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Abstract

Time series stored as feature vectors can be indexed by multi-

dimensional index trees like R-Trees for fast retrieval. Due to

the dimensionality curse problem, transformations are applied to

time series to reduce the number of dimensions of the feature vec-

tors. Different transformations like Discrete Fourier Transform

(DFT), Discrete Wavelet Transform (DWT), Karhunen-Loeve (K-

L) transform or Singular Value Decomposition (SVD) can be ap-

plied. While the use of DFT and K-L transform or SVD have been

studied in the literature, to our knowledge, there is no in-depth

study on the application of DWT. In this paper, we propose to use

Haar Wavelet Transform for time series indexing. The major con-

tributions are: (1) we show that Euclidean distance is preserved

in the Haar transformed domain and no false dismissal will occur,

(2) we show that Haar transform can outperform DFT through

experiments, (3) a new similarity model is suggested to accom-

modate vertical shift of time series, and (4) a two-phase method

is proposed for efficient ✂ -nearest neighbor query in time series

databases.

1. Introduction

Time series data are of growing importance in many new

database applications, such as data warehousing and data mining

[3, 8, 2, 12]. A time series (or time sequence) is a sequence of

real numbers, each number representing a value at a time point.

Typical examples include stock prices or currency exchange rates,

biomedical measurements, weather data, etc . . . collected over

time. Therefore, time series databases supporting fast retrieval of

time series data and similarity queries are desired.
In order to depict the similarity between two time series,

we define a similarity measurement during the matching pro-
cess. Given two time series ✄☎✝✆✟✞✠☎☛✡✌☞✍☎✏✎✑☞✓✒✔✒✕✒✕☞✖☎✘✗✚✙✏✎✑✛ and ✄✜✢✆✞✣✜✠✡✌☞✤✜✥✎✓☞✦✒✕✒✔✒✕☞✍✜✣✗✥✙✧✎★✛ , a standard approach is to compute the Eu-
clidean distance ✩✫✪✬✄☎✘☞ ✄✜✮✭ between time series ✄☎ and ✄✜✯✱✰✦✲✳✵✴ ✲✶✚✷✘✸✺✹ ✗✥✙✧✎✻ ✼✔✽ ✡✿✾ ✳ ✼☛❀ ✶ ✼ ✾ ❁✓❂❄❃❅
By using this similarity model, we can retrieve similar time series

by considering distance ✩❆✪✦✄☎❇☞ ✄✜✮✭ .

Indexing is used to support efficient retrieval and matching of

time series. Some important factors have to be considered: The

first factor is dimensionality reduction. Many multi-dimensional

indexing methods [13, 7, 5, 20] such as the R-Tree and R*-Tree

[20, 5, 11] scale exponentially for high dimensionalities, eventu-

ally reducing the performance to that of sequential scanning or

worse. Hence, transformation is applied to map the time sequences

to a new feature space of a lower dimensionality. Next we must

ensure completeness and effectiveness when the number of dimen-

sions is reduced. To avoid missing any qualifying object, the Eu-

clidean distance in the reduced ❈ -dimensional space should be less

than or equal to the Euclidean distance between the two original

time sequences. Finally, we must also consider the nature of data

series since the effectiveness of power concentration of a partic-

ular transformation depends on the nature of the time series. It

is believed that only brown noise or random walks exists in real

signals. In particular, stock movements and exchange rates can be

modeled successfully as random walks in [10], for which a skewed

energy spectrum can be obtained.

Discrete Fourier Transform (DFT) has been one of the most

commonly used techniques. One problem with DFT is that it

misses the important feature of time localization. Piecewise

Fourier Transform has been proposed to mitigate this problem, but

the size of the pieces leads to other problems. While large pieces

reduce the power of multi-resolution, small pieces has weakness

in modeling low frequencies.

Wavelet Transform (WT), or Discrete Wavelet Transform

(DWT) [9, 18] has been found to be effective in replacing DFT

in many applications in computer graphics, image [26], speech [1]

, and signal processing [6, 4]. We propose to apply this technique

in time series for dimension reduction and content-based search.

DWT is a discrete version of WT for numerical signal. Although

the potential application of DWT in this problem was pointed out

in [22], no further investigation has been reported to our knowl-

edge. Hence, it is of value to conduct studies and evaluations on

time series retrieval and matching by means of wavelets.

The advantage of using DWT is multi-resolution representation

of signals. It has the time-frequency localization property. Thus,

DWT is able to give locations in both time and frequency. There-

fore, wavelet representations of signals bear more information than

that of DFT, in which only frequencies are considered. While DFT

extracts the lower harmonics which represent the general shape of



a time sequence, DWT encodes a coarser resolution of the origi-

nal time sequence with its preceding coefficients. We show that

Euclidean distance is preserved in the Haar transformed domain.

Moreover, we show by experiments that Haar Wavelet Transform✎
[9], which is a commonly used wavelet transform, can outper-

form DFT significantly.

We also suggest a similarity definition to handle the problem of

vertical shifts of time series. Finally we propose an algorithm on✂ -nearest neighbor query for the proposed wavelet method. The

algorithm makes use of the range query and dynamically adjusts

the range by the property of Euclidean distance preservation of the

wavelet transformation.

2. Related Work

Discrete Fourier Transform (DFT) is often used for dimension

reduction [2, 15] to achieve efficient indexing. An index built by

means of DFT is also called an F-index [2]. Suppose the DFT of

a time sequence ✄☎ is denoted by ✄� . For many applications such as

stock data, the low frequency components are located at the pre-

ceding coefficients of ✄� which represent the general trend of the

time sequence ✄☎ . These coefficients can be indexed in an R-Tree

or R*-Tree for fast retrieval. In most previous works, range query-

ing is considered. A range query (or epsilon query) evaluation

returns sequences with Euclidean distance within ✁ from the query

point.

Parseval’s Theorem [23] shows that the Euclidean distance be-

tween two signals ✄☎ and ✄✜ in time domain is the same as their

Euclidean distance in frequency domain✂ ✄☎☎✄ ✄✜ ✂ ❁✝✆ ✂ ✄� ✄ ✄✞ ✂ ❁ (1)

Therefore, F-index may raise false alarms, but guarantees no false

dismissal. After a range query in the F-index, false alarms are fil-

tered by checking against the query sequence in the original time

domain in a post-processing step. F-index is further generalized

and subsequence matching is proposed in [15]. This is called the

ST-index which permits sequence query of varying length. Each

time sequence is broken up into pieces of subsequences by a slid-

ing window with a fixed length ✟ for DFT. Feature points in nearby

offsets will form a trail due to the effect of stepwise sliding win-

dow, the minimum bounding rectangle (MBR) of a trail is then be-

ing indexed in an R-Tree instead of the feature points themselves.

When a query arrives, all MBRs that intersect the query region are

retrieved and their trails are matched.

New similarity models are applied to F-index based time se-

ries matching in [24]. It achieves time warping, moving average,

and reversing by applying transformations to feature points in the

frequency domain. Given a query ✄✠ , a new index is built by apply-

ing a transformation to all points in the original index and feature

points with a distance less than ✁ from ✄✠ are returned. However, a

lot of computations are involved in building the new index. which

has a great impact on the actual query performance.

In the above works, no efficient method for nearest neighbor

query, which can be more useful than range query, has been pro-

posed.✎
We shall use Haar wavelet transform and DWT interchangeably

throughout this paper, unless specified particularly.

Another method that has been employed for dimension reduc-

tion is Karhunen-Loeve (K-L) transform [28]. (This method is

also known as Singular Value Decomposition (SVD) [22], and

is called Principle Component analysis in statistical literature.)

Given a collection of ✂ -dimensional points, we project them on a❈ -dimensional sub-space where ❈☛✡ ✂ , maximizing the variances

in the chosen dimensions. The key weakness of K-L transform is

the deterioration of performance upon incremental update of the

index. Therefore, new projection matrix should be re-calculated

and the index tree has to be re-organized periodically to keep up

the search performance.

2.1. Wavelet Transform

Wavelets are basis functions used in representing data or other

functions. Wavelet algorithms process data at different scales or

resolutions in contrast with DFT where only frequency compo-

nents are considered. The origin of wavelets can be traced to the

work of Karl Weierstrass [27] in 1873. The construction of the

first orthonormal system by Haar [21] is an important milestone.

Haar basis is still a foundation of modern wavelet theory. Another

significant advance is the introduction of a nonorthogonal basis by

Dennis Gabor in 1946 [16]. In this work we shall advocate the use

of the Haar wavelets in the problem of time series retrieval.

3. The Proposed Approach

Following a trend in the disciplines of signal and image pro-

cessing, we propose to study the use of wavelet transformation for

the time series indexing problem. Before we go into the details of

our proposed techniques, we would first like to define the similar-

ity model used in sequence matching. The first definition is based

on the Euclidean distance ✩❆✪✬✄☎✘☞ ✄✜✚✭ between time sequences ✄☎ and✄✜ .

Definition 1 Given a threshold ✁ , two time sequences ✄☎ and ✄✜ of
equal length ✂ are said to be similar if✯✱✰✬✲✳ ✴ ✲✶✣✷✏✸ ✹ ✗✥✙✧✎✻ ✼✕✽ ✡ ✰ ✶ ✼ ❀ ✳ ✼ ✷ ❁ ❂❄❃❅✌☞ ✍

A shortcoming of Definition 1 is demonstrated in Figure 1.

From human interpretation, ✄☎ and ✄✜ may be quite similar because✄✜ can be shifted up vertically to obtain ✄☎ or vice versa. However,

they will be considered not similar by Definition 1 because errors

are accumulated at each pair of ☎ ✼ and ✜ ✼ . Therefore, we suggest

another similarity model.

Definition 2 Given a threshold ✁ , two time sequences ✄☎ and ✄✜ of
equal length ✂ are said to be v-shift similar if✯✱✰✦✲✳ ✴ ✲✶ ✷✏✸ ✹ ✗✥✙✧✎✻ ✼✕✽ ✡ ✰✖✰ ✶ ✼✵❀ ✳ ✼ ✷ ❀ ✰ ✶✏✎ ❀ ✳✑✎ ✷✖✷ ❁ ❂❄❃❅✌☞ ✍

where ✳✑✎ ✸✓✒✔ ✗✥✙✧✎✻ ✼✕✽ ✡ ✳ ✼ and ✶✏✎ ✸✓✒✔ ✗✥✙✧✎✻ ✼✕✽ ✡ ✶ ✼



From Definition 2, any two time sequencesare said to be v-shift

similar if the Euclidean distance is less than or equal to a thresh-

old ✁ neglecting their vertical offsets from x-axis. This definition

can give a better estimation of the similarity between two time se-

quences with similar trends running at two completely different

levels.

y
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x

Figure 1. Example of vertical shifts of time sequences

3.1. Haar Wavelets

We want to have a decomposition that is fast to compute and

requires little storage for each sequence. The Haar wavelet is cho-

sen for the following reasons: (1) it allows good approximation

with a subset of coefficients, (2) it can be computed quickly and

easily, requiring linear time in the length of the sequence and sim-

ple coding, and (3) it preserves Euclidean distance (see Section

3.3). The formal definition of Haar wavelets is given in Appendix

A. Concrete mathematical foundations can be found in [9, 19] and

related implementations in [14].

Haar transform can be seen as a series of averaging and differ-

encing operations on a discrete time function. We compute the av-

erage and difference between every two adjacent values of
� ✪ ☎☛✭ .

The procedure to find the Haar transform of a discrete function� ✪ ☎✘✭ = (9 7 3 5) is shown below.

Resolution Averages Coefficients

4 (9 7 3 5)

2 (8 4) (1 -1)

1 (6) (2)

Resolution 4 is the full resolution of the discrete function
� ✪ ☎✘✭ .

In resolution 2, (8 4) are obtained by taking the average of (9 7)

and (3 5) at resolution 4 respectively. (1 -1) are the differences

of (9 7) and (3 5) divided by two respectively. This process is

continued until a resolution of 1 is reached. The Haar transform✁ ✪ � ✪ ☎✘✭✍✭ = ( ✂☎✄ ✡✡ ✄ ✎✡ ✄ ✎✎ ) = (6 2 1 -1) is obtained which is composed

of the last average value 6 and the coefficients found on the right

most column, 2, 1 and -1. It should be pointed out that ✂ is the

overall average value of the whole time sequence, which is equal

to ✪✝✆✟✞✡✠☛✞✌☞✟✞✡✍ ✭✏✎✒✑ ✆✔✓ . Different resolutions can be obtained

by adding difference values back to or subtract differences from

averages. For instance, (8 4) = (6+2 6-2) where 6 and 2 are the

first and second coefficient respectively. This process can be done

recursively until the full resolution is reached.

Haar transform can be realized by a series of matrix multiplica-

tions as illustrated in Equation (2). Envisioning the example input

signal ✄☎ as a column vector with length ❁ ✂ = 4, an intermediate

transform vector ✄✕ as another column vector and Haar transform

matrix ✖ ✗✘ ✳✚✙✡✛ ✎✡✳ ✙ ✎✛ ✎✎ ✜✢ ✸ ✒✣
✗✘ ✒ ✒ ✤ ✤✒

❀
✒✥✤ ✤✤ ✤ ✒ ✒✤ ✤ ✒

❀
✒

✜✢✧✦★✗✘ ✳ ✡✳ ✎✳ ❁✳✪✩ ✜✢ (2)

The factor 1/2 associated with the Haar transform matrix can be

varied according to different normalization
✩

conditions. After the

first multiplication of ✄☎ and ✖ , half of the Haar transform coef-

ficients can be found which are ✄ ✎✡ and ✄ ✎✎ in ✄✕ interleaving with

some intermediate coefficients ☎ ✙✡ and ☎ ✙ ✎ . Actually, ✄ ✎✡ and ✄ ✎✎ are

the last two coefficients of the Haar transform. ☎ ✙✡ and ☎ ✙ ✎ are then

extracted from ✄✕ and put into a new column vector ✄☎ ✙ = [ ☎ ✙✡ ☎ ✙ ✎ 0

0] ✫ . ✄☎ ✙ is treated as the new input vector for transformation. This

process is done recursively until one element is left in ✄☎ ✙ . In this

particular case, ✂ and ✄ ✡✡ can be found in the second iteration.

The complexity of Haar transform can be evaluated by consid-

ering the number of operations involved in the recursion process.

Lemma 1 Given a time sequence of length ✂ where ✂ is an inte-

gral power of 2, the complexity of Haar transform is ✬ ✪ ✂ ✭ .
Proof: There are totally ✂ matrix additions or subtractions in the

first iteration of matrix operation. The size of the input vector is

halved in each iteration onwards. The total number of operations

is formulated as✭ ✮✏✯ ❅ ✗✰ ✱✳✲ ✴✂✵✞ ✂ ✎✷✶ ✞✧✸✹✸✺✸✒✞ ✶ ✆✻✶ ✶ ✭ ✮✏✯ ❅ ✗ ✄✌✼✶ ✄✡✼ ✆✻✶ ✪ ✂ ✄✽✼✬✭
which is bounded by ✾ ✪ ✂ ✭ . ✿
3.2. DFT versus Haar Transform

Our motivation of using Haar transform to replace DFT is

based on several evidences and observations, some of which are

also the reasons why the use of wavelet transforms instead of DFT

is considered in areas of image and signal processing.

The first reason is on the pruning power. The nature of the

Euclidean distance preserved by Haar transform and DFT are dif-

ferent. In DFT, comparison of two time sequences is based on

their low frequency components, where most energy is presumed

to be concentrated on. On the other hand, the comparison of Haar

coefficients is matching a gradually refined resolution of the two

time sequences. From intuition, Euclidean distance can be highly

related to low resolution of signal rather than low frequency com-

ponents. This property can give rise to more effective pruning, i.e.

less false alarms will appear, which is confirmed by experiments

in Section 5.

Another reason is the complexity consideration. The complex-

ity of Haar transform is O ✪ ✂ ✭ whilst O ✪ ✂❁❀❃❂✳❄ ✂ ✭ computation is❁ As for Fast Fourier Transform, the length of the signal is restricted to

numbers which are power of 2.✩
The normalization is described in Section 3.3.



required for Fast Fourier Transform (FFT) [17]. Both impose re-

striction on the length of time sequences which must be an inte-

gral power of 2. Although these computations are all involved in

pre-processing stage, the complexity of the transformation can be

a concern especially when the database is large. From our experi-

ments, the pre-processing time for DFT is about 3 to 4 times longer

than Haar transform.

Finally, the proposed method provides better similarity model.

Apart from Euclidean distance, our model can easily accommo-

date v-shift similarity of two time sequences (Definition 2) at a lit-

tle more cost. That is, the situation where vertically shifted signals

can match is accommodated. On the other hand, previous study on

F-index did not make use of this similarity model.

Note that similar to DFT, DWT will not require massive index

re-organization because of database updating, which is a major

drawback in using the K-L transform or SVD approach.

3.3. Guarantee of no False Dismissal

For FT and DFT, it is shown by Parseval’s Theorem [23] that

the energy of a signal conserves in both time and frequency do-

mains. Parseval’s Theorem also shows that this situation is true for

wavelet transforms. On the other hand, the Euclidean distances of

both time and frequency domains are the same for DFT by Equa-

tion (1). This is a very important property in order that dimen-

sion reduction of sequence data is possible. It guarantees that no

qualified time sequence will be rejected, thus no false dismissal.

However, this property has not been shown for DWT in general,

and not for the Haar wavelets. Here we show such a relationship.

Lemma 2 Given a sequence ✄☎ = ( ☎☛✡ ☎✏✎ ) and a sequence ✄✜ = ( ✜✠✡✜✚✎ ). The Haar transforms of ✄☎ and ✄✜ are
✁ ✪✬✄☎ ✭ = ✄� = ( �✦✡✁�✌✎ ) and✁ ✪✣✄✜✚✭ = ✄✂ = ( ✂ ✡ ✂ ✎ ) respectively. Lengths of ✄☎ , ✄✜ , ✄� and ✄✂ are

all equal to 2. Then Euclidean distance ✩❆✪✦✄☎❇☞ ✄✜✚✭ is
✄ ✶ times of

Euclidean distance ✩❆✪✦✄� ☞ ✄✂✠✭ , i.e. ✩❆✪✦✄☎❇☞ ✄✜✵✭ ✆ ✄ ✶ ✩❆✪✬✄�✠☞ ✄✂✌✭
Proof: Express ✄� in terms of ✄☎ and ✄✂ in terms of ✄✜ by applying
Equation (2) accordingly.✲☎ ✸✝✆ ✳ ✡✟✞ ✳ ✎✣ ✳ ✡ ❀ ✳ ✎✣ ✠ ✲✡ ✸✝✆ ✶ ✡✟✞ ✶ ✎✣ ✶ ✡ ❀ ✶ ✎✣ ✠
Square of Euclidean distance of ✄� and ✄✂☛ ❅✌☞✎✍✏✒✑ ✍✓✕✔✗✖ ✆✙✘✛✚✙✜✢✘ ❃❅ ✣✥✤ ✚✙✜ ✤ ❃❅ ✠ ❅ ✜ ✆✙✘✦✚ ✣ ✘ ❃❅ ✣✧✤ ✚ ✣ ✤ ❃❅ ✠ ❅ ✖ ☛ ❅ ☞✒✍✘ ✑ ✍✤ ✔❅
Thus, ✩ ❁ ✪✬✄�✌☞ ✄✂✣✭ ✆ ✪ ✩ ❁ ✪✬✄☎✘☞ ✄✜✮✭✍✭✏✎✳✶ , and ✩❆✪✦✄☎❇☞ ✄✜✮✭ ✆ ✄ ✶ ✩❆✪✦✄�✠☞ ✄✂✦✭ ✿
Lemma 3 Given two sequences ✄☎ and ✄✜ , and the Haar transforms
of ✄☎ , ✄✜ are ✄� and ✄✂ respectively. Lengths of ✄☎ , ✄✜ , ✄� and ✄✂ are all ✂
( ✂✩★ ✶ and ✂ is a power of 2). ( ✄✂ – ✄� ) = ( ✪ ✩ ✎ ✩ ❁ . . . ✩ ✗✚✙✏✎ ). The
Euclidean distance ✩❆✪✬✄☎✏☞ ✄✜✚✭ = ✫ ✭ ✮✏✯ ❅ ✗ can be expressed in terms
of ( ✪❄✩ ✎ ✩ ❁ . . . ✩ ✗✥✙✧✎ ) recursively by✬ ✼✮✭ ✎ ✸ ✯ ✣ ✦ ✰✎✬ ❁✼ ✞ ✯ ❁❁✛✰ ✞ ✯ ❁❁✛✰ ✭ ✎ ✞✲✱✳✱✴✱✴✞ ✯ ❁❁✛✰ ✜ ❃ ✙✧✎ ✷for ✤ ☞✧✵ ☞✷✶✹✸✻✺ ❁ ✔ ❀ ✒✬ ✡ ✸ ✼ (3)
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d 1

x 1,0 x 1,1
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Figure 2. Hierarchy of Haar wavelet transform of se-

quence ✄☎ of length ✂
Proof: In Figure 2, the original sequence ✄☎ is represented at level❀❃❂✷❄ ❁ ✂ . The values of ☎ ✼✕✽ ✾ and ✄ ❁✛✰ ✭✿✾ are defined by✳ ✼❀✽ ✾ ✸ ✳ ✼✮✭ ✎ ✽ ❁ ✾ ✞ ✳ ✼❁✭ ✎ ✽ ❁ ✾✴✭ ✎✣

✛ ❁✛✰ ✭✿✾ ✸ ✳ ✼✮✭ ✎ ✽ ❁ ✾ ❀ ✳ ✼❁✭ ✎ ✽ ❁ ✾✴✭ ✎✣
The Haar transform of ✄☎ ,

✁ ✪✬✄☎ ✭ is represented by ( ☎✘✡ ✽ ✡ ✄ ✎ ✄ ❁. . . ✄ ❁✛✰ ✭❂✾ ✄ ❁✛✰ ✭✿✾❃✭ ✎ . . . ✄ ✗✚✙✏✎ ). A similar hierarchy exists for another

sequence ✄✜ . Denote ✪ ✆ ☎☛✡ ✽ ✡✝✄ ✜✠✡ ✽ ✡ and ✩ ✼ ✆ ✄
✼

of sequence✄☎ ✄ ✄
✼

of sequence ✄✜ , where ✼❅❄❇❆❈❄ ✂ ✄ ✼ .
We can treat the elements at each horizontal level of the hierar-

chy to be a data sequence. Hence the sequence at level ✫ ✼ contains
data ✞✠☎ ✼❀✽ ✡ ☞✍☎ ✼✕✽ ✎ ☞✑✒✔✒✕✒✔☞ ☎ ✼❀✽ ❁✛✰ ✙✏✎ ✛ . Let us define ✫ ✼ to be

✬ ✼ ✸ ❉❊❊❋ ❁✛✰ ✙✧✎✻ ✾★✽ ✡ ✰ ✳ ✼❀✽ ✾ ❀ ✶ ✼❀✽ ✾ ✷ ❁
✫ ✼ can be seen as the Euclidean distance between the data se-

quences at level ❆ ( ● ❄❍❆❅❄ ❀❃❂✳❄ ❁ ✂ ) in the hierarchies for ✄☎ and✄✜ . Also, ✫ ✭ ✮✏✯ ❅ ✗ is the Euclidean distance between the given time

series.
Next we prove the following statement:✬ ✼❁✭ ✎ ✸ ✯ ✣ ✦ ✰✎✬ ❁✼ ✞ ✯ ❁❁✛✰ ✞ ✯ ❁❁✛✰ ✭ ✎ ✞■✱❏✱✳✱✦✞ ✯ ❁❁✛✰ ✜ ❃ ✙✏✎ ✷for ✤ ☞✧✵ ☞✧✶✹✸✻✺ ❁ ✔ ❀ ✒✬ ✡ ✸ ✼

(4)

The base case is shown true by Lemma 2 when ❆ = 0.✬ ✎ ✸ ❑ ✣ ✦ ✰✎✬ ❁✡ ✞ ✯ ❁ ✎ ✷
We next prove the case for ❆✏✆ ❈✥▲▼● . We first note that in the

given hierarchy, for a pair of adjacent elements at a level ▲ 0 of

the form ✞✠☎ ✼❁✭ ✎ ✽ ❁ ✾ ☞✍☎ ✼❁✭ ✎ ✽ ❁ ✾❃✭ ✎ ✛ , we have the following relation



✰ ✳ ✼✮✭ ✎ ✽ ❁ ✾ ❀ ✶ ✼❁✭ ✎ ✽ ❁ ✾ ✷ ❁ ✞ ✰ ✳ ✼✮✭ ✎ ✽ ❁ ✾✴✭ ✎ ❀ ✶ ✼❁✭ ✎ ✽ ❁ ✾✴✭ ✎ ✷ ❁✸ ✣ � ✰ ✳ ✼✕✽ ✾ ❀ ✶ ✼✕✽ ✾ ✷ ❁ ✞ ✆ ✛ ❁✛✰ ✭✿✾ ❀ ✛ ✙❁ ✰ ✭❂✾ ✠ ❁✂✁ (5)

where ✄ ✙❁ ✰ ✭❂✾ is the element in the hierarchy for ✄✜ corre-

sponding to ✄ ❁✛✰ ✭✿✾ . This can be shown by repeating the

proof in Lemma 2, replacing ✄☎ by ✞✠☎ ✼❁✭ ✎ ✽ ❁ ✾ ☞✍☎ ✼❁✭ ✎ ✽ ❁ ✾❃✭ ✎✬✛ , ✄✜ by✞✣✜ ✼❁✭ ✎ ✽ ❁ ✾ ☞✑✜ ✼❁✭ ✎ ✽ ❁ ✾❃✭ ✎✑✛ , ✄� by ✞✦☎ ✼✕✽ ✾ ☞ ✄ ❁✛✰ ✭❂✾ ✛ , and ✄✂ by ✞✣✜ ✼✕✽ ✾ ☞ ✄ ✙❁✛✰ ✭❂✾ ✛ .

Note that ✄ ✄ ❁✛✰ ✭❂✾ ✄ ✄ ✙❁✛✰ ✭❂✾✂☎ ❁ ✆ ✩ ❁❁✛✰ ✭❂✾ .

For ❆✏✆ ❈ ,✬✝✆ ✭ ✎ ✸ ❉❊❊❋ ❁✟✞ ✜ ❃ ✙✧✎✻ ✾★✽ ✡ ✰ ✳ ✆ ✭ ✎ ✽ ✾ ❀ ✶ ✆ ✭ ✎ ✽ ✾ ✷ ❁✸ ✠ ✰ ✳ ✆ ✭ ✎ ✽ ✡ ❀ ✶ ✆ ✭ ✎ ✽ ✡ ✷ ❁ ✞ ✰ ✳ ✆ ✭ ✎ ✽ ✎ ❀ ✶ ✆ ✭ ✎ ✽ ✎✑✷ ❁ ✞■✱❏✱✴✱✞ ✰ ✳ ✆ ✭ ✎ ✽ ❁ ✞ ✜ ❃ ✙✏✎
❀ ✶ ✆ ✭ ✎ ✽ ❁ ✞ ✜ ❃ ✙✏✎ ✷ ❁✝✡ ❃❅By Equation (5), we have ✫ ✆ ✭ ✎✸ ✠ ✣☞☛ ✰ ✳ ✆ ✽ ✡ ❀ ✶ ✆ ✽ ✡✣✷ ❁ ✞ ✯ ❁❁✟✞✍✌ ✞ ✣✎☛ ✰ ✳ ✆ ✽ ✎ ❀ ✶ ✆ ✽ ✎✑✷ ❁ ✞ ✯ ❁❁✟✞ ✭ ✎ ✌ ✞✱✴✱✴✱✴✞ ✣ ☛ ✰ ✳ ✆ ✽ ❁✟✞ ✙✏✎ ❀ ✶ ✆ ✽ ❁✟✞ ✙✧✎ ✷ ❁ ✞ ✯ ❁❁✟✞ ✭ ❁✟✞ ✙✧✎ ✌ ✡ ❃❅✸ ✠ ✣☞☛ ✰ ✳ ✆ ✽ ✡ ❀ ✶ ✆ ✽ ✡ ✷ ❁ ✞ ✰ ✳ ✆ ✽ ✎ ❀ ✶ ✆ ✽ ✎ ✷ ❁ ✞✲✱❏✱✳✱✞ ✰ ✳ ✆ ✽ ❁✟✞ ✙✏✎ ❀ ✶ ✆ ✽ ❁✟✞ ✙✧✎ ✷ ❁ ✌✞ ✣ ☛ ✯ ❁❁✟✞ ✞ ✯ ❁❁✟✞ ✭ ✎ ✞✲✱✳✱❏✱✦✞ ✯ ❁❁✟✞ ✭ ❁✟✞ ✙✧✎ ✌ ✡ ❃❅

Finally by definition of ✫ ✆ ,✫ ✆ ✭ ✎ ✆ ✯ ✶✑✏ ✪ ✫ ❁✆ ✞ ✩ ❁❁✟✞ ✞ ✩ ❁❁✟✞ ✭ ✎ ✞✽✸✺✸✺✸✷✞ ✩ ❁❁✟✞ ✜ ❃ ✙✏✎ ✭which completes the proof. ✿
The expression of the Euclidean distance between time se-

quences in terms of their Haar coefficients is not sufficient for

proper use in multi-dimensional index trees until Euclidean dis-

tance preserves in both Haar and time domains, as for DFT in

(1). This can be achieved by a normalization step which replaces

the scaling factor in Equation (2) from ✼✒✎✷✶ to ✼✒✎ ✄ ✶ in the Haar

transformation. After the normalization step, Euclidean distance

between sequences in Haar domain will be equivalent to ✫ ✭ ✮✏✯ ❅ ✗
in Equation (3). The preservation of Euclidean distance of Haar

transform ensures the completeness of feature extraction as in

DFT.

If only the first ✒✔✓ dimensions ( ✼❅❄ ✒✕✓ ❄ ✂ ) of Haar transform

are used in calculation of Euclidean distance in Equation (3), then

we should replace 0’s in the Haar transformed sequences. This

replacement starts from ✒✔✓ +1 th to ✂ th coefficients in the trans-

formed sequences.

Lemma 4 If the first ✒✔✓ ( ✼ ❄ ✒✕✓ ❄ ✂ ) dimensions of Haar trans-

form are used, no false dismissal will occur for range queries.

Proof: Considering the inequality in Definition 1 and Lemma 3✩❆✪✦✄☎✏☞ ✄✜✚✭ ✆ ✫ ✭ ✮✏✯ ❅ ✗ ❄ ✁ (6)

Using the first ✒✔✓ dimensions as index, the value of ✩ ✼
in Equation

(3) will become zero for ❆ ★✖✒✔✓ . Thus the Euclidean distance

between two sequences is ❄ ✫ ✭ ✮✏✯ ❅ ✗ ❄ ✁ . This completes the

proof. ✿

4. The Overall Strategy

In this section, we present the overall strategy of our time se-

ries matching method and propose our own method for nearest

neighbor query. Before querying is performed, we shall do some

pre-processing to extract the feature vectors with reduced dimen-

sionality, and to build the index. After the index is built, content-

based search can be performed for two types of querying: range

querying and ✂ -nearest-neighbors querying.

4.1. Preprocessing

Step 1 - Similarity Model Selection: According to their applica-

tions users may choose to use either the simple Euclidean distance

(Definition 1) or the v-shift similarity (Definition 2) as their sim-

ilarity measurements. For Definition 1, Haar transform is applied

to time series. For Definition 2, Haar transform is applied to time

series, but the first Haar coefficient will not be used in indexing, as

there is no need to match their average values.

Step 2 - Index Construction: Given a database of time series of

varying length. We pre-process the time series as follows. We ob-

tain the ✟ -point Haar transform by applying Equation (2) with the

normalization factor, for each subsequences with a sliding window

of size ✟ to each sequence in the database. An index structure

such as an R-Tree is built, using the first ✒✗✓☞✘ Haar coefficients

where ✒✕✓ is an optimal value found by experiments based on the

number of page accesses. This is because of a trade off between

post-processing cost and index dimension.

4.2. Range Query

After we have built the index, we can carry out range query or

nearest neighbor query evaluation. For range queries, two steps

are involved:

1. Similar sequences with distances ❄ ✁ from the query are

looked up in the index and returned.

2. A post processing step is applied on these sequences to find

the true distances in time domain to remove all false alarms.

4.3. Nearest Neighbor Query

For nearest neighbor query, we propose a two-phase evaluation

as follows.✙
Phase 1

In the first phase, ✂ nearest neighbors of query ✄✠ are found

in the R-Tree index using the algorithm in [25]. The Eu-

clidean distances ✩ in time domain (full dimension) are

computed between the query sequence and all ✂ nearest

neighbors obtained which are ✩✫✪✣✄✠✚☞ ✄✂✘✂ ✎✼ ✭ , where ✄✂✘✂ ✎✼ de-

notes the nearest neighbor ❆ ( ✼ ❄ ❆ ❄ ✂ ), with ✄✂✘✂ ✎✗ farthest

from the query ✄✠ .✙
Phase 2

A range query evaluation is then performed on the same in-

dex by setting ✁ = ✩❆✪✣✄✠✵☞ ✄✂✘✂ ✎✗✮✭ initially. During the search,✘ Using Definition 2, one dimension can be saved in the index tree.



we keep a list of ✂ nearest sequences ✄✂❇✂ ❁ ✼ found so far and

their Euclidean distances in time domain (full dimension)✩❆✪✣✄✠✥☞ ✄✂❇✂ ❁ ✼ ✭ with query ✄✠ ( ✼✷❄ ❆ ❄ ✂ ). The post process-

ing step mentioned in Section 4.2 is avoided since the Eu-

clidean distances are found already in time domain during

the search. In the search we keep updating
�

the value of

✁ with ✩❆✪✣✄✠✚☞ ✄✂✘✂ ❁ ✗ ✭ which is the distance of the current far-

thest neighbor among the ✂ nearest neighbors. The ✂ near-

est neighbors stored in the list are returned as answer when

the range query evaluation is finished. The distance of the

farthest nearest neighbor with query ✄✠ is ✩❆✪✣✄✠✚☞ ✄✂❇✂ ✁ ✗✄✂✗ ✭ .
The correctness of the above algorithm can be shown by con-

sidering two cases. For the first case, assume the ✂ nearest neigh-

bors in the final answer all appear in the results in Phase 1, ✄✂✘✂ ✎✼
= ✄✂❇✂ ✁ ✗✄✂✾ , where ✼ ❄ ❆✖☞✆☎✧❄ ✂ and ❆ need not be equal to ☎ . Ob-

viously, ✩❆✪✣✄✠✥☞ ✄✂✘✂ ✎✗ ✭ = ✩✫✪✣✄✠✚☞ ✄✂✘✂ ✁ ✗✄✂✗ ✭ . In the second case, assume

some or no nearest neighbor obtained in the final answer appears

in the results in Phase 1, ✄✂✘✂ ✎✼ ✝✆ ✄✂✘✂ ✁ ✗✄✂✾ , where ✼ ❄ ❆ ☞✞☎ ❄ ✂
for some ❆ and ☎ . Thus, ✩❆✪✣✄✠✮☞ ✄✂✘✂ ✎✗✵✭ ▲ ✩❆✪✣✄✠✚☞ ✄✂✘✂ ✁ ✗✟✂✗ ✭ . Therefore,✩❆✪✣✄✠✚☞ ✄✂✘✂ ✎✗ ✭ ★❄✩❆✪✣✄✠✚☞ ✄✂✘✂ ✁ ✗✟✂✗ ✭ and by Lemma 4 there are only false

alarms produced in the range query of Phase 2 since the value of ✁
upper bounds the distance of the farthest neighbor ✄✂❇✂ ✁ ✗✄✂✗ .

The effectiveness of this ✂ -nearest neighbor search algorithm

arises from the value of ✩❆✪✣✄✠✚☞ ✄✂✘✂ ✎✗ ✭ found in Phase 1 which pro-

vides a sufficient small query range to prune out a large amount

of candidates for Phase 2. No false dismissal will occur in Phase

2 as ✩❆✪✣✄✠✚☞ ✄✂✘✂ ✎✗ ✭ gives the upper bound distance for ✩❆✪✣✄✠✚☞ ✄✂✘✂ ✁ ✗✄✂✗ ✭
which is the farthest ✂ -nearest neighbor in the final answer.

The extra step introduced in Phase 2 to update ✁ can enhance

the performance by pruning more non-qualifying MBRs during

the traversal of R-Tree.

5. Performance Evaluation

Experiments using real stock data and synthetic random walk

data have been carried out. All experiments are conducted on a

Sun UltraSPARC-1 workstation with 686MBytes of main mem-

ory. Page size is set to 1024 bytes. A branching factor of 20 is

chosen for the R-Tree so that the index tree nodes can be fitted

within one disk page. We pointed out earlier that pre-processing

time for Haar wavelet is much less than that for DFT. Here we

shall compare the querying performance.

We have experimented with both real data and synthetic data.

Real data are extracted from different equities of Hong Kong stock

market from 12/7/90 to 7/11/96. They have been collected daily

over the time period. Totally 10k feature vectors are extracted by

a sliding window of size ✟ = 512 and inserted into an R-Tree.

Both range and nearest neighbor queries are examined and the

results are shown in Figures 3 - 6. Random queries are applied

with varying epsilon ✁ , which ranges from 0.5% to 5% of the

database size. The number of nearest neighbors for nearest neigh-

bor query is between 20 and 40. All results are obtained from the

�
The updating process begins only when the list storing the nearest

neighbors has been filled up already.
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Figure 3. Precision of Range query
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Figure 4. Precision of Range query (V-shift model)

0

500

1000

1500

2000

2500

3000

3500

4000

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
o.

 o
f P

ag
e 

A
cc

es
se

s

Epsilon

DFT

0

500

1000

1500

2000

2500

3000

3500

4000

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
o.

 o
f P

ag
e 

A
cc

es
se

s

Epsilon

DFT
Haar

0

500

1000

1500

2000

2500

3000

3500

4000

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
o.

 o
f P

ag
e 

A
cc

es
se

s

Epsilon

DFT
Haar

Haar (V-shift)

Figure 5. Page accesses of Range query
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Figure 6. Page accesses of NN query



average of 100 trials. In each figure, Haar transforms using Defini-

tion 1 and Definition 2 as similarity models are denoted as ’Haar’

and ’Haar(V-shift)’ respectively.

In Figure 3, precision against the first tenth indexed coeffi-

cients/dimensions is investigated using Definition 1. It is defined

as

Precision ✆ ✫ time✫ transform
(7)

where ✫ time refers to the number of time sequences qualified in

time domain while ✫ transform is the number of time sequencesqual-

ified in the transformed domain. As we can observe, K-L trans-

form gives the best precision at each dimension. On the other

hand, the precision attained by Haar transform is close to the best

and it outperforms DFT significantly at all except the first dimen-

sion. The enhancement in precision of Haar transform over DFT

increases with the number of dimensions.

In Figure 4, the precision of Haar and Haar(V-shift) is shown.

The precision of the non-v-shift model outperforms the v-shift

model by 20% at most. The large difference can be attributed to

the removal of the first Haar coefficient to achieve v-shift simi-

larity. As the time series of financial data consist of a sequence

of time values fluctuating around a relative constant level, which

is the average value of that time sequence. This average value is

very effective in discriminating time series in the sense that every

sequence distributes further away in the x-axis. Hence, its removal

will cause a sudden drop in precision. From another point of view,

precision is traded for a better similarity model.

As most of the page accesses
�

of a query are devoted to remov-

ing false alarm, the precision is crucial to the overall performance

of query evaluation. This agrees with the result depicted in Figure

5, where the page accesses of the best dimensions of DFT (dim.

5), Haar (dim. 7), and Haar(V-shift) (dim. 10) are shown. Page

accesses increase linearly with ✁ . Haar has the minimum page

accesses while DFT performs the worst. Page accesses of Haar(V-

shift) model have been traded for better similarity model. Even so,

it outperforms DFT. The best dimension of DFT is smaller than

Haar and Haar(V-shift) as there is no significant gain in precision

with additional dimensions. Haar(V-shift) needs more dimensions

to attain sufficient precision in building the R-Tree.

Result of nearest neighbor query is shown in Figure 6. The

trends for page accesses
✁

are consistentwith range query in Figure

5, Haar and Haar(V-shift) still outperform DFT.

Since many real data like stock movements and exchange rates

can be modeled successfully by random walks [10], we also study

the performance of our proposed technique for random walk data.

Synthetic random walk data consisting of 30k time sequences are

generated. As we want to show the effectiveness of our approach

for different sequence lengths, we set ✟ = 1024. The same set of

experiments as for the real data are performed and the results are

found to be similar to that for the real data. The gain in perfor-

mance by Haar is larger as longer sequences are used. For lack of

space the details are not shown here.

�

Performance is measured in terms of page access due to I/O time dom-

ination over computation time in database applications. Page accesses

= non-leaf node accesses + leaf node accesses + post processing page

accesses
✁

Page accesses = non-leaf node accesses + leave node accesses

5.1. Scalability Test

We study the scalability of our method by varying the size

or length of synthetic time series database. Different sizes of

databases (5k to 30k) and different lengths of sequences (256 to

2048) are generated as described in the previous section separately.
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Figure 7. Scalability in database size of NN query
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Figure 8. Scalability in sequence length of NN query

Figure 7 and Figure 8 show the scalability of nearest neighbor

queries. Haar and Haar(V-shift) have a better scaling with database

size and sequence length increase than DFT. Similar results have

also been recorded for range queries. As revealed from the above

experiments, a considerable portion of page accesses is devoted

to the post processing step. The poorer precision of DFT creates

more work in the post-processing step and this affects the overall

performance, especially in terms of the amount of disk accesses

for large databases with long sequences.

5.2. Other Wavelets

There are many kinds of known wavelets, we have tried some

other wavelets in our experiments. We observe that Haar wavelets

outperforms Daubechies and Coiflet wavelets in precision. More-

over, it is computationally less expensive. We discover that not all

the wavelets are suitable for dimension reduction for stock data.

From our experiments, not all the wavelets are able to concentrate

energy at the first few coefficients. Haar, Daub4, and Coif6 are the

best wavelets we have found in their families. From experiments,



we find that the other wavelets seem to also preserve Euclidean

distances, however, so far we have a proof of this property only

for the Haar wavelets. It is interesting to see if we can apply dif-

ferent kinds of wavelets to different kinds of data series.

6. Conclusion

In this paper, an efficient time series matching technique

through dimension reduction by Haar Wavelet Transform is pro-

posed. The first few coefficients of the transformed sequences are

indexed in an R-Tree for similarity search. Experiments show that

our method outperforms the F-index (Discrete Fourier Transform)

method in terms of pruning power, number of page accesses, scal-

ability, and complexity. A new similarity model is introduced to

deal with vertical shifts of sequences. Furthermore, an efficient

two-phase nearest neighbor query is proposed and its effectiveness

is demonstrated by experiments.

We have some suggestions for future work. We can study the

possibility of using other wavelets like Symmlet [18] to boost up

the performance further. We can also try to apply wavelets that

did not work well with stock data in other signals, e.g. sinusoidal

signals, electrocardiographs (ECGs).
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Appendix A

The Haar wavelets are defined as

�✂✁ ✰ ☞ ✘ ✔❂✖ � ☞ ❅ ✁ ✘ ✣ ✰ ✔ ✰ ✖ ✚ ✑☎✄☎✄✆✄❏✑ ❅ ✁ ✣ ❃ (8)

where
� ☞✞✝ ✔ ✖ ✟ ❃ ✚✡✠ ✝ ✠❅✚ ✄ ☛✣ ❃ ✚ ✄ ☛ ✠ ✝ ✠ ❃✚ otherwise

(9)

together with a scaling function

☞ ☞ ✝ ✔ ✖ ✠ ❃ ✚✡✠ ✝ ✠ ❃✚ otherwise
(10)

Haar wavelet for ✌ ✡✡ ✪✆✍ ✭ and the scaling function are shown below.
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