
Efficient Top-k Algorithms for Approximate Substring
Matching

Younghoon Kim
Seoul National University

Seoul, Korea
yhkim@kdd.snu.ac.kr

Kyuseok Shim
Seoul National University

Seoul, Korea
shim@ee.snu.ac.kr

ABSTRACT

There is a wide range of applications that require to query
a large database of texts to search for similar strings or
substrings. Traditional approximate substring matching re-
quests a user to specify a similarity threshold. Without top-
k approximate substring matching, users have to try repeat-
edly different maximum distance threshold values when the
proper threshold is unknown in advance.
In our paper, we first propose the efficient algorithms

for finding the top-k approximate substring matches with
a given query string in a set of data strings. To reduce the
number of expensive distance computations, the proposed
algorithms utilize our novel filtering techniques which take
advantages of q-grams and inverted q-gram indexes avail-
able. We conduct extensive experiments with real-life data
sets. Our experimental results confirm the effectiveness and
scalability of our proposed algorithms.

Categories and Subject Descriptors

H.2 [Database Management]: Systems—query process-
ing, textual databases

Keywords

Top-k approximate substring matching; edit distance; in-
verted q-gram index

1. INTRODUCTION
There is a wide range of applications that require to query

a large database of texts to search for similar strings or sub-
strings. A list of possible applications includes substring
matching or short snippet suggestions for web search [23],
named entity recognition [27], bio-informatics for finding
DNA subsequences [20], music data retrieval [18] and spell
checking [26]. These applications generally require high per-
formance for real-time query processing to find similar sub-
strings from text databases. While these applications are
not all new, as there is an increasing trend of applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

to deal with vast amounts of data, retrieving similar strings
becomes a more challenging problem today.

To handle approximate substring matching, various string
(dis)similarity measures, such as edit distance, hamming dis-
tance, Jaccard coefficient, cosine similarity and Jaro-Winkler
distance have been considered [2, 10, 11, 19]. Among them,
the edit distance is one of the most widely accepted distance
measures for database applications where domain specific
knowledge is not really available [10, 12, 20, 27].

Based on the edit distance, the approximate string match-
ing problem is to find every string from a string database
whose edit distance to the query string is not larger than a
given maximum distance threshold. There are diverse appli-
cations requiring approximate string matching. For exam-
ple, it is useful to check whether the names or addresses pro-
vided by users as input are correct by querying databases to
search for the strings within a maximum distance threshold
[29]. However, for databases with long strings, the contain-
ment search of a query string called approximate substring
matching is more reasonable.

Id String Id String
s1 Jackson Pollock s4 Jacksomville
s2 Jakob Pollack s5 Jakson Pollack
s3 Jason Polock s6 Mackson Polock

Figure 1: An example of a string database D

Two different problem definitions have been introduced
for approximate substring matching. In the first definition,
the problem is to discover all substrings of each string in a
database, whose edit distances to the query string are within
the given maximum threshold [4, 17, 27]. Consider a query
string ‘Jackson’ and a database shown in Figure 1. If the
maximum edit distance threshold is 2, with ‘Jackson Pollock’
alone, the substrings of ‘Jacks’, ‘Jackso’, ‘Jackson’, ‘ackson’
and ‘ckson’ are all included in the query result.

Another popular definition of the approximate substring
matching problem is to retrieve every string s whose sub-
string edit distance to the query string σ is at most the given
maximum threshold, where the substring edit distance be-
tween σ and s is the smallest edit distance among the ones
between σ and all substrings in s [13, 25]. For example, let
us reconsider the string database in Figure 1 and the query
string ‘Jackson’. If the maximum threshold is 2, the ap-
proximate substring matches are {‘Jackson Pollock’, ‘Jason
Polock’, ‘Jacksomville’, ‘Jakson Pollack’, ‘Mackson Polock’}.

All previous studies of approximate string or substring
matching mentioned so far require each user to provide a
maximum distance threshold. However, in many applica-
tions, it is very difficult for each user to know a proper

385

threshold in advance since it depends on the application
scenarios. An appealing alternative method is to compute
the most similar k strings or substrings without the need to
specify a maximum distance threshold. Without such top-k
approximate matching, users have to try different distance
threshold values, which may lead to empty results (if the
threshold chosen is too low) or too many results with a long
running time (if the threshold is too high). It also supports
interactive applications, where users are presented with top-
k most similar strings or substrings progressively.
In our paper, we propose the efficient algorithms for the

top-k approximate substring matching problem which find
the top-k strings whose substring edit distances to the query
string are the smallest among all strings in a given database.
Contrast to traditional approximate substring matching, top-
k approximate substring matching (1) does not require each
user to provide a maximum distance threshold, and (2) finds
the top-k strings in data whose ‘substring edit distances’ to
a given query string are the k smallest values. To the best of
our knowledge, no existing work has addressed the top-k ap-
proximate substring matching problem and our algorithms
presented in this paper are the first work for the problem.

Example 1.1.: Consider the string data in Figure 1. Sup-
pose that the query string σ is ‘Jackson’ and k = 3. Since s1
has the substring which is exactly σ, its substring edit dis-
tance to σ is 0. For s4 and s5, the substring edit distances to
σ are 1 since s4 and s5 have ‘Jacksom’ and ‘Jakson’ respec-
tively. For other strings, the substring edit distances to σ are
at least 1. Thus, the top-3 approximate substring matches
are {‘Jackson Pollock’, ‘Jacksomville’, ‘Jakson Pollack’}.

Given a set of strings D and a query string σ, a naive
algorithm of top-k approximate substring matching exam-
ines every string s in D and compute the substring edit
distance dsub(s, σ) one by one. We refer to the brute-force
algorithm as TopK-NAIVE. Since computation of substring
edit distance dsub(s, σ) is very expensive, we develop more
efficient algorithms by utilizing q-grams in the query strings
and available inverted q-gram indexes adopted widely to find
approximate string matches [9]. This paper makes the fol-
lowing contributions:

• We first propose the algorithm TopK-LB, which reduces
the number of substring edit distance computations in
TopK-NAIVE, by checking each string s with a lower
bound of dsub(s, σ) first based on dynamic programming.

• We next present the algorithm TopK-SPLIT which allows
not to calculate the lower bounds of dsub(s, σ) for some
strings by dividing data D into partitions based on q-
grams and utilizing our proposed lower bound of dsub(s, σ)
between σ and all strings in each partition.

• We also develop the algorithm TopK-INDEX that can
speed up TopK-SPLIT by utilizing the posting lists of
some q-grams in the query string, which can be obtained
from the existing inverted positional q-gram index, when-
ever it is available by DBMSs.

• We conducted an extensive performance study of our pro-
posed algorithms with real-life data sets. When there is
no inverted q-gram index, we found that TopK-SPLIT
is the best performer and faster than TopK-NAIVE by
an order of magnitude. Whenever the inverted indexes
are available, TopK-INDEX is the best and much faster
than TopK-SPLIT. Experimental results also confirm that
our algorithms outperform the extended traditional algo-
rithms significantly and scale up well with large data sizes.

2. PRELIMINARIES
In this section, we provide definitions used in our paper

and present a precise statement of the problem for the top-k
approximate substring matching.

2.1 Notations and our Problem Definition
Let Σ be a finite alphabet of size |Σ|. For a string s of

Σ∗, we denote the length of s with |s|. We use s[i, j] with
1≤i≤j≤|s| to denote the substring of s which starts from
position i and ends at position j. Similarly, s[i] with 1≤i≤|s|
denotes the character at the i-th position of s.

Edit distance: For two strings si and sj , si can be trans-
formed to sj by applying repeatedly the three operations:
insertion, deletion and substitution. The edit distance be-
tween si and sj , which is denoted by d(si, sj), is defined as
the minimum number of operations needed to transform si
to sj (or sj to si). The dynamic programming algorithm
to compute the edit distance between two strings si and sj
takes O(|σ| · |s|) time [14].

Substring edit distance: The substring edit distance from
a string s to another string σ, which is represented by dsub(s, σ),
is the minimum among the edit distance between σ and ev-
ery substring of s. The O(|σ|·|s|)-time algorithm based on
dynamic programming to compute the substring edit dis-
tance is presented in [24]. (For more details, read [24, 25].)

We next present the definition of our top-k approximate
substring matching problem.

Definition 2.1.: (Top-k Approximate Substring Match-
ing) Given a set of strings D and a query string σ, the top-k
approximate substring matching problem is to find the k ap-
proximate strings TOPk(σ) = 〈s1, s2, ..., sk〉 in D which is
an ordered sequence of k strings satisfying the following con-
ditions:

• dsub(s1, σ) ≤ dsub(s2, σ) ≤ · · · ≤ dsub(sk, σ) holds.
• For every sj∈D such that sj /∈ TOPk(σ), we have dsub(sk, σ)

≤ dsub(sj , σ).

Example 2.2.: Consider the strings shown in Figure 1.
Suppose that the query string σ is ‘Jackson’ and we are inter-
ested in the top-2 approximate substring matches TOP2(σ).
Since s1 includes σ as a substring, the substring edit dis-
tance dsub(s1, σ) is 0. For the string s4, dsub(s4, σ) is 1
because s4 has a substring ‘Jacksom’. For other strings, the
substring edit distances to σ are at least 1. Thus, we get
TOP2(σ)={s1,s4}.

2.2 The q-grams and Inverted q-gram Indexes
We define q-grams and positional q-grams as follows.

Definition 2.3.: The q-grams of a string s are s[i, i +
q − 1]s with all 1≤i≤(|s|−q+1). The positional q-grams of
a string s are all pairs of each q-gram in s and its position
(i.e., (s[i, i+ q − 1], i) with 1≤i≤(|s|−q+1)).

Example 2.4.: For the string s=‘Jackson’ and q=3, (‘Jac’,
1), (‘ack’,2), (‘cks’,3), (‘kso’,4) and (‘son’,5) are the posi-
tional 3-grams of the string s.

Given a q-gram and a string containing the q-gram, a pair
of its string id and the position where the q-gram occurs in
the string is called a posting. With a set of strings D, the
posting list of a q-gram is the list of postings for every oc-
currence of the q-gram in all strings in D. Note that every
posting list is primarily sorted in increasing order of string

386

Jac (s1,1), (s4,1)

ack (s1,2), (s4,2), (s6,2)

cks (s1,3), (s4,3), (s6,3)

kso (s1,4), (s4,4), (s5,3),(s6,4)

son (s1,5), (s3,3), (s4,5), (s5,4), (s6,5)

on_ (s1,6), (s3,4), (s5,5), (s6,6)

n_P (s1,7), (s3,5), (s5,6), (s6,7)

_Po (s1,8), (s2,6), (s3,6), (s5,7), (s6,8)

Pol (s1,9), (s2,7), (s3,7), (s5,8), (s6,9)

oll (s1,10), (s2,8), (s5,9)

llo (s1,11)

loc (s1,12), (s3,10), (s6,11)
ock (s1,13), (s3,11), (s6,12)
Jak (s2,1), (s5,1)

ako (s2,2)

kob (s2,3)

ob_ (s2,4)

b_P (s2,5)

lla (s2,9), (s5,10)

lac (s2,10), (s5,11)

ack (s2,11), (s5,12)
Jas (s3,1)

aso (s3,2)
omv (s4,6)
mvi (s4,7)

vil (s4,8)

ill (s4,9)

lle (s4,10)

aks (s5,2)

kso (s5,3)

q-gram posting list q-gram posting list q-gram posting list

olo (s3,8), (s6,10) Mac (s6,1) som (s4,6)

Figure 2: An inverted index for the database D

ids and secondarily sorted in ascending order of positions.
With an inverted q-gram index of D, we can access the post-
ing lists with q-grams as keys. In Figure 2, we show the
inverted 3-gram index of the strings in Figure 1.

3. THE LOWER BOUNDS OF SUBSTRING

EDIT DISTANCES
In this section, to identify the strings in D which do not

need to compute actual substring edit distances, we present
how to compute the lower bounds of substring edit dis-
tances by utilizing q-gram properties. For correctness and
efficiency, we develop our techniques to guarantee no false
dismissals and few false positives, respectively. To achieve
these goals, we devise several filtering methods.

3.1 A Lower Bound of dsub(s, σ)
We denote the lower bound of the edit distance d(s, σ)

between a string s and a query string σ by ℓo(d(s, σ)). The
following lemma borrowed from [9] allows us to compute
ℓo(d(s, σ)).

Lemma 3.1.: [9] Given a query string σ and a string s,
if s has at most c common q-grams with σ, the edit distance
between d(s, σ) satisfies the following inequality.

d(s, σ) ≥ ⌈(max(|σ|, |s|)− q + 1− c)/q⌉

In other words, ℓo(d(s, σ)) = ⌈(max(|σ|, |s|)− q+ 1− c)/q⌉.

We now present the lemma below which allows us to com-
pute a lower bound of the substring edit distance dsub(s, σ)
between a string s and a query string σ. Remember that
s[i, j] denotes the substring of s which starts from position
i and ends at position j.

Lemma 3.2.: Consider a query string σ and a string s. Let
c be the number of common q-grams between σ and s. Fur-
thermore, let ci be the number of common q-grams between
σ and s[i, i+|σ|-1]. Then, the lower bound of dsub(s, σ), rep-
resented by ℓo(dsub(s, σ)), is

ℓo(dsub(s, σ)) =
{

⌈(|σ| − q + 1− c)/q⌉, if |s| < |σ|,

min1≤i≤|s|−|σ|+1⌈(|σ| − q + 1− ci)/q⌉, otherwise.
(1)

Proof: If |s| < |σ|, σ cannot be a substring of s. Thus, the
lower bound of dsub(s, σ) is the same as the lower bound of
d(s, σ) which is actually ⌈(|σ|−q+1−c)/q⌉ by Lemma 3.1.
When |s| ≥ |σ|, in order to compute the lower bound

of dsub(s, σ), we can enumerate every substring s′ of s and
compute the lower bound of edit distance between σ and
every substring s′.
Consider a substring s[i, i+ℓ−1] of length ℓ. If ℓ is larger

than |σ|, the lower bound of d(s[i,i+ℓ−1], σ), denoted by
ℓo(d(s[i,i+ℓ−1), σ)), is at least ℓo(d(s[i,i+|σ|−1], σ)). It is
because the lower bound derived by Lemma 3.1 monoton-
ically grows with increasing the length of string s. Since

computing a substring edit distance requires to find the sub-
string with the minimum edit distance to σ, we can ignore
the substrings of s whose lengths are larger than |σ|. Thus,
ℓo(dsub(s, σ)) is the minimum one among ℓo(d(s[i,i+|σ|−1],
σ))s with 1≤i≤|s|−|σ|+1.

To compute ℓo(dsub(s, σ)) based on the above Lemma, if
we count the common q-grams between σ and every sub-
string s[i, i+|σ|−1] with 1≤i≤|s|−|σ|+1, it takes O(|σ| · |s|)
time. We now present the algorithm called DYN-LB which
computes a tighter lower bound ℓo(dsub(s, σ)) based on dy-
namic programming by utilizing the positions of matching
q-grams with O(ℓ2) time, where ℓ represents the number
of matching q-gram pairs between s and σ. Note that we
generally have ℓ ≪ min(|s|, |σ|).

Applying dynamic programming: We use the following
notations for a query string σ and a string s in our dynamic
programming formulation.
• Let Xσ=〈(x1, p1),...,(x|Xσ |, p|Xσ|)〉 be the sequence of po-

sitional q-grams from σ, each q-gram of which appears in
the string s, satisfying pi < pi+1 for i=1,...,|Xσ|−1. Sim-
ilarly, let Ys=〈(y1, r1),...,(y|Ys|, r|Ys|)〉 be the sequence of
positional q-grams from s, each q-gram of which occurs in
σ, satisfying ri < ri+1 for i=1,. . . ,|Ys|−1.

• For a positional q-gram pair 〈(xi, pi), (yj , rj)〉 with (xi, pi)
∈ Xσ, (yj , rj) ∈ Ys and xi=yj , let m[i, j] represent the
lower bound of all edit distances d(σ[1, pi+q−1],s′) where
s′ is every substring of s ending at position rj+q−1.

• For two positional q-gram pairs {(xu, pu), (xi, pi)} ⊆ Xσ

and {(yv, rv), (yj , rj)} ⊆ Ys satisfying xu=yv, xi=yj , pu<pi
and rv<rj , let δ(pu, pi, rv, rj) denote the lower bound of
the edit distance d(σ[pu, pi+q−1],s[rv, rj+q−1]).

Computing m[i, j]: For a positional q-gram pair 〈(xi, pi),
(yj , rj)〉 such that (xi, pi) ∈ Xσ, (yj , rj) ∈ Ys and xi=yj ,
depending on whether xi (=yj) is the only common q-gram
between σ[1, pi+q−1] and every substring of s ending at po-
sition rj+q−1 or not, we split into two cases.

(1) When xi (=yj) is the only common q-gram between
σ[1, pi+q−1] and every substring of s ending at position
rj+q−1, the edit distance between them is at least ⌈(pi−1)/q⌉
due to to Lemma 3.2.

(2) Otherwise, suppose that 〈(xu, pu), (yv, rv)〉 is the last
positional q-gram pair satisfying pu<pi, rv<rj and xu=yv,
which minimizes m[i, j]. Then, for every such a matching q-
gram pair 〈(xu, pu), (yv, rv)〉, m[i, j] (i.e., the lower bound of
the edit distance between σ[1, pi+q−1] and every substring
of s ending at position rj+q−1) is the sum of m[u, v] and
δ(pu, pi, rv, rj) (i.e., the lower bound of the edit distance
d(σ[pu, pi+q−1],s[rv, rj+q−1])). Since showing the optimal
substructure of this problem is easy, we omit the proof.

Since we do not know the positional q-gram pair 〈(xu, pu),
(yv, rv)〉 satisfying pu<pi, rv<rj and xu=yv between σ[1, pi+
q−1] and every substring of s ending at position rj+q−1, we
consider every 〈(xu, pu), (yv, rv)〉 ∈ X×Y as the last match-
ing pair followed by 〈(xi, pi), (yj , rj)〉 to compute m[i, j].
Thus, the recursive solution to compute m[i, j] is

m[i, j] = min{⌈(pi − 1)/q⌉,

min
∀〈(xu,pu),(yv,rv)〉∈X×Y :

(xu=yv)∧(pu<pi)∧(rv<rj)

{m[u, v] + δ(pu, pi, rv, rj)}}. (2)

For every pair 〈(x1, p1), (yj , rj)〉 with x1=yj , there is only
a single matching q-gram between σ[1, p1+q−1] and every
substring of s ending at position rj+q−1, and thus we set
m[1, j] to ⌈(p1−1)/q⌉ according to Lemma 3.2.

387

σ e

s ?

v

?

J c s e

J c s

vσ

s

s no

?

σ J a c k e

s ...? ? ?

v

? ? ?

s no

??? ?

1 2 3 4 5 6 7 8 9 10 11 12

J a c k e

? ? s

vσ

s

i? ?

(a) σ and s with four common q-grams

i l lJ c k s o n e

J c

v

? ?

σ

s

i l l

? ?? ?? ?? ? ?

(b) Transforming `Jacksonvill' to the substrings of s ending with `ill'

σ J c k e

s J c ?

v

? ? ?

s no

?

J

? c

σ l e

s ?

v

?

s no

?c

s o n ev

? ?

σ

s

i l l

? ?? ? ? ?

J

J ...

J a c k s o n ev

? ?

σ

s

i l l

? ?? ?? ? ?? ??

(c) Computing the lower bound of dsub(s,σ) using m[i,j]s

(m[1,1]=0) + 3 = 3 (m[2,2]=0) + 3 = 3 (m[3,4]=2) + 2 = 4 (m[4,3]=2) + 1 = 3lo(dsub(s,σ))= 4

...

...

Figure 3: Computing the lower bound of dsub(s, σ) with DYN-LB

Computing ℓo(dsub(s, σ)): Now we show how to compute
ℓo(dsub(s, σ)) using m[i, j]. When every q-gram in σ is mod-
ified, the lower bound of dsub(s, σ) is ⌈(|σ|−q+1)/q⌉ due to
Lemma 3.2. Otherwise, suppose that the last matching q-
gram pair is 〈(xi, pi), (yj , rj)〉 with (xi, pi) ∈ Xσ, (yj , rj)
∈ Ys and xi=yj . The lower bound of dsub(s, σ) is the sum
of m[i, j] and the minimum number of edit operations to
modify every remaining q-gram in σ[pi+1, |σ|] so that there
is no matching q-gram between σ[pi+1, |σ|] and s[rj+1, |s|],
which is ⌈(|σ|−pi−q+1)/q⌉ according to Lemma 3.2. Since
we do not know the actual last matching positional q-gram
pair, we consider every 〈(xi, pi), (yj , rj)〉 ∈ X × Y such that
xi=yj as the last matching pair to compute ℓo(dsub(s, σ)).
Thus, the lower bound of dsub(s, σ) is

min{⌈(|σ| − q + 1)/q⌉,

min
1≤i≤|Xσ|,1≤j≤|Ys|

{m[i, j] + ⌈(|σ| − pi − q + 1)/q⌉}. (3)

Computing δ(pu,pi, rv, rj): Given two positional q-gram
pairs {(xu, pu), (xi, pi)} ⊆ Xσ and {(yv, rv), (yj , rj)} ⊆ Ys

satisfying xu=yv, xi=yj , pu<pi and rv<rj , the transforma-
tion from σ[pu, pi+q−1] to s[rv, rj+q−1] by performing at
least an edit operation on every q-gram in σ[pu, pi+q−1]
except the two q-grams (xu, pu) and (xi, pi) is the same as
converting σ[pu+1, pi+q−2] to s[rv+1, rj+q−2] by modify-
ing every q-gram in σ[pu+1, pi+q−2] without exception.
The lower bound of the edit distance for the transforma-

tion performing at least an edit operation on every q-gram in
σ[pu+1, pi+q−2] is ⌈(pi−pu−1)/q⌉ (=⌈(((pi+q−2)−(pu+1)
+1)−q+1−0)/q⌉) due to Lemma 3.2. Furthermore, the dif-
ference between the lengths of two strings is a definite lower
bound of the edit distance [9]. Thus, δ(pu, pi, rv, rj) becomes
max{⌈(pi − pu − 1)/q⌉, |(pi − pu)− (rj − rv)|}.

Time complexity: Let ℓ be the number of matching q-
gram pairs 〈(xi, pi), (yj , rj)〉 ∈ X×Y such that xi=yj . Since
the number of entries m[i, j] is ℓ and it takes O(ℓ) time to
compute each m[i, j] in Equation (2), the time complexity
of DYN-LB is O(ℓ2).

Example 3.3.: Suppose we have σ=‘Jacksonville’ of length
12 and s=‘Jack Willson’. The matching positional q-gram
sets in σ and s are Xσ={(Jac,1), (ack,2), (son,5), (ill,9)}
and Ys={(Jac,1), (ack,2), (ill,7), (son,10)} respectively as
illustrated in Figure 3(a). With the first matching q-gram
‘Jac’ in both Xσ and Ys, m[1, 1] becomes 0. With the sec-
ond matching positional q-gram pair (x2, p2)=(ack,2) in Xσ

and (y2, p2)=(ack,2) in Ys, m[2, 2] becomes 0. With the next
matching q-grams (x4, p4)=(ill,9) in Xσ and (y3, p3)=(ill,7)
in Ys, we consider the following transformations, as shown
in Figure 3(b):

• The transformation that modifies every q-gram except the
last q-gram (ill,9) in σ, which takes at least 3 edit opera-
tions (=⌈(9− 1)/3⌉).

• Modifying σ[1, 4]=‘Jack’ to a substring of s ending with
‘ack’ followed by changing ‘acksonvill’ to ‘ack Will’, which
requires at least 2 edit operations (=m[2, 2]+max(⌈(9−2−1)
/3⌉, |10−8|)).

• Transforming σ[1, 3]=‘Jac’ to s[1, 3]=‘Jac’ and converting
‘Jacksonvill’ to ‘Jack Will’, which needs at least 3 edit
operations (=m[1, 1]+max(⌈(9−1−1)/3⌉, |11− 9|)).

Now, m[4, 3] becomes 2. Similarly, we obtain m[3, 4]=2. Fi-
nally, to compute the lower bound of dsub(s, σ) by Equa-
tion (3), we examine the lower bounds by the five transfor-
mations in Figure 3(c), such that every matching q-gram in
Xσ is modified or each q-gram in X is the right most q-gram
which is not changed. Then, we obtain 3 as the lower bound
of dsub(s, σ).

3.2 A Lower Bound of Substring Edit Distances
between a Query and a Set of Strings

Previously, we could compute the lower bound of dsub(s, σ)
using the common q-grams between a query string σ and the
string s. However, we next show how to compute the lower
bound of dsub(s, σ) using the mismatching q-grams from σ
to s (i.e., the q-grams occurring in σ but not in s).

Lemma 3.4.: Consider a query string σ and a string s. If
the number of mismatching q-grams from σ to s is at least
m, we have dsub(s, σ) ≥ ⌈m/q⌉.

Proof: When a string s2 is obtained by applying a single
edit operation on a string s1, we have at most q mismatch-
ing q-grams from s1 to s2. Since at least m q-grams in σ do
not appear in s, we need at least ⌈m/q⌉ edit operations to
convert σ to s (i.e., ℓo(d(s, σ)) = ⌈m/q⌉). Furthermore, for
every substring s′ of the string s, since the number of mis-
matching q-grams from σ to s′ is at least that of mismatch-
ing q-grams from σ to s, we can claim that the number of
mismatching q-grams from σ to s′ is at least m. Thus, we
have d(s′, σ) ≥ ⌈m/q⌉ for every substring s′ of s and we can
conclude dsub(s, σ) ≥ ⌈m/q⌉.

Consider a subset G′ ⊆ G where G is the set of all possible
q-grams from σ. Assume that we partition D into D+

G′ and

D−
G′ so that D+

G′ is the set of strings in D which share at

least a q-gram in G′ and D−
G′ is the rest of strings in D

(i.e., D−
G′ = D−D+

G′). Let dsub(D, σ) represent the smallest
substring edit distance between σ and every string s in D.
We denote the lower bound of dsub(D, σ) by ℓo(dsub(D, σ)).

The lower bounds of dsub(D
−
G′ , σ): We can compute a

lower bound of the substring edit distances between σ and
every string in D−

G′ by the following lemma.

Lemma 3.5.: Assume that we have a set of strings D and
a query string σ. For each subset G′ ⊆ G where G is the
q-gram set of σ, we have dsub(D

−
G′ , σ) ≥ ⌈|G′|/q⌉.

388

Proof: Due to Lemma 3.4, for every string s in D−
G′ which

does not include any q-gram in G′, dsub(s, σ) ≥ ⌈|G′|/q⌉
holds. Thus, we have dsub(D

−
G′ , σ) ≥ ⌈|G′|/q⌉.

While the lower bound of obtained by Lemma 3.5 is ef-
fective, it does not consider the positions of the q-grams in
σ. In other words, we assumed that every q-gram in G′ may
overlap with another q-gram in G′ in at least a position of
σ. However, if we choose the q-grams for G′ such that every
q-gram in G′ does not overlap with another q-gram in G′,
we can obtain a tighter lower bound of ℓo(dsub(D

−
G′ , σ)).

Lemma 3.6.: Let G be the set of all q-grams in a query
string σ. If we select a subset G′ ⊆ G in which every q-
gram does not overlap with another q-gram in G′, we have
dsub(D

−
G′ , σ) ≥ |G′|.

Proof: For each string s in D−
G′ , suppose that we perform

edit operations on σ to convert it to a substring of s. Since
every q-gram in G′ does not appear in s, every q-gram in G′

should be modified by at least an edit operation. However,
every q-gram in G′ does not overlap with another q-gram in
G′ and thus a single edit operation cannot affect multiple
q-grams. Thus, for every string s in D−

G′ , we need at least
|G′| edit operations to transform σ to any substring of s.

Example 3.7.: Suppose we have a query string σ=‘Jackson’
and G′={‘Jac’,‘kso’} in which every 3-gram does not over-
lap with another q-gram in G′. The strings in D−

G′ are the
strings which do not have even one of the 3-grams in G′.
Since each 3-gram in G′ does not overlap with another one,
to transform σ to every substring of each string in D−

G′ , we
need at least 2 edit operations (an edit operation on each of
‘Jac’ and ‘kso’) in σ. Note that we have dsub(D

−
G′ , σ) ≥ 2

by Lemma 3.6.

If we fix the size of G′ ⊆ G, we obtain the tightest lower
bound ℓo(dsub(D

−
G′ , σ)) when G′ is selected without any pair

of overlapping q-grams.

Corollary 3.8.: Consider a query string σ and let G be
the set of q-grams in σ. We obtain the tightest lower bound
ℓo(dsub(D

−
G′ , σ)) among every possible G′ ⊆ G when the size

of G′ is ⌊|σ|/q⌋.

Proof: This is because we cannot select a set of q-grams
with a larger size than ⌊|σ|/q⌋ in which every q-gram does
not overlap with another q-gram in the set.

We now introduce the following lemma to use Lemma 3.6
effectively for top-k approximate substring matching.

Lemma 3.9.: Consider a set of strings D, a query string
σ, the q-gram set G of σ and a subset G′ ⊆ G. Assume that
we partitioned D into D+

G′ and D−
G′ . While examining every

string in D+
G′ , if there are at least k strings whose substring

edit distances to σ are at most ℓo(dsub(D
−
G′ , σ)), we can find

the top-k approximate substring matches in D by examining
the remaining strings in D+

G′ only by ignoring the remaining

strings in D−
G′ .

Proof: While examining every string in D+
G′ one by one, let

sk denote the string with the k-th smallest substring edit dis-
tance dsub(sk, σ) so far. Since dsub(sk, σ)≤ ℓo(dsub(D

−
G′ , σ)),

for every string s′ ∈ D−
G′ , dsub(s

′, σ) cannot get smaller than
dsub(sk, σ) and we can not have any string of the top-k ap-
proximate substring matches in D−

G′ .

Function TopK-LB (D, k, σ)
begin

1. HTopK = an empty max-heap storing 〈dist, str〉;
2. G = {σ[i,i+q−1]|1≤i≤|σ|−q+1};
3. for each string s in D do

4. R = {(s[i,i+q−1], i) |∀i s.t.1≤i≤|s|−q+1, s[i,i+q−1]∈G};
5. LB = DYN-LB(R, |σ|);
6. if |HTopK |<k or LB<HTopK .getMax().dist then

7. d = dsub(s, σ);
8. if |HTopK | < k then HTopK .insert(〈d,s〉);
9. else if HTopK .getMax().dist > d then

10. HTopK .insert(〈d,s〉);
11. HTopK .deleteMax();
12. end for

13. return HTopK ;
end

Figure 4: The TopK-LB algorithm

4. TOP-K ALGORITHMS FOR APPROXI-

MATE SUBSTRING MATCHING
We first introduce the brute-force algorithmTopK-NAIVE

which blindly examines every string s in a set of strings D
and computes substring edit distances dsub(s, σ) one by one.
Since distance computations are very expensive, to reduce
the number of substring edit distances to compute, we pro-
pose the algorithm TopK-LB which computes dsub(s, σ) only
when the lower bound ℓo(dsub(s, σ)) is smaller than the cur-
rent k-th smallest substring edit distance. The lower bound
ℓo(dsub(s, σ)) is computed by our novel dynamic program-
ming algorithm in TopK-LB.

Since TopK-LB utilizes the algorithm based on dynamic
programming to compute the lower bound ℓo(dsub(s, σ)) with
every string s in D, we next propose the algorithm TopK-
SPLIT which can even skip the expensive computation of
ℓo(dsub(s, σ)) for some strings s in D. TopK-SPLIT divides
D into partitions for a given q-gram set G′ and utilizes our
new lower bound of dsub(s, σ). We also develop a novel dy-
namic programming algorithm to find the best q-gram set G′

to be used at the beginning of TopK-SPLIT. Furthermore,
whenever the k-th substring edit distance becomes smaller,
TopK-SPLIT adaptively adjusts G′ so that we can skip even
more strings for computing the lower bounds of dsub(s, σ).

TopK-SPLIT still examines every string in D and thus its
running time increases proportionally to the size of D. To
speed up TopK-SPLIT further, we develop TopK-INDEX
that does not need to check every string in D by utilizing
the inverted q-gram indexes, whenever they are available.

We next present the above algorithms for finding the top-k
approximate substring matches in more details.

TopK-NAIVE: The naive algorithm examines every string
s in D and computes the substring edit distance dsub(s, σ).
To find the top-k approximate substring matches in D, we
maintain a max-heap HTopK storing the k strings s′ with
the smallest dsub(s

′, σ)s which are used as the keys in the
max-heap HTopK . If the size of HTopK is less than k, we just
insert the string s to HTopK . Otherwise, we check whether
dsub(s, σ) is smaller than dsub(sR, σ) of the string sR at the
root of HTopK (i.e., whether dsub(s, σ) is smaller than the
k-th smallest substring edit distance so far). If it is satisfied,
we delete the string at the root sR of HTopK and insert the
string s to HTopK . If not, we move to the next string and
repeat the above step until we encounter the last string in
D. We refer to the naive algorithm as TopK-NAIVE.

TopK-LB: Similar to TopK-NAIVE, we scan all strings in
D. However, for each string s in D, we generate the list of

389

common positional q-grams R = 〈(g1, p1), . . . (gn, pn)〉 be-
tween σ and s in increasing order of positions where the po-
sition pi of each (gi, pi) in R is the position in s at which the
q-gram gi appears. Then, we can compute the lower bound
ℓo(dsub(s, σ)) by invoking DYN-LB presented in Section 3.1.
If ℓo(dsub(s, σ)) is not smaller than the k-th smallest sub-
string edit distance so far, we do not need to calculate the
actual value of dsub(s, σ) since s cannot be a string of the
top-k approximate substring matches. We call the algorithm
TopK-LB and present its pseudocode in Figure 4.

Example 4.1.: Consider the set of strings D in Fig-
ure 1. Suppose the query string σ=‘Jacksen’ of length 7
and we are interested in the top-2 approximate matches.
The first two strings s1 and s2, whose substring edit dis-
tances to σ are 1 and 4 respectively, are inserted into the
max-heap HTopK . For the next string s3=‘Jason Polock’,
the lower bound ℓo(dsub(s3, σ)) is 2 by DYN-LB. Since the
second smallest substring edit distance in HTopK is 4 and
ℓo(dsub(s3, σ)) is smaller than 4, we have to compute dsub(s3, σ),
which turns out to be 3, and insert (s3, 3) into HTopK . Now
we have {(s1, 1), (s3, 3)} in HTopK and the second smallest
substring edit distance so far becomes 3.
With s4=‘Jacksomville’, ℓo(dsub(s4, σ)) becomes 1. Since

ℓo(dsub(s4, σ)) is smaller than the second smallest substring
edit distance in HTopK , we have to compute dsub(s4, σ) which
is 2 and (s4, 2) is added to HTopK . Then, the second small-
est substring edit distance so far becomes 2. For s5=‘Jakson
Pollack’, ℓo(dsub(s5, σ)) is 2 and thus we can skip computing
expensive dsub(s5, σ). Finally, with s6=‘Mackson Polock’,
ℓo(dsub(s5, σ)) is 1 and we should compute dsub(s5, σ). In
summary, we calculated the substring edit distances with 5
strings out of 6 strings.

TopK-SPLIT: Let G be the set of all q-grams in σ and let
G′ be a subset of G such that every q-gram in G′ does not
overlap with another q-gram in the set. We conceptually
divide the strings in D into D+

G′ and D−
G′ where D+

G′ is the
set of strings in D each of which has at least a q-gram in G′

and D−
G′ is (D−D+

G′). While scanning each string s, we can

check easily whether the string s belongs to D+
G′ or D−

G′ by
checking the q-grams in s.
Similar to TopK-LB, when examining every string s in D

one by one, TopK-SPLIT generates the list of common posi-
tional q-gramsR and skips computing dsub(s, σ) if ℓo(dsub(s, σ))
is at least the k-th smallest substring edit distance so far.
However, unlike TopK-LB, TopK-SPLIT can even skip com-
puting ℓo(dsub(s, σ)) by using Lemma 3.9 for each string as
follows.
Let sR denote the string whose substring edit distance

to σ (i.e., dsub(sR, σ)) is the k-th smallest value among the
strings examined so far. Among the unseen strings, we can
skip distance computations for the strings whose substring
edit distances to σ are at least dsub(sR, σ). Since we split
D into D+

G′ and D−
G′ , after dsub(sR, σ) becomes at most

ℓo(dsub(D
−
G′ , σ)), we can skip every unseen string s belong-

ing to D−
G′ . In this case, we have

dsub(sR, σ) ≤ |G′| ≤ dsub(D
−
G′ , σ) (4)

since the lower bound of dsub(D
−
G′ , σ) is |G

′| due to Lemma 3.6
regardless of the q-grams in G′. However, for the unseen
strings s ∈ D+

G′ , we still have to compute dsub(s, σ).
Intuitively, the larger |G′| is, the earlier the condition of

dsub(sR, σ) ≤ |G′| in Inequality (4) can be satisfied. Thus,

Function TopK-SPLIT (D, k, σ)
begin

1. HTopK = an empty max-heap storing 〈dist, str〉;
2. G = {σ[i,i+q−1]|1≤i≤|σ|−q+1};
3. τ = ⌊|σ|/q⌋;
4. cond = false;
5. for each string s in D do

6. R = {(s[i,i+q−1], i) |∀i s.t.1≤i≤|s|−q+1, s[i,i+q−1]∈G};
7. if cond=true and ∃(gi, pi) ∈ R, gi ∈ G′ then part = ‘+’;
8. else part = ‘−’;
9. if cond=false or part = ‘+’ then
10. LB = DYN-LB(R, |σ|);
11. if |HTopK |<k or LB<HTopK .getMax().dist then

12. d = dsub(s, σ);
13. if |HTopK |<k then HTopK .insert(〈d,s〉);
14. else if HTopK .getMax().dist>d then

15. HTopK .insert(〈d,s〉);
16. HTopK .deleteMax();
17. if HTopK .getMax().dist≤τ then

18. cond = true;
19. τ = HTopK .getMax().dist;
20. G′ = BEST-G′(τ , G);
21. if cond=true and HTopK .getMax().dist<τ then

22. τ = HTopK .getMax().dist;
23. G′ = BEST-G′(τ , G);
24. end for

25. return HTopK ;
end

Figure 5: The TopK-SPLIT algorithm

when |G′| is large, we have a smaller number of strings in D
to examine before dsub(sR, σ) ≤ |G′| holds. However, once
the inequality is satisfied, with a large |G′|, the number of
the unseen strings belonging to D+

G′ also becomes generally
large.

To satisfy dsub(sR, σ) ≤|G′| as soon as possible, we ini-
tially set |G′| with ⌊|σ|/q⌋. Note that the lower bound of
dsub(D

−
G′ , σ) is |G′| and cannot be larger than ⌊|σ|/q⌋ due

to Corollary 3.8. Furthermore, note that we need G′ to de-
termine D+

G′ to prune unseen strings only when dsub(sR, σ)
≤|G′| is satisfied, since the inequality holds in the same lo-
cation in D regardless of G′ with the same size of G′. Thus,
once dsub(sR, σ)≤⌊|σ|/q⌋ holds, while scanning strings in D,
we compute G′ of size dsub(sR, σ) and next examine the un-
seen strings in D+

G′ only. For a given size ρ of G′, we will
discuss how to select such a subset G′ minimizing the num-
ber of strings in D+

G′ in Section 5. Thus, for the time being,
we will assume that such a G′ is provided by the function
BEST-G′(ρ).

Let τ be the k-th substring edit distance when dsub(sR, σ)
≤⌊|σ|/q⌋ is first satisfied. While we examine the strings in
D, the k-the smallest substring edit distance monotonically
decreases. When the k-the smallest substring edit distance
is changed from τ to τ ′′, we can still test the unseen strings
in D+

G′ only. However, since any G′′ satisfying |G′′|<|G′|

and dsub(sR, σ) = τ ′′ ≤ |G′′| allows us not to examine D−
G′′

and we have |D−
G′′ |≤|D−

G′ | generally, we can select such a G′′

and check the unseen strings in D+
G′′ only. We can perform

the above step whenever the k-th substring edit distance
decreases.

The pseudocode of TopK-SPLIT is provided in Figure 5.
The lower bound of dsub(D

−
G′ , σ) (i.e., τ) is set to ⌊|σ|/q⌋

initially which is the largest one according to Corollary 3.8.
The variable cond has false initially representing that the
k-th smallest substring edit distance so far exceeds τ . Until
we set cond as true, while scanning each string s in D, if
LB = ℓo(dsub(s, σ)) computed by DYN-LB is smaller than
the k-th smallest substring edit distance so far, we com-
pute the actual value of dsub(s, σ) similar to TopK-LB. How-
ever, once the k-th smallest substring edit distance (i.e.,

390

Function TopK-INDEX (D, I, k, σ)
begin

1. HTopK = an empty max-heap storing 〈dist, str〉;
2. G = {σ[i,i+q−1]|1≤i≤|σ|−q+1};
3. τ = |G′|;
4. cond = false;
5. while D.end() = false do

6. sidD = D.getCurrentId();
7. sidI = I.getFrontierId(G);
8. s = null;
9. if cond = false and sidI > sidD then

10. s = D.getString(sidD);
11. R = {(s[i,i+q−1], i) |∀i s.t.1≤i≤|s|−q+1, s[i,i+q−1]∈G};
12. if ∃(gi, pi) ∈ R, gi ∈ G′ then part = ‘+’;
13. else part = ‘−’;
14. else

15. (R, part) = I.getPosQgrams(sidI);
16. if cond = false or part = ‘+’ then
17. LB = DYN-LB(R, |σ|);
18. if |HTopK |<k or LB<HTopK .getMax().dist then

19. if s = null then s = D.getString(sidI);
20. d = dsub(s, σ);
21. if |HTopK | < k then HTopK .insert(〈d,s〉);
22. else if HTopK .getMax().dist > d then

23. HTopK .insert(〈d,s〉);
24. HTopK .deleteMax();
25. if HTopK .getMax().dist≤τ then

26. cond = true;
27. τ = HTopK .getMax().dist;
28. G′ = BEST-G′(τ , G);
29. if cond=true and HTopK .getMax().dist<τ then

30. τ = HTopK .getMax().dist;
31. G′ = BEST-G′(τ , G);
32. end while

33. return HTopK ;
end

Figure 6: The TopK-INDEX algorithm

HTopK .getMax().dist) becomes at most τ , we set cond to
true and select G′ by calling BEST-G′ in lines 17–21 so
that we can skip the computation of dsub(s, σ) for the un-
seen strings s ∈ D−

G′ by Lemma 3.9. Furthermore, whenever
the k-th smallest substring edit distance decreases, we select
G′ with size of HTopK .getMax().dist again in lines 23–26.

Example 4.2.: Consider the strings D in Figure 1. Sup-
pose we want to find the top-2 approximate substring matches
the query string σ = ’Jacksen’ using 3-grams. The lower
bound of dsub(D

−
G′ , σ) (i.e., τ) τ is initially set to 2(=⌊7/3⌋).

First, the strings s1 and s2 are inserted into HTopK whose
substring edit distances to σ are 1 and 4 respectively. With
s3 and s4, we compute dsub(s3, σ)(=3) and dsub(s4, σ)(=2),
and then the second smallest substring edit distance in HTopK

becomes 2.
We now have 2 strings whose substring edit distances are

at most τ . After selecting the q-grams set G′ ⊆ G by BEST-
G′, we can skip computing dsub(s, σ) with the strings s ∈
D−

G′ due to Lemma 3.9. Suppose that the selected 3-gram set
G′ is {‘Jac’, ‘kse’}. Then, for the strings s5 and s6, we can
ignore them because they do not have any common 3-gram
with G′. In summary, we could find the top-2 approximate
substring matches by calculating the substring edit distances
with 4 strings only.

TopK-INDEX: When the k-th smallest substring edit dis-
tance so far becomes at most |G′| in TopK-SPLIT, we can
even skip computing ℓo(dsub(s, σ)) with the strings s ∈ D−

G′ .
However, we still have to read unseen string s in D to de-
termine whether s belongs to D−

G′ by checking if s has at
least a q-gram in G′. We will next improve the inefficiency
by retrieving the unseen strings belonging to D+

G′ only with
utilizing inverted q-gram indexes when they are available.

While scanning each string inD, our new algorithm TopK-
INDEX also scans the posting lists of the q-grams in G to-
gether. We assume that the strings in D are sorted with
increasing order of string ids and we are also able to retrieve
the strings in D with string ids as keys by random I/O ac-
cess. We also assume that the posting list of every q-gram
in G is stored with the increasing order of string id first and
its position next in the inverted q-gram index. By reading
the posting lists of the q-grams in G only, we can obtain the
common q-gram list R for the strings which share at least
a q-gram with σ. Whenever we need to compute the actual
substring distance dsub(s, σ), we actually access the string s
stored in D. Since the size of each string in D is generally
much larger than that of the query string σ, using the post-
ing lists of the q-grams in G only speeds up the generation
of R and computation of ℓo(dsub(s, σ)) significantly.

After the condition to apply Lemma 3.9 is satisfied (i.e.,
dsub(sR, σ)≤ ℓo(dsub(D

−
G′ , σ))), instead of sequentially read-

ing the unseen strings in D, we access the remaining strings
s ∈ D+

G′ only by random I/O access with utilizing the in-

verted q-gram index to skip the remaining strings s ∈ D−
G′ .

Similar to TopK-SPLIT, whenever dsub(sR, σ) decreases, we
select a smaller G′ with |G′| = dsub(sR, σ) to reduce the size
of D−

G′ .
The pseudocode of TopK-INDEX is presented in Figure 6.

The difference from TopK-SPLIT is the lines 6–16 in which
the common positional q-gram list R is produced by reading
the posting lists of q-grams in G sequentially in increasing
order of string ids.

Note that every posting list in the inverted index is sorted
by string ids and positions. To obtain the list R in increasing
order of string ids, we initially set the frontier of each posting
list of a q-gram in G as the location of the first posting in the
posting list. Then, we read the smallest id among the post-
ings in all frontiers and move the frontier to the next posting
in its posting list. Let I denote the given inverted index. The
call of I.getFrontierId(G) returns the smallest string id sidI
among the ids in all frontiers, and I.getPosQgrams(sidI)
returns the common positional q-gram list R between the
string of sidI and the query string σ by reading all postings
(gi, pi) from the posting lists of the q-grams in G such that
gi=sidI . The invocation of I.getPosQgrams also informs
whether the string belongs to D+

G′ or D−
G′ .

If we just follow the posting lists of the q-grams in G only
to generate the list R, there may exist a string s in D which
may not have any common q-gram with the query string σ
and we may miss all of such strings. Thus, while we move
a cursor on D together in the increasing order of string ids,
if the smallest frontier id sidI is larger than the id sidD of
D which the current cursor indicates, we read the string of
sidD from D, generate R from the actual string in D, and
then perform the computations of lower bound and actual
distance if necessary.

After cond becomes true, we always go to line 15 to read
the posting lists to obtain the common q-gram list R with-
out reading strings from D. The reason is that, after we
find at least k strings whose substring edit distances are at
most ℓo(dsub(D

−
G′ , σ)), if the query string σ and a string

s in D do not share at least a q-gram, the string s be-
longs to D−

G′ and thus we do not need to check such strings
in D by Lemma 3.9. Furthermore, if the string s of sidI
shares at least a common q-gram with G′ (i.e., part is ‘+′),
we compute ℓo(dsub(s, σ)) in line 17. If the lower bound

391

σ
i=15

Figure 7: Computing u[i, t] and θ[i, t]

ℓo(dsub(s, σ)) is smaller than the k-th smallest substring edit
distance so far, we retrieve the string s from D by random
I/O access to compute dsub(s, σ) as in line 20.

Example 4.3.: Consider the strings D in Figure 1. Sup-
pose that the query string σ is ‘Jacksen’ and we want to find
the top-2 approximate substring matches from D using 3-
grams. The 3-gram set G of σ is {‘Jac’, ‘ack’, ‘cks’, ‘kse’,
‘sen’}. Initially, the lower bound τ of dsub(D

−
G′ , σ) is set to

2 (=⌊7/3⌋).
At the beginning, the minimum string id among the fron-

tiers of the posting lists of q-rams in G is s1. The current
cursor of D is also at s1. Since we can obtain the common
q-gram list R of s1 from the posting lists, in each posting
list, we read the frontier posting and move the frontier to
the next. We also move the cursor of D to the next string
without examining s1. Since the current HTopK is empty,
we compute dsub(s1, σ)=1 and insert (s1, 1) into HTopK .
Now, the minimum string id among the frontiers is s4.

However, since the current cursor of D indicates s2, we read
the s2 and compute dsub(s2, σ)=4. Similarly, we read s3
from D to calculate dsub(s3, σ)=3 and update HTopK . Now
the second smallest substring edit distance so far becomes 3.
We next read the frontier postings to obtain the common

3-gram list R between s4 and σ which is {(‘Jac’,1),(‘ack’,2),
(‘cks’,3)}. The current cursor of D moves to the next string
s5. After we compute dsub(s4, σ)=2, the second smallest sub-
string edit distance so far becomes 2. From now, since we
already have 2 strings whose substring edit distances are at
most τ=2, with G′ of size 2 obtained by calling BEST-G′, we
can find the top-2 approximate substring matches by consid-
ering the strings sharing at least a 3-gram in G′ only due to
Lemma 3.9. Let us assume that BEST-G′ selects G′={‘Jac’,
‘kse’}. Then, for the strings s5 and s6, we can ignore them
because they do not appear in any posting list of ‘Jac’ or
‘kse’. In summary, we can find the top-2 approximate sub-
string matches by calculating the actual substring edit dis-
tances with 4 strings in D only.

5. SELECTING THE BEST G
′ OF SIZE ρ

In the previous section, we assumed that G′ ⊆ G of size
ρ is provided by the function BEST-G’ for TopK-SPLIT
and TopK-INDEX. Now, we present the algorithm BEST-
G’ which finds G′ of size ρ such that the number of strings
with at least a q-gram in G′ in D (i.e., the size of D+

G′) is
the smallest. We use the following notations to describe our
dynamic programming formulation to select such a G′.

• Let Lgi be the set of the ids of strings containing the q-
gram gi∈G.

• For a q-gram set Q ⊆ G, let L(Q) =
⋃

gi∈Q
Lgi , which is

the union of Lgis for all q-grams gi ∈ Q, and we will use
|L(Q)| to represent the number of elements in L(Q).

• Let Q(i, t) be the set of all possible subsets Q of q-grams
appearing in σ[1, i] such that (1) |Q|=t, (2) the q-gram

σ[i−q+1, i] (i.e., the q-gram ending at the position i) al-
ways appears in Q and (3) all q-grams in Q does not over-
lap to each other.

• Let θ[i, t] denote the q-gram set Q in Q(i, t) such that
|L(Q)| is the minimum among all q-gram sets in Q(i, t).

• Let u[i, t] represent |L(θ[i, t])|.

Given the size ρ of G′, we select Q with the minimum
|L(Q)| as G′ among all subsets Q ⊆ G consisting of ρ non-
overlapping q-grams in σ. In every possible such Q, the
ending position of the rightmost q-gram σ[i−q+1, i] can be
located in the positions i of σ with ρ·q≤i≤|σ|. Thus, for
every substring σ[1, i] with ρ·q≤i≤|σ|, we will enumerate the
best ρ non-overlapping q-gram set Q which not only contains
σ[i−q+1, i] but also has the minimum |L(Q)|. The reason
why we do not consider every i which is smaller than (ρ·q) is
because the substring σ[1, i] with i < ρ·q cannot have ρ non-
overlapping q-grams. Since we use θ[i, ρ] to store the best
Q with ρ non-overlapping q-grams which not only contains
σ[i−q+1, i] but also has the minimum |L(Q)|, we can find
G′ by selecting the θ[i, ρ] with the smallest |L(θ[i, ρ])| among
θ[i, ρ]s with ρ·q≤i≤|σ|. In other words, if we compute θ[i, t]s
for every 1 ≤ t ≤ ⌊|σ|/q⌋ and t · q ≤ i ≤ |σ|, we can select
the q-gram set θ[i∗, ρ] as G′ where i∗ is chosen as follows:

i∗ = arg min
t·q≤i≤|σ|

{u[i, ρ]} = arg min
t·q≤i≤|σ|

{|L(θ[i, ρ])|} . (5)

We next present a dynamic programming algorithm to
compute θ[i, t] for t = 1, . . ., ⌊|σ|/q⌋ and i = t · q, . . ., |σ|.

Dynamic programming formulation: Since θ[i, t] con-
tains t number of non-overlapping q-grams in the substring
σ[1, i] including σ[i−q+1, i], we consider θ[j, t−1]∪{σ[i−q+1, i]}
with 1≤j≤(i − q) to compute θ[i, t]. However, θ[j, t−1]
does not exist for j=1,. . .,(t−1)·q − 1 because it is impossi-
ble to have (t−1) non-overlapping q-grams in the substring
σ[1, j]. Thus, we enumerate θ[j, t−1] ∪ {σ[i−q+1, i]} for
(t−1) · q≤j≤(i−q) only and select θ[j, t−1] ∪ {σ[i−q+1, i]}
with the smallest |L(θ[j, t−1]) ∪ Lσ[i−q+1,i]| as θ[i, t]. Our
recursive definition for θ[i, t] is

θ[i, t] = θ[j∗, t− 1] ∪ {σ[i− q + 1, i]} (6)

where

j∗ = arg min
(t−1)·q≤j≤i−q

{
∣

∣Lσ[i−q+1,i] ∪ L(θ[j, t− 1])
∣

∣

}

. (7)

In Figure 7, we show an example to illustrate how we com-
pute θ[15, 4]. We enumerate |Lσ[13,15] ∪ θ[j, 3]| with 9≤j≤12
and select {σ[13, 15]} ∪ θ[11, 15] as θ[15, 4] which minimizes
|L(θ[15, 4])|.

If we compute θ[i, t] for every t from 1 to ⌊|σ|/q⌋ and
every i from t·q to |σ| with the above dynamic programming
algorithm, we can choose G′ with a size ρ by Equation (5).
We refer to this algorithm which finds G′ with a given size
ρ as BEST-G′(ρ).

Note that BEST-G′(ρ) cannot find the optimal q-gram
set G′ because the optimal substructure property of our dy-
namic programming formulation is not satisfied. Suppose
{σ[i−q+1, i]} ∪ Q is set to θ[i, t] in Equation (6) where Q
is the optimal set with (t − 1) non-overlapping q-grams for
σ[1, j∗]. Let Q′ be a non-optimal q-gram set with (t−1) non-
overlapping q-grams in σ[1, j∗] including the q-gram ending
at the position j∗. Even though Q′ is not an optimal q-
gram set for σ[1, j∗], if Lσ[i−q+1,i] and L(Q′) share many
common string ids so that |Lσ[i−q+1,i] ∪ L(Q′)| becomes

392

- - -

 - -

i θ[i,1] u[i,1] θ[i,2] u[i,2]

3 {Jac} 100

4 {ack} 32

5 {cks} 16

6 {kso} 10

7 {son} 120

8 {onv} 40

t=1 t=2

 - -

{Jac,kso} 110

{ack,son} 125

{ack,onv} 43

 - -Jac 100

ack 32

cks 16

kso 10

son 120

onv 40

g1

g2

Jac ack cks

- - -
- - -

110 - -

130 125 -

120 43 50

(a) |Lg1 U Lg2| (=|L({g1,g2})|) (b) θ[i,t] and u[i,t]

-

Figure 8: Computations in BEST-G′(ρ)

smaller than |Lσ[i−q+1,i] ∪ L(Q)|, we have |L(Q′)| > |L(Q)|
and thus the computed θ[i, t] is not an optimal q-gram set
for σ[1, i]. Thus, BEST-G′(ρ) finds an approximate q-gram
set for G′. However, our performance study confirms that
BEST-G′(ρ) obtains a good G′ close to the optimal sets.
When BEST-G′(ρ) is invoked in TopK-SPLIT or TopK-

INDEX, we need to know the actual size of L(θ[i, t]) which
is the union of the sets of string ids whose strings contain a
q-gram in θ[i, t]. We will use the MinHash technique [5, 7]
to estimate the sizes of unions of sets in BEST-G′(ρ).
Assume that for every q-gram gi appearing in D, there is

a MinHash signature of the set of string ids in which the q-
gram gi occurs. In BEST-G′(ρ), we maintain the MinHash
signature of L(θ[i, t]) to compute Lσ[i−q+1,i] ∪ L(θ[j, t− 1])
in Equation (7) with constant time.

Time complexity: In BEST-G′(ρ), we have to compute
θ[i, t] and u[i, t] for every 1≤t≤ ⌊|σ|/q⌋ and every t·q≤i≤|σ|.
To compute each θ[i, t], it takes O(|σ|) time. For each u[i, t],
it takes constant time since u[i, t] is simply |L(θ[i, t])|. Thus,
the time complexity of BEST-G′(ρ) is O(|σ|3/q).

Example 5.1.: Consider the query string σ=‘Jacksonv’
with |σ| = 8. Suppose that we should select the non-overlapping
3-gram set G′ with size 2. For all possible non-overlapping
3-gram sets Q whose sizes are 1 or 2, |L(Q)|s are shown in
Figure 8(a). We show all θ[i, t]s and u[i, t]s computed by
BEST-G′(ρ) in Figure 8(b).
Let us assume that we want to compute θ[8, 2] that always

includes the 3-gram σ[6, 8]=‘onv’. We enumerate the fol-
lowing three cases of |Lonv ∪Lcks|(=50), |Lonv ∪Lack|(=43)
and |Lonv ∪ LJac|(=120) by Equation (7), and select θ[8, 2]
= {‘ack’,‘onv’} with u[8, 2] = 43. Finally, to select the best
G′ with size 2 by Equation (5), we choose θ[8, 2] = {‘ack’,
‘onv’} for G′ since u[8, 2] is the minimum among u[6, 2],
u[7, 2] and u[8, 2].

6. EXPERIMENTS
We empirically compared the performance of our proposed

algorithms. All experiments reported in this section were
performed on the machines with Intel Core2 Duo 2.66GHz of
processor and 2GB of main memory running Linux operating
systems. All algorithms were implemented using C++ and
compiled with GCC Compiler of version 4.1.3.

6.1 Implemented Algorithms
We implemented the following algorithms for our perfor-

mance study.

• TopK-NAIVE: This represents the brute-force algorithm
which computes the substring edit distance with every
string inD to find the top-k approximate substring matches.

• TopK-LB: It is the implementation of TopK-LB which
computes dsub(s, σ) only for the strings s in D whose
lower bound ℓo(dsub(s, σ)), obtained by calling DYN-LB,
is smaller than the k-th smallest substring edit distance
found so far.

• TopK-SPLIT: This is the algorithm which improves TopK-
LB further by skipping even the computation of ℓo(dsub(s, σ))
using the lower bound of substring edit distance between
a query and a set of strings in Lemma 3.9.

• TopK-INDEX: This is the implementation of TopK-
INDEX that utilizes the inverted q-gram indexes available
to speed up TopK-SPLIT.

• TopK-NGPP: This is the modified version of NGPP in
[27] to obtain the top-k approximate substring matches.
The algorithm NGPP is the state-of-the-art algorithm to
find all substrings of each string in D whose edit distances
to a query string are at most a given maximum thresh-
old τ . To adapt NGPP to top-k approximate substring
matching, we first read the first k strings in D and set the
k-th smallest one among their substring edit distances as
the initial threshold τ . Then, as examining every string
in D, if the k-th smallest substring edit distance becomes
smaller than τ , we update the threshold τ to the k-th
smallest substring edit distance.

• TopK-FSS: Similar to TopK-NGPP, we also extended
FSS in [4] to compute the top-k approximate substring
matches in the same manner.

Note that we used our own buffer management for reading
the data strings in disk and accessing inverted indexes in all
of our implementations without utilizing OS buffers to see
the buffering effects for the tested algorithms more carefully.
We report the native execution times (i.e., wall clock times)
of the tested algorithms in this section.

6.2 Data Sets
To study the performance our proposed algorithms, we

utilize the following two real-life data sets.

DBLP: For a short string data set, we used DBLP titles col-
lected from http://dblp.uni-trier.de/xml/. However, since
the original data is small, we increased its size by duplicating
the original data 5 times. While we duplicate each string, we
randomly performed an edit operation such as insert, delete
and substitute on each position of the string with the prob-
ability of 0.1. The size of generated data is 635 MB with
13,966,030 strings whose average size is 48 bytes.

Wikipedia: This is the data set consisting of 106,185 web
pages obtained from http://en.wikipedia.org/wiki/Wikipedia:

Database_download for a long string data set. The data size
is 1.1 GB and the average size is 11,027 bytes.

6.3 Queries Used
For DBLP, we randomly selected between 1 and 4 adjacent

words appearing in DBLP titles to generate test queries.
The range of query lengths is from 6 to 25 with average
length 13.2. For Wikipedia, we sampled 50 entities from
CoNLL data, which is a name entity data collected for Name
Entity Recognition available for download at http://www.

cnts.ua.ac.be/conll2003/ner/, as test queries. The lengths
of selected queries are from 5 to 27 with average length 12.3.

Similarly, for our experiments with varying lengths of query
strings, we also selected the query strings of lengths from 5
to 25 with DBLP titles and CoNLL data respectively. For
each query length, 50 query strings were sampled.

6.4 Performance Results
We measured the performance of the algorithms for both

DBLP and Wikipedia with varying k, the number of strings

393

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 3 5 7 10 15 20

E
xe

cu
tio

n
tim

e
(s

ec
)

k

TopK-FSS
TopK-NGPP
TopK-NAIVE

TopK-LB
TopK-SPLIT
TopK-INDEX

(a) Execution times (DBLP)

 0

 20

 40

 60

 80

 100

 1 3 5 7 10 15 20

N
um

be
r

of
 fi

lte
re

d
st

rin
gs

 (
%

)

k

TopK-LB(F1)
TopK-SPLIT(F1)
TopK-SPLIT(F2)

TopK-SPLIT(F1+F2)

(b) Filtering effects (DBLP)

1K

10K

100K

1M

10M

 1 3 5 7 10 15 20

N
um

be
r

of
 s

tr
in

gs
 c

he
ck

ed

k

TopK-NAIVE,TopK-LB,TopK-SPLIT
TopK-INDEX

(c) Checked strings (DBLP)

 10

 100

 1000

 10000

 1 3 5 7 10 15 20

E
xe

cu
tio

n
tim

e
(s

ec
)

k

TopK-FSS
TopK-NGPP
TopK-NAIVE

TopK-LB
TopK-SPLIT
TopK-INDEX

(d) Execution times (Wikipedia)

 0

 20

 40

 60

 80

 100

 1 3 5 7 10 15 20
N

um
be

r
of

 fi
lte

re
d

st
rin

gs
 (

%
)

k

TopK-LB (F1)
TopK-SPLIT(F1)
TopK-SPLIT(F2)

TopK-SPLIT(F1+F2)

(e) Filtering effects (Wikipedia)

10K

100K

 1 3 5 7 10 15 20

N
um

be
r

of
 s

tr
in

gs
 c

he
ck

ed

k

TopK-NAIVE,TopK-LB,TopK-SPLIT
TopK-INDEX

(f) Checked strings (Wikipedia)

Figure 9: Varying k using DBLP and Wikipedia

n and the length of query strings L. Furthermore, we varied
the length of q-grams q, MinHash signature size ℓ and buffer
size B used. The default parameters are: k=5, q=3, ℓ=50
and B=512MB.

Varying k: We first report the execution times, the number
of filtered strings and the percentage of strings read from D
with varying k from 1 to 20 in Figure 9(a)–(f).

(1) Execution times: We show the execution times for DBLP
and Wikipedia in Figure 9(a) and Figure 9(d) respectively.
The log scale was used on the y-axises. In both data, TopK-
NGPP and TopK-FSS show even worse performance than
our naive algorithm TopK-NAIVE. The reason is that both
of TopK-NGPP and TopK-FSS have to enumerate all sub-
strings of every string in D to compute the substring edit
distances. As expected from the experiments in [27], TopK-
NGPP performs better than TopK-FSS.
As k is increased, the execution times for TopK-LB, TopK-

SPLIT and TopK-INDEX grow gradually. Since the k-th
smallest substring edit distance so far becomes larger with
growing k, less number of strings are skipped for computing
substring edit distances.
For every range of k, TopK-INDEX shows the best per-

formance. TopK-INDEX is faster than TopK-NAIVE by at
least 49.4 times and 5.5 times for DBLP and Wikipedia re-
spectively. Furthermore, TopK-SPLIT is also faster than
TopK-NAIVE by at least 11.6 and 3.5 times for DBLP and
Wikipedia respectively.

(2) Filtering effects: To show the effectiveness of our filter-
ing methods, we plotted the percentage of strings skipped
for computing their substring edit distances in Figure 9(b)
and Figure 9(e) with DBLP and Wikipedia respectively.
Note that TopK-LB(F1) in the graphs represents the per-
centage of strings filtered with TopK-LB using the lower
bounds ℓo(dsub(s, σ)) obtained by DYN-LB. We also use
TopK-SPLIT(F1) similarly in the graphs. TopK-SPLIT(F2)
in the graphs represents the percentage of strings filtered by
TopK-SPLIT using the lower bound of substring edit dis-
tances between a query string and a set of strings presented
in Lemma 3.9. Furthermore, TopK-SPLIT(F1+F2) is the
total ratio of strings filtered with TopK-SPLIT. Since the

filtering effect of TopK-INDEX is exactly the same with that
of TopK-SPLIT, we report the result of TopK-SPLIT only.

With every range of k, TopK-SPLIT(F1+F2) is always
larger than TopK-LB(F1) in both data sets. For k=20 with
Wikipedia, Figure 9(e) shows that TopK-SPLIT skips com-
puting dsub(s, σ) with 17% more strings than TopK-LB does.
Considering that TopK-SPLIT was 2.2 times faster than
TopK-LB in Figure 9(d), we can conclude that using the
lower bound by Lemma 3.9 improves the speed of query
processing more than using the lower bound by DYN-LB
does because the lower bound by Lemma 3.9 requires only
to check whether each string contains at least a common q-
gram with the query string in a constant time. With increas-
ing k, both TopK-LB(F1) and TopK-SPLIT(F1) decrease
slowly since the k-th smallest distance so far also becomes
larger together with k. However, since the k-th substring
edit distance found so far decreases slower as k grows, the
chances that TopK-SPLIT skips the strings using the lower
bound by DYN-LB increase on the contrary and thus TopK-
SPLIT(F2) grows gradually.

(3) Number of strings read from D: We also plotted the
number of data strings examined in disk with random I/O
access by TopK-INDEX for DBLP and Wikipedia in Fig-
ure 9(c) and Figure 9(f) respectively. The y-axises are in a
log scale. The graph confirms that TopK-INDEX effectively
reduces the cost for reading the data strings in disk.

Varying n: With each of DBLP and Wikipedia, we selected
the strings from the original data set to produce smaller data
with varying the sampling rate from 6.25% to 100%. With
varying the size of data, we plotted the execution times in
Figure 10(a) for DBLP and in Figure 10(b) for Wikipedia.
The graphs show that TopK-INDEX is the fastest in every
range of data sizes. Both TopK-NGPP and TopK-FSS were
even slower than TopK-NAIVE and their performance de-
grades linearly as data size grows because they have to exam-
ine every substring exhaustively. As the data size increases,
the relative speedup of TopK-INDEX to TopK-NAIVE im-
proves from 4.6 times to 8.6 times for Wikipedia. With
DBLP, the speedup increases from 9.3 times to 24.5 times.
Thus, we conclude that the performance of TopK-INDEX

394

 1

 10

 100

 1000

 10000

 6.25 12.5 25 50 100

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Data set size (%)

TopK-FSS
TopK-NGPP
TopK-NAIVE

TopK-LB
TopK-SPLIT
TopK-INDEX

(a) Varying n (DBLP)

 10

 100

 1000

 10000

6.2512.5 25 50 100

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Data set size (%)

TopK-FSS
TopK-NGPP
TopK-NAIVE

TopK-LB
TopK-SPLIT
TopK-INDEX

(b) Varying n (Wikipedia)

 0

 100000

 200000

 300000

 400000

 500000

 600000

2 3 4 5

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

The length of q-grams

TopK-NAIVE
TopK-LB

TopK-SPLIT
TopK-INDEX

(c) Varying q

 10

 100

 1000

64M 128M 256M 512M

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Buffer size

TopK-NAIVE
TopK-LB

TopK-SPLIT
TopK-INDEX

(d) Varying B

Figure 10: Varying n, q and B

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 5 10 15 20 25

E
xe

cu
tio

n
tim

e
(s

ec
)

Length of query strings

TopK-FSS
TopK-NGPP
TopK-NAIVE

TopK-LB
TopK-SPLIT
TopK-INDEX

(a) Execution times (Wikipedia)

 0

 20

 40

 60

 80

 100

 5 10 15 20 25
N

um
be

r
of

 fi
lte

re
d

st
rin

gs
 (

%
)

Length of query strings

TopK-LB (F1)
TopK-SPLIT(F1)
TopK-SPLIT(F2)

TopK-SPLIT(F1+F2)

(b) Filtering effects (Wikipedia)

Figure 11: Experiments with varying L

 0

 50000

 100000

 150000

 200000

10 30 50 70 100

E
xe

cu
tio

n
 t
im

e
 (

se
c)

MinHash signature size

TopK-SPLIT
TopK-INDEX

Figure 12: Varying ℓ (Wikipedia)

does not decline linearly with increasing data size and TopK-
INDEX scales well to large data.

Varying L: With varying query lengths L from 5 to 25, we
plotted the execution times for Wikipedia in Figure 11(a).
The log scale was used on the y-axises. With every range of
L, TopK-INDEX shows the best performance and TopK-FSS
is the worst. When the lengths of query strings are 5 and 25,
TopK-INDEX is 540 times and 8.44 times faster than TopK-
NAIVE respectively. As L is increased, the execution times
for all algorithms grow gradually. This is because there is a
less chance that the strings in D have similar substrings to
a longer query string and thus the k-th smallest substring
edit distance so far becomes larger with growing L.
We also plotted the percentage of strings skipped for com-

puting their substring edit distances dsub(s, σ) in Figure 11(b).
With every range of L, TopK-SPLIT skips more strings for
computing dsub(s, σ) than TopK-LB does. Furthermore,
while TopK-LB computes ℓo(dsub(s, σ)) based on dynamic
programming algorithmDYN-LB for every string inD, TopK-
SPLIT skips even computing ℓo(dsub(s, σ)) for many strings.
With increasing L, the gaps between the ratios of strings fil-
tered by TopK-SPLIT and TopK-LB become larger because
the query strings have more chance to have very selective q-
grams resulting that more strings are filtered using the lower
bound by Lemma 3.9.

Varying ℓ: We varied the MinHash signature size ℓ from
10 to 100 and plotted the running times of TopK-SPLIT
and TopK-INDEX in Figure 12(a). Since the other algo-
rithms do not estimate the computational cost to select G′,
they are not affected by the MinHash signature size. The
graph shows that the performances of both algorithms are
the worst when ℓ=10 and do not degrade that much with
ℓ ≤ 50. Thus, we used ℓ=50 as the default value in all our
experiments.

Varying q: Figure 10(c) shows the graph of execution time
as the length q of the q-grams used is varied from 3 to
5. Since TopK-NAIVE is not affected by the length of q-
grams, its execution times are always constant. TopK-LB
and TopK-SPLIT show the best performances when q=2.
This is because, with a large q, the lower bound ⌈(|σ|−q+1
−n)/q⌉ in Lemma 3.2 decreases and thus, less strings are

skipped for computing dsub(s, σ). Furthermore, since the
maximum of ℓo(dsub(D

−
G′ , σ)), which is ⌊|σ|/q⌋, due to Corol-

lary 3.8 also becomes smaller with a larger q, the critical
point string where we meet the k-th string whose substring
edit distance is at most ℓo(dsub(D

−
G′ , σ)) appears later. How-

ever, TopK-INDEX shows the best performance when q=3
because the posting lists become very large with 2-grams.

Varying B: With varying the size of buffer B from 64 MB
to 512 MB, we show the execution times in Figure 10(d).
With increasing B, the speed of TopK-INDEX is improved
gradually since we have more chance to hit the cached pages
of inverted indexes with larger buffer sizes.

7. RELATED WORK
We present the previous work on approximate string match-

ing first and then approximate substring matching.

Approximate string matching: For approximate string
matching with a maximum distance threshold τ , the count
filtering technique proposed in [9] utilizes the fact that if
the edit distance between s and σ is at most τ , they must
share at least (max(|s|, |σ|)−q+1−τ ·q) q-grams. In [16], an-
other algorithm is proposed to speed up approximate string
matching by reducing the average size of inverted lists using
variable length q-grams. However, this algorithm utilizes
the length filtering or prefix filtering which cannot be used
for approximate substring matching. In [1] and [22], the
algorithms to find similar strings probabilistically were pro-
posed, but we focused on the problem of finding the exact
top-k approximate substring matches in this paper.

In [3] and [15], the algorithms using inverted q-gram in-
dexes are presented. However, as mentioned in [27], to uti-
lize the inverted q-gram indexes, the length of the q-grams
to be used should be smaller than (|σ|+1)/(τ+1). Thus,
depending on the value of τ and the q-grams used for ac-
cessing existing inverted indexes, it is not always possible to
use existing inverted q-gram indexes for approximate string
matching [27]. In [26] and [28], the top-k approximate string
matching algorithms using inverted q-gram indexes are pre-
sented. However, as pointed out in [27], we cannot deter-
mine the q-gram size in advance to build indexes and thus
these algorithms may not find the top-k approximate string

395

matches correctly when using preexisting inverted q-gram
indexes. One of our proposed algorithms also utilizes exist-
ing inverted indexes, but we still guarantee the correctness.
The algorithms in [6, 29] utilize the suffix tries which index

a small portion of suffixes only in the data. However, to
use suffix tries for approximate substring matching, we have
to index every suffix appearing in the data, resulting large
index sizes. Because of the high space requirements and
poor locality of suffix tries, it is mentioned in [21] that the
suffix trie based approaches are proper only when both of
the data and index fit in main memory. Furthermore, since
the approximate stringmatching algorithm with a maximum
threshold τ using suffix tries in [8] has exponential space and
time complexity to τ , it is hard to be extended for top-k
approximate substring matching.

Approximate substring matching: Approximate sub-
string matching has been studied in the context of approxi-
mate entity extraction in [4, 17, 27]. With a given threshold
and a entity dictionary, these algorithms are actually join
algorithms which find every substring in a database such
that the edit distance between the substring and one of the
strings in the entity dictionary is at most the threshold. The
algorithms in [4, 27] can be extended for top-k approximate
substring matching and thus we compared our proposed al-
gorithms to our extended algorithms of [4, 27]. The algo-
rithm in [17] utilizes inverted q-gram indexes but to use
inverted indexes for top-k approximate substring matching,
we have to ensure that the length of the q-grams used must
be smaller than (|σ|+1)/(τk+1) where τk is the k-th small-
est substring edit distance in D. Since we cannot know τk
in advance to build indexes, we could not adapt the algo-
rithm in [17] to our top-k approximate substring matching
problem.
To the best of our knowledge, no previous work addresses

the top-k approximate substring matching problem and our
algorithms presented here are the first work for the problem.

8. CONCLUSION
In this paper, we studied the problem of top-k approxi-

mate substring matching. We first proposed efficient filter-
ing methods using q-grams which may enable us to skip
strings without computing the actual substring edit dis-
tances to the query string. We next presented two algo-
rithms TopK-LB and TopK-SPLIT which efficiently find top-
k approximate substring matches by utilizing the filtering
techniques. Furthermore, we developed an improved algo-
rithm TopK-INDEX which utilizes inverted q-gram indexes
to speed up TopK-SPLIT. By experiment results, we show
the effectiveness and scalability of our algorithms with real-
life data sets.

Acknowledgment
This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MEST) (No. NRF-2009-0078828). It was also sup-
ported by Next-Generation Information Computing Devel-
opment Program through the National Research Foundation
of Korea(NRF) funded by the Ministry of Education, Sci-
ence and Technology (No. NRF-2012M3C4A7033342).

9. REFERENCES
[1] A. Andoni and K. Onak. Approximating edit distance in

near-linear time. In STOC, 2009.

[2] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern
Information Retrieval - the concepts and technology behind

search, Second edition. Pearson Education Ltd., Harlow,
England, 2011.

[3] A. Behm, S. Ji, C. Li, and J. Lu. Space-constrained
gram-based indexing for efficient approximate string search.
In ICDE, 2009.

[4] T. Bocek, E. Hunt, and B. Stiller. Fast similarity search in
large dictionaries. In Technical Report, 2007.

[5] A. Z. Broder. On the resemblance and containment of
documents. In Proceedings of Compression and Complexity
of SEQUENCES, 1997.

[6] S. Chaudhuri and R. Kaushik. Extending autocompletion
to tolerate errors. In SIGMOD, 2009.

[7] Z. Chen, F. Korn, N. Koudas, and S. Muithukrishnan.
Selectivity estimation for boolean queries. In PODS, 2000.

[8] R. Cole, L.-A. Gottlieb, and M. Lewenstein. Dictionary
matching and indexing with errors and don’t cares. In
STOC, 2004.

[9] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string
joins in a database (almost) for free. In VLDB, 2001.

[10] L. Jin and C. Li. Selectivity estimation for fuzzy string
predicates in large data sets. In VLDB, 2005.

[11] N. Koudas, A. Marathe, and D. Srivastava. Flexible string
matching against large databases in practice. In VLDB,
2004.

[12] H. Lee, R. T. Ng, and K. Shim. Extending q-grams to
estimate selectivity of string matching with low edit
distance. In VLDB, 2007.

[13] H. Lee, R. T. Ng, and K. Shim. Approximate substring
selectivity estimation. In EDBT, 2009.

[14] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions and reversals. Soviet Phys. Dokl., 1985.

[15] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms for approximate string searches. In ICDE, 2008.

[16] C. Li, B. Wang, and X. Yang. VGRAM: Improving
performance of approximate queries on string collections
using variable-length grams. In VLDB, 2007.

[17] G. Li, D. Deng, and J. Feng. Faerie: efficient filtering
algorithms for approximate dictionary-based entity
extraction. In SIGMOD, 2011.

[18] C.-C. Liu, J.-L. Hsu, and A. L. P. Chen. An approximate
string matching algorithm for content-based music data
retrieval. In ICMCS, 1999.

[19] A. Mazeika, M. H. Böhlen, N. Koudas, and D. Srivastava.
Estimating the selectivity of approximate string queries.
ACM Trans. Database Syst., 32(2), 2007.

[20] G. Navarro. A guided tour to approximate string matching.
ACM Comput. Surv., 33(1):31–88, 2001.

[21] G. Navarro, E. Sutinen, and J. Tarhio. Indexing text with
approximate q-grams. J. Discrete Algorithms, 2005.

[22] R. Ostrovsky and Y. Rabani. Low distortion embeddings
for edit distance. J. ACM, 54(5), 2007.

[23] M. Sahami and T. D. Heilman. A web-based kernel
function for measuring the similarity of short text snippets.
In WWW, 2006.

[24] P. H. Sellers. The theory and computation of evolutionary
distances: Pattern recognition. J. Algorithms, 1(4), 1980.

[25] E. Ukkonen. Finding approximate patterns in strings. J.
Algorithms, 6(1):132–137, 1985.

[26] R. Vernica and C. Li. Efficient top-k algorithms for fuzzy
search in string collections. In KEYS, 2009.

[27] W. Wang, C. Xiao, X. Lin, and C. Zhang. Efficient
approximate entity extraction with edit distance
constraints. In SIGMOD, 2009.

[28] Z. Yang, J. Yu, and M. Kitsuregawa. Fast algorithms for
top-k approximate string matching. In AAAI, 2010.

[29] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and
D. Srivastava. Bed-tree: an all-purpose index structure for
string similarity search based on edit distance. In
SIGMOD, 2010.

396

