
Efficient Top-k Subscription Matching
for Location-Aware Publish/Subscribe

Jiafeng Hu1(B), Reynold Cheng1, Dingming Wu1, and Beihong Jin2

1 Department of Computer Science, The University of Hong Kong,
Pokfulam Road, Hong Kong, China

{jhu,ckcheng,dmwu}@cs.hku.hk
2 State Key Laboratory of Computer Science,Institute of Software,

Chinese Academy of Sciences, Beijing, China
beihong@iscas.ac.cn

Abstract. The dissemination of messages to a vast number of mobile
users has raised a lot of attention. This issue is inherent in emerging
applications, such as location-based targeted advertising, selective infor-
mation disseminating, and ride sharing. In this paper, we examine how
to support location-based message dissemination in an effective and effi-
cient manner. Our main idea is to develop a location-aware version of the
Pub/Sub model, which was designed for message dissemination. While a
lot of studies have successfully used this model to match the interest
of subscriptions (e.g., the properties of potential customers) and events
(e.g., information of casual users), the issues of incorporating the location
information of subscribers and publishers have not been well addressed.
We propose to model subscriptions and events by boolean expressions
and location data. This allows complex information to be specified. How-
ever, since the number of publishers and subscribers can be enormous, the
time cost for matching subscriptions and events can be prohibitive. To
address this problem, we have developed the RI -tree. This data structure
is an integration of the R-tree and the dynamic interval-tree. Together
with our novel pruning strategy on RI -tree, our solution can effectively
and efficiently return the top-k subscriptions with respect to an event.
We have performed extensive evaluations to verify our approach.

1 Introduction

Due to the advance of telecommunications and Internet technologies, tremen-
dous amounts of location information can now be obtained easily. For instance,
a user’s location is often tracked by base stations in a cellular network; a vehi-
cle’s position can be obtained through GPS receivers or sensors on roads; a user
reveals her location when she “checks in” (e.g., through Facebook and Twitter).
The availability of location information stimulates the development of location-
based messaging services, which disseminates interesting messages to users based
on their positions and other information. Taking location-based targeted adver-
tising as an example, advertisements are sent to users selected in terms of age,

c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 1–19, 2015.
DOI: 10.1007/978-3-319-22363-6 18

2 J. Hu et al.

gender, interest, and location1. Another example is the Location-Based App Rec-
ommendation (LBAR), where software or “apps” are suggested to a user based
on where she is. An LBAR feature recently appears in Apple’s iOS 82, which
shows the picture of an app (e.g., “Starbucks”) in the lock screen based on the
user’s context (e.g., she is close to a Starbucks coffee shop). As pointed out by
Verve Mobile in 2013, the LBTA outperforms non-location-targeted advertising
by a factor of two, and the usage of the LBTA exceeds the industry average
click-through rate (CTR) of 0.4 %3.

Those applications can be built on the top of Publish/Subscribe (Pub/Sub)
systems [6] which can provide large-scale matching and information dissemi-
nation. In a Pub/Sub system, there are two kinds of clients, subscriber and
publisher. A subscriber, typically an information provider such as an advertis-
ing company, specifies the properties of users in which it is interested. These
properties, or constraints, are collectively known as a subscription. For instance,
an advertising company A (e.g., a restaurant), acting as a subscriber, posts
the following subscription to the Pub/Sub system: (15 < age < 30, interest =
{barbecue, sushi}, gender = male, visited time ≥ 3). The constraints specified
in this subscription are used to match the “events” published by a publisher; once
a matching is found, information from a subscriber is sent to the publisher. A
publisher can be a casual mobile phone user. When a publisher, say, U , browses
a homepage (say, Facebook), an event, containing information about this user
(e.g., age=25, interest=barbecue, gender=male, visited time=5), is sent to the
system.

Since one or more constraints may be specified in a subscription, it may
not be possible for the values of an event to match all the constraints. Hence,
researchers have proposed to allow more flexibility in the matching process by
allowing matching between subscribers and publishers to be inexact or partial.
This variant of Pub/Sub systems, called ranked Pub/Sub systems [14,17,18],
return the k best subscriptions (or top-k subscriptions) to a publisher based on
some scoring functions.

We notice that the current work only focuses on normal boolean expressions
including strings and numbers. However, the newly emerging applications bring
the new technical challenges. Continuing the example of a location-based tar-
geted advertising application, when a publisher opens an app, his geographic
coordinates will be sent to the system. A subscriber can also specify this kind
of location, for instance, by saying that his shop is at a specific location. On
the other hand, to push advertisements to a mobile user, due to the factors
like limited network bandwidth and the screen size of user’s mobile phone, only
the advertisements whose distribution scopes are near to the user’s current loca-
tion may become the candidate advertisements. Since subscriptions contain both
complex boolean expressions and location information, it is rather costly to
retrieve top-k relevant subscriptions from millions of subscriptions for an event.

1 http://www.google.com/ads/admob/.
2 http://goo.gl/wZeSg5.
3 http://goo.gl/kJpQPG.

http://www.google.com/ads/admob/
http://goo.gl/wZeSg5
http://goo.gl/kJpQPG

Efficient Top-k Subscription Matching for Location-Aware Publish/Subscribe 3

Different from the ranked Pub/Sub systems, the location information has
been integrated into the so-called keyword Boolean matching Pub/Sub sys-
tems [11,13,19] where the numeric attribute matching is not supported. Their
methods of incorporating the location information are either not applicable or
inefficient for the ranked Pub/Sub systems. In the empirical studies, we extend
the existing work related to the location-aware Pub/Sub systems as the com-
petitors to support the numeric attribute matching. The experimental results
demonstrate that our approach significantly outperforms the competitors.

In this paper, we explore the issues of incorporating location information into
a ranked Pub/Sub system. To support top-k subscription matching for location-
aware Pub/Sub systems, we propose a novel R-tree based index, the RI -tree,
by integrating the dynamic interval tree into the R-tree nodes. When an event
with location information arrives, our algorithm can quickly report the top-k
subscriptions most relevant to the event. To summarize, our main contributions
are:

1. We formalize a new variant of top-k subscription matching, permitting loca-
tion data to be a part of a subscription or an event;

2. We propose an index structure, called the RI -tree;
3. We design an efficient matching algorithm; and
4. Our experimental evaluation validates the feasibility of our RI -tree based

solution.

The rest of the paper is organized as follows. Section 2 overviews the related
work. Section 3 formulates the top-k subscription matching. Section 4 gives the
threshold algorithm based solution as a baseline solution. In Sect. 5, we present
the RI -tree index and describe the matching algorithm. Finally, we evaluate the
performance of the RI -tree based solution by extensive experiments in Sect. 6
and conclude the paper in Sect. 7.

2 Related Work

The related work can be categorized into two main areas: ranked Pub/Sub sys-
tems and location-aware Pub/Sub systems. The differences between our RI -
tree solution and the existing solutions are summarized in Table 1 (BE denotes
Boolean Expression).

Table 1. Comparison of existing location-aware Pub/Sub systems

Pub/Sub spatial keyword RI -tree

SOPT-R-tree [14]k-index [18]BE*-tree [17]Rt-tree [13]OpIndex [20]IR-tree [4]I3[21]

matching semanticsBE BE BE keyword BE keyword keywordBE

location data × × × � × � � �

top-k � � � × × � � �

4 J. Hu et al.

2.1 Ranked Pub/Sub Systems

Since the issue of the top-k subscription matching is posed in [14], there have
existed some researches on top-k subscription matching [8,14,17,18]. [14] desig-
nates a subscription to be a set of intervals over a multi-dimensional space, in
which each dimension is associated with a weight, and an event to be a point
over the same multi-dimensional space. Based on this, [14] builds scored interval
indexes for each dimension of the subscriptions. As thus, while an event arrives,
the matching is carried out on every dimension of subscriptions, returning a
corresponding subscription list sorted in a descending order of the scores. Then,
the threshold algorithm [7] (TA for short) is employed to merge multiple sorted
lists to obtain the subscriptions whose scores are ranked among the top k. More-
over, [14] presents two novel index structures: the IR-tree and the SOPT-R-tree
to support top-k subscription matching. However, these index structures can-
not support dynamic insertion and deletion of subscriptions. So they are not
applicable to the scenarios where the subscriptions are updated frequently.

Whang et al. [18] turn the top-k subscription matching into another prob-
lem: how to efficiently index Disjunctive Normal Form (DNF) and Conjunctive
Normal Form (CNF) boolean expressions over a high-dimensional space so as
to quickly find the boolean expressions that evaluate to true for a given assign-
ment of values to attributes. [18] presents the k-index, an inverted list based
index for DNF and CNF boolean expressions, and then finds the top-k matched
boolean expressions by virtue of the k-index. As an extension of [18], the meth-
ods presented in [8] are not restricted to the normal form expressions, but can
deal with arbitrarily complex boolean expressions. [8] leverages existing tech-
niques for evaluating leaf-level conjunctions, and then develops two bottom-up
evaluation techniques, Dewey ID matching and Interval ID matching, to reduce
unnecessary evaluation.

For the hierarchical top-k subscription matching, [17] presents a novel index
structure named BE*-tree, which permits the values of attributes to be a contin-
uous or discrete domain and combines a bi-directional tree expansion mechanism
and an overlap-free splitting strategy to adapt to different workloads. For very
high dimensional subscription matching, [20] proposes an in-memory index OpIn-
dex, which builds an inverted index on the pivot attributes of subscriptions and
designs a two-level partitioning scheme. However, OpIndex is not yet available
to support location data and ranking.

2.2 Location-Aware Pub/Sub Systems

Recently, there have been many researches on location-aware Pub/Sub systems
from a database perspective [2,9,11,13,19]. [13] proposes the Rt-tree which can
efficiently filter geo-textual data. [19] extends Rt-tree to support ranking seman-
tics, i.e., return all subscriptions whose similarities with the query event are
not smaller than a given threshold θ. But the pruning algorithm proposed in
[19] can not be used for top-k search. Further, [11] studies the location-aware
Pub/Sub problem for parameterized spatio-textual subscriptions and presents

Efficient Top-k Subscription Matching for Location-Aware Publish/Subscribe 5

a filter-verification framework by integrating prefix filtering and spatial prun-
ing techniques. However, only keywords are considered in [11,13,19], and they
can not support to retrieve top-k subscription matching. Note that Pub/Sub
systems which only consider keywords cannot support numeric attribute match-
ing such as the example of the subscription described in Sect. 1. Compared to
[11,13,19], the RI -tree proposed in this paper has two distinguishing features.
First, it allows users to specify their interests with boolean expressions, which is
more expressive than keywords. Second, it focuses on the top-k semantics which
is frequently used in many emerging applications (e.g., location-based targeted
advertising).

Chen et al. [2] considers the temporal spatial-keyword top-k subscription
query. They present an efficient solution which can continuously maintain up-to-
date top-k most relevant results (events) over a stream of geo-textual objects for
each subscription. [9] proposes a new location-aware Pub/Sub system, i.e., Elaps,
that focuses on continuously monitoring moving users subscribing to dynamic
event streams. However, their problems are different from ours. Our work is also
different from spatial keyword search [1,4,21]. The main reason is that they
focus on keywords while we adopt boolean expressions to express subscriber’s
requirements in subscriptions, which is more expressive than keywords.

3 Problem Formalization

3.1 Data Model

Definition 1. Subscription: A subscription s contains a boolean expression
Ω, a location loc, and a tuning parameter α, i.e., s : Ω ∧ loc ∧ α. The boolean
expression is a conjunction of predicates, i.e., Ω = {p1 ∧ · · · ∧ pn}. A predicate
is a quadruple, i.e., p =< attr, op, val, ω >, with attr being an attribute id that
uniquely represents a dimension, op being an operator (e.g., from the relational
operators (<,≤,=, �=,≥, >), the set operators (∈s, /∈s) and the interval operator
(∈i)), val being a value, a set of values in discrete domains or a range of values in

continuous domains, and ω being an assigned predicate weight, where
n
∑

i=1

pi.ω=1.

The predicate weight signifies the relevance between the predicate and the event
and can be given by subscribers (e.g., the advertiser assigns higher weights to
more relevant predicates). The location loc represents the spatial dimension and
is denoted as a conjunction of two triples, i.e., (lat = vallat) ∧ (lon = vallon),
where lat (lon) denotes the latitude (longitude) of the object. The parameter α
is used to balance the relative importance of non-spatial and spatial similarity.

For example, in the targeted advertising, the subscription for an advertise-
ment from a restaurant can be:{(age ∈i [15, 30], 0.3) ∧ (income > 5000, 0.4) ∧
(credit score > 80, 0.3) ∧ (lat = 22.27) ∧ (lon = 114.17) ∧ α = 0.5}.

As explained in [16], predicates with different types of operators can be con-
verted into one-dimensional intervals, as shown in Table 2 , where vmin and vmax

are the smallest and the largest possible values in the corresponding domain, and

6 J. Hu et al.

{v1, · · · , vk} is sorted in an ascending order. The way of converting �= and /∈s

to an interval that spans the entire domain is built on the following reasonable
speculation: these kinds of predicates are satisfied with a high probability by an
event having a predicate on the corresponding attribute. Thus, the given trans-
formation can help the early pruning during the matching. Therefore, in this
paper, we focus on predicates in the form of intervals.

Table 2. Predicate Conversion

Predicates Interval Predicates Interval

i < v1 [vmin, v1) i ≥ v1 [v1, vmax]

i ≤ v1 [vmin, v1] i ∈s {v1, · · · , vk} [v1, vk]

i = v1 [v1, v1] i /∈s {v1, · · · , vk} [vmin, vmax]

i �= v1 [vmin, vmax] i ∈i [v1, v2] [v1, v2]

i > v1 (v1, vmax]

Definition 2. Event: An event e includes a non-spatial set of attribute name
and value pairs and a location loc, i.e., e : (attr1 = val1) ∧ (attr2 = val2) ∧ · · · ∧
(attr|e| = val|e|)∧(lat = vallat)∧(lon = vallon), where attri is the attribute iden-
tifier, vali is the associated value, vallat and vallon are the publisher’s current
latitude and longitude, respectively.

Here is an example of an event: {age = 25 ∧ income = 5000 ∧ credit score =
1000 ∧ lat = 22.27 ∧ lon = 114.17}.

Definition 3. Similarity Function ψ: Given event e : (attr1 = val1) ∧
(attr2 = val2) ∧ · · · ∧ (attr|e| = val|e|) ∧ loc and subscription s : (Ω ∧ loc ∧ α) =
(p1 ∧ p2 ∧ · · · ∧ pn ∧ loc ∧ α), the similarity function ψ(e, s) is defined as follows.

ψ(e, s) = (1 − s.α) · ψt(e, s) + s.α · ψs(e, s), (1)

where ψt is a non-spatial similarity function and ψs is a spatial similarity
function.

Further, the non-spatial similarity4 is given by:

ψt(e, s) =
∑

e.attri∈e,s.pj∈s.Ω,e.attri=s.pj .attr

s.pj .ω · check(e.vali, s.pj) (2)

where e.vali denotes ith attribute value of event e, s.pj (j = 1, · · · , n) denotes
the jth predicate of subscription s and function check(e.vali, s.pj) is defined in
Eq. 3 to check whether the constraint s.pj is satisfied by e.vali.

check(e.vali, s.pj) =

{

1 e.vali ∈i s.pj .val
0 otherwise

(3)

4 More generally, the non-spatial similarity can be any monotonic function of the
weights.

Efficient Top-k Subscription Matching for Location-Aware Publish/Subscribe 7

The spatial similarity is given by:

ψs(e, s) = 1 −
dist(e.loc, s.loc)

MaxDist
, (4)

where dist(e.loc, s.loc) is the Euclidian distance between e.loc and s.loc, and
MaxDist is the maximum Euclidian distance between subscriptions.

3.2 Problem Definition

Based on the above definitions, we formulate the problem we will solve as fol-
lows. Given a set of subscriptions S , an event e, and a parameter k, the Top-k
Subscription Matching problem (SM-k problem for short) finds the top-k best
matching set Sk ⊆ S which is defined as Sk = {s|ψ(e, s) ≥ ψ(e, s′),∀s′ ∈ S\Sk}
and |Sk| = k.

Example 1. Figure 1 shows 9 subscriptions s0 · · · s8 and an event e. The simi-
larities between subscriptions and the event e are shown in Table 3. For event
e, subscription s0 is the result of the top-1 matching according to Eq. 1, i.e.,
ψ(e, s0) = 0.925.

Fig. 1. Example of subscriptions and an event

Table 3. Similarities between event e and subscriptions in Fig. 1

s s0 s1 s2 s3 s4 s5 s6 s7 s8

ψs(s, e) 0.75 0.5 0.875 0.75 0.75 0.5 0.5 0.8 0.8

ψt(s, e) 1.0 0.0 0.0 0.2 0.7 0.0 0.1 0.6 0.0

ψ(s, e) 0.925 0.35 0.35 0.365 0.725 0.1 0.42 0.7 0.64

8 J. Hu et al.

4 Baseline Solution

In this section, we present the Threshold Algorithm-based Solution for SM-k
problem as a baseline solution. Considering that top-k subscription matching
belongs to the relaxed matching and the subscription is not required to match
with the event on each attribute exactly, we build an index for each attribute,
i.e., build a scored segment-tree [14] for every non-spatial attribute and R-tree
[10] for the spatial attribute. Based on that, we propose the Threshold Algorithm
based Solution (TAS).

TAS builds a two level index for subscriptions. At the root level, a hashmap
is used to map attribute names to the sub-level data structures. At the sub-
level, an index is built for each attribute to index those subscriptions contain
that attribute.

For each non-spatial attribute, we build a scored segment-tree [14] for all
subscription intervals in that attribute. The scored segment-tree is a variant of
segment trees. A segment-tree [5] is a binary-tree structure to index intervals
(segments). It partitions the intervals into a collection of disjoint, atomic inter-
vals. Each atomic interval corresponds to a leaf node in the tree. If the length
of the whole interval is n, then a segment tree is a balanced binary tree with n
nodes as leaves and log n as the height of the tree.

Let I be the set of all subscription intervals in attribute attri, I be the
interval constraint of subscription s in attribute attri where I ∈ I, interval(V)
denote the interval of node V , and SV be the set of all subscriptions stored on
node V , where ∀I ∈ SV , we have interval(V) ⊆ I and interval(U) �⊆ I, here,
node U is the father of node V .

To retrieve top-k scoring interval of I stabbed by an event point e.vali, a
segment-tree should be modified into a scored segment tree [14], i.e., subscrip-
tions stored in node V are sorted in the order of their weights (in practice, it
can be implemented by a priority queue). When retrieving top-k subscriptions
in a scored segment-tree T for attribute attri, we maintain a global max-heap
of size O(log n) and follow the steps below.

Firstly, we replenish the heap by inserting the top element of each subscrip-
tion list from the nodes on the retrieval path in T . Secondly, we pop out the
top element of the heap as a candidate subscription (assuming that the element
popped out is stored on node V) and insert the next element of the subscription
list from node V . Run the second step in turns, until k elements are picked up.
As thus, we can get top-k subscriptions (elements) on T .

For the spatial attribute, we build an R-tree for all locations of subscriptions.
On each node N of the R-tree, an extra information αmax is stored. If the node
N is a leaf node, the value of αmax is the α of the corresponding subscription.
Otherwise, if the node N is a non-leaf node, the value of αmax is the maximum
of all its children’s αmax. Thus, the new R-tree can support incremental nearest
neighbor (NN) search. When an event location e.loc arrives, for each non-leaf
node N on the R-tree, the upper bound is

N.αmax · (1 −
MinDist(e.loc, N.rectangle)

MaxDist
),

Efficient Top-k Subscription Matching for Location-Aware Publish/Subscribe 9

where MinDist(e.loc, N.rectangle) denotes the minimum Euclidian distance
between e.loc and any point on the Minimum Bounding Box of node N .

Now we describe the matching process. When an event e arrives, for each
attribute in e, use the hashmap to get the related index structure, and incre-
mentally return the subscriptions matching with e on that attribute in the order
of their weight on that attribute (The weight of a subscription s on each attribute
is multiplied by (1− s.α) when s is inserted into the scored segment-tree). Then
we use the Threshold Algorithm (TA) [7] to merge multiple ranked lists. It is
proved that TA is correct and instance optimal in [7].

Thus, the steps of TAS are as follows:

1. At the beginning, for each attribute of the event, retrieve the best candidate
subscription using the corresponding index structure. Then go to 3.

2. For each attribute of the event, retrieve the next best candidate subscription.
3. Merge those candidates using TA. If the terminal criterion in TA cannot be

satisfied, then go to 2. Otherwise, go to 4.
4. Return the top-k subscriptions got in TA.

TAS will search on each attribute separately. If there exists a subscription
matched with an event on many attributes with small weight for each predicate
(the total similarity is very large), the searching list for each attribute can be
very long. Thus, TAS is not very efficient. In order to avoid this problem, we
design a novel index which combines all attributes on one tree index.

5 RI-tree Based Solution

In this section, we present a framework that integrates the R-tree and the
interval-tree into a new index, named RI -tree and that includes an algorithm
for processing SM-k problem using the RI -tree.

5.1 RI-tree Index Structure

The R-tree [10] is a widely used index for spatial queries and the interval-tree
[15] is the “standard” known solution for efficiently processing simple stabbing
queries. They are designed separately for different kinds of queries.

The RI -tree is essentially an R-tree, each node of which is enriched with
reference to a set of dynamic interval trees for objects contained in its sub-tree.

In the RI -tree, if node N is a leaf node, it contains a number of entries
of the form (sid, Ω, loc, α), where sid is the identifier of an subscription, Ω,
loc and α are the boolean expression, the location and the tuning parameter
of the subscription ssid, respectively. Here, it is important to note that the
weight of a subscription ssid on each attribute is multiplied by (1− ssid.α) when
ssid is inserted into the RI -tree. A leaf node also contains some metadata. The
metadata includes rectangle, which is the Minimum Bounding Rectangle of all
constituent entries, αmin and αmax which are the minimum and maximum value
of α among all constituent entries, and the aggregated information Γ for each

10 J. Hu et al.

attribute of the form (attri, range, ωmax). In addition, a leaf node also contains
a pointer to a dynamic interval tree forest F , i.e., a set of dynamic interval trees
organized by a hashmap, shown as Fig. 2a. Let Sattr be the set of all attributes
stored on the leaf node. The hashmap manages all attributes in Sattr. For each
attribute attri, the hashmap maps it to a dynamic interval tree Tattri

. The tree
Tattri

stores all intervals of the leaf node N ’s entries on attribute attri. The form
of intervals stored on the tree is (range, sid, ω), where range denotes the range
of the interval, sid is the id of the corresponding subscription and ω is the weight
of that subscription on attri.

(a) dynamic interval tree forest (b) interval stabbing-max problem

Fig. 2. Example of the dynamic interval tree forest and the interval stabbing-max
problem

The dynamic interval tree Tattri
dynamically maintains a set of intervals I,

where each interval I ∈ I has a weight I.ω such that the interval with the max-
imum weight containing an event point can be found efficiently. This structure
can solve the interval stabbing-max problem. For instance, as shown in Fig. 2b,
for the query point q, it stabs four intervals (a, b, c, d). Since interval d has the
greatest weight 0.5, it will be returned. There exists several solutions which can
solve this problem. In this paper, we use the modified interval tree structure men-
tioned in [12] which can support queries in O(log2 n) time, updates in O(log n)
time and only requires O(n) space.

On the other hand, if node N is a non-leaf node, it contains a number of
entries cp, which points to the corresponding child node. Being same as the
type of leaf nodes, node N also maintains the metadata and a dynamic interval
tree forest organized by a two-level index structure which contains the interval
information for each associated attributes. For each child node U of node N , the
interval of U.Γattri

will be stored on the dynamic interval tree Tattri
of the node

N . Thus, the number of intervals in Tattri
will not exceed the number of entries

in node N .

Example 2. Figure 3 illustrates the RI -tree index for the subscriptions in Fig. 1.
Figure 4 is an example of Metadata1 and Forest1.

After describing the RI -tree index, now we introduce an important metric,
the Upper Bound (UB) of the similarity. Given an event e and a node N in the
RI -tree, the metric UB provides an upper bound of the similarity between the

Efficient Top-k Subscription Matching for Location-Aware Publish/Subscribe 11

Fig. 3. RI -tree index for subscriptions in Figure

Fig. 4. Example of Metadata1 and Forest1

event e and all subscriptions located at the rectangle of node N . It can be used
to order and efficiently prune the paths of the search space in the RI -tree. To
get the value of UB, we first calculate the upper bound of non-spatial similarity
UBt, and then calculate the upper bound of spatial similarity UBs.

Definition 4. UBt(e,N): Given an event e and a node N , the upper bound
of non-spatial similarity UBt(e, N) is defined as follows:

UBt(e, N) =
∑

e.attri=N.Γ.attrj

N.Tattrj
(e.vali), (5)

where Tattrj
(e.vali) returns the maximum weight of the interval containing e.vali

in attribute N.Γ.attrj.

Definition 5. UBs(e,N): Given an event e and a node N , the upper bound
of spatial similarity UBs(e, N) is defined as follows:

UBs(e, N) = 1 −
MinDist(e.loc, N.rectangle)

MaxDist
, (6)

where MaxDist is the same as in Eq. 4, and MinDist(e.loc, N.rectangle) is the
minimum Euclidian distance between e.loc and any point on N.rectangle.

12 J. Hu et al.

Definition 6. UB(e,N): Given an event e and a node N , according to Eq. 1,
the total upper bound UB(e, N) is defined as follows:

UB(e, N) = max
α∈[N.αmin,N.αmax]

min(1 − α, UBt(e, N)) + α · UBs(e, N)

= max
α∈[N.αmin,N.αmax]

min(α · (UBs(e, N) − 1) + 1, α · UBs(e, N) + UBt(e, N))

(7)

where α ∈ [N.αmin, N.αmax]. Let f1(α) = α · (UBs(e, N) − 1) + 1 and f2(α) =
α · UBs(e, N) + UBt(e, N). Since UBs(e, N) ≤ 1 and α ≥ 0, then f1(α) is
a monotone decreasing function and f2(α) is a monotone increasing function.
Thus, we can get a more succinct formula to calculate UB(e, N).

UB(e, N) =

⎧

⎨

⎩

1 − N.αmin + N.αmin · UBs N.αmin ≥ (1 − UBt)
(1 − UBt) · UBs + UBt N.αmin < (1 − UBt) < N.αmax

N.αmax · UBs + UBt N.αmax ≤ (1 − UBt)
(8)

Theorem 1. Given an event e and a node N whose rectangle encloses a set of
subscriptions S = {si, 1 ≤ i ≤ n}, we have:

∀s ∈ S, ψ(e, s) ≤ UB(e, N) (9)

Proof. Since subscription s is enclosed in the rectangle of node N , the minimum
Euclidian distance between e.loc and any point on N.rectangle is no larger than
the Euclidian distance between e.loc and s.loc, i.e.:

MinDist(e.loc, N.rectangle) ≤ dist(e.loc, s.loc) (10)

Thus, the spatial similarity between e and s is no larger than the upper bound
of spatial similarity between e and node N according to the Eqs. 4 and 6, i.e.:

ψs(e, s) ≤ UBs(e, N) (11)

Meanwhile, the set of attributes in N.Γ is the union of all subscriptions in
node N . And for each attribute appears in both event e and N.Γ, let e.attri =
N.Γ.attrj , the value N.Tattrj

(e.vali) is the maximum weight of all subscriptions
in node N on that attribute. Thus:

(1 − s.α) · ψt(e, s) ≤ min(1 − s.α, UBt(e, N)) (12)

Since s.α ∈ [N.αmin, N.αmax], according to Eqs. 1, 7, 11 and 12, we can get:

ψ(e, s) = (1 − s.α) · ψt(e, s) + s.α · ψs(e, s)

≤ min(1 − s.α, UBt(e, N)) + s.α · UBs(e, N)

≤ max
α∈[N.αmin,N.αmax]

min(1 − α, UBt(e, N)) + α · UBs(e, N) (13)

= UB(e, N)

⊓⊔

Efficient Top-k Subscription Matching for Location-Aware Publish/Subscribe 13

Algorithm 1. RI -treeMatch(e, tree, k)

1: queue ← new PriorityQueue(); /*The higher the value of UB, the greater the
priority*/

2: heap ← new Min-Heap(); /*Store candidate top-k subscriptions*/
3: queue.push(tree.root, 1);
4: while not queue.empty() do
5: element ← queue.top();
6: queue.pop();
7: if element.Node is a leaf node then
8: for each entry sub ∈ element.Node do
9: if heap.size() < k then

10: heap.insert(sub, ψ(e, sub));
11: else if ψ(e, sub) > heap.begin().key then
12: heap.erase(heap.begin());
13: heap.insert(sub, ψ(e, sub))
14: if heap.size()==k and

(queue.empty() or heap.begin().key ≥ queue.top().key) then
15: break;
16: else
17: for each entry node ∈ element.Node do
18: queue.push(node, UB(e, node));
19: reverse all elements in heap and return;

5.2 Matching

Now, we discuss how to use the RI -tree to solve SM-k problem when an event e
arrives. The best-first traversal algorithm (e.g., [15]) is used to retrieve the top-
k best matched subscriptions. A priority queue is used to store the nodes that
have yet to be visited (i.e., the node with higher UB has a greater priority).
And a global min-heap of size O(k) is maintained and is used to store top-k
subscriptions among all subscription objects visited.

Algorithm 1 shows the pseudocode of retrieving top-k subscriptions on the
RI -tree. The algorithm always picks the node N with the largest UB(e, N) value
in the priority queue. The algorithm terminates when k subscriptions have been
found and the similarity of the smallest one is not smaller than the largest one
in the priority queue (or the priority queue is empty).

6 Evaluation

In this section, we evaluate the RI -tree based solution by conducting extensive
experiments on a very large data set. All algorithms are implemented in C++
and compiled using g++ 4.2.1 and the experiments are run on a 2.3 GHz Intel(R)
Core(TM) core i7 processor with 16 GB of RAM.

14 J. Hu et al.

Table 4. Experimental Parameters

Param Description Value

Ne # Events 1000

Ns # Subscriptions 1M, 2M, 3M, 4M, 5M

d # Dimensions 50, 100, 400, 600, 800

c Dimension cardinality 10, 50,100,250,500

Le Avg. event length 6, 8, 10, 12, 14

Ls Avg. subscription length 2, 3, 4, 5, 6

k Top-k parameter 1, 3, 5, 7, 9

fα Distribution of α N (0.1, 0.05), N (0.5, 0.05), N (0.9, 0.05), U(0,1)

6.1 Experimental Setup

We evaluate the following algorithms: (1) SCAN(a sequential scan); (2) Rt-
tree (we extend Rt-tree [19] to support our model, i.e., constructing an Rt-tree,
changing its TokenSet to the attribute set which includes attribute id, range
and maximum weight and traversing the Rt-tree from the root to leaves); (3)
TAS (the threshold algorithm based solution); (4) RI -tree (the RI -tree based
solution). In the experiments, all subscriptions are first loaded into the memory
and indexed by corresponding index structures, and then events are read as
input continuously. We record and analyze the average time and space cost of
matching top-k matched subscriptions with an event. The maximum number of
children of a node in the RI -tree and the Rt-tree is 50 in our experiments.

Since there is no suitable public real subscription and event dataset for top-
k subscription matching, we use a synthetic dataset by combining non-spatial
data generated by BE-Gen5 [16] and spatial data selected from real twitter data
with location information in USA [3] for both events and subscriptions. For each
boolean expression generated by BE-Gen, we randomly assign a location to it
from the twitter dataset.

As to the weight for each predicate of subscriptions, we adopt the weight
generation technique proposed in [18] (this way is also used in [17]): (i) For
each unique attribute attr, first compute its reciprocal of frequency, denoted
by ξattr, based on the concept that popular attribute should be assigned a low
weight while an infrequent attribute should be assigned a high weight. (ii) For
each predicate pi = (attr, op, val, ω), its weight is computed as follows: pi.ω =
max(ξpi.attr, x), where x is randomly generated from a Gaussian distribution:
N (0.8 × ξpi.attr, 0.05 × ξpi.attr).

In our experiments, we evaluate the performance of those algorithms under
different data distributions(Uniform and Zipf). Table 4 summarizes the main
parameters used in experiments (default values are in bold).

5 http://msrg.org/datasets/BEGen.

http://msrg.org/datasets/BEGen

Efficient Top-k Subscription Matching for Location-Aware Publish/Subscribe 15

6.2 Experimental Results and Analyses

We conduct 6 groups of experiments, observing the effect of the number of
subscriptions, the space dimensionality, the dimension cardinality, the average
subscription/event length, the top-k parameter and the distribution of α on
matching time. In each group of experiments, we conduct the experiments under
different distributions of choosing predicates’ attributes (Uniform and Zipf).

Varying the Number of Subscriptions. In the first group of experiments, we
observe the effect of the number of subscriptions. Figure 5 show the performance
of 4 algorithms when the number of subscriptions is varied from 1 million to 5
millions under different workload distributions. In general, with the increase of
the number of subscriptions, the matching times of Rt-tree, TAS, and SCAN
all increase quickly while our solution is very smooth. In these experiments, the
matching time of RI -tree on average is 4.8 and 4.3 times faster than the next best
algorithm for the uniform distribution and the Zipf distribution, respectively.

Number of Subscriptions (million)

M
a
tc

h
in

g
 T

im
e
/E

v
e
n
t
(m

s
)

101

102

103

104
SCAN

TAS

Rt-tree

RI-tree

(a) Unif

Number of Subscriptions (million)

51 2 3 4 1 2 3 4 5

M
a
tc

h
in

g
 T

im
e
/E

v
e
n
t
(m

s
)

101

102

103

104

SCAN

TAS

Rt-tree

RI-tree

(b) Zipf

Fig. 5. Varying the number of subscriptions

Varying Space Dimensionality. Compared with the effect of varying the
number of subscriptions, the effect of space dimensionality is slight. All algo-
rithms with the exception of TAS are almost unchanged as the dimensionality
varies, as shown in Fig. 6. In Fig. 6a, under the uniform distribution the match-
ing time of TAS decreases as the dimensionality increases, since subscriptions
tend to share less common predicates when the dimensionality is large. However,
under the Zipf distribution the matching time of TAS does not increase as the
dimensionality increases, it is because there are a few popular dimensions among
all subscriptions, leading to a large of overlap among subscriptions. Overall, on
average RI -tree is 3.7 and 4.4 times faster than the next best algorithm for the
uniform distribution and the Zipf distribution, respectively.

Varying the Dimension Cardinality. In this group of experiments, we
observe the effect of the dimension cardinality. When the dimension cardinality
increases, the matching rate between an event and all subscriptions will decrease.

16 J. Hu et al.

Number of Dimensions

M
a
tc

h
in

g
 T

im
e
/E

v
e
n
t
(m

s
)

101

102

103

104
SCAN

TAS

Rt-tree

RI-tree

(a) Unif

Number of Dimensions

50 100 400 600 800 50 100 400 600 800

M
a
tc

h
in

g
 T

im
e
/E

v
e
n
t
(m

s
)

101

102

103

104

SCAN

TAS

Rt-tree

RI-tree

(b) Zipf

Fig. 6. Varying space dimensionality

Facing such data set, the R-tree based algorithms will visit more nodes, result-
ing in the increasing of matching time. However, as shown in Fig. 7, on average,
RI -tree is still 4.8 and 4.2 times faster than Rt-tree for the uniform distribution
and the Zipf distribution, respectively.

Dimension cardinality

M
a
tc

h
in

g
 T

im
e
/E

v
e
n
t
(m

s
)

101

102

103

104
SCAN

TAS

Rt-tree

RI-tree

(a) Unif

Dimension cardinality

10 50 100 250 500 10 50 100 250 500

M
a
tc

h
in

g
 T

im
e
/E

v
e
n
t
(m

s
)

101

102

103

104

SCAN

TAS

Rt-tree

RI-tree

(b) Zipf

Fig. 7. Varying dimension cardinality

Varying Average Subscription/Event Length. Another key factor which
can affect the algorithm performance is the average number of predicates per sub-
scription and event. As shown in Fig. 8, all algorithms are sensitive to the aver-
age subscription length. It is because the overlap among subscriptions increases.
Compared with the average subscription length, 4 algorithms are insensitive to
the average event length, as shown in Fig. 9. The matching times of RI -tree
and Rt-tree both increase since the upper bound of non-spatial similarity will
increase as the average event length increases. In general, RI -tree performs best
because of its filtering strategy. It is 4.3 and 4.6 times faster than the next best
algorithm for the uniform distribution and the Zipf distribution, respectively, as
the average subscription length increases. It is also 4 and 4.4 times faster than
the next best algorithm for the uniform distribution and the Zipf distribution,
respectively, as the average event length increases.

Efficient Top-k Subscription Matching for Location-Aware Publish/Subscribe 17

Avg. Subscription Length

M
a
tc

h
in

g
 T

im
e
/E

v
e
n
t
(m

s
)

101

102

103

104
SCAN

TAS

Rt-tree

RI-tree

(a) Unif

Avg. Subscription Length

2 3 4 5 6 2 3 4 5 6

M
a
tc

h
in

g
 T

im
e
/E

v
e
n
t
(m

s
)

100

101

102

103

104

SCAN

TAS

Rt-tree

RI-tree

(b) Zipf

Fig. 8. Varying average subscription length

Avg. Event Length

M
a
tc

h
in

g
 T

im
e
/E

v
e
n
t
(m

s
)

101

102

103

104
SCAN

TAS

Rt-tree

RI-tree

(a) Unif

Avg. Event Length

6 8 10 12 14 6 8 10 12 14

M
a
tc

h
in

g
 T

im
e
/E

v
e
n
t
(m

s
)

101

102

103

104

SCAN

TAS

Rt-tree

RI-tree

(b) Zipf

Fig. 9. Varying average event length

Varying the Value of k. Now we observe the effect of the top-k parameter,
here, the value of k grows from 1 to 9. Figure 10 shows the performance of 4
algorithms when varying k under different workload distributions. In general,
with the increase of k, the matching times of Rt-tree and RI -tree increase mar-
ginally. However, RI -tree still has the best performance. For instance, at k = 9,
under the uniform distribution, the matching time of RI -tree is 3, 6, and 30
times better than Rt-tree, TAS, and SCAN, respectively. Similarly, under the
Zipf distribution, the speed-up ratios are 4, 39, and 57 times, respectively.

Varying the Distribution ofα. Finally, we conduct a group of experiments
observing the effect of the distribution of α. Figure 11 shows the performance
of 4 algorithms under different distribution of α, i.e., Normal distribution
:N (0.1, 0.05), N (0.5, 0.05) and N (0.9, 0.05); Uniform distribution U(0, 1). Under
Normal distribution, the RI -tree performs much better than all other algorithms
and also is better than the situation RI -tree at U(0, 1). The reason behind this
is that the values of α for all subscriptions are close to the mean and most
search paths can be filtered efficiently by the pruning strategy. For example, at
N (0.5, 0.05), the matching time of RI -tree is 21 and 133 times faster than the
next best algorithm (TAS) for the uniform distribution and the Zipf distribution,
respectively.

18 J. Hu et al.

k

1 3 5 7 9

M
a
tc

h
in

g
 T

im
e
/E

v
e
n
t
(m

s
)

100

101

102

103

104

SCAN

TAS

Rt-tree

RI-tree

(a) Unif

k

1 3 5 7 9

M
a
tc

h
in

g
 T

im
e
/E

v
e
n
t
(m

s
)

100

101

102

103

104

SCAN

TAS

Rt-tree

RI-tree

(b) Zipf

Fig. 10. Varying k

Distribution of α

normal(0.1) normal(0.5) normal(0.9) uniform

M
a
tc

h
in

g
 T

im
e
/E

v
e
n
t
(m

s
)

100

101

102

103

104

SCAN

TAS

Rt-tree

RI-tree

(a) Unif

Distribution of α

normal(0.1) normal(0.5) normal(0.9) uniform

M
a
tc

h
in

g
 T

im
e
/E

v
e
n
t
(m

s
)

100

101

102

103

104

SCAN

TAS

Rt-tree

RI-tree

(b) Zipf

Fig. 11. Varying the distribution of α

7 Conclusions

In this paper, we propose and formalize a variant of top-k subscription matching,
i.e., top-k subscription matching for location-aware Pub/Sub systems which sup-
ports boolean expressions in subscriptions. We propose a novel index structure
RI -tree, which combines the R-tree and the dynamic interval-tree. In addition,
we develop an efficient filtering strategy to reduce the search space. Finally, we
evaluate the RI -tree based solution by experiments on a large-scale dataset. The
experimental results convincingly demonstrate the benefits of our algorithm.

Acknowledgments. Jiafeng Hu and Reynold Cheng were supported by the Research
Grants Council of Hong Kong (RGC Project (HKU 711110)). Dingming Wu was sup-
ported by HKU 714712E. Beihong Jin was supported by the National Natural Science
Foundation of China under Grant No. 61472408 and the Opening Foundation of Beijing
Key Lab of Intelligent Telecommunications Software and Multimedia, Beijing Univer-
sity of Posts and Telecommunications.

Efficient Top-k Subscription Matching for Location-Aware Publish/Subscribe 19

References

1. Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing: an
experimental evaluation. In: PVLDB’2013, pp. 217–228. VLDB Endowment (2013)

2. Chen, L., Cong, G., Cao, X., Tan, K.-L.: Temporal spatial-keyword top-k pub-
lish/subscribe. In: ICDE 2015, pp. 255–266 (2015)

3. Cheng, Z., Caverlee, J., Lee, K., Sui, D.Z.: Exploring millions of footprints in
location sharing services. In: ICWSM 2011, pp. 81–88 (2011)

4. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial
web objects. In: VLDB 2009, vol. 2, pp. 337–348 (2009)

5. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry: Algorithms and Applications. Springer-Verlag, Heidelberg (2000)

6. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

7. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
In: PODS 2001, pp. 102–113. ACM, NY, USA (2001)

8. Fontoura, M., et al.: Efficiently evaluating complex boolean expressions. In:
SIGMOD 2010, pp. 3–14. ACM, NY, USA (2010)

9. Guo, L., Zhang, D., Li, G., Tan, K.-L., Bao, Z.: Location-aware pub/sub system:
When continuous moving queries meet dynamic event streams. In: SIGMOD 2015,
pp. 843-857. ACM (2015)

10. Guttman. A.: R-trees: a dynamic index structure for spatial searching. In SIGMOD
1984, pp. 47–57. ACM, NY, USA (1984)

11. Hu, H., Liu, Y., Li, G., Feng, J., Tan, K.-L.: A location-aware publish/subscribe
framework for parameterized spatio-textual subscriptions. In: ICDE 2015, pp. 711–
722 (2015)

12. Kaplan, H., Molad, E., Tarjan, R.E.: Dynamic rectangular intersection with prior-
ities. In: STOC 2003, p. 639. ACM Press, New York, June 2003

13. Li, G., Wang, Y., Wang, T., Feng, J.: Location-aware publish/subscribe. In: KDD
2013, pp. 802–810. ACM Press, New York (2013)

14. Machanavajjhala, A., Vee, E., Garofalakis, M., Shanmugasundaram, J.: Scalable
ranked publish/subscribe. In: VLDB 2008, vol. 1, issue no. 1, pp. 451–462, August
2008

15. Mehlhorn, K.: Data structures and algorithms 3: Multi-dimensional Searching
and Computational Geometry. Monographs in Theoretical Computer Science. An
EATCS Series. Springer, Heidelberg (1984)

16. Sadoghi, M., Jacobsen, H.-A.: Be-tree: an index structure to efficiently match
boolean expressions over high-dimensional discrete space. In: SIGMOD 2011, pp.
637-648. ACM (2011)

17. Sadoghi, M., Jacobsen, H.-A.: Relevance matters: Capitalizing on less (top-k
matching in publish/subscribe). In: ICDE 2012, pp. 786–797 (2012)

18. Whang, S.E., Garcia-Molina, H., Brower, C. J. Shanmugasundaram, S. Vassilvit-
skii, E. Vee, and R. Yerneni. Indexing boolean expressions. In: VLDB 2009, vol. 2,
issue no. 1, pp. 37–48 (2009)

19. Yu, M., Li, G., Wang, T., Feng, J., Gong, Z.: Efficient filtering algorithms for
location-aware publish/subscribe. IEEE TKDE 27(4), 950–963 (2015)

20. Zhang, D., Chan, C.-Y., Tan, K.-L.: An efficient publish/subscribe index for
e-commerce databases. In: Proceedings VLDB Endow, vol. 7, issue no. 8, pp. 613–
624 (2014)

21. Zhang, D., Tan, K.-L., Tung, A.K.H.: Scalable top-k spatial keyword search. In:
EDBT 2013, pp. 359–370. ACM Press, New York, USA (2013)

	Efficient Top-k Subscription Matching for Location-Aware Publish/Subscribe
	1 Introduction
	2 Related Work
	2.1 Ranked Pub/Sub Systems
	2.2 Location-Aware Pub/Sub Systems

	3 Problem Formalization
	3.1 Data Model
	3.2 Problem Definition

	4 Baseline Solution
	5 RI-tree Based Solution
	5.1 RI-tree Index Structure
	5.2 Matching

	6 Evaluation
	6.1 Experimental Setup
	6.2 Experimental Results and Analyses

	7 Conclusions
	References

