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The simplest decomposition of a Toffoli gate acting on 3 qubits requires five 2-qubit gates. If we restrict

ourselves to controlled-sign �or controlled-NOT� gates this number climbs to 6. We show that the number of

controlled-sign gates required to implement a Toffoli gate can be reduced to just 3 if one of the three quantum

systems has a third state that is accessible during the computation—i.e., is actually a qutrit. Such a requirement

is not unreasonable or even atypical since we often artificially enforce a qubit structure on multilevel quantums

systems �e.g., atoms, photonic polarization plus spatial modes�. We explore the implementation of these

techniques in optical quantum processing and show that linear optical circuits could operate with much higher

probabilities of success.

DOI: 10.1103/PhysRevA.75.022313 PACS number�s�: 03.67.Lx, 42.50.Dv

I. INTRODUCTION

Quantum computing promises major increases in comput-

ing power but poses many experimental hurdles to its imple-

mentation �1�. Finding more efficient ways to implement

quantum gates may allow small-scale quantum computing

tasks to be demonstrated on a shorter time scale. A key quan-

tum gate is the Toffoli gate. The Toffoli gate acts on three

qubits and in conjunction with the Hadamard gate forms per-

haps the simplest universal gate set in quantum computing

�2�.
In this paper we show that the number of two-qubit gates

required to implement a Toffoli gate can be reduced by mak-

ing one of the qubits in the circuit a qutrit �or, in the general

case, a qudit�. The qutrit nature will only manifest during the

gate—after the gate only the qubit levels will be occupied.

Remarkably, the additional space afforded by the extra level

on one qubit provides a significant reduction in the resource

requirements. This reduction is particularly dramatic for op-

tical implementations where systems for applying the envis-

aged manipulations exist quite naturally. The paper is ar-

ranged in the following way. In the next section we introduce

the scheme in an abstract, implementation-independent, way

and demonstrate its increased efficiency. In Sec. III we con-

sider various optical realizations and then summarize and

conclude in our final section.

II. TOFFOLI GATE WITH QUDITS

We begin by showing how a Toffoli gate can be imple-

mented using only three controlled sign �CS� gates plus

single qubit unitaries by allowing one of the qubits to be a

qutrit. To our knowledge the most efficient implementation

that has been described using only qubits involves five

2-qubit gates �3,4�. If we restrict ourselves to using only CS

gates, then six CS gates plus various single-qubit gates are

needed �1�.
Figure 1 shows the arrangement to implement a Toffoli-

Sign �TS� gate—i.e., a three-qubit gate that applies a sign

change on one and only one of the state components and the
identity is implemented otherwise. It is of no consequence
which state component is sign flipped, and the flipped com-
ponent will vary between our various implementations. All
such gates are locally equivalent and can be interconverted
with straightforward single-qubit bit flips. The TS gate be-
comes a Toffoli gate by placing Hadamard gates before and
after the gate on one of the qubits, which then becomes the
target qubit. The two control qubits are labeled as usual with
logical states 0 and 1 �where we reserve bold print for indi-
cating logical values�. The target is a qutrit for which we
label the additional state 2. We assume C-S gates and Had-
amard gates are available. We note that a CNOT gate can be
constructed from a C-S gate using a pair of Hadamard gates.
We require one additional gate that we label XA, which en-
ables transitions between the 0 and 2 states. The C-S �and

CNOT� gate act on the qubit levels in the usual way. If they

act on a qutrit in the state 2 then both gates implement the

identity regardless of the value of the control qubit. The first

operation we perform is to apply an XA gate to the target

qutrit. The XA gate is defined by the following actions on the

basis states: XA�0�→ �2�, XA�2�→ �0�, XA�1�→ �1�. Consider

an arbitrary three-qubit state

X
A

X
A

a

b

c

FIG. 1. �Color online� Realization of a TS gate using two qubits

�a and b� and a qutrit �c�. Controlled-NOT �CNOT� gates �first and

last two-qubit gates� operate as normal on the qubit levels and

implement the identity if the target is in the qutrit level ��2��. Simi-

larly for the CS gate �middle two-qubit gate�. The XA gate flips the

qutrit between the states 0 and 2. The sign change occurs on the

�1,0,1� component.

PHYSICAL REVIEW A 75, 022313 �2007�

1050-2947/2007/75�2�/022313�5� ©2007 The American Physical Society022313-1

http://dx.doi.org/10.1103/PhysRevA.75.022313


�
i,j,k=0,1

�i,j,k�i, j,k� , �1�

where �i , j ,k���i�a�j�b�k�c and the ket subscripts label the

different qubits according to Fig. 1. After the application of

the XA gate on the qutrit �c� we have

�
i,j=0,1

��i,j,0�i, j,2� + �i,j,1�i, j,1�� . �2�

We now apply a CNOT gate between b and c to obtain

�
i=0,1

��i,0,0�i,0,2� + �i,0,1�i,0,1� + �i,1,0�i,1,2� + �i,1,1�i,1,0�� .

�3�

Next a CS gate is applied between a and the c, resulting in

�0,0,0�0,0,2� + �1,0,0�1,0,2� + �0,0,1�0,0,1� − �1,0,1�1,0,1�

+ �0,1,0�0,1,2� + �1,1,0�1,1,2�

+ �0,1,1�0,1,0� + �1,1,1�1,1,0� . �4�

Now a CNOT gate is again applied between b and c, and

finally the XA gate is again applied to the qutrit. The state is

then

�0,0,0�0,0,0� + �1,0,0�1,0,0� + �0,0,1�0,0,1� − �1,0,1�1,0,1�

+ �0,1,0�0,1,0� + �1,1,0�1,1,0�

+ �0,1,1�0,1,1� + �1,1,1�1,1,1� , �5�

as expected for a TS gate with the sign change implemented

on the �1, 0, 1� component. This technique can be generalized

straightforwardly to higher-order n-control-bit Toffoli gates

by introducing an �n+1�-level qudit as the target. Figure 2

shows an explicit construction of the next level up, the

n=3, TS gate. In general the number of two-qubit gates re-

quired for this method is 2n−1. This seems a significant

improvement on previous estimates of optimal gate numbers

for higher order Toffoli gates. For example, Ref. �5� finds

that 64 two-qubit gates are required for a five-control-bit

Toffoli while our qudit construction requires only 9. These

results suggest that the computational depth of quantum pro-

cessing circuits might be significantly reduced by employing

these techniques. In the next section we discuss various ways

in which the required manipulations can be realized in op-

tics.

III. OPTICAL IMPLEMENTATIONS

We now turn specifically to an optical encoding and show

that for this encoding the manipulations discussed in the pre-

vious section have natural physical realizations. First con-

sider dual-rail encoding in which the logical qubit states are

given as �0�= �1�h � �0�
v

and �1�= �0�h � �1�
v

where �i� j is the

ith Fock state of the jth optical mode �with plain text re-

served for Fock state occupation number�. The optical modes

are orthogonal and may represent, for example, different po-

larization or spatial modes. To create a qutrit we simply add

an extra mode such that, in the language of the previous

section, �0�= �100�, �1�= �010�, and �2�= �001�, where we have

simplified our nomenclature such that �i�h � �j�
v

� �k�s= �ijk�,
where s labels the new mode. In the following we will show

that linear optical elements plus proposed two-qubit optical

gates are sufficient to implement the operations used in the

previous section. We begin by discussing deterministic two-

qubit gates based on strong nonlinearities. We then consider

heralded nondeterministic gates based on measurement-

induced nonlinearities. Finally we consider demonstration

gates based on post-selected measurement-induced nonlin-

earities. In each case we find considerable advantages to our

qudit implementation.

A. Deterministic gates

It has long been known that a strong cross-Kerr nonlin-

earity enables the implementation of universal optical quan-

tum gates on the encoding we have just introduced �6�. In

particular a �3 nonlinear medium can be used to induce a

cross-Kerr effect between the relevant photon modes. Ideally

the cross-Kerr effect will produce the unitary evolution

ÛK=exp�i�â†âb̂†b̂�, where â is the annihilation operator for

one optical mode and b̂ another. Consider the schematic

setup of Fig. 3. Two polarization-encoded qubits are con-

verted into spatial dual rail qubits using polarizing beam

splitters. One mode from each of the qubits is sent through

the cross-Kerr material. The operation of this device on an

arbitrary two-qubit input state is given by the following evo-

lution:

X
A

a

b

c

X
A

X
B

X
B

d

FIG. 2. �Color online� Realization of an �n=3� level TS gate

using three qubits �a, b, and c� and a ququit �d�. CNOT gates operate

as normal on the qubit levels and implement the identity if the

target is in the ququit levels �2 or 3�. Similarly for the CS gate. The

XA gate flips the ququit between the states 0 and 2. The XB gate flips

the ququit between the states 1 and 3. The sign change occurs on

the �1,1,1,1� component.

a

b

�

PBS PBS

PBS PBS

�

h

h

v

v

FIG. 3. �Color online� Schematic of the implementation of an

optical CS gate using a strong cross-Kerr nonlinearity �. PBS are

polarizing beam splitters.
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��� → ÛK��� = ei�â
v

†
â

v
b̂

v

†
b̂

v���10�a�10�b + ��01�a�10�b

+ ��10�a�01�b + ��01�a�01�b�

= ��10�a�10�b + ��01�a�10�b + ��10�a�01�b

+ ei���01�a�01�b. �6�

Only when both modes entering the Kerr material are occu-

pied is a phase shift induced. If we now choose the strength

of the nonlinearity such that �=�, the effect is to flip the

sign of one element of the superposition, producing a CS

gate. We can introduce a third spatial mode by using polar-

ization rotation and polarizing beam splitters and hence

implement the control gate sequence required in Sec. I as

shown in Fig. 4. Notice, from Eq. �6�, that this CS gate

implements the identity if both polarization modes are unoc-

cupied as required. Only three �3 interactions are required

compared with the five or six that would be needed to imple-

ment the Toffoli gate by the usual qubit gates. Thus the same

saving is made as discussed for the abstract case.

Unfortunately Kerr materials with the required strength of

nonlinearity are not presently available. As a result we now

consider nondeterministic implementations based on

measurement-induced nonlinearites.

B. Heralded gates

Knill, Laflamme, and Milburn have shown that scalable

quantum gates can be implemented on optical qubits using

linear elements, photon counters, and photon sources �7�. In

particular, using linear optical elements, photon counters,

and an entangled photon pair as resources, it is possible to

implement the optical CS gate of the previous section non-

deterministically with a probability of success of 1 /4 �8�.
Gate success is heralded by the photon counter signature

obtained from the entangled pair after interaction with the

qubits. If we used the direct method of implementing a Tof-

foli gate via a sequence of CS gates and single-qubit unitar-

ies, we would require six entangled pairs and the probability

of success would drop to �1/4�6=1/4096. Recently Fiurášek

�9� suggested a dedicated scheme requiring only three en-

tangled pairs with a probability of success of 1 /1065. His

method offered significant reduction in the number of en-

tangled pairs required, but only a modest increase in the

success probability. Our method further reduces the number

of additional entangled pairs and dramatically improves the

success probability. In the following we will adapt our qutrit

techniques to linear optics and obtain a heralded Toffioli gate

requiring only two entangled pairs and working with a prob-

ability of success of 1 /32.

The proposed setup is shown in Fig. 5. It is similar to the

deterministic gate setup except that the CS gates are assumed

nondeterministic and the final two-qubit gate is replaced with

a passive quantum filter. Notice that, because we are also

exploiting the polarization degree of freedom on the second

spatial mode, the target is now effectively a ququit �a four-

level quantum system�. Each two-qubit gate works with a

probability of success 1 /4 and requires an entangled pair for

their operation. The filter succeeds with probability 1 /2 and

does not require any ancilla qubits for its operation. The gate

works in the following way: the state after the second CS

gate �see Fig. 5� is

�0,0,0�H,H,vac,H� + �1,0,0�V,H,vac,H� + �0,0,1�H,H,V,vac�

− �1,0,1�V,H,V,vac� + �0,1,0�H,V,vac,H�

+ �1,1,0�V,V,vac,H� + �0,1,1�H,V,H,vac�

+ �1,1,1�V,V,H,vac� , �7�

conditional on the correct photon counting outcomes from

the previous two CS gates �probability of success 1 /16�.
Here H and V refer to horizontally and vertically polarized

single-photon states, respectively, and “vac” refers to the

vacuum state �both polarization modes unoccupied�—i.e.,

�H�= �10���0�, �V�= �01���1�, and �vac�= �00�. The initial

state is as defined in Eq. �1� and the ordering of the kets

corresponds to top to bottom in Fig. 5. Instead of using a

third CS gate as in the deterministic scheme, half-wave

plates oriented at 22.5° are applied to both target modes,

leading to the state

a

b

c

PBS PBS�/2 �/2 �/2

h

v

FIG. 4. �Color online� Optical realization of a TS gate. Polariz-

ing beam splitters �PBS� act as XA gates by accessing an additional

spatial mode. The half-wave plates �� /2� are set at 22.5° so as to act

as Hadamard gates and the CS gates are implemented as per Fig. 3.

a

b

c

PBS

PBS

�/2 �/2 �/2

�/2

“0”

h

v

FIG. 5. �Color online� Nondeterministic, but heralded, optical

realization of a TS gate. Polarizing beam splitters �PBS� act as XA

gates by accessing an additional spatial mode. The half-wave plates

�� /2� act as Hadamard gates and the CS gates are implemented

using heralded nondeterministic gates. The sign change occurs on

the �0,0,1� component.
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�0,0,0�H,H,vac,D� + �1,0,0�V,H,vac,D� + �0,0,1�H,H,A,vac�

− �1,0,1�V,H,A,vac� + �0,1,0�H,V,vac,D�

+ �1,1,0�V,V,vac,D� + �0,1,1�H,V,D,vac�

+ �1,1,1�V,V,D,vac� , �8�

where �D�= �1/	2���H�+ �V�� and �A�= �1/	2���H�− �V��. The

third and fourth modes are then recombined on a polarizing

beam splitter and the output mode is conditioned on a zero

detection at the second output port of the polarizing beam

splitter. The probability of the zero detection is 1 /2, produc-

ing the conditional output state

�0,0,0�H,H,H� + �1,0,0�V,H,H� − �0,0,1�H,H,V�

+ �1,0,1�V,H,V� + �0,1,0�H,V,H� + �1,1,0�V,V,H�

+ �0,1,1�H,V,V� + �1,1,1�V,V,V� . �9�

Hence we have produced a TS gate with the phase flip oc-

curring on the �H ,H ,V� component. The probability of suc-

cess is 1 /16	1/2=1/32.

The proposed heralded circuit represents a five-photon ex-

periment. Such experiments are feasible, but difficult �10�. In

the following section we propose an in principle demonstra-

tion requiring only three photons.

C. Post-selected gates

We now consider the construction of a post-selected gate.

By this we mean a gate in which the photons act as their own

ancilla, with success heralded by successful detection of a

photon for each qubit, so-called coincidence detection. In

this way a TS gate requiring only the three photons needed to

represent the three qubits could be constructed. For example,

we could substitute post-selected CS gates �11,12� into the

circuit of Fig. 5. These gates operate with a probability of

success of 1 /9, so this would produce a post-selected TS

gate requiring only three photons and working with a prob-

ability of success of 1 /9	1/9	1/2=1/162. However, it

turns out the gate can be optimized for maximum success

probability by using the techniques for chaining post-

selected CS gates described in Ref. �13� and in this way

achieves a success probability of 1 /72 as we now describe.

Fiurášek also considered this problem and proposed a differ-

ent architecture with a success probability of about 1 /133

�9�.
Our proposed setup is shown in Fig. 6. The important part

of the circuit is the central string of two interferometers cre-

ated from the top target mode �T�. First, if this mode is

unoccupied, photons can only emerge in all three output qu-

bits if they remain in their respective modes. In this case no

phase flip occurs. If the top target mode is occupied, we must

consider passage of the photon through the central interfer-

ometers. The first interferometer is antibalanced if the bot-

tom mode of the first control mode C1 is unoccupied. As a

result the photon couples completely into the bottom mode

of the second interferometer with a phase flip. On the other

hand, if the bottom mode of the first control is occupied,

there will be no phase change at the one-third beam splitter

in the first interferometer due to two-photon interference �as-

suming a single photon exits from each port of the beam

splitter�. In this case the first interferometer is balanced and

the photon will couple completely into the top mode of the

second interferometer. Now we turn to the second interfer-

ometer. If the top mode of the second control mode C2 is

unoccupied, then passage through the bottom mode of the

interferometer induces a phase flip. But recall that this will

only occur if the photon has undergone a phase flip in the

first interferometer. Thus, if the photon subsequently makes

it into the output target mode, it will not have undergone a

phase flip. Similarly, if the target photon couples into the top

mode of the second interferometer, then it will not have un-

dergone a phase flip in the first interferometer and will not

undergo any further phase flip if it subsequently makes it to

the output target mode, regardless of the state of the C2

control mode. Finally, if the photon couples into the bottom

mode of the second interferometer �meaning that control

mode C1 had its bottom mode unoccupied and the photon

has picked up a phase flip� and mode C2 has its top mode

occupied, two-photon interference at the one-third beam

splitter in the second interferometer then leads to no phase

flip. Thus, if the target photon subsequently makes it to the

output, this state component will carry a phase flip. Summa-

rizing, we find that the only state component that will carry a

phase flip will be the one in which every qubit was in its

logical 0 state, where we take occupation of the top mode to

be logical 0. The beam splitter ratios are picked such that all

state components have equal probability to lead to an event

with a photon appearing in all the output qubits. That prob-

ability turns out to be 1/72.

{

{

{

}

}

}

C1

C2

T

1_

3

1_

3

1_

3

1_

8

1_

2

1_

4

1_

3

3_

4�0�

FIG. 6. �Color online� Nondeterministic, post-selected, optical

realization of a TS gate. In contrast to the other figures all optical

modes are shown explicitly; thus, each input qubit is represented by

two modes. Note that in the central part of the diagram there are a

total of seven modes, due to the introduction of an additional target

mode. Beam splitters are represented as black lines with their re-

flectivity indicated to the right. The beam splitters are assumed to

be asymmetric; i.e., a phase flip is induced by reflection off one

surface but all other components suffer no phase change. The sur-

face for which the phase flip occurs is indicated by a dotted line. If

we take occupation of the top mode of each qubit to represent

logical 0 and occupation of the bottom mode to represent logical 1,

then the circuit implements a TS gate in which a phase flip is only

applied to the element �000�. The figure is represented, for clarity, as

if all modes are spatial. In an experimental realization polarization

modes would be utilized where ever possible.
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IV. CONCLUSION

We have discussed the implementation of Toffoli gates in
circuits where one of the qubits is allowed to be a qutrit, or

more generally a qudit, and shown that increased gate effi-

ciency can be achieved. In particular we showed that instead

of six CS gates, as required for a qubit only circuit, introduc-

ing a qutrit allows this to be reduced to three CS gates. For

an n-control-bit Toffoli gate the required gate number is

2n−1 if a �n+1�-level qudit is available. We showed that for

deterministic optical quantum processing a natural imple-

mentation method could be identified. For nondeterministic

optical approaches further simplifications could be identified,

leading to a heralded Toffoli gate with a probability of suc-

cess of 1 /32 and a post-selected gate with a probability of

success of 1 /72. These latter results open the door to experi-

mental optical demonstrations of Toffoli gates in the near

future and make small-scale applications appear more fea-

sible. It is interesting to note that a nonuniversal set of qubit

gates, CS plus Hadamard gates �an additional � /8 gate is

required to make this a universal set�, becomes universal,

Toffoli plus Hadamard, gates when a single additional quan-

tum level is introduced.
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