
Efficient Topic-based Unsupervised Name Disambiguation

Yang Song1, Jian Huang2, Isaac G. Councill2,
Jia Li3,1, C. Lee Giles2,1

1Department of Computer
Science and Engineering,
The Pennsylvania State

University
University Park, PA 16802, USA

2Information Sciences and
Technology,

The Pennsylvania State
University

University Park, PA 16802, USA

3Department of Statistics,
The Pennsylvania State

University
University Park, PA 16802, USA

ABSTRACT
Name ambiguity is a special case of identity uncertainty
where one person can be referenced by multiple name vari-
ations in different situations or even share the same name
with other people. In this paper, we focus on the problem
of disambiguating person names within web pages and sci-
entific documents. We present an efficient and effective two-
stage approach to disambiguate names. In the first stage,
two novel topic-based models are proposed by extending two
hierarchical Bayesian text models, namely Probabilistic La-
tent Semantic Analysis (PLSA) and Latent Dirichlet Alloca-
tion (LDA). Our models explicitly introduce a new variable
for persons and learn the distribution of topics with regard
to persons and words. After learning an initial model, the
topic distributions are treated as feature sets and names
are disambiguated by leveraging a hierarchical agglomera-
tive clustering method. Experiments on web data and sci-
entific documents from CiteSeer indicate that our approach
consistently outperforms other unsupervised learning meth-
ods such as spectral clustering and DBSCAN clustering and
could be extended to other research fields. We empirically
addressed the issue of scalability by disambiguating authors
in over 750,000 papers from the entire CiteSeer dataset.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information Filtering ; I.5.3 [Pattern
Recognition]: Clustering Algorithms

General Terms
Algorithms, Experimentation, Theory
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Unsupervised Machine Learning, Bayesian Models, Name
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Yang Song
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Table 1: First 4 search results of the query “Yang
Song” from Google that refer to 4 different people.

Disambiguation, Hierarchical Clustering Methods, Proba-
bility Analysis.

1. INTRODUCTION
With the emergence of major search engines like Google

and Yahoo! that automate the process of gathering web
pages to facilitate searching, it has become increasingly com-
mon for Internet users to search for their desired results to
specific queries through search engines, with name queries
making up approximately 5-10% of all searchers. Name
queries are usually treated by search engines as normal key-
word searches without attention to the ambiguity of par-
ticular names. For example, searching Google for “Yang
Song” results in more than 11,000,000 pages with the same
person’s name, of which even the first page shows five differ-
ent people’s home pages. Table 1 lists the first four results
which correspond to four different people. Due to this het-
erogeneous nature of data on the Internet crawled by search
engines, the issue of identity uncertainty or name ambigu-
ity has attracted significant research attention. Beyond the
problem of sharing the same name among different people,
name misspelling, name abbreviations and other reference
variations compound the challenge of name disambiguation.

The same issue also exists in most Digital Libraries (DL),
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hampering the performance and quality of information re-
trieval and credit attribution. In DL such as DBLP1 and
CiteSeer [7], textual information is stored in metadata records
to speed up field searching, including titles, venues, author
names and other data. However, the existence of both syn-
onyms and polysems as well as typographical errors makes
the problem of disambiguating author names in bibliogra-
phies (citations) non-trivial. In the case of synonyms, an
author may have multiple name variations/abbreviations in
citations across publications, e.g., the author name “C. Lee
Giles” is sometimes written as “C. L. Giles” in citations.
For polysems, different authors may share the same name
label in multiple citations, e.g., both “Guangyu Chen” and
“Guilin Chen” are used as “G. Chen” in their citations. In
addition to the issue of citations, authors may be inclined to
use different name variations even in the title pages of their
publications due to a variety of reasons (such as the change
of their maiden names).

Existing approaches that address the issue of name dis-
ambiguation generally fall into two categories: supervised
learning and unsupervised learning methods. In the case
of supervised learning [8], the objective is to determine the
name label by leveraging the related information (e.g., page
contents and citation information). Careful labeling with
specific domain knowledge is usually required for supervised
learning, which makes it both error-prone and label inten-
sive. Comparatively, unsupervised learning methods [9, 1]
do not require manual labeling but instead prudently choose
features (e.g., social networks, link structures, co-authorship)
to classify similar instances into groups or clusters. A va-
riety of clustering methods including K-means and spectral
clustering have been extensively utilized and compared for
unsupervised name disambiguation. Nevertheless, choosing
the right set of features often results in better performance
than exhaustively seeking the best clustering method. How-
ever, supervised learning methods generally achieve better
performance with the trade-off of expensive training time.

1.1 Our Contribution
The objective of this paper is to propose an approach of

name disambiguation that includes the attractive properties
of both supervised and unsupervised learning methods while
trying to avoid the respective limitations. Specifically, we
explore the use of a two-stage approach to address the prob-
lem of disambiguating person names in both web appear-
ances and scientific documents (including citations). During
the first stage, we present two novel topic-based models in-
spired by two generative models for documents: Probabilis-
tic Latent Semantic Analysis (PLSA) and Latent Dirichlet
Allocation (LDA). Our models differ from the general meth-
ods by explicitly introducing a variable for persons. After
an initial model is built, person names are disambiguated by
leveraging an unsupervised hierarchical agglomerative clus-
tering method [4], which groups similar instances together
in a bottom-up fashion. We empirically study our models by
comparing against three other clustering methods on both
web data and scientific documents.

The underlying rationale for using generative models with
latent variables is to harness the unique topic distribution
related to different persons. For example, the basketball
player “Michael Jordan” is more likely to appear in the
topic sports, while Professor “Michael Jordan” in Berkeley

1http://www.informatik.uni-trier.de/∼ley/db/index.html

may have high probability of being associated with the topic
academics. Likewise, for the authors of scientific papers, one
may have his/her own focus, e.g. Professor “Jia Li” in the
math department of Alabama and Professor “Jia Li” in the
statistics department of Penn State. Moreover, even authors
within the same research field should be distinguishable by
topics, e.g. two researchers named “Amit Kumar” working
separately at Cornell and Rice are both involved in research
on networks, but with specific focus on network routing and
wireless networks respectively. As a result, topic distribu-
tion may be a useful feature set that allows us to distinguish
people from each other in a principled and efficient way.

Although both PLSA and LDA have been extensively
studied and applied to various applications, there has been
relatively few comparisons between their performance in real-
world studies except in [3]. Theoretically, PLSA does not
need to make any assumptions regarding the document dis-
tribution, thus it is more flexible when dealing with abnor-
mal data sets. Meanwhile, the LDA (Bayesian) approach
is more robust on sparse data. With a large feature space,
LDA generally exhibits better performance than PLSA as
well as other probabilistic models.

This paper is organized as follows: Section 2 presents pre-
vious work on generative models and name disambiguation;
Section 3 and Section 4 propose our extended PLSA and
LDA models, respectively; Section 5 discusses the use of ag-
glomerative clustering for name disambiguation; Section 6
probes the advantages of our models through a number of
experiments; we conclude with future work in Section 7.

2. RELATED WORK
Generative Models for Documents
Using generative models for characterizing documents as

well as images has become a recent trend in machine learn-
ing research. The first well-known model was introduced
by Deerwester [6], namely Latent Semantic Analysis (LSA).
The key idea of LSA is to map high-dimensional input data
to a lower dimensional representation in a latent seman-
tic space that reflects semantic relations between words, the
mapping was done by Singular Value Decomposition (SVD),
and thus restricted to be linear. LSA assumes that there are
K underlying latent topics, to which documents are gener-
ated accordingly. Those latent topics are assumed to be
approximately the same as document classes, resulting in a
significant compression of data in large collections.

From a statistical point of view, Hofmann [10] presented
an alternative to LSA, or Probabilistic Latent Semantic Anal-
ysis/Indexing (PLSA/PLSI), which discovers sets of latent
variables with a more solid statistical foundation. The model
is described as an aspect model that is essentially a latent
class statistical mixture model, assuming the existence of
hidden factors underlying the co-occurrences among two sets
of objects. Thus, a single word is generated from a single
topic while different words may belong to different topics
within a document. Expectation-Maximization (EM) algo-
rithm is applied for the inference of parameters in this model
that maximize the likelihood of the data. An obvious prob-
lem of PLSA is that the model has a number of parameters
that grow linearly with the size of the document collection,
yielding a large potential for overfitting. Due to its effi-
ciency and flexibility, PLSA has been widely used in many
research fields, including collaborative filtering [11], image
categorization [21], and web information retrieval [26, 14].
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Blei et al. later introduced a Bayesian hierarchical model,
Latent Dirichlet Allocation (LDA) [3], in which each docu-
ment has its own topic distribution, drawn from a conjugate
Dirichlet prior that remains the same for all documents in a
collection. The words within that document are then gen-
erated by choosing a topic from this distribution. A word
is picked from that topic according to the posterior proba-
bility of the topic, which is determined by another Dirichlet
prior. Inference of parameters and model learning are per-
formed efficiently via variational EM algorithm, since exact
inference is intractable in LDA due to the coupling of pa-
rameters. Essentially, this model can be statistically treated
as a fully generative aspect model, which assumes an ex-
changeability for words and topics in documents. Experi-
mental results indicate that LDA has better generalization
performance than PLSA and a mixture of unigrams model
as well as higher classification accuracies and better pre-
dictions of user preferences in the task of collaborative fil-
tering. Successful applications and extensions of the LDA
model includes unsupervised nature scene classification [22,
18], document retrieval [24] and time series analysis [23].

Name Disambiguation
Prior name disambiguation research can be categorized

into supervised classification and unsupervised clustering.
In [8], different classification methods such as hybrid Naive
Bayes and Support Vector Machines (SVM) have been ap-
plied to a DBLP dataset. In large-scale digital libraries,
however, supervised classification is inappropriate due to the
unaffordable cost of human annotation for each name.

Different clustering methods have also been applied in the
literature. Earlier approaches such as hierarchical clustering
[19] suffered from the transitivity problem2. Han et al [9]
used a more sophisticated K-spectral clustering method to
cluster author appearances. While Han’s method could find
an approximation of the global optimal solution (in terms
of a criteria function) for a sampled dataset, it is unsuitable
for large-scale digital libraries since K is not known a priori
for an ever increasing digital library and the computational
complexity O(N2) is intractable for N=739,135 in CiteSeer.
Lee et al. [16] successfully addressed the scalability issue by
using a two level blocking framework; however, this resulted
in inconsistent labeling due to the transitivity problem in
such a solution. In [12], used a SVM-based distance function
was used to calculate the similarity of the metadata records
of author appearances, and explicitly solved the transitivity
problem in labeling with the DBSCAN clustering method.
[2] proposed an LDA-based entity resolution method which
is generative and does not require pair-wise decisions.

The aforementioned work mainly tackled the name dis-
ambiguation problem using the metadata records of the au-
thors. This paper solves the name disambiguation problem
in a novel way, by accounting for the topic distribution of
the authors and adopting unsupervised methods. As such it
yields an accurate and highly efficient solution to the person
name disambiguation problem.

3. TOPIC-BASED PLSA
We use the following notations in this paper.

• A document d is a sequence of N words denoted by w =

2The transitivity problem refers to a name A that is co-
referent with B, and B with C, while A is not co-referent
with C. C.f. [12] for more detailed discussions.

{w1, w2, ..., wN}, where wn denotes the nth word in a
document, plus a sequence of M name appearances
denoted by a = {a1, a2, ..., aM}, where aj represents
the jth name appearances in the document. For web
data, name appearances refer to the owners of their
homepages or the subject of the articles. For scientific
documents, it means the authors of the papers as well
as the authors in the citations.

• A corpus is a collection of T documents denoted by
D = {d1, d2, ..., dT }.
• W = {w1, ..., wp} represents the number of unique

words (i.e., vocabulary) in a corpus with size p. A =
{a1, ..., aq} indicates the number of name appearances
in a corpus with size q.

• The relationships between documents, names and words
are connected by a set of latent variables Z = {z1, ..., zK}
with size K, each of which represents a latent topic.

In our document-name-word scenario, an observation is
treated as a triplet {d, a, w} that represents an instance that
a name a appears in document d, which contains the word w.
The relationship inherent in the triplets is associated by a set
of topics Z. Our mixture model has a conditional indepen-
dence assumption of variables, i.e., the observed objects are
conditionally independent on the state of the related latent
variables, which are essentially treated as persons’ interests.
Specifically, a document d is potentially related to several
topics Z with different probabilities, and the latent variables
consequently generate a set of words w and name appear-
ances a that are closely related to a specific topic. Figure 1
(a) shows the graphical illustration of the generative model.

3.1 The Aspect Model
The joint probability of the aspect model over d × a × w

is defined as the mixture:

P (d, a, w) = P (d)P (a,w|d) (1)

P (a,w|d) =
X
z∈Z

P (a,w|z)P (z|d) (2)

The definition of the generative model can be described
in the following procedure:

1. pick a document d from the corpus D with probability
P (d),

2. select a latent class zk with probability P (zk|d),

3. generate a word w with probability P (w|zk),

4. generate a name a with probability P (a|zk).

In this model, we introduce a set of latent variables z that
breaks the direct relationships between documents, words
and names, i.e., they are conditionally independent but still
associated through latent variables. Note that by reversing
the arrow from documents and words to latent topics, an
equivalent symmetric model as shown in Figure 1 (b) can
be parameterized by

P (d, a, w) =
X
z∈Z

P (z)P (d|z)P (w|z)P (a|z). (3)

This paper will focus on Figure 1 (a) for inference unless
otherwise mentioned.
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Figure 1: Graphical model representation. (a) The
original document-name-word model, D is the num-
ber of documents, Nd is the number of words in
document d and Ad is the number of name appear-
ances in document d. (b) The alternative view of
the model. Shaded nodes are observed variables.

3.2 Model Fitting with the EM Algorithm
The goal of model fitting for PLSA is to estimate the pa-

rameters P (z), P (a|z), P (z|d), P (w|z), given a set of obser-
vations (d, a, w). The standard way to estimate the probabil-
ity values is the Expectation-Maximization (EM) algorithm
[5], which alternates two steps: (1) an expectation (E) step
where posterior probabilities are estimated for the latent
variables, based on the current estimates of the parameters;
and (2) a maximization (M) step where parameters are es-
timated again to maximize the expectation of the complete
data (log) likelihood. In the E-step, we compute

P (z|d, a, w) ∝ P (z)P (a|z)P (d|z)P (w|z)P
z′ P (z′)P (a|z′)P (d|z′)P (w|z′)

. (4)

In the M-step, we aim at maximizing the expectation of
the complete data likelihood, the formulas are:

P (a|z) ∝
P

d,w n(d, a, w)P (z|d, a, w)P
d,a′,w n(d, a′, w)P (z|d, a′, w)

(5)

P (w|z) ∝
P

a,d n(d, a, w)P (z|d, a, w)P
d,a,w′ n(d, a, w′)P (z|d, a, w′)

(6)

P (z|d) ∝
P

a,w n(d, a, w)P (z|d, a,w)P
d′,a,w n(d′, a, w)P (z|d′, a, w)

(7)

where n(d, a, w) denotes the number of occurrences of
word w in document d with name a. The EM algorithm
stops on convergence, i.e., when the improvement of the log-

likelihood is significantly small:

L =
AX

a=1

DX
d=1

WX
w=1

n(d, a, w) log P (d, a, w) (8)

3.3 Predicting New Name Appearances
Despite the effectiveness of PLSA for mapping the same

document to several different topics, it is still not a fully
generative model at the level of documents, i.e., the number
of parameters that need to be estimated grows proportion-
ally with the size of the training set. Additionally, there
is no natural way to assign probability to new documents.
Therefore, to predict the topics of new documents (with po-
tentially new names) after training, the estimated P (w|z)
parameters are used to estimate P (a|z) for new names a in
test document d through a “folding-in” process [10]. Specifi-
cally, the E-step is the same as equation (4); however, the M-
step maintains the original P (w|z) and only updates P (a|z)
as well as P (z|d).

3.4 Probabilistic Inference
The PLSA model mentioned in the above section not

only can derive relationships between documents, words and
names, but by using probabilistic inference, it can also be
used to model the topic patterns for names. Specifically,
given P (a|z) the probability of observing a name appear-
ance given a certain topic, we can model the probability
that a certain topic is of interest to a given name by simply
applying the Bayes rule:

P (z|a) ∝ P (a|z)P (z)P
z P (a|z)P (z)

. (9)

In this way people that share similar topics can be mod-
eled through the same pattern. By applying unsupervised
learning methods, we can further cluster names for the task
of name disambiguation.

4. TOPIC-BASED LDA
In this section, we propose another topic-based Bayesian

model. Our model is primarily an extension of the Latent
Dirichlet Allocation (LDA) model proposed by Blei et al. in
2003 [3], which has quickly become regarded as one of the
most efficient and effective probabilistic modeling algorithm
in statistical machine learning.

The major difference between PLSA and LDA is that in
PLSA the latent variables are dependent on each document,
while in LDA the topic mixture is drawn from a conjugate
Dirichlet prior which remains the same for all documents.
Thus LDA is able to overcome the over-fitting problem in
PLSA while naturally generating new documents with con-
sistent generative semantics.

The generative process of our topic-based LDA model can
be formalized as follows:

• Draw a multinomial distribution φz for each topic z
from a Dirichlet distribution with prior β;

• For each document d, draw a multinomial distribution
θd from a Dirichlet distribution with prior α;

• For each word wdi in document d, draw a topic zdi

from the multinomial distribution θd;
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• Draw a word wdi from the multinomial distribution
φzdi ;

• Draw a name adi from the multinomial distribution
λzdi .
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Nd
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D
d

(a) Our proposed topic-based LDA model.
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(b) The author-topic model [20].

Figure 2: Graphical model representation of the
LDA model. (a) Our topic-based model. (b). The
author-topic model. K is the number of topics, D is
the total number of documents, Nd is the number of
tokens in document d and Ad represents the number
of name appearances in document d.

Figure 2 (a) depicts our model. Regarding the generation
of parameters, α and β are corpus-level parameters and only
sampled once when creating the generative corpus; θd are
document-level variables, sampled once for each document;
zdi, wdi and adi are word-level variables and need to be
sampled once for each word/name in the document.

Although there is resemblance between our proposed LDA
model and the author-topic model [20], there exists impor-
tant differences in the relationship between name appear-
ances and words. In the author-topic model, x denotes an
author who is responsible for a given word. In our model,
however, names (authors) and words are not directly re-
lated, i.e., each topic can generate a set of names and a set
of words simultaneously with different probabilities, allow-
ing more freedom to the model in parameter estimation.

4.1 Inference and Parameter Estimation
The inference problem in LDA is to compute the posterior

of the (document-level) hidden variables given a document
d = (w,a) with parameters α and β, i.e., p(θ, φ, z|w, a, α, β, λ),

p(θ, φ, z|w, a, α, β, λ) =
p(θ, φ, z, w,a|α, β, λ)

p(w,a|α, β, λ)
. (10)

Here p(w,a|α, β, λ) is usually referred to as the marginal
distribution of document d:

p(w,a|α, β, λ)

=

ZZ
p(θ|α)p(φ|β)

NY
n=1

p(wn|θ, φ)

MY
m=1

p(am|θ, λ) dθdφ

=

ZZ
p(θ|α)p(φ|β)

 
NY

n=1

X
zn

p(zn|θ)p(wn|zn, φ))

!

·
 

MY
m=1

X
zn

p(zn|θ)p(am|zn, λ))

!
dθdφ (11)

By marginalizing over the hidden variable z, the name
distribution p(a|θ, λ) can be represented as follows:

p(a|θ, λ) =
X

z

p(a|z, λ)p(z|θ) (12)

As a result, the likelihood of a document collection D
could be calculated by taking the product of the marginal
probabilities of individual documents,

p(D|α, β, λ) =ZZ KY
z=1

p(φz|β)
NY

d=1

p(θd|α)

 
NY

n=1

p(wn|θ, φ)

!

·
 

MY
m=1

p(am|θ, λ)

!
dθdφ (13)

Unfortunately, inference cannot be performed exactly on
this model due to the problematic coupling between param-
eters θ, φ and λ. Alternative methods have been widely de-
veloped to approximate the inference, including variational
inference [3] and other methods. In the following section,
we apply the Gibbs sampling framework to get around the
intractability problem of parameter estimation.

4.1.1 Gibbs sampling for the LDA model
The Gibbs sampling algorithm was developed as a spe-

cial case of the Markov Chain Monte Carlo (MCMC) al-
gorithm, which estimates the complex joint probability dis-
tribution of several variables by generating random samples
from the observed data. Note that the sampling algorithm is
actually used to derive conditional probabilities for the sam-
pler. Specifically, we need to know the conditional probabil-
ities p(θm|α, zm1, ..., zmN ), p(zmn|θm, wmn, β), where m =
1, ..., M and n = 1, ..., N .

We construct a Markov chain that converges to the pos-
terior distribution on z and then use the results to infer θ
and φ, i.e., p(z|w,a).

Based on the graphical representation in Figure 2, the
posterior distribution can be derived as follows:

p(zi = j|z i,w, a) ∝ p(zi = j|z i)p(wi|z,w i)p(ai|z, a i) (14)

∝ HDT
dj + αP

j′ HDT
dj′ + Kα

HWT
mj + βP

m′ HWT
m′j + Wβ

, (15)

where the first two terms of Equation (15) is inferred by
following the Dirichlet distribution derivation.
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Note that in our case, we do not estimate the parameters
α, β and λ. For simplicity and performance, they are fixed
at 50/K, 0.01 and 0.1 respectively.

Equation (13) is considered as the conditional probability
of the random variables θ and φ. For any individual sample,
we can estimate them from the latent variable z by

θ̂dj =
HDT

dj + αP
j′ HDT

dj′ + Kα
(16)

φ̂mj =
HWT

mj + βP
m′ HWT

m′j + Wβ
(17)

5. PEOPLE NAME DISAMBIGUATION
Learning both the PLSA and LDA models is equivalent

to learning the probability distribution of the topic-word
P (w|z) and the topic-name P (a|z) matrices. However, the
topic-name matrix only reflects the relationships between
names and topics, thus several people may have very simi-
lar topic interests, especially those from the same research
group. For the purpose of name disambiguation, the topic-
name matrix is processed further with a hierarchical clus-
tering method. We extend the original agglomerative clus-
tering method for our task, since it has been shown that the
bottom-up clustering method performs better than the K-
means method as well as other top-down clustering methods
in terms of both computational cost and clustering accuracy,
particularly when the number of desired clusters is not sig-
nificantly smaller than the number of points.

5.1 Agglomerative Clustering
To distinguish people that have similar topic interests but

with different names, we generate a name-name matrix that
measures the pairwise similarity between names. Leven-
shtein distance [17] (defined as Le(x, y)) is used as the mea-
surement and as a result the similarity between two names
x and y can be defined as follows (| · | represents the length
of the string):

Sim(x, y) = 1− Le(x, y)

max(|x|, |y|) . (18)

Notations Explanations
W number of words (vocabulary)
K number of topics
D number of documents
A number of name appearances
zi = j the assignment of the ith word in a

document to topic j
z i all topic assignments not including the

ith word, i.e., {z1, ..., zi−1, zi+1, ..., zK}
HWT

mj number of times word m assigned to topic
j, except the current instance

HDT
dj number of times document d contains topic

j, except the current instance
φmj the probability of using word m in topic j
θdj the probability of document d contains

topic j

Table 2: Notations used for Gibbs sampling.

Our modified agglomerative clustering method is shown
in Algorithm 1, in which each name ai is a vector of length
K, aik reflects the probabilities of name ai being in a spe-
cific topic k, and satisfies

P
k aik = 1. We apply Euclidean

distance as our point-level distance metric, i.e., D(ai, aj) =pP
k (aik − ajk)2. Meanwhile, to measure the distance be-

tween clusters, the complete-link metric [15] is used that
considers the maximum distance of all elements in two clus-
ters3. Two additional parameters should also be specified
at the beginning of the algorithm, ε and θ, as the stopping
criteria for the entire program and the merge criteria for
two names/name clusters, respectively. In practice, we set
ε = 0.05 and θ = 0.5.

Algorithm 1 Agglomerative Clustering

1: Input:
a1, ...aM : names to cluster
D(ai, aj): point-level distance metric
C(ci, cj): cluster-level distance metric
Sim(ai, aj): name-name similarity matrix
ε, θ: threshold parameter

2: Initialize
place each name in a singleton cluster,
calculate the pairwise distance between
names according to D,
set C ← D,

3: Clustering Procedure
4: Repeat

find two names (ai, aj) or name clusters (ci, cj) that
are closest according to D and C,
randomly choose a name to represent a cluster,
if Sim(ai, aj) is greater than θ

merge the pair to form a new cluster,
else

find the next closest pair or quit if no pair satisfy
the criteria,

update the distance between clusters according to C,
5: Until the distance between the closest pair of any two

clusters is greater than ε,
6: Output: Clusters c1, ...cτ .

6. EXPERIMENTS
To evaluate the two proposed methods, we perform the

experiments on two applications, i.e., disambiguation of peo-
ple’s web appearances and author names in scientific docu-
ments.

6.1 Evaluation Metrics
Instead of using a matching matrix (a.k.a. a confusion

matrix in supervised learning) as in [9] (since the number
of clusters K needs to be specified explicitly in advance,
making it inappropriate for unsupervised learning), two sets
of metrics are applied in our experiments as in [25, 12],
namely pair-level pairwise F1 score F1P and cluster-
level pairwise F1 score F1C. F1P is defined as the har-
monic mean4 of pairwise precision pp and pairwise re-
call pr, where pp is measured by the fraction of co-referent

3We also tried both single-link algorithm and wards method
[13], the performance are almost equally well.
4H(x1, x2) = 2x1x2

x1+x2
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pairs in the same cluster, and pr the fraction of co-referent
pairs placed in the same cluster. Likewise, F1C is the har-
monic mean of cluster precision cp and cluster recall
cr, where cp is the fraction of totally correct clusters to the
number of clusters acquired by the algorithm, and cr is the
fraction of true clusters to that of the algorithm.

As the baseline method, we extracted names from the con-
tents and formed a name-word matrix, which was augmented
by the standard tf-idf method, we then applied the agglom-
erative clustering using inter-cluster closeness as the mea-
sure (Agglo). Our methods are further compared with two
unsupervised learning approaches, the k-way spectral clus-
tering (Spectral) [9] and the LASVM+DBSCAN approach
(DBSCAN) as described in [12].

The most influential parameter on the performance as well
as the scalability of our models is the number of topics K.
Following convention [10, 3], we chose the values of K from
the set {2, 5, 10, 20, 50, 100, 200}. For interests of space, only
the best results with optimal K are reported. Meanwhile, as
mentioned above, the priors α, β and λ for the LDA model
are chosen as 50/K, 0.01 and 0.1 respectively.

6.2 Web Appearances of Person Names
In this section, we consider the problem of automatic dis-

ambiguation of person names on the web. To be specific,
when users submit name queries like “Michael Jordan” to
search engines, we want to distinguish name results by the
content of the retrieved web pages. We utilize the public
data set5 generated by Ron Bekkerman and Andrew Mc-
Callum [1]. 12 person names including SRI employees and
professors (e.g., “David Israel” and “Andrew Ng”) are sub-
mitted as queries to the Google search engine, the first 100
pages are then retrieved for each query. Post-processing is
performed to clean the pages, resulting in a total of 1,085
web pages referring to 187 different people. All pages are
manually labeled in the title indicating the position of the
person. Among these web pages, 420 are found relevant to
the 12 particular names. Some statistics can be found in [1].

For our experiment, the data set is further processed. We
first translate the titles into labels with +1 indicating rele-
vant and -1 otherwise. All URLs included in the pages are
removed as well as other trivial characters. We then use
the rainbow6 tool to process the remaining text to produce
the term-document matrix. Stemming and stop words re-
moval are performed, words that appear less than twice are
removed as well. Furthermore, to eliminate the bias towards
longer documents, only the first 200 words are used in each
example.

Table 3 summarizes the clustering results regarding the
F1P and F1C scores. Overall, our topic-based models con-
sistently outperform other methods for both metrics, with
more than 90% on F1P score and 75% on F1C score on av-
erage. For most of the people, both PLSA and LDA achieve
the best performance with 10 topics, which decrease sharply
with the increase of topic numbers. The highest F1P scores
for both models are achieved from the class “Leslie Pack
Kaelbling”, since it only has two namesakes in that class.
For the “Tom Mitchell” class that has 37 namesakes, our
methods are still able to achieve 85% and 82.4% F1P scores
respectively, with the trade-off of using more topics (20)

5http://www.cs.umass.edu/∼ronb
6http://www.cs.cmu.edu/∼mccallum/bow
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Figure 3: 3D visualization of feature distribution of
the name-topic matrix in the web appearances data
set. *’s indicate the positive class (i.e. “Andrew
McCallum” from UMass) and · represents negative
classes. (a). PLSA result. (b). LDA result.

to disambiguate. Generally, the performance decreases and
the number of topics increases with more namesakes in the
class. Regarding the cluster F1 scores, since no credits will
be given to clusters that are partially correct (i.e., either
having more or less instances than the real clusters), the
performance is commonly worse than the pair-wise metrics.
The best F1C scores are achieved in the class “Andrew Ng”
which has 29 namesakes, larger number of topics (50 and 20
for PLSA and LDA respectively) shows better performance.

Figure 3 plots the result of the McCallum class for both
models by projecting the data matrix on the first three eigen-
vectors. We choose two clusters for visualization here, one
is “Andrew McCallum” from UMass and other people with
the identical name for the other cluster. It is evident that
both models have very high clustering accuracies and sep-
arate two clusters quite well. Specifically, PLSA only mis-
classified one positive instance to be negative while LDA
misclassified one negative instance to be positive.

6.3 Author Appearances in Scientific Docs
To disambiguate author appearances in the scientific doc-

uments, we collect data from the CiteSeer Digital Library.
CiteSeer is currently one of the largest digital libraries

that holds more than 750,000 documents, primarily in the
domain of computer and information science. CiteSeer in-
dexes several kinds of data formats (txt, PDF, PS); however,
for our experiment, we convert non-text formats into text
and only make use of plain text files. For the purpose of
efficiency, extraction is performed only from the summariz-
ing parts (title, author names, abstracts and keyword fields)
and the first page of each document.

We obtained the nine most ambiguous author names from
the entire data set as shown in Table 4, each of which has at
least 20 name variations. In the worst case (C. Chen), 103
authors share the same name.

Two steps of pre-processing are performed before the ex-
periments. First, author names are extracted from individ-
ual documents, each of which contains the author metadata
associated with a unique paper identifier. Second, author
references are extracted from citations by regular expres-
sions and manual correction. Rainbow is then applied to
form the document-term and document-author matrices.

Figure 4 plots the results of the CiteSeer data set on F1P
scores and F1C scores. Clearly, our methods consistently
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Num of Agglo Spectral DBSCAN PLSA+Agglo LDA+Agglo
pages F1P F1C F1P F1C F1P F1C F1P F1C F1P F1C

Cheyer 97 0.580 0.211 0.602 0.333 0.852 0.650 0.920 0.677 (10) 0.935 0.725 (20)
Cohen 88 0.515 0.208 0.500 0.210 0.742 0.520 0.888 0.625 (10) 0.850 0.625 (10)
Hardt 81 0.350 0.159 0.362 0.267 0.744 0.577 0.755 0.625 (5) 0.875 0.717 (10)
Israel 92 0.700 0.455 0.720 0.466 0.855 0.680 0.952 0.877 (20) 0.975 0.841 (20)
Kaelbling 89 0.825 0.425 0.825 0.425 0.875 0.739 0.972 0.757 (10) 0.955 0.767 (20)
Mark 94 0.396 0.208 0.475 0.340 0.575 0.500 0.855 0.717 (10) 0.871 0.704 (10)
McCallum 94 0.785 0.504 0.830 0.525 0.900 0.717 0.924 0.785 (5) 0.955 0.824 (10)
Mitchell 92 0.750 0.487 0.762 0.485 0.785 0.490 0.850 0.776 (20) 0.824 0.643 (20)
Mulford 94 0.555 0.322 0.573 0.305 0.853 0.727 0.911 0.826 (10) 0.926 0.833 (10)
Ng 87 0.750 0.542 0.785 0.575 0.915 0.845 0.951 0.925 (50) 0.953 0.911 (20)
Pereira 88 0.565 0.333 0.548 0.320 0.788 0.720 0.926 0.851 (5) 0.946 0.923 (5)
Voss 89 0.375 0.220 0.345 0.196 0.625 0.600 0.876 0.633 (10) 0.850 0.667 (10)
Mean 90 0.596 0.340 0.611 0.371 0.792 0.647 0.909 0.756 0.911 0.765

Table 3: Clustering results of the Web Appearances data set in terms of pair-level pairwise F1 Score(%) (F1P)
and cluster-level pairwise F1 score(%) (F1C). Greedy Agglomerative Clustering is compared as a baseline
approach. Our approaches (PLSA and LDA) consistently show better results than both spectral clustering
and DBSCAN methods. The number of topics K is chosen from the set {2, 5, 10, 20, 50, 100, 200}. The best
results with optimal K (given in parentheses) are presented here.

Name Variations Records
A. Gupta 44 506
A. Kumar 36 143
C. Chen 103 536
D. Johnson 41 350
J. Robinson 30 115
J. Smith 86 743
K. Tanaka 20 53
M. Jones 53 352
M. Miller 34 230
Mean 49.7 336.4

Table 4: Summary of the 9 CiteSeer data sets of dif-
ferent author names and the data size. These names
are most representative for the worst case scenario
in author name appearances in scientific documents.

outperform both greedy agglomerative clustering and spec-
tral clustering, and better than DBSCAN except for the M.
Jones class. Overall, PLSA and LDA achieve 92.3% and
93.6% pair-wise F1 metric, respectively, which shows a gain
of more than 40% and 86.6% improvement over the spectral
clustering and greedy agglomerative clustering. DBSCAN
also achieves a comparative result (89.3%) in this case.

In terms of the cluster F1 metric, PLSA and LDA mod-
els have almost the same performance, both achieve signifi-
cantly better results (more than 140%) than spectral cluster-
ing and agglomerative clustering. The relatively high F1C
scores of our methods indicate that the number of unique
authors can be estimated with the number of achieved clus-
ters from the original data set.

Illustrative examples of these results are presented in Ta-
ble 5, which summarizes the results of the PLSA model by
showing the 10 highest probability words along with their
corresponding conditional probabilities from 4 topics in the
CiteSeer data set. Additionally, we show 3 author name
variations corresponding to the same person with their prob-

ability for each topic. The appearance of new authors is
handled by using the “folding-in” process discussed in Sec-
tion 3.3. Clearly, the selected 4 topics reveal that the 3
name variations have very high probability to be the same
author. The figure beneath depicts the probability distribu-
tions over 50 topics, of which the three names exhibit quite
similar patterns.

Likewise, Table 6 lists the results from the LDA model.
We depict several topics that show the maximum differences
in probabilities to disambiguate authors with exactly the
same name. As for the name “Yang Song”, one author has
very high probability of topic 4 (0.2210) while the other are
highly related with topic 11 (0.2682), thus showing com-
pletely different patterns of their probability distributions
over topics.

6.3.1 Scalability and comparison of the two models
Theoretical issue of scalability for large-scale data set has

not yet been addressed for either PLSA or LDA. As a result,
we empirically tested our models for the entire CiteSeer data
set with more than 750,000 documents. PLSA yields 418,500
unique authors in 2,570 minutes, while LDA finishes in 4,390
minutes with 418,775 authors. Both are quite consistent
with previous results [12, 9]. Considering that our methods
only make use of a small portion of the text for each instance
(metadata plus the first page), we believe the framework can
be efficient for large-scale data sets.

The results of the two models are quite close to each other
in both metrics across two data sets; however, they may have
different generalization capabilities. In Figure 5, we show
the comparison between PLSA and LDA in terms of the ex-
ponential of the negative likelihood (a.k.a. perplexity), which
is commonly used as a measure of the generalization perfor-
mance of probabilistic models. Generally, lower perplexity
over a set of held-out test data indicates better performance.

Figure 5 depicts the results for the 2 models being com-
pared. Both models exhibit the overfitting problem when
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Figure 4: Clustering results on the CiteSeer data set. 1:A. Gupta, 2:A. Kumar, 3:C. Chen, 4:D. Johnson,
5:J. Robinson, 6:J. Smith, 7:K. Tanaka, 8:M. Jones, 9:M. Miller.

Figure 5: Exponential of the Negative Likelihood of
the two models for the CiteSeer data set. X axis
shows the number of topics. Here we show the re-
sults of using 20% training data.

the number of topics K increases. Comparatively, LDA is
less sensitive to the change of K. This probably explains
why PLSA is not a fully generative model, since PLSA ap-
plies “folding-in” process to manage new documents. This
process assumes that documents in the testing set exhibit
the same topic distribution (E-step of the EM algorithm)
as those in the training set, which is not essentially true in
many cases. In LDA, by generating probability with prede-
fined priors to testing documents, all documents essentially
exhibit the same topic distribution, thus no assumption is
required for new authors in the testing documents.

Nevertheless, the best performance for both models are
quite close, achieved when K is either 5 or 10.

7. CONCLUSION
We have proposed a novel framework for unsupervised

name disambiguation by leveraging graphical Bayesian mod-
els and a hierarchical clustering method. Our approach has
been demonstrated to be more effective than other unsu-
pervised learning methods including spectral clustering and
DBSCAN. A series of experiments were performed that ver-
ified the advantages of our approach on both web data and
scientific documents. Although our primary focus in this pa-
per is on person name disambiguation, our general approach
should be equally applicable to other entity disambiguation
domains. Potential applications include noun phrases dis-
ambiguation, e.g., “tiger” as an animal, “tiger” as a golf
player, “tiger” the baseball team, “tiger” the operating sys-

tem or “tiger” for the new Java version. And of course, it
would be interesting to see whether our framework can be
applied to automatic image annotation and other fields.
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