
Efficient Transaction Processing in SAP HANA Database –
The End of a Column Store Myth

Vishal Sikka
SAP

3412 Hillview Ave
Palo Alto, CA 94304, USA
vishal.sikka@sap.com

Franz Färber
SAP

Dietmar-Hopp-Allee 16
69190, Walldorf, Germany

franz.faerber@sap.com

Wolfgang Lehner
SAP

Dietmar-Hopp-Allee 16
69190, Walldorf, Germany

wolfgang.lehner@sap.com
Sang Kyun Cha

SAP
63-7 Banpo 4-dong, Seochoku

137-804, Seoul, Korea
sang.k.cha@sap.com

Thomas Peh
SAP

Dietmar-Hopp-Allee 16
69190, Walldorf, Germany
thomas.peh@sap.com

Christof Bornhövd
SAP

3412 Hillview Ave
Palo Alto, CA 94304, USA

christof.bornhoevd@sap.com

ABSTRACT
The SAP HANA database is the core of SAP’s new data
management platform. The overall goal of the SAP HANA
database is to provide a generic but powerful system for dif-
ferent query scenarios, both transactional and analytical, on
the same data representation within a highly scalable exe-
cution environment. Within this paper, we highlight the
main features that differentiate the SAP HANA database
from classical relational database engines. Therefore, we
outline the general architecture and design criteria of the
SAP HANA in a first step. In a second step, we challenge
the common belief that column store data structures are
only superior in analytical workloads and not well suited for
transactional workloads. We outline the concept of record
life cycle management to use different storage formats for
the different stages of a record. We not only discuss the
general concept but also dive into some of the details of
how to efficiently propagate records through their life cycle
and moving database entries from write-optimized to read-
optimized storage formats. In summary, the paper aims at
illustrating how the SAP HANA database is able to effi-
ciently work in analytical as well as transactional workload
environments.

Categories and Subject Descriptors
H.2 [Database Management]: Systems; H.2.4 [Systems]:
Relational databases; Query processing—Database Manager

General Terms
Algorithms, Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

Keywords
SAP HANA, Column store, Transaction processing

1. INTRODUCTION
Data management in modern business applications is one

of the most challenging topics in today’s software industry.
Not only is data driving today’s business but also provides
the foundation for the development of novel business ideas
or business cases. Data management in all the different fla-
vors has become a core asset for every organization. Also,
data management has gained significant attention at senior
management level as the main tool to drive and develop the
current business. On the system side, data management
scenarios have become extremely complex and complicated
to manage. An efficient, flexible, robust, and cost-effective
data management layer is the core for a number of different
application scenarios essential in today’s business environ-
ments.

Initially, classical ERP systems were implemented as the
information processing backbone that handles such applica-
tion scenarios. From the database system perspective, the
OLTP workload of ERP systems typically require handling
of thousands of concurrent users and transactions with high
update load and very selective point queries. On the other
hand, data warehouse systems–usually considered as the
counterpart to OLTP–either run aggregation queries over
a huge volume of data or compute statistical models for the
analysis of artifacts stored in the database. Unfortunately,
applications like real time analysis to identify anomalies in
data streams or ETL/information integration tasks add to
the huge variety of different and in some cases absolutely
challenging requirements for a data management layer in
the context of modern business applications.

As an answer, Stonebraker et al. postulated the “The End
of an Architectural Era (It’s Time for a Complete Rewrite)”
in 2007 [13] by stating the hypothesis that traditional database
management systems are no longer able to represent the
holistic answer with respect to the variety of different re-
quirements. Specialized systems will emerge for specific
problems. In essence, the statement confirms the obser-
vation that large data management solutions are usually a
zoo of different systems with different capabilities for dif-

731

ferent application scenarios. For example, classic row-stores
are still dominating the OLTP domain. Maintaining a 1:1-
relationship between the logical entity and the physical rep-
resentation in a record seems obvious for entity-based in-
teraction models. Column-organized data structures gained
more and more attention in the analytical domain to avoid
projection of queried columns and exploit significantly bet-
ter data compression rates. Key-value stores are making
inroads into commercial data management solutions to cope
not only with “big data”-volumes but also provide a plat-
form for procedural code to be executed in parallel. In ad-
dition, distributed file systems that provide a cheap storage
mechanism and a flexible degree of parallelism for cloud-like
elasticity made key-value stores a first class citizen in the
data management arena. The zoo of systems is completed
by triple stores to cope with schema-flexible data and graph-
based organization. Since the schema comes with the data,
the system provides efficient means to exploit explicitly mod-
eled relationships between entities, run analytical graph al-
gorithms, and exhibit a repository for weakly-typed entities
in general. Although specialized systems may be considered
a smart move in a first performance-focused shot, the zoo of
systems yields tremendous complexity to link different sys-
tems, run data replication and propagation jobs, or orches-
trate query scenarios over multiple systems. Additionally,
setting up and maintaining such an environment is not only
complex and error prone but also comes with significantly
higher TCO.

Taking a bird’s perspective, we make the following obser-
vation of motivations underlying the current situation:

• Usage perspective: We consider SQL no longer the
only appropriate interaction model for modern busi-
ness applications. Users are either completely shielded
by an application layer or would like to directly inter-
act with their database. In the first case, we see the
need to optimally support an application layer with a
tight coupling mechanism. In the second case, we see
the need for scripting languages with built-in database
features for specific application domains like R for sta-
tistical processing ([4]) or Pig to work on Hadoop in-
stallations. We also see the need for a comprehensive
support of domain-specific and proprietary query lan-
guages like SAP’s FOX for financial planning scenarios
([7]). Finally we see a huge demand to provide mech-
anisms to directly enable users considering parallelism
from a programming perspective.

• Cost awareness: We see the clear demand to provide
a lower TCO solution for the complete data manage-
ment stack ranging from hardware to setup costs to
operational and maintenance costs by offering a con-
solidated solution for different types of workloads and
usage patterns.

• Performance, performance, performance ([16]):
We identify performance still as the main reason to use
specialized systems. The challenge is to provide a flex-
ible solution with the ability to use specialized opera-
tors or data structures whenever possible and needed.

We would like to point out that different workload charac-
teristics do not fully justify going for the zoo of specialized
systems. Our past experience of handling business applica-

tions leads us to support the hypothesis for a need of spe-
cialized collections of operators. We are biased against indi-
vidual systems with separate life cycles and administration
set-ups. However, we do not aim at providing a single closed
system but a flexible data management platform with com-
mon service primitives. The currently available SAP HANA
database functionality, which is a core part the SAP HANA
appliance ([2]), may be considered as one specific incarna-
tion of such a tool box.

Contribution and Outline
Giving a holistic view of the SAP HANA database platform
on the one hand and diving into details of some specific
aspects in order to cope with transactional workloads on the
other hand is the overall goal of this paper. We first give an
overview of the overall architecture and the design guidelines
to emphasize the differences to classical relational database
management systems. In particular, we want to stress the
following main distinguishing features of the SAP HANA
database for the scope of typical business applications.

• The HANA database comprises a multi-engine query
processing environment that offers different data ab-
stractions supporting data of different degrees of structure–
from well-structured relational data to irregularly struc-
tured data graphs to unstructured text data. This full
spectrum of processing engines is based on a common
table abstraction as the underlying physical data rep-
resentation to allow for interoperability and the com-
bination of data of different types.

• It supports the representation of application-specific
business objects (like OLAP cubes) and logic (domain-
specific function libraries) directly inside the database
engine. This permits the exchange of application se-
mantics with the underlying data management plat-
form that can be exploited to increase the query ex-
pressiveness and to reduce the number of individual
application-to-database roundtrips and the amount of
data transferred between database and application.

• HANA database is optimized to efficiently commu-
nicate between the data management and the appli-
cation layer. For example, the HANA database na-
tively supports the data types of the SAP applica-
tion server. Furthermore, plans are to integrate novel
application server technology directly into the SAP
HANA database cluster infrastructure to enable an in-
terweaved execution of application logic and database
management functionality.

• Last not least, the SAP HANA database supports the
efficient processing of both transactional and analyt-
ical workloads on the same physical database lever-
aging a highly-optimized column-oriented data repre-
sentation. This is achieved through a sophisticated
multi-step record life cycle management approach.

While the first three features are addressed in [2] the last
one is discussed in the second part of this paper. Here we
outline some details related to the unified table structure
and the propagation mechanism to move records through
the system within a controlled life cycle management pro-
cess. More specifically, we first motivate the different data

732

structures to hold the data in different phases of their life
cycle. Thereafter, we focus on the efficient implementa-
tion of the propagation steps between different data struc-
tures to move data from a write-optimized store to han-
dle insert/update/deletes extremely well to finally highly
compressed main memory structures to efficiently answer
OLAP-style query patterns. Furthermore, we would like
to mention that the SAP HANA database also provides
techniques required to run enterprise-critical applications
like an SAP ERP system. For example, the SAP HANA
database shows fault tolerance of individual nodes within a
SAP HANA cluster installation, i.e. other nodes are tak-
ing over the load if a node goes down. In such a situation,
query processing is neither blocked nor stopped but is trans-
parently rerouted by the distributed query execution frame-
work. Other features like backup and recovery are available
as well. From a transactional behavior, the SAP HANA
database uses multi-version concurrency control (MVCC) to
implement different transaction isolation levels. The SAP
HANA database supports both transaction level snapshot
isolation and statement level snapshot isolation. However,
due to space restrictions, we are not able to dive into details
at this point.

2. LAYERED ARCHITECTURE OF THE SAP
HANA DATABASE

As already outlined in [2], the SAP HANA product which
is already commercially available consists of an appliance
model with different components to yield a ready-to-go pack-
age for data analytics scenarios. In a first step, the product
was aiming at data mart scenarios to get customers accus-
tomed to the new philosophy of the column-oriented, main-
memory-centric SAP HANA database. As of now, SAP is
providing native support for the SAP Business Warehouse
product to significantly speed up query and transformation
scenarios but also allows to completely skip individual ma-
terialization steps. In order to provide this capability, SAP
HANA has data loading and transformation tools plus a
modeling studio to create and maintain complex data flows
in and out of SAP HANA. The SAP HANA database is the
core component of the SAP HANA product and takes care
of the efficient and flexible data storage and data querying
scenarios ([11, 12]).

Figure 1: Overview of the SAP HANA appliance

The SAP HANA database itself follows a strict layered
architecture as outlined in figure 2. Similar to classical sys-
tems, the SAP HANA database distinguishes between com-
pile time and run time of a database request. Also, although
not shown in the figure, multiple components like transac-
tion manger, authorization manager, meta data manager
etc. complement the overall architecture.

Figure 2: Overview of the HANA database layered
architecture

In addition to pure data processing performance, we also
identified the lack of an appropriate coupling mechanism
between the application layer and the data management
layer as one of the main deficits of state-of-the-art systems.
This analysis was one of the main drivers to design the
SAP HANA database as an extensible platform for differ-
ent query languages. As can be seen in figure 2, different
query languages can enter the system via a common con-
nection and session management layer performing all infras-
tructural tasks with the outside world (JDBC, ODBC con-
nectors etc.). In a first step, a query string is translated
into an internal optimized representation (similar to an ab-
stract syntax tree), which is local for every domain-specific
language. In a second step, the query expression is mapped
to a “Calculation Graph” (calc graph for short), which forms
the heart of the logical query processing framework.

2.1 Calculation Graph Model
The “Calculation Graph Model” follows the classical data

flow graph principle. Source nodes represent either persis-
tent table structures or the outcome of other calc graphs.
Inner nodes reflect logical operators consuming either one
or multiple incoming data flows and produce any arbitrary
number of outgoing data flows. Moreover, the set of calc
graph operators can be split into two groups of operator
types. On the one side, the calc model defines a set of intrin-
sic operators, e.g. aggregation, projection, joins, union etc.
SQL for example can be completely mapped to this class of
operators. On the other side, the calc model provides opera-
tors which implement core business algorithms like currency
conversion or calendar functionality. In addition the calc
model supports the following types of operators:

733

• Dynamic SQL nodes: A calc model operator may
execute a complete SQL statement on the incoming
data flow. The statement can be a parameter and
compiled and executed at runtime of the calc graph,
resulting in a form of “nested calc” models.

• Custom nodes: A custom node may be used to im-
plement domain-specific operators in C++ for perfor-
mance reasons. For example, the planning scenario
with the SAP proprietary language FOX [6] can exploit
a special“disaggregate”operator to natively support fi-
nancial planning situations [7]. Another example are
optimized operations for graph traversal and analysis
in data graphs via the proprietary WIPE graph lan-
guage.

• R nodes: An R node ([4]) can be used to forward in-
coming data sets to an R execution environment. The
R script, given as a parameter, will then be executed
outside of the SAP HANA database and results are
moved back into the calc graph for further processing.

• L nodes: The language L represents the internal run-
time language of the SAP HANA database. L is de-
signed as a safe subset of the C language and usually
not directly accessible for end users or application de-
signers. Instead, L is the target language for all con-
structs of domain-specific languages which cannot be
directly mapped to data-flow graphs, i.e. all sorts of
imperative control logic.

In addition to the set of functional operators, the calc
model provides “split” and “combine” operators to dynam-
ically define and re-distribute partitions of data flows as a
base construct to enable application-defined data paralleliza-
tion.

The individual compilers of the different domain-specific
languages try to optimize the mapping from a given query
script to a calc graph. For SQL, the mapping is based on
the well-defined logical representation of a query expression.
In the general case, the mapping may be based either on
heuristics or cost-based, depending on the estimated size of
the input data etc. For example, the compiler may decide
to unroll a loop into a regular data flow graph or generate
L code for the specific expression [6]. In the case of regular
SQL, which is by far the largest and most complex part
and taken from the SAP P*Time1 system ([1]), the internal
representation is directly mapped to a relational operators
to capture the intent of the SQL statement.

A sample calc model graph is depicted in figure 3. Calc
models are either created indirectly via the compiler of an
individual domain-specific language, or can be visually mod-
eled in the SAP HANA Studio and registered as calc views
in an application-level content repository of the SAP HANA
database. The overall idea behind this process is to cus-
tomize specific fragments of a complex business logic sce-
nario, which can be fine-tuned and re-used in multiple database
scenarios, independent of the actual query language, i.e. calc
models can be consumed from any domain-specific language
stack in the form of a virtual table. The collection of calc

1P*Time is a main-memory row-oriented relational database
system, acquired by SAP in 2005 and optimized for SAP’s
applications.

Figure 3: Example of a SAP HANA calc model
graph

models is also referred to as SAP HANA content and under-
goes a separate product life cycle process. The calc model
shown in figure 3 outlines some of the differences with re-
spect to regular query plans in standard relational database
systems. For example, the result of an operator may have
multiple consumers to optimize for shared common subex-
pressions already from an application point of view. Sec-
ondly, the node labeled “script” wraps imperative language
snippets coming either from the calc model designer or being
generated by a domain-specific query compiler. Finally, the
node “conv” shows the use of a built-in business functions
to perform application-specific conversion routines, e.g. for
currency conversion or unit conversion.

2.2 Calc Graph Compilation and Execution
Once the user-defined query expressions or query scripts

are mapped to a data flow graph in the calc model, the op-
timizer runs classical rule and cost-based optimization pro-
cedures to restructure and transform the logical plan into a
physical plan which can then be executed by the distributed
execution framework. The execution framework, which was
inherited from prior SAP products SAP BWA (Business
Warehouse Accelerator) and SAP Enterprise Search, orches-
trates the actual data flow and the distributed execution of
physical operators. During optimization, the fragments of
the logical data-flow graph are mapped to physical opera-
tors provided by the “Engine Layer”. The Engine layer itself
consists of a collection of different physical operators with
some local optimization logic to adapt the fragment of the
global plan to the specifics of the actual physical operator.
In particular, the SAP HANA database provides the follow-
ing set of operators:

• Relational Operators: The collection of relational
operators handles classic relational query graph pro-
cessing. As outlined in subsection 3.1 in more detail,
relational operators show different characteristics, e.g.
some of the operators like equi-join ([5]) directly lever-
age existing dictionaries of a unified table.

• OLAP operators: OLAP operators are optimized
for star-join scenarios with fact and dimension tables.

734

Once the optimizer recognizes this type of scenarios,
mapping of the corresponding query plan fragment to
OLAP operators is enumerated as a feasible physical
plan with corresponding cost estimation ([8]).

• L runtime: The runtime for the internal language
L reflects the building block to execute L code rep-
resented in the L nodes of a given calc graph. Using
the “split and combine” operator pair, the L runtime
can be invoked in parallel working on the pre-defined
partitions.

• Text operators: The set of text search analysis oper-
ators comprises the set of functionality already avail-
able in the SAP Enterprise Search product to deliver
comprehensive text analysis features ranging from sim-
ilarity measures to entity resolution capabilities ([14]).

• Graph operators: Graph operators finally provide
support for graph-based algorithms to efficiently im-
plement complex resource planning scenarios or social
network analysis tasks.

Since a data flow graph is distributed not only between
multiple server instances (usually running on different phys-
ical nodes) but also between different types of operators,
the system provides a toolbox for the optimal data transfer
and exchange format. Although all operators are required
to implement a standard data transfer protocol, individual
operators within or beyond different “collections” may have
a highly specialized communication protocol. For example,
the relational and OLAP operators are exchanging data in
a highly compressed and proprietary format. Also, the R
node provides a mapping to the R internal data frame for-
mat ([4]).

In addition to the “horizontal” communication between
different physical operators, they also exploit a common in-
terface to the unified table layer. As we will outline in more
detail in the following section, the SAP HANA database
provides an abstract tabular view with a variety of access
methods for the different operators. The common tabular
structure implements a complete life cycle of a data entity
and basically consists of a combination of row- and column-
store to capture the effects of the most recent modification
operations. Since a table in the SAP HANA database can
be marked as “historic”, the table layer also provides the im-
plementation of a history table capturing the past values of
an active entity and provides access methods for time travel
queries.

Finally, SAP HANA relies on a persistence layer to pro-
vide recoverability in case of loss of the database state cap-
tured in main memory. The persistence layer is based on a
virtual file concept with visible page limits of configurable
size. Adapting the concepts of the SAP MaxDB system, the
persistence layer relies on frequent savepointing to provide
a consistent snapshot with very low resource overhead. The
following section will provide more details.

2.3 Summary
In contrast to classical database systems, the SAP HANA

database aims at playing the role of a flexible platform to
support multiple (proprietary) domain-specific languages. A
flexible data flow model (calc graph model) provides the
conceptual core of the system: On the one side, query ex-
pressions or query scripts are mapped to an instance of the

model. On the other side, all different physical operators are
using the same table layer interface implementing a complete
life cycle management for individual records. Logging and
data area are used to maintain a transactionally consistent
copy of the main memory database in persistent storage.

3. LIFECYCLE MANAGEMENT OF DATABASE
RECORDS

As shown in figure 4, a unified table structure provides
data access for all applicable physical operators. Looking
behind the facade of the notion of a unified table structure,
the system provides life cycle management for an individual
database record. We see the technique of the unified table
not only as the key to provide excellent performance for both
scan-based aggregation queries but also for highly selective
point queries. This provides a key differentiator to classical
(row-based) database architectures. While a record concep-
tually remains at the same location throughout its lifetime
in update-in-place-style database systems, the SAP HANA
conceptually propagates records through different stages of
a physical representation. Although designed as a general
concept, the most usual setup consists of the following three
stages for records within a regular table (Figure 4).

Figure 4: Overview of the unified table concept

• L1-delta: The L1-delta structure accepts all incom-
ing data requests and stores them in a write-optimized
manner, i.e. the L1-delta preserves the logical row for-
mat of the record. The data structure is optimized for
fast insert and delete, field update, and record projec-
tion. Moreover, the L1-delta structure does not per-
form any data compression. As a rule of thumb, the
L1-delta structure may hold 10,000 to 100,000 rows
per single-node database instance depending on the
workload characteristics and the amount of available
memory.

• L2-delta: The L2-delta structure represents the sec-
ond stage of the record life cycle and is organized in
the column store format. In contrast to the L1-delta,
the L2-delta employs dictionary encoding to achieve
better memory usage. However, for performance rea-
sons, the dictionary is unsorted requiring secondary
index structures to optimally support point query ac-
cess patterns, e.g. fast execution of unique constraint
checks. The L2-delta is well suited to store up to 10
millions of rows.

735

• Main store: The main store finally represents the
core data format with the highest compression rate
exploiting a variety of different compression schemes.
By default, all values within a column are represented
via the position in a sorted dictionary and stored in a
bit-packed manner to have a tight packing of the in-
dividual values ([15]). While the dictionary is always
compressed using a variety of prefix-coding schemes, a
combination of different compression techniques–ranging
from simple run-length coding schemes to more com-
plex compression techniques–are applied to further re-
duce the main memory footprint ([9, 10]).

Since the SAP HANA database was originally designed
for OLAP-heavy use-cases with complex and high-volume
loading scenarios, the system provides a special treatment
for efficient bulk insertions, which may directly go into the
L2-delta, bypassing the L1-delta. Independent of the place
of entry, the RowId for any incoming record will be gener-
ated when entering the system. Also, logging happens at
the first appearance of a row, be it within the L1-delta for
regular update/insert/delete operations or for the L2-delta
in case of bulk load operations.

3.1 Unified Table Access
The different data structures share a set of common data

types. The access is exposed through a common abstract in-
terface with row and column iterator, both optionally dictionary-
based. Moreover, some of the physical operators may pull
record-by-record or in a vectorized way (i.e. block-by-block)
following the classical ONC-protocol [3] to enable pipelined
operation and reduce the memory requirements for interme-
diate results as much as possible. Other physical operators
implement the “materialize all”-strategy to avoid operator
switching costs during query execution. The optimizer de-
cides on a mixture of the different types of operators de-
pending on the logical calc model, i.e. the different types of
physical operators are seamlessly integrated within a final
query execution plan.

For the operators leveraging sorted dictionaries, the uni-
fied table access interface also exposes the table content via
a global sorted dictionary. Dictionaries of two delta struc-
tures are computed (only for L1-delta) and sorted (for both
L1-delta and L2-delta) and merged with the main dictio-
nary on the fly. In order to implement efficient validations
of uniqueness constraints, the unified table provides inverted
indexes for the delta and main structures.

The record life cycle is organized in a way to asynchronously
propagate individual records through the system without in-
terfering with currently running database operations within
their transactional sphere of control. The current SAP HANA
database system provides two transformations, called“merge
steps”:

• L1-to-L2-delta Merge: The transformation from L1-
delta to L2-delta implies a pivoting step from row to
column organization. Rows of the L1-delta are split
into their corresponding columnar values and column-
by-column inserted into the L2-delta structure. At the
receiving side, the system performs a lookup to identify
potentially missing values in the dictionary structure
and optionally inserts new entries at the end of the
dictionary to avoid any major restructuring operations

within the dictionary. In the second step, the corre-
sponding column values are added to the value vec-
tor using the dictionary encodings (append-only struc-
ture). Both steps can be performed in parallel, because
the number of tuples to be moved is known in advance
enabling the reservation of encodings in the new dic-
tionary before actually inserting them. In a third step,
the propagated entries are removed from the L1-delta.
All running operations either see the full L1-delta and
the old end-of-delta border or the truncated version
of the L1-delta structure with the expanded version of
the L2-delta. By design, the transition from L1-delta
to L2-delta is incremental in nature, i.e. the transi-
tion of records does not have any impact in terms of
reorganizing the data of the target structure.

• L2-delta-to-main Merge: A new main structure
is created out of the L2-delta and the existing main.
While the L1-to-L2-delta Merge is minimally invasive
with respect to running transactions, an L2-delta-to-
main merge is a resource-intensive task which has to be
carefully scheduled and highly optimized on a physical
level. As soon as an L2-delta-to-main merge is started,
the current L2-delta is closed for updates and a new
empty L2-delta structure is created serving as the new
target for the L1-to-L2-delta merge. If a merge fails,
the system still operates with the new L2-delta and re-
tries the merge with the previous versions of L2-delta
and existing main. Section 4 will detail the core al-
gorithms and give some more details of different op-
timization techniques such as column-wise (subsection
4.2) or partial merge (subsection 4.3).

Both merge operations do not directly affect persistent
storage and are independent of restart or backup log replay.

3.2 Persistency Mapping
Although the SAP HANA database is a main-memory-

centric database system, its full ACID support guarantees
durability as well as atomicity and recovery in case of a sys-
tem restart after regular shutdown or system failure. Persis-
tency of the SAP HANA database is based on multiple per-
sistency concepts. In general no fine-grained UNDO mech-
anisms with respect to persistent storage are necessary, be-
cause only bulk changes like a new version of a main struc-
ture are propagated to persistent storage and have to be
rolled back in case of a system failure. As can be seen in
figure 5, the persistency is based on a combination of tempo-
rary REDO logs and save pointing for short-term recovery
or long-term backup.

Logging for the REDO purpose is performed only once
when new data is entering the system, either within the L1-
delta or for bulk inserts within the L2-delta. New versions
of a record are logged when entering the L1-delta. Changes
which occur during the incremental propagation from the
L1- to the L2-delta are NOT subject of REDO logging. In-
stead, changes in the dictionary as well as in the value in-
dex are added to the data structures residing in individual
data pages, which are eventually moved to persistent stor-
age within the next savepoint. Obviously the event of the
merge is written to the log to ensure a consistent database
state after restart.

Figure 6 outlines some of the details. Both structures, the
dictionary and the value index are based on a paged storage

736

Figure 5: Overview of the persistency mechanisms of the unified table

layout managed by the underlying storage subsystem. Dirty
pages–either existing pages with additional entries or new
pages–are flushed out by the storage subsystem under the
control of the savepointing infrastructure. Although the L2-
delta structure is organized per column, the system may
store fragments of multiple L2-deltas within a single page in
order to optimize for memory consumption. Especially for
small but wide tables, storing multiple L2-deltas within the
same page can be very reasonable.

Figure 6: Details of the L1-to-L2-delta merge

After the savepoint, the REDO log can be truncated. Dur-
ing recovery, the system reloads the last snapshot of the L2-
delta. Similarly, a new version of the main will be persisted
on stable storage and can be used to reload the main store
of the unified table. In summary, neither changes at the
L2-delta nor changes of the main are recorded in a log be-
cause the image of the previous version still exists. Classical
logging schemes are only employed for the L1-delta.

3.3 Summary
In summary, the physical representation of a table within

the SAP HANA database consists of three levels–a row store
(L1-delta) to efficiently capture incoming inserts as well as
update and delete requests, an intermediate structure in col-
umn format (L2-delta) to decouple the write-optimized from
a read-optimized store, the main store structure. This third
structure is extremely well suited for OLAP-like queries, but
is also well tuned to answer point queries efficiently by using
inverted index structures. During the lifetime, a record will
be asynchronously propagated through the storage struc-
tures to land in the most update efficient store at the begin-
ning and stay in the most read-efficient store for the rest of
its lifetime.

4. MERGE OPTIMIZATION
The basic idea of the Unified Table approach is to pro-

vide a transparent record propagation from write-optimized
storage structure to read-optimized storage structures with
the L2-delta index to de-couple both extreme worlds. While
the transition from the L1-delta to the L2-delta can be con-
ducted without major disruption of the existing data struc-
tures, the merge of L2-delta and main requires a major re-
organization of the table’s content.

4.1 The Classic Merge
In a first step of a classic merge operation, the dictionary

entries of the L2-delta are compiled into the dictionary of
the main lexicographically to yield a sorted new main dic-
tionary for the specific column. The new dictionary contains
only valid entries of the new main structure, discarding en-
tries of all deleted or modified records. The sort order of
the dictionary not only provides the prerequisite for opti-
mal compression but also is the base for special operators
working directly on dictionary encoded columns.

Figure 7 shows the principal phases of a merge step. Based
on the L2-delta with an unsorted dictionary and the old
main with a sorted dictionary, the first phase generates the
new sorted dictionary and preserves the mapping informa-
tion from the new positions (which are obviously not ex-
plicitly stored) and the old positions within the main and
L2-delta. As can be seen in the figure, some entries show
positions in both dictionaries (e.g. “Los Gatos”) or they only

737

Figure 7: Details of the L2-delta-to-main merge

appear in the main or L2-delta dictionary (e.g. “Campbell”
with value 4 in the delta and a value of −1 at the main
side of the dictionary position mapping table). In a second
phase, the new main index is constructed with the positions
referring to the new dictionary for existing and newly added
entries. For example–referring to figure 7–the entries for
“Daily City” are transferred to the new main with the new
position value 4. Entries for “Los Gatos” are also mapped
to the new position (now 6) from position 1 in the L2-delta
and position 5 in the old main structure. The new main
(dictionary and value index) is written to disk and the old
data structures are released. In any case the system has to
keep the old and the new versions of a column (dictionary
and main index) in main memory until all database oper-
ations of open transaction still referring to the old version
have finished their execution.

Since the naive version of the merge is very resource-
intensive, the SAP HANA database implements a number of
different optimizations. For example, if the dictionary of the
L2-delta is a subset of the main dictionary, the first phase
of a dictionary generation is skipped resulting in stable po-
sitions of the main entries. Another special case exists if the
values of the L2-delta dictionary are greater than the values
in the main dictionary, e.g. in the presence of increasing
timestamps. In this situation, the dictionary of the L2-delta
can be directly added to the main dictionary, if the number
of bits to encode the dictionary values are sufficient to cope
with the extended cardinality.

More complex optimizations can be seen in the orthogonal
techniques of re-sorting merge and partial merge strategies–
both techniques will be outlined in more detail below.

4.2 Re-Sorting Merge
The classic version of the merge (subsection 4.1) between

the L2-delta and the main requires a mapping of the previous

positions of the dictionary entries to the new positions of the
new dictionary. The positions then encode the real values
within the bit-packed value index, i.e. with C as the number
of distinct values of a column, the system spends dld(C)e-
many bits to encode the positions. The merge maps the
old main values to new dictionary positions (with the same
or an increased number of bits) and adds the entries of the
L2-delta at the end of the new value index.

An extended version of the merge aims at reorganizing the
content of the full table to yield a data layout which provides
higher compression potential with respect to the data dis-
tribution of ALL columns. Since the SAP HANA database
column store exploits a positional addressing scheme, the
values of the k-th record have to be at the k-th position in
every column. Re-sorting one column to gain an optimal
compression scheme therefore directly affects the compres-
sion potential of all other columns within the table. Ap-
plying the concepts discussed in [9], the system computes
the “best” sort order of the columns based on statistics from
main and L2-delta structures before creating the new main.

Figure 8: Delta-to-main merge with reordering

Figure 8 shows the necessary data structures. In addition
to the mapping table for the dictionary to translate old dic-
tionary positions to the positions in the new dictionary, the
version of the re-sorting merge additionally creates a map-
ping table of the row positions to be able to reconstruct the
row after merging and re-sorting individual columns. The
figure shows columns of the same table before and within a
merge process where columns “City” and “Prod” are already
merged, the remaining columns (e.g. “Time” etc.) still re-
flect the status before the merge. Therefore, the entries of
the old version of the main correspond to positions in the
old dictionary, e.g. the entry “Los Gatos” of the “City” col-
umn is encoded with value 5 in the old dictionary and 6 in
the version after the merge. Thus in general, after applying
the merge to the “City” column, the new main index shows
the dictionary positions of the new dictionary as well as a

738

re-sorting of the rows. As highlighted, the 7th row can now
be found at the second position. The “Prod”-column was
also merged without building a new dictionary, e.g. the dic-
tionary positional values are preserved. The “Time”-column
however was not yet merged and still refers to the old dictio-
nary and the old sort order. Any access to not yet merged
columns is required to take an additional indirection step via
the row position mapping table if a row construction with
already merged columns is required. The row position map-
ping table can be eliminated after the merge of all columns
has been completed. Although the system may conceptually
delay the merge of infrequently accessed columns by “stack-
ing” row position mapping tables, the system always com-
pletely finishes a merge operation for the full table before
starting a new merge generation.

Applying a re-sorting merge is therefore a cost-based deci-
sion to balance the overhead of the additional position map-
ping for column accesses during the merge for all columns
and the resulting potential for a higher compression rate.
The sort criterion for applying the merge to the individual
columns also depends on multiple factors, e.g. ratio of point
versus range access, improvement in compression potential
etc.

4.3 Partial Merge
The major drawback of the classic or the re-sort merge

consists in the overall overhead to create a new version of
the main. For large tables or partitions, computing a new
dictionary and re-generating the main index does have a
negative impact on available CPU and disk resources. The
partial merge tries to soften this problem by generalizing the
previous algorithms. The partial merge strategy shows the
best potential for saturated columns, i.e. in situations when
the number of new entries in the dictionary is small.

The core idea of the partial merge is to split the main into
two (or even more) independent main structures:

• Passive main: The passive main reflects a stable part
of the main store which is in general not part of the
merge process.

• Active main: The active main is the part of the col-
umn which grows/shrinks dynamically and takes part
of the merge process with the L2-delta.

Figure 9: Overview of partial merge

Conceptually, a merge interval within the partial merge
strategy starts with an empty active main. The passive
main reflects the regular main structure with a sorted dictio-
nary and a corresponding values index. Whenever a merge
operation is scheduled, the L2-delta merges with the (still

empty) active main; the passive main remains untouched.
Compared to the full merge, the partial merge shows one
small exception. The dictionary of the active main starts
with a dictionary position value of n+1 with n as the cardi-
nality of the passive main dictionary. Although the system
now has two main structures with locally sorted dictionaries,
the encodings of the individual main value index structures
are not overlapping. Obviously, the dictionary of the active
main only holds new values not yet present in the passive
main’s dictionary.

Figure 10 shows a sample situation with a passive and an
active main after a partial merge. The dictionary codes of
the active main start with the encoding value n+1 = 6, such
that it continues the encoding scheme of the passive main.
While the corresponding value index structure of the passive
main only holds references to entries in the passive main dic-
tionary, the value index of the active main also may exhibit
encoding values of the passive main making the active main
dictionary dependent on the passive main dictionary.

Figure 10: Range query execution for active and
passive main

A point access is resolved within the passive dictionary. If
the requested value was found, the corresponding position
is used as the encoding value for both, the passive and the
active main value index. Parallel scans are executed to find
the corresponding entries. However, if the requested value
was not found, the dictionary of the active main is consulted.
If the value is present, only the active main value index is
scanned to identify the resulting row positions. For a range
access, the ranges are resolved in both dictionaries and the
range scan is performed on both structures. For the active
main, the scan is broken into two partial ranges, one for
the encoded range value of the passive dictionary and one
for the encoded range value of the active main dictionary.
Figure 10 illustrates this behavior for a range query with
values between C% and L%. In order to guarantee transac-
tion consistency, the query processing additionally requires
similar merges with the L1- and L2-delta.

While the system is operating, the active main may dy-
namically shrink and grow until a full merge is scheduled.
The major advantage of the concept is to delay a full merge
to situations with low processing load and reduce the cost
of the L2-to-(active-)main merge. Also, the optimization
strategy may be deployed as a classical merge scheme by

739

Figure 11: Characteristics of the SAP HANA database record life cycle

setting the maximal size of the active main to 0 forcing a
(classical) full merge in every step. Obviously, the procedure
can be easily extended to multiple passive main structures
forming a logical chain with respect to the dependencies of
the local dictionaries. This configuration is extremely worth-
while for columns with slowly changing or stable dictionaries
(e.g. “Country” column in a “Customer”-table). However,
for most of the columns, the system will hold only one pas-
sive main.

From a conceptual perspective, the partial merge opti-
mization strategy implements an additional step in the gen-
eral record life cycle of the SAP HANA database unified ta-
ble concept. The closer to the end of the pipeline, the more
complex, time- and resource consuming re-organizations are
applied to the records to finally end in the highly compressed
and read-optimized format of the traditional column store.
In addition, the SAP HANA database provides the concept
of historic tables to transparently move previous versions of
a record into a separate table construct. Therefore, a ta-
ble has to be defined of type “historic” during creation time.
Furthermore, the partitioning concept can be used to sep-
arate recent data sets from more stable data sets from an
application point of view.

4.4 Summary
As outlined, the SAP HANA database exploits the idea

of a record life cycle management to provide efficient access
for transactional and analytical workloads. Figure 11 high-
lights the different characteristics of the discussed storage
formats and propagation steps. The L1-delta is optimized
for update intensive workloads and can be incrementally and
frequently merged into the L2-delta structure. The L2-delta
structure is already well-tuned for read operations but re-
quires a larger memory footprint compared to the highly
read-optimized main structure. However, L2-delta serves
particularly well as a target of the L1-delta rows or bulk

insertions. As previously discussed, the main, optionally
split into an active and passive part, exhibits the highest
compression rate and is optimized for scan-based query pat-
terns. Due to the resource-intensive re-organization tasks,
merges into the active main and especially full merges to
create a new main structure are scheduled with a very low
frequency. The merge of L1- to L2-delta, in contrast, can be
performed incrementally by appending data to the L2-delta
dictionary and value index.

5. CONCLUSION
Column store systems are well known to provide superb

performance for OLAP-style workload. Typically aggrega-
tion queries touching only a few columns of 100s of millions
of rows benefit from a column-oriented data layout. Un-
fortunately, the separation of OLAP-style and OLTP-style
queries is no longer reflecting state-of-the-art requirements
from modern business applications. On the one hand, oper-
ational systems embed more and more statistical operations
for the on-the-fly business decision into the individual busi-
ness process. On the other hand, classical data-warehouse
infrastructures are required to capture transactions feeds for
real-time analytics. Based on the classical column store ar-
chitecture of the SAP HANA database, we outline the query
processing environment showing query transformation, plan
generation, and the interaction model of different special-
ized engines. Additionally, we explained in more detail the
common unified table data structure consisting of different
states on the one hand but providing a common interface to
the consuming query engines on the other hand. The over-
all goal is to demonstrate some of the optimizations which
are implemented within the SAP HANA database to make
a column store suitable for high-scale transactional process-
ing and ending the myth to use columnar technique only for
OLAP-style workloads.

740

6. ACKNOWLEDGMENTS
We would like to express our sincere thanks to the SAP

HANA database team in Walldorf, Seoul, Berlin, and Palo
Alto for making the HANA story a reality.

7. REFERENCES
[1] S. K. Cha and C. Song. P*TIME: Highly scalable

OLTP DBMS for managing update-intensive stream
workload. In VLDB, pages 1033–1044, 2004.

[2] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd,
S. Sigg, and W. Lehner. SAP HANA database - data
management for modern business applications.
SIGMOD Record, 40(4):45–51, 2011.

[3] G. Graefe. Query evaluation techniques for large
databases. ACM Comput. Surv., 25(2):73–170, 1993.

[4] P. Große, W. Lehner, T. Weichert, F. Färber, and
W.-S. Li. Bridging two worlds with RICE integrating
R into the SAP in-memory computing engine.
PVLDB, 4(12):1307–1317, 2011.

[5] G. Hill and A. Ross. Reducing outer joins. VLDB J.,
18(3):599–610, 2009.

[6] B. Jaecksch, F. Färber, F. Rosenthal, and W. Lehner.
Hybrid Data-Flow Graphs for Procedural
Domain-Specific Query Languages. In SSDBM
Conference, pages 577–578, 2011.

[7] B. Jaecksch, W. Lehner, and F. Färber. A plan for
OLAP. In EDBT conference, pages 681–686, 2010.

[8] T. Legler, W. Lehner, and A. Ross. Data mining with

the sap netweaver bi accelerator. In VLDB, pages
1059–1068, 2006.

[9] C. Lemke, K.-U. Sattler, F. Färber, and A. Zeier.
Speeding up queries in column stores - a case for
compression. In DaWak, pages 117–129, 2010.

[10] M. Paradies, C. Lemke, H. Plattner, W. Lehner, K.-U.
Sattler, A. Zeier, and J. Krüger. How to juggle
columns: an entropy-based approach for table
compression. In IDEAS, pages 205–215, 2010.

[11] H. Plattner. A common database approach for OLTP
and OLAP using an in-memory column database. In
SIGMOD Conference, pages 1–2, 2009.

[12] H. Plattner and A. Zeier. In-Memory Data
Management: An Inflection Point for Enterprise
Applications. Springer, Berlin Heidelberg, 2011.

[13] M. Stonebraker, S. Madden, D. J. Abadi,
S. Harizopoulos, N. Hachem, and P. Helland. The end
of an architectural era (it’s time for a complete
rewrite). In VLDB, pages 1150–1160, 2007.

[14] F. Transier and P. Sanders. Engineering basic
algorithms of an in-memory text search engine. ACM
Trans. Inf. Syst., 29(1):2, 2010.

[15] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner,
A. Zeier, and J. Schaffner. SIMD-scan: ultra fast
in-memory table scan using on-chip vector processing
units. Proc. VLDB, 2:385–394, August 2009.

[16] M. Winslett. Bruce Lindsay Speaks Out. SIGMOD
Record, 34:71, June 2005.

741

