(0),m2 ⊕ F 1

s2
1
(0)⊕ F 2

s2
2
(0)
)

Note: Encryption is local!

Note: Cost per party (in PRF calls) to encrypt message of length ` is 2`

11 / 17



Building Blocks (1): Distributed Encryption Scheme [DI05]

Goal: P1 and P2 want to encrypt secret shared message [m] = m1 ⊕m2
using keys K1, K2

Keys are split into sub-keys: K1 = (s1
1 , s2

1 ), K2 = (s1
2 , s2

2 )

EncK1,K2 ([m]) =
(

m1 ⊕ F 1
s1

1
(0)⊕ F 2

s1
2
(0),m2 ⊕ F 1

s2
1
(0)⊕ F 2

s2
2
(0)
)

Note: Encryption is local!

Note: Cost per party (in PRF calls) to encrypt message of length ` is 2`

11 / 17



Building Blocks (2): Functionalities Needed

Note: 〈·〉 denotes (form of authenticated and linear) bit secret sharing
Note: [·] denotes (standard) secret sharing
Note: 〈·〉(i), [·](i) denotes Pi s share

12 / 17



Building Blocks (2): Functionalities Needed

FG
gate(〈a〉, 〈b〉)

〈a〉(1), 〈b〉(1) 〈a〉(2), 〈b〉(2)
P1 P2

〈G(a, b)〉(1) 〈G(a, b)〉(2)

Note: 〈·〉 denotes (form of authenticated and linear) bit secret sharing
Note: [·] denotes (standard) secret sharing
Note: 〈·〉(i), [·](i) denotes Pi s share

12 / 17



Building Blocks (2): Functionalities Needed

F2
oshare(〈b〉,m0,m1)

〈b〉(1) 〈b〉(2),m0,m1

P1 P2

[mb](1) [mb](2)

Note: 〈·〉 denotes (form of authenticated and linear) bit secret sharing
Note: [·] denotes (standard) secret sharing
Note: 〈·〉(i), [·](i) denotes Pi s share

12 / 17



Building Blocks (2): Functionalities Needed

Note: efficient maliciously secure constructions exist
• Uses ideas from [NNOB12]
• See paper for details

12 / 17



Example: Garbling an AND Gate

α

β

γ

λα = 1, λβ = 0, λγ = 1

Standard (single-party) garbling:

Step 1: S computes tags:

i j AND(λα ⊕ i , λβ ⊕ j)⊕ λγ
0 0 AND(1⊕ 0, 0⊕ 0)⊕ 1 = 1
0 1 AND(1⊕ 0, 0⊕ 1)⊕ 1 = 0
1 0 AND(1⊕ 1, 0⊕ 0)⊕ 1 = 1
1 1 AND(1⊕ 1, 0⊕ 1)⊕ 1 = 1

13 / 17



Example: Garbling an AND Gate

α

β

γ

〈λα〉 = 1, 〈λβ〉 = 0, 〈λγ〉 = 1

Distributed garbling:

Step 1: P1 and P2 compute oblivious sharings of tags:

i j 〈AND(λα ⊕ i , λβ ⊕ j)⊕ λγ〉
0 0 FAND

gate (〈1〉 ⊕ 〈0〉, 〈0〉 ⊕ 〈0〉)⊕ 〈1〉 = 〈1〉
0 1 FAND

gate (〈1〉 ⊕ 〈0〉, 〈1〉 ⊕ 〈1〉)⊕ 〈1〉 = 〈0〉
1 0 FAND

gate (〈1〉 ⊕ 〈1〉, 〈0〉 ⊕ 〈0〉)⊕ 〈1〉 = 〈1〉
1 1 FAND

gate (〈1〉 ⊕ 〈1〉, 〈0〉 ⊕ 〈1〉)⊕ 〈1〉 = 〈1〉

13 / 17



Example: Garbling an AND Gate

α

β

γ

λα = 1, λβ = 0, λγ = 1

Standard (single-party) garbling:

Step 2: S encrypts key + tag:

i j
0 0 EncKα,0,Kβ,0 (Kγ,1‖1)
0 1 EncKα,0,Kβ,1 (Kγ,0‖0)
1 0 EncKα,1,Kβ,0 (Kγ,1‖1)
1 1 EncKα,1,Kβ,1 (Kγ,1‖1)

13 / 17



Example: Garbling an AND Gate

α

β

γ

〈λα〉 = 1, 〈λβ〉 = 0, 〈λγ〉 = 1

Distributed garbling:

Step 2a: P1 and P2 compute oblivious sharings of each party’s sub-keys:

i j
0 0 F1

oshare(〈1〉, s1
γ,0, s1

γ,1) =
[
s1
γ,1
]
F2

oshare(〈1〉, s2
γ,0, s2

γ,1) =
[
s2
γ,1
]

0 1 F1
oshare(〈0〉, s1

γ,0, s1
γ,1) =

[
s1
γ,0
]
F2

oshare(〈0〉, s2
γ,0, s2

γ,1) =
[
s2
γ,0
]

1 0 F1
oshare(〈1〉, s1

γ,0, s1
γ,1) =

[
s1
γ,1
]
F2

oshare(〈1〉, s2
γ,0, s2

γ,1) =
[
s2
γ,1
]

1 1 F1
oshare(〈1〉, s1

γ,0, s1
γ,1) =

[
s1
γ,1
]
F2

oshare(〈1〉, s2
γ,0, s2

γ,1) =
[
s2
γ,1
]

13 / 17



Example: Garbling an AND Gate

α

β

γ

〈λα〉 = 1, 〈λβ〉 = 0, 〈λγ〉 = 1

Distributed garbling:

Step 2b: P1 and P2 use distributed encryption to encrypt:

i j
0 0 EncKα,0,Kβ,0 (

[
s1
γ,1
]
‖
[
s2
γ,1
]
‖〈1〉)

0 1 EncKα,0,Kβ,1 (
[
s1
γ,0
]
‖
[
s2
γ,0
]
‖〈0〉)

1 0 EncKα,1,Kβ,0 (
[
s1
γ,1
]
‖
[
s2
γ,1
]
‖〈1〉)

1 1 EncKα,1,Kβ,1 (
[
s1
γ,1
]
‖
[
s2
γ,1
]
‖〈1〉)

13 / 17



Example: Garbling an AND Gate

α

β

γ

〈λα〉 = 1, 〈λβ〉 = 0, 〈λγ〉 = 1

Distributed garbling:

Step 2b: P1 and P2 use distributed encryption to encrypt:

i j
0 0 EncKα,0,Kβ,0 (

[
s1
γ,1
]
‖
[
s2
γ,1
]
‖〈1〉)

0 1 EncKα,0,Kβ,1 (
[
s1
γ,0
]
‖
[
s2
γ,0
]
‖〈0〉)

1 0 EncKα,1,Kβ,0 (
[
s1
γ,1
]
‖
[
s2
γ,1
]
‖〈1〉)

1 1 EncKα,1,Kβ,1 (
[
s1
γ,1
]
‖
[
s2
γ,1
]
‖〈1〉)

Note: Cost of encryption 8× cost in 2PC setting

13 / 17



3PC: Main Steps

Two main steps:
1. Distribute S’s circuit garbling scheme between two parties
2. Modify existing 2PC protocol to use distributed circuit garbling

scheme

14 / 17



Lifting 2PC Protocols to Three Party Setting

Goal: Construct 3PC scheme using distributed garbling protocol

High-Level Idea
• Take existing cut-and-choose protocol (e.g., [LP07, LP11, Lin13])
• Replace sender’s circuit generation by distributed circuit generation

Note: Not exactly this straightforward; see paper for details

Security Intuition
• Exactly one of P1 or P2 malicious: garbled circuits either correct or

abort independent of input
• Both P1 and P2 malicious: cut-and-choose by P3 detects cheating
• P3 malicious: covered by security of garbling protocol

15 / 17



Lifting 2PC Protocols to Three Party Setting

Goal: Construct 3PC scheme using distributed garbling protocol

High-Level Idea
• Take existing cut-and-choose protocol (e.g., [LP07, LP11, Lin13])
• Replace sender’s circuit generation by distributed circuit generation

Note: Not exactly this straightforward; see paper for details

Security Intuition
• Exactly one of P1 or P2 malicious: garbled circuits either correct or

abort independent of input
• Both P1 and P2 malicious: cut-and-choose by P3 detects cheating
• P3 malicious: covered by security of garbling protocol

15 / 17



Lifting 2PC Protocols to Three Party Setting

Goal: Construct 3PC scheme using distributed garbling protocol

High-Level Idea
• Take existing cut-and-choose protocol (e.g., [LP07, LP11, Lin13])
• Replace sender’s circuit generation by distributed circuit generation

Note: Not exactly this straightforward; see paper for details

Security Intuition
• Exactly one of P1 or P2 malicious: garbled circuits either correct or

abort independent of input
• Both P1 and P2 malicious: cut-and-choose by P3 detects cheating
• P3 malicious: covered by security of garbling protocol

15 / 17



Lifting 2PC Protocols to Three Party Setting

Goal: Construct 3PC scheme using distributed garbling protocol

High-Level Idea
• Take existing cut-and-choose protocol (e.g., [LP07, LP11, Lin13])
• Replace sender’s circuit generation by distributed circuit generation

Note: Not exactly this straightforward; see paper for details

Security Intuition
• Exactly one of P1 or P2 malicious: garbled circuits either correct or

abort independent of input
• Both P1 and P2 malicious: cut-and-choose by P3 detects cheating
• P3 malicious: covered by security of garbling protocol

15 / 17



Summary

Can “lift” cut-and-choose 2PC protocols to 3PC setting
• Provides efficient constant round 3PC protocol
• Only ≈ 8× slower than underlying 2PC protocol
• Approach works for combination of [LP07, LP11] and [Lin13]
• Only three broadcast calls needed

• Important in WAN settings where broadcast is expensive
• Faster start-to-finish time than existing 3PC solutions

Future Work:
• Support free-XOR
• Optimize distributed encryption scheme (à la JustGarble [BHKR13])

16 / 17



Summary

Can “lift” cut-and-choose 2PC protocols to 3PC setting
• Provides efficient constant round 3PC protocol
• Only ≈ 8× slower than underlying 2PC protocol
• Approach works for combination of [LP07, LP11] and [Lin13]
• Only three broadcast calls needed

• Important in WAN settings where broadcast is expensive
• Faster start-to-finish time than existing 3PC solutions

Future Work:
• Support free-XOR
• Optimize distributed encryption scheme (à la JustGarble [BHKR13])

16 / 17



Thank You

Any questions?

E-mail: amaloz@cs.umd.edu
URL: https://www.cs.umd.edu/˜amaloz

ePrint: https://eprint.iacr.org/2014/128

17 / 17

https://www.cs.umd.edu/~amaloz

