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Abstract

Information theory allows us to investigate information processing in neural systems in terms of information transfer,
storage and modification. Especially the measure of information transfer, transfer entropy, has seen a dramatic surge of
interest in neuroscience. Estimating transfer entropy from two processes requires the observation of multiple realizations of
these processes to estimate associated probability density functions. To obtain these necessary observations, available
estimators typically assume stationarity of processes to allow pooling of observations over time. This assumption however,
is a major obstacle to the application of these estimators in neuroscience as observed processes are often non-stationary. As
a solution, Gomez-Herrero and colleagues theoretically showed that the stationarity assumption may be avoided by
estimating transfer entropy from an ensemble of realizations. Such an ensemble of realizations is often readily available in
neuroscience experiments in the form of experimental trials. Thus, in this work we combine the ensemble method with a
recently proposed transfer entropy estimator to make transfer entropy estimation applicable to non-stationary time series.
We present an efficient implementation of the approach that is suitable for the increased computational demand of the
ensemble method’s practical application. In particular, we use a massively parallel implementation for a graphics processing
unit to handle the computationally most heavy aspects of the ensemble method for transfer entropy estimation. We test the
performance and robustness of our implementation on data from numerical simulations of stochastic processes. We also
demonstrate the applicability of the ensemble method to magnetoencephalographic data. While we mainly evaluate the
proposed method for neuroscience data, we expect it to be applicable in a variety of fields that are concerned with the
analysis of information transfer in complex biological, social, and artificial systems.
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Introduction

We typically think of the brain as some kind of information

processing system, albeit mostly without having a strict definition

of information processing in mind. However, more formal

accounts of information processing exist, and may be applied to

brain research. In efforts dating back to Alan Turing [1] it was

shown that any act of information processing can be broken down

into the three components of information storage, information

transfer, and information modification [1–4]. These components

can be easily identified in theoretical or technical information

processing systems, such as ordinary computers, based on the

specialized machinery for and the spatial separation of these

component functions. In these examples, a separation of the

components of information processing via a specialized mathe-

matical formalism seems almost superfluous. However, in biolog-

ical systems in general, and in the brain in particular, we deal with

a form of distributed information processing based on a large

number of interacting agents (neurons), and each agent at each

moment in time subserves any of the three component functions to

a varying degree (see [5] for an example of time-varying storage).

In neural systems it is indeed crucial to understand where and

when information storage, transfer and modification take place, to

constrain possible algorithms run by the system. While there is still

a struggle to properly define information modification [6,7] and its

proper measure [8–12], well established measures for (local active)

information storage [13], information transfer [14], and its

localization in time and space [15,16] exist, and are applied in

neuroscience (for information storage see [5,17,18], for informa-

tion transfer see below).

Especially the measure for information transfer, transfer entropy

(TE), has seen a dramatic surge of interest in neuroscience [19–

41], physiology [42–44], and other fields [6,15,31,45,46]. Never-

theless, conceptual and practical problems still exist. On the

conceptual side, information transfer has been for a while confused

with causal interactions, and only some recent studies [47–49]

made clear that there can be no one-to-one mapping between
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causal interactions and information transfer, because causal

interactions will subserve all three components of information

processing (transfer, storage, modification). However, it is infor-

mation transfer, rather than causal interactions, we might be

interested in when trying to understand a computational process in

the brain [48].

On the practical side, efforts to apply measures of information

transfer in neuroscience have been hampered by two obstacles: (1)

the need to analyze the information processing in a multivariate

manner, to arrive at unambiguous conclusions that are not

clouded by spurious traces of information transfer, e.g. due to

effects of cascades and common drivers; (2) the fact that available

estimators of information transfer typically require the processes

under investigation to be stationary.

The first obstacle can in principle be overcome by conditioning

TE on all other processes in a system, using a fully multivariate

approach that had already been formulated by Schreiber [14].

However, the naive application of this approach normally fails

because the samples available for estimation are typically too few.

Therefore, recently four approaches to build an approximate

representation of the information transfer network have been

suggested: Lizier and Rubinov [50], Faes and colleagues [44], and

Stramaglia and colleagues [51] presented algorithms for iterative

inclusion of processes into an approximate multivariate descrip-

tion. In the approach suggested by Stramaglia and colleagues,

conditional mutual information terms are additionally computed

at each level as a self-truncating series expansion, following a

suggestion by Bettencourt and colleagues [52]. In contrast to these

approaches that explicitly compute conditional TE terms, we

recently suggested an approximation based on a reconstruction of

information transfer delays [53] and a graphical pruning algorithm

[54]. While the first three approaches will eventually be closer to

the ground truth, the graphical method may be better applicable

to very limited amounts of data. In sum, the first problem of

multivariate analysis can be considered solved for practical

purposes, given enough data are available.

The second obstacle of dealing with non-stationary processes is

also not a fundamental one, as the definition of TE relies on the

availability of multiple realizations of (two or more) random

processes, that can be obtained by running an ensemble of many

identical copies of the processes in question, or by running one

process multiple times. Only when obtaining data from such

copies or repetitions is impossible, we have to turn to a stationarity

assumption in order to evaluate the necessary probability density

functions (PDF) based on a single realization.

Fortunately, in neuroscience we can often obtain many

realizations of the processes in question by repeating an

experiment. In fact, this is the typical procedure in neuroscience

- we repeat trials under conditions that are kept as constant as

possible (i.e we create a cyclostationary process). The possibility to

use such an ensemble of data to estimate the time resolved TE has

already been demonstrated theoretically by Gomez-Herrero and

colleagues [55]. Practically, however, the statistical testing

necessary for this ensemble-based method leads to an increase in

computational cost by several orders of magnitude, as some

shortcuts in statistical validation that can be taken for stationary

data cannot be used for the ensemble approach (see [56]): For

stationary data, TE is calculated per trial and one set of trial-based
surrogate data may be used for statistical testing. The ensemble

method does not allow for trial-based TE estimation as TE is

estimated across trials. Instead, the ensemble method requires the

generation of a sufficiently large number of surrogate data sets, for

all of which TE has to be estimated, thus multiplying the

computational demand by the number of surrogate data sets.

Therefore, the use of the ensemble method has remained a

theoretical possibility so far, especially in combination with the

nearest neighbor-based estimation techniques by Kraskov and

colleagues [57] that provide the most precise, yet computationally

most heavy TE estimates. For example, the analysis of magne-

toencephalographic data presented here would require a runtime

of 8200 h for 15 subjects and a single experimental condition. It is

easy to see that any practical application of the methods hinges on

a substantial speed-up of the computation.

Fortunately, the algorithms involved in ensemble-based TE

estimation, lend themselves easily to data-parallel processing, since

most of the algorithm’s fundamental parts can be computed

simultaneously. Thus, our problem matches the massively parallel

architecture of Graphics Processing Unit (GPU) devices well.

GPUs were originally devised only for computer graphics, but are

routinely used to speed up computations in many areas today

[58,59]. Also in neuroscience, where applied algorithms continue

to grow faster in complexity than the CPU performance, the use of

GPUs with data-parallel methods is becoming increasingly

important [60] and GPUs have successfully been used to speedup

time series analysis in neuroscientific experiments [61–66].

Thus, in order to overcome the limitations set by the

computational demands of TE analysis from an ensemble of data,

we developed a GPU implementation of the algorithm, where the

neighbor searches underlying the binless TE estimation [57] are

executed in parallel on the GPU. After parallelizing this

computationally most heavy aspect of TE estimation we were

able to use the ensemble method for TE estimation proposed by

[55], to estimate time-resolved TE from non-stationary neural

time-series in acceptable time. Using the new GPU-based TE

estimation tool on a high-end consumer graphics card reduced

computation time by a factor of 50 compared to the CPU

optimized TE search used previously [67]. In practical terms, this

speedup shortens the duration of an ensemble-based analysis for

typical neural data sets enough to make the application of the

ensemble method feasible for the first time.

Background

Our study focuses on making the application of ensemble-based

estimation of TE from non-stationary data practical using a GPU-

based algorithm. For the convenience of the reader, we will also

present the necessary background on stationarity, TE estimation

using the Kraskov-Stögbauer-Grassberger (KSG) estimator [19],

and the ensemble method of Gomez-Herrero et al. [55] in

condensed form in a short background section below. Readers well

familiar with these topics can safely skip ahead to the Implemen-
tation section below.

Notation
To describe practical TE estimation from time series recorded

in a system of interest X (e.g. a brain area), we first have to

formalize these recordings mathematically: We define an observed

time series x~(x1,x2, . . . ,xt, . . . ,xN ) as a realization of a random

process X~(X1,X2, . . . ,Xt, . . . ,XN ). A random process here is

simply a collection of individual random variables sorted by an

integer index t[f1, . . . ,Ng, representing time. TE or other

information theoretic functionals are then calculated from the

random variables’ joint PDFs pXsYt
(Xs~ai,Yt~bj) and condi-

tional PDFs pXs DYt
(Xs~ai DYt~bj) (with s,t[f1, . . . ,Ng), where

AXs
~fa1,a2, . . . ,ai, . . . ,aIg and BYt

~fb1,b2, . . . ,bj , . . . ,bJg are

all possible outcomes of the random variables Xs and Yt, and

where pXs DYt
(Xs~ai DYt~bj)~

pXsYt
(Xs~ai,Yt~bj)

pYt
(Yt~bj)

.

Non-Stationary Transfer Entropy
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We call information theoretic quantities functionals as they are

defined as functions that map from the space of PDFs to the real

numbers. If we have to estimate the underlying probabilities from

experimental data first, the mapping from the data to the

information theoretic quantity (a real number) is called an

estimator.

Stationarity and non-stationarity in experimental time
series
PDFs in neuroscience are typically not known a priori, so in

order to estimate information theoretic functionals, these PDFs

have to be reconstructed from a sufficient amount of observed

realizations of the process. How these realizations are obtained

from data depends on whether the process in question is stationary

or non-stationary. Stationarity of a process means that PDFs of the

random variables that form the random process do not change

over time, such that pXt
(Xt~aj)~pXt’

(Xt’~aj), Vt,t’[N. Any PDF

pXt
(:) may then be estimated from one observation of process X by

means of collecting realizations xt’ over time t’[f1, . . . ,Ng.
For processes that do not fulfill the stationarity-assumption,

temporal pooling is not applicable as PDFs vary over time t and

some random variables Xt, Xs (at least two) are associated with

different PDFs pXt
(:), pXs

(:) (Figure 1). To still gain the necessary

multiple observations of a random variable Xt we may resort to

either run multiple physical copies of the process X or – in cases

where physical copies are unavailable – we may repeat a process in

time. If we choose the number of repetitions large enough, i.e.

there is a sufficiently large set R of time points H, at which the

process is repeated, we can assume that

AR(N ^R=� : pXHzt
(aj)~pXH’zt

(aj)

Vt[N : tvmin DH{H’Dð Þ, VH,H’[R, Vaj[AXt ,
ð1Þ

i.e. PDFs pXHzt
(:) at time point t relative to the onset of the

repetition at H are equal over all R~DRD repetitions. We call the

repeated observations of a process an ensemble of time series. We

may obtain a reliable estimation of pXHzt
(:) from this ensemble by

evaluating p:(:) over all observations xHzt,VH[R. For the sake of

readability, we will refer to these observations from the ensemble

as xt(r), where t refers to a time point t, relative to the beginning

of the process at time H, and r~1, . . . ,R refers to the index of the

repetition. If a process is repeated periodically, i.e. the repetitions

are spaced by a fixed interval T , we call such a process

cyclostationary [68]:

AT : Vt pXt (aj)~pXnTzt
(aj) Vn, t[N, tvT , Vaj[AXt : ð2Þ

In neuroscience, ensemble evaluation for the estimation of

information theoretic functionals becomes relevant as physical

copies of a process are typically not available and stationarity of a

process can not necessarily be assumed. Gomez-Herrero and

colleagues recently showed how ensemble averaging may be used

to nevertheless estimate information theoretic functionals from

cyclostationary processes [55]. In neuroscience for example, a

cyclostationary process, and thus an ensemble of data, is obtained

by repeating an experimental manipulation, e.g. the presentation

of a stimulus; these repetitions are often called experimental trials.
In the remainder of this article, we will use the term repetition, and

interpret trials from a neuroscience experiment as a special case of

repetitions of a random process. Building on such repetitions, we

next demonstrate a computationally efficient approach to the

estimation of TE using the ensemble method proposed in [55].

Transfer entropy estimation from an ensemble of time
series

Ensemble-based TE functional. When independent repe-

titions of an experimental condition are available, it is possible to

use ensemble evaluation to estimate various PDFs from an

ensemble of repetitions of the time series [55]. By eliminating the

need for pooling data over time, and instead pooling over

repetitions, ensemble methods can be used to estimate information

theoretic functionals for non-stationary time series. Here, we

follow the approach of [55] and present an ensemble TE

functional that extends the TE functional presented in

[19,20,53] and also takes into account an extension of the original

formulation of TE, presented in [53], guaranteeing self prediction

optimality (indicated by the subscript SPO). In the next

subsection, we will then present a practical and data-efficient

estimator of this functional. The functional reads

TESPO X?Y ,t,uð Þ~I(Yt;X
dX
t{uDY

dY
t{1), ð3Þ

where I(:; :D:) is the conditional mutual information, and Yt, Y
dY
t{1,

and X
dX
t{u are the current value and the dY -dimensional past state

variables of the target process Y, and the dX -dimensional past state

variable at time t{u of the source process X, respectively (see next

paragraph for an explanation of states).

Rewriting this, taking into account repetitions r of the random

processes explicitly we obtain:

TESPO X?Y ,t,uð Þ~
X

yt(r),y
dY
t{1(r),x

dX
t{u(r)

[A
Yt,Y

dY
t{1

,X
dX
t{u

p yt(r),y
dY
t{1(r),x

dX
t{u(r)

� �

log
p yt(r)Dy

dY
t{1(r),x

dX
t{u(r)

� �

p yt(r)Dy
dY
t{1(r)

� �

ð4Þ

Here, u is the assumed delay of the information transfer

between processes X and Y [53]; yt(r) denotes the future

observation of Y in repetition r~1, . . . ,R; ydYt{1(r) denotes the

past state of Y in repetition r and xdXt{u(r) denotes the past state of

X in repetition r. Note, that the functional TESPO used here is a

modified form of the original TE formulation introduced by

Schreiber [14]. Schreiber defined TE as a conditional mutual

information TE X?Y ,tð Þ~I(Yt;X
dx
t{1DY

dy
t{1), whereas the func-

tional in eq. 3 implements the conditional mutual information

TESPO X?Y ,t,uð Þ~I(Yt;X
dx
t{uDY

dy
t{1) [53]. The latter functional,

TESPO, contains the definition of Schreiber as a special case for

u~1. Note that the two functionals are identical if TESPO is used

with the physically correct delay d (i.e. u~d) and a proper

embedding for the source, and the Schreiber measures is used with

an over-embedding such that the source state at (t{d) is still fully
covered by the source embedding.

In addition to the original formulation of TESPO in [53], here

we explicitly state that the necessary realizations of the random

variables in question are obtained through ensemble evaluation
over repetitions r – assuming the underlying processes to be

repeatable or cyclostationary. Furthermore, we note explicitly that

ð4Þ

Non-Stationary Transfer Entropy
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this ensemble-based functional introduces the possibility of time

resolved TE estimates.

We recently showed that the estimator presented in [53] can

also be used to recover an unknown information transfer delay d
between two processes X and Y , as TESPO X?Y ,t,uð Þ is maximal

when the assumed delay u is equal to the true information transfer

delay d [53]. This holds for the extended estimator presented here,

thus

d~ argmax
u

TESPO X?Y ,t,uð Þð Þ: ð5Þ

State space reconstruction and practical

estimator. Transfer entropy differs from the lagged mutual

information I(Yt;X
dx
t{u) by the additional conditioning on the past

of the target time series, YdY
t{1. This additional conditioning serves

two important functions. First, as mentioned already by Schreiber

in the original paper [14], and later detailed by Lizier [4] and

Wibral and colleagues [39,53], it removes the information about

the future of the target time-series Yt that is already contained in

its own past, YdY
t{1. Second, this additional conditioning allows for

a discovery of information transfer from the source XdX
t{u to the

target that can only be seen when taking into account information

from the past of the target YdY
t{1 [69]. In the second case, the past

information from the target serves to ‘decode’ this information

transfer, and acts like a key in cryptography. As a consequence of

this importance of the past of the target process it is very important

Figure 1. Pooling of data over an ensemble of time series for transfer entropy (TE) estimation. (A) Schematic account of TE. Two scalar
time series Xr and Yr recorded from the rth repetition of processes X and Y , coupled with a delay d (indicated by green arrow). Colored boxes

indicate delay embedded states xdXt{u(r), y
dY
t{1(r) for both time series with dimension dX~dY~3 samples (colored dots). The star on the Y time series

indicates the scalar observation yt that is obtained at the target time of information transfer t. The red arrow indicates self-information-transfer from

the past of the target process to the random variable Yt at the target time. u is chosen such that u~d and influences of the state x
dX
t{u(r) arrive

exactly at the information target variable Yt . Information in the past state of X is useful to predict the future value of Y and we obtain nonzero TE. (B)

To estimate probability density functions for xdXt{u(r), y
dY
t{1(r) and yt(r) at a certain point in time t, we collect their realizations from observed

repetitions r~1, . . . ,R. (C) Realizations for a single repetition are concatenated into one embedding vector and (D) combined into one ensemble
state space. Note, that data are pooled over the ensemble of data instead of time. Nearest neighbor counts within the ensemble state space can then
be used to derive TE using the Kraskov-estimator proposed in [57].
doi:10.1371/journal.pone.0102833.g001
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to take all the necessary information in this past into account when

evaluating the TE as in equation 4.

To this end we need to form a collection of past random

variables

Y
dY
t{1~(Yt{1,Yt{1{t, . . . ,Yt{1{(dY{1)t), ð6Þ

such that their realizations,

y
dY
t{1(r)~(yt{1(r),yt{1{t, . . . ,yt{1{(dY{1)t), ð7Þ

are maximally informative about the future of the target process,

Yt.

This task is complicated by the fact the we often deal with

multidimensional systems, of which we only observe a scalar

variable (here modeled as our random processes X,Y). To see this,

think for example of a pendulum (which is a two dimensional

system) of which we record only the current position Yt. If the

pendulum is at its lowest point, it could be standing still, going left,

or going right. To properly describe which state the pendulum is

in, we need to know at least the realization of one more random

variable Yt{1 back in time. Collections of such past random

variables whose realizations uniquely describe the state of a

process are called state variables.
Such a sufficient collection of past variables, called a delay

embedding vector, can always be reconstructed from scalar

observations for low dimensional deterministic systems, such as

the above pendulum, as shown by Takens [70]. Unfortunately,

most real world systems are high-dimensional stochastic dynamic

systems (best described by non-linear Langevin equations) rather

than low-dimensional deterministic ones. For these systems it is not

obvious that a delay embedding similar to Takens’ approach

would yield the desired results. In fact, many systems can be shown

to require an infinite number of past random variables when only

a scalar observable of the high-dimensional stochastic process is

accessible. Nevertheless, as shown by Ragwitz and Kantz [71], the

behavior of scalar observables of most of these systems can be

approximated very well by a finite collection of such past variables

for all practical purposes; in other words, these systems can be

approximated well by a finite order, one-dimensional Markov-

process.

For practical TE estimation using equation 4, we therefore

proceed by first reconstructing the state variables of such

approximated Markov processes for the two systems X , Y from

their scalar time series. Then, we use the statistics of nearest

ensemble neighbors with a modified KSG estimator for TE

evaluation [57].

Thus, we select a delay embedding vector of the form

YdY
t{1~(Yt{1,Yt{1{t, . . . ,Yt{1{(dY{1)t) from equation 6 as our

collection of past random variables – with realizations in repetition r

given by y
dY
t{1(r)~(yt{1(r),yt{1{t, . . . ,yt{1{(dY{1)t). Here, dY is

called the embedding dimension and t the embedding delay. These

embedding parameters dY and �t, are chosen such that they

optimize a local predictor [71], as this avoids an overestimation of

TE [53]; other approaches related to minimizing non-linear

prediction errors are also possible [44]. In particular, dY :t is chosen

such that YdY
t is conditionally independent of any YdY

e with

evt{d:t given YdY
t{1. The same is done for the process X at time

t{u.

Next, we decompose TESPO into a sum of four individual

Shannon entropies:

TESPO X?Y ,t,uð Þ~H Y
dY
t{1,X

dX
t{u

� �

{H Yt,Y
dY
t{1,X

dX
t{u

� �

zH Yt,Y
dY
t{1

� �

{H Y
dY
t{1

� �

,
ð8Þ

The Shannon differential entropies in equation 8 can be

estimated in a data efficient way using nearest neighbor techniques

[72,73]. Nearest neighbor estimators yield a non-parametric

estimate of entropies, assuming only a smoothness of the

underlying PDF. It is however problematic to simply apply a

nearest neighbor estimator (for example the Kozachenko-Leo-

nenko estimator [72]) to each term appearing in eq. 8. This is

because the dimensionality of each space associated with the terms

differs largely over terms. Thus, a fixed number of neighbors for

the search would lead to very different spatial scales (range of

distances) for each term. Since the error bias of each term is

dependent on these scales, the errors would not cancel each other

but accumulate. We therefore use a modified KSG estimator

which handles this problem by only fixing the number of

neighbors k in the highest dimensional space (k-nearest neighbor

search, kNNS) and by projecting the resulting distances to the

lower dimensional spaces as the range to look for and count

neighbors there (range search, RS) (see [57], type 1 estimator, and

[56,74]). In the ensemble variant of TE estimation we proceed by

searching for nearest neighbors across points from all repetitions

instead of searching the same repetition as the point of reference of

the search – thus we form an ensemble search space by combining

points over repetitions. Finally, the ensemble estimator of TE

reads

TESPO X?Y ,t,uð Þ~y kð ÞzSy n
y
dY
t{1

(r)
z1

� �

{y n
yt(r) y

dY
t{1

(r)
z1

� �

{y n
y
dY
t{1

(r) x
dX
t{u

(r)
z1

� �

T
r ,

ð9Þ

where y denotes the digamma function and the angle brackets

(v:wr) indicate an averaging over points in different repetitions r

at time instant t. The distances to the k-th nearest neighbor in the

highest dimensional space (spanned by Yt,Y
dY
t{1,X

dX
t{u) define the

radius of the spheres for the counting of the number of points (n:)

in these spheres around each state vector (:) involved.

In cases where the number of repetitions is not sufficient to

provide the necessary amount of data to reliably estimate Shannon

entropies through an ensemble average, one may combine

ensemble evaluation with collecting realizations over time. In

these cases, we count neighbors in a time window t’[½t{,tz� with
t{ƒt’ƒtz, where Dt~tz{t{ controls the temporal resolution

of the TE estimation:

TESPO X?Y ,t’,uð Þ~y kð ÞzSy n
y
dY
t’{1

(r)
z1

� �

{y n
yt’(r) y

dY
t’{1

(r)
z1

� �

{y n
y
dY
t’{1

(r) x
dX
t’{u

(r)
z1

� �

T
r,t’

:

ð10Þ
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Implementation

The estimation of TE from finite time series consists of the

estimation of joint and marginal entropies as shown in equations 9

and 10, calculated from nearest neighbor statistics, i.e. distances

and the count of neighbors within these distances. In practice we

obtain these neighbor counts by applying kNNS and RS to

reconstructed state spaces. In particular, we use a kNNS in the

highest dimensional space to determine the k-th nearest neighbor

of a data point and the associated distance. This distance is then

used as the range for the RS in the marginal spaces, that return the

point counts n. Both searches have a high computational cost.

This cost increases even further in a practical setting, where we

need to calculate TE for a sufficient number of surrogate data sets

for statistical testing (see [19] and below for details). To enable TE

estimation and statistical testing despite its computational cost, we

implemented ad-hoc kNNS and RS algorithms in NVIDIAH

CUDATM C/C++ code [75]. This allows to run thousands of

searches in parallel on a modern GPU.

To allow for a better understanding of the parallelization used,

we will now briefly describe the main work flow of TE analysis in

the open source MathWorksH MATLABH toolbox TRENTOOL

[56], which implements the approach to TE estimation described

in the Background section. The work flow includes the steps of

data preprocessing prior to the use of the GPU algorithm for

neighbor searches as well as the statistical testing of resulting TE

values. In a subsequent section we will describe the core

implementation of the algorithm in more detail and present its

integration into TRENTOOL.

Main analysis work flow in TRENTOOL
Practical TE estimation in TRENTOOL. The practical

GPU-based TE estimation in TRENTOOL 3.0 is divided into the

two steps of data preparation and TE estimation (see Figure 2 and

the TRENTOOL 3.0 manual: http: www.trentool.de). As a first

step, data is prepared by optimizing embedding parameters for

state space reconstruction (Figure 2, panel A). As a second step,

TE is estimated by following the approach for ensemble-based TE

estimation lined out in the preceding section (Figure 2, panel B).

Figure 2. Transfer entropy estimation using the ensemble
method in TRENTOOL 3.0. (A) Data preparation and optimization of
embedding parameters in function TEprepare.m ; (B) transfer
e n t r o p y ( T E ) e s t i m a t i o n f r om p r e p a r e d d a t a i n
TEsurrogatestats_ensemble.m (yellow boxes indicate variables
being passed between sub-functions). TE is estimated via iterating over
all channel combinations provided in the data. For each channel
combination: (1) Data is embedded individually per repetition and
combined over repetitions into one ensemble state space (chunk), (2) S
surrogate data sets are created by shuffling the repetitions of the target
time series, (3) each surrogate data set is embedded per repetition and
combined into one chunk (forming S chunks in total), (4) Sz1 chunks
of original and surrogate data are passed to the GPU where nearest
neighbor searches are conducted in parallel, (5) calculation of TE values
from returned neighbor counts for original data and S surrogate data
sets using the KSG-estimator [57], (6) statistical testing of original TE
value against distribution of surrogate TE values; (C) output of
TEsurrogatestats_ensemble.m, an array with dimension [no.
channels|5], where rows hold results for all channel combinations: (1)
p-value of TE for this channel combination, (2) significance at the
designated alpha level (1 - significant, 0 - not significant), (3)
significance after correction for multiple comparisons, (4) absolute
difference between the TE value for original data and the median of
surrogate TE values, (5) presence of volume conduction (this is always
set to 0 when using the ensemble method as instantaneous mixing is
by default controlled for by conditioning on the current state of the
source time series xt(r) [119]).
doi:10.1371/journal.pone.0102833.g002
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TRENTOOL estimates TESPO X?Y ,t,uð Þ (eq. 4) for a given pair

of processes X and Y and given values for u and t. For each pair,

we call X the source and Y the target process.

After data preparation TESPO X?Y ,t,uð Þ (eq. 9 and 10) is

estimated in six steps: (1) using optimized embedding parameters,

original data is embedded per repetition and repetitions are

concatenated forming the ensemble search space of the original

data, (2) S sets of surrogate data are created from the original data

by shuffling the repetitions of the target process Y , (3) each

surrogate dataset is embedded per repetition and concatenated

forming S additional ensemble search spaces for surrogate data, (4)

all Sz1 search spaces of embedded original and surrogate data

are passed to a wrapper function that calls the GPU functions to

perform individual neighbor searches for each search space in

parallel (in the following, we will refer to each of the Sz1

ensembles as one data chunk), (5) TE values are calculated for

original and surrogate data chunks from the neighbor counts using

the KSG- estimator [57], (6) TE values for original data are tested

statistically against the distribution of surrogate TE values.

The proposed GPU algorithm is accessed in step (4). As we will

further explain below (see paragraph on Input data), the GPU

implementation uses the fact that all of the necessary computations

on surrogate data sets and the original data are independent and

can thus be performed in parallel.

TE calculation and statistical testing against surrogate

data. Estimated TE values need to be tested for their statistical

significance [56] (step (6) of the main TRENTOOL work flow).

For this statistical test under a null hypothesis of no information

transfer between a source X and target time series Y , we estimate

TESPO X?Y ,t,uð Þ and compare it to a distribution of TE values

calculated from surrogate data sets. Surrogate data sets are formed

by shuffling repetitions in Y to obtain Y ’, such that

ydYt (r)?ydYt (w(r)) and yt(r)?yt(w(r)), where w denotes a random

permutation of the repetitions r (Figure 3). From this surrogate

data set, we calculate surrogate TE values TESPO X?Y ’,t,uð Þ. By
repeating this process a sufficient number of times S, we obtain a

distribution of values TESPO X?Y ’,t,uð Þ. To asses the statistical

significance of TESPO X?Y ,t,uð Þ, we calculate a p-value as the

proportion of surrogate TE values TESPO X?Y ’,t,uð Þ equal or

larger than TESPO X?Y ,t,uð Þ. This p-value is then compared to a

critical alpha level (see for example [56,76]).

Reconstruction of information transfer delays. TESPO

X?Y ,t,uð Þ may be used to reconstruct the interaction transfer

delay dXY betweenX andY (eq. 5, [53]). dXY may be reconstructed

by scanning possible values for u: TESPO X?Y ,t,uð Þ is estimated

for all values in u; The value that maximizes the TESPO X?Y ,t,uð Þ
is kept as the reconstructed information transfer delay. We used the

reconstruction of information transfer delays as an additional

parameter when testing the proposed implementation for correct-

ness and robustness.

Implementation of the GPU algorithm
Parallelized nearest neighbor searches. The KSG esti-

mator used for estimating TESPO X?Y ,t,uð Þ in eq. 9 and 10 uses

neighbor (distance-)statistics obtained from kNNS and RS

algorithms to estimate Shannon differential entropies. Thus, the

choice of computationally efficient kNNS and RS algorithms is

crucial to any practical implementation of the TESPO estimator.

kNNS algorithms typically return a list of the k nearest neighbors

for each reference point, while RS algorithms typically return a list

of all neighbors within a given range for each reference point.

kNNS and RS algorithms have been studied extensively because of

their broad potential for application in nearest neighbor searches

and related problems. Several approaches have been proposed to

reduce their high computational cost: partitioning of input data

into k-d Trees, Quadtrees or equivalent data structures [77] or

approximation algorithms (ANN: Approximate Nearest Neigh-

bors) [78,79]. Furthermore, some authors have explored how to

parallelize the kNNS algorithm on a GPU using different

implementations: exhaustive brute force searches [80,81], tree-

based searches [82,83] and ANN searches [83,84].

Although performance of existing implementations of kNNS for

GPU was promising, they were not applicable to TE estimation.

The most critical reason was that existing implementations did not

allow for the concurrent treatment of several problem instances by

the GPU and maximum performance was only achieved for very

Figure 3. Creation of surrogate data sets. (A) Original time series with information transfer (solid arrow) from a source state xdx(t{u)(r) to a

corresponding target time point yt(r), given the time point’s history y
dy
(t{1)(r). Solid arrows indicate the direction of transfer entropy (TE) analysis,

while information transfer is present. (B) Shuffled target time series, repetitions are permutes, such that yt(w(r)) and y
dy
(t{1)(w(r)), where w denotes a

random permutation. Dashed arrows indicate the direction of TE analysis, while no more information flow is present.
doi:10.1371/journal.pone.0102833.g003
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large kNNS problem instances. Unfortunately, the problem

instances typically expected in our application are numerous (i.e.

Sz1 problem instances per pair of time series), but rather small

compared to the main memory on a typical GPU device in use

today. Thus, an implementation that handled only one instance at

a time would not have made optimal use of the underlying

hardware. Therefore, we designed an implementation that is able

to handle several problem instances at once to perform neighbor

searches for chunks of embedded original and surrogate data in

parallel. Moreover, we aimed at a flexible GPU implementation of

kNNS and RS that maximized the use of the GPU’s hardware

resources for variable configurations of data – thus making the

implementation independent of the design of the neuroscientific

experiment.

Our implementation is written in CUDA (Compute Unified

Device Architecture) [75] (a port to OpenCLTM [85] is work in

progress). CUDA is a parallel computing framework created by

NVIDIA that includes extensions to high level languages such as

C/C++, giving access to the native instruction set and memory of

the parallel computational elements in CUDA enabled GPUs.

Accelerating an algorithm using CUDA includes translating it into

data-parallel sequences of operations and then carefully mapping

these operations to the underlying resources to get maximum

performance [58,59]. To understand the implementation suggest-

ed here, we will give a brief explanation of these resources, i.e. the

GPU’s hardware architecture, before explaining the implementa-

tion in more detail (additionally, see [58,59,75]).

GPU resources. GPU resources comprise of massively

parallel processors with up to thousands of cores (processing

units). These cores are divided among Stream Multiprocessors

(SMs) in order to guarantee automatic scalability of the algorithms

to different versions of the hardware. Each SM contains 32 to 192

cores that execute operations described in the CUDA kernel code.

Operations executed by one core are called a CUDA thread.

Threads are grouped in blocks, which are in turn organized in a

grid. The grid is the entry point to the GPU resources. It handles

one kernel call at a time and executes it on multiple data in

parallel. Within the grid, each block of threads is executed by one

SM. The SM executes the threads of a block by issuing them in

groups of 32 threads, called warps. Threads within one warp are

executed concurrently, while as many warps as possible are

scheduled per SM to be resident at a time, such that the utilization

of all the cores is maximized.

Input data. As input, the proposed RS and kNNS algorithms

expect a set of data points representing the search space and a

second set of data points that serve as reference points in the

searches. One such problem instance is considered one data

chunk. Our implementation is able to handle several data chunks

simultaneously to make maximum use of the GPU resources.

Thus, several chunks may be combined, using an additional index

vector to encode the sizes of individual chunks. These chunks are

then passed at once to the GPU algorithm to be searched in

parallel.

In the estimation of TESPO X?Y ,t,uð Þ, according to the work

flow described in paragraph Practical TE estimation in TREN-
TOOL, we used the proposed implementation to parallelize

neighbor searches over surrogate data sets for a given pair of time

series x and y and given values for u and t. Thus, in one call to the

GPU algorithms Sz1 data chunks were passed as input, where

chunks represented the search space for the original pair of time

series and S search spaces for corresponding surrogate data sets.

Points within the search spaces may have either been collected

through temporal or ensemble pooling of embedded data points or

a combination of both (eq. 9 or 10).

Core algorithm. In the core GPU-based search algorithm,

the kNNS implementation is mapped to CUDA threads as

depicted in Figure 4 (the RS implementation behaves similarly).

Each chunk consists of a set of data points that represents the

Figure 4. GPU implementation of the parallelized nearest neighbor search in TRENTOOL 3.0 Chunks of data are prepared on the CPU
(embedding and concatenation) and passed to the GPU. Data points are managed in the global memory as Structures of Arrays (SoA). To make
maximum use of the memory bandwidth, data is padded to ensure coalesced reading and writing from and to the streaming multiprocessor (SM)
units. Each SM handles one chunk in one thread block (dashed box). One block conducts brute force neighbor searches for all data points in the
chunk and collects results in its shared memory (red and blue arrows and shaded areas). Results are eventually returned to the CPU.
doi:10.1371/journal.pone.0102833.g004
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search space and are at the same time used as reference points for

individual searches. Each individual search is handled by one

CUDA thread. Parallelization of these searches on the GPU

happens in two ways: (1) the GPU algorithm is able to handle

several chunks, (2) each chunk can be searched in parallel, such

that individual searches within one chunk are handled simulta-

neously. An individual search is conducted by a CUDA thread by

brute-force measuring the infinity norm distance of the given

reference point to any other point within the same chunk.

Simultaneously, other threads measure these distances for other

points in the same chunk or handle a different chunk altogether.

Searching several chunks in parallel is an essential feature of the

proposed solution, that maximizes the utilization of GPU

resources. From the GPU execution point of view, simultaneous

searches are realized by handling a variable number of kNNS (or

RS) problem instances through one grid launch. The number of

searches that can be executed in parallel is thus only limited by the

device’s global memory that holds the input data and the number

of threads that can be started simultaneously (both limitations are

taken into account). Furthermore, the solution is implemented

such that optimal performance is guaranteed.

Low-level implementation details. There are several

strategies that are essential for optimal performance when

implementing algorithms for GPU devices. Most important are

the reduction of memory latencies and the optimal use of

hardware resources by ensuring high occupancy (the ratio of

number of active warps per SM to the maximum number of

possible active warps [58]). To maximize occupancy, we designed

our algorithm’s kernels such that always more than one block of

threads (ideally many) are loaded per SM [58]. We can do this

since many searches are executed concurrently in every kernel

launch. By maximizing occupancy, we both ensure hardware

utilization and improve performance by hiding data memory

latency from the GPU’s global memory to the SMs’ registers [75].

Moreover, in order to reduce memory latencies we take care of

input data memory alignment and guarantee that memory

readings issued by the threads of a warp are coalesced into as

few memory transfers as possible. Additionally, with the aim of

minimizing sparse data accesses to memory, data points are

organized as Structures of Arrays (SoA). Finally, we use the shared

memory inside the SMs (a self-programmed intermediate cache

between global memory and SMs) to keep track of nearest

neighbors associated information during searches. The amount of

shared memory and registers is limited in a SM. The maximum

possible occupancy depends on the number of registers and shared

memory needed by a block, which in turn depends on the number

of threads in the block. For our implementation, we used a suitable

block size of 512 threads.

Implementation interface. The GPU functionality is ac-

cessed through MATLAB scripts for kNNS (‘fnearneigh_gpu.-

mex’) and RS (‘range_search_all_gpu.mex’), which encapsulate all

the associated complexity. Both scripts are called from TREN-

TOOL using a wrapper function. In its current implementation in

TRENTOOL (see paragraph Practical TE estimation in TREN-
TOOL), the wrapper function takes all Sz1 chunks as input and

launches a kernel that searches all chunks in parallel through the

mex-files for kNNS and RS. The wrapper makes sure that the

input size does not exceed the GPU device’s available global

memory and the maximum number of threads that can be started

simultaneously. If necessary, the wrapper function splits the input

into several kernel calls; it also manages the output, i.e. the

neighbor counts for each chunk, which are passed on for TE

calculation.

Evaluation

To evaluate the proposed algorithm we investigated four

properties: first, whether the speedup is sufficient to allow the

application of the method to real-world neural datasets; second,

the correctness of results on simulated data, where the ground

truth is known; third, the robustness of the algorithm for limited

sample sizes; fourth, whether plausible results are achieved on a

neural example dataset.

Ethics statement
The neural example dataset was taken from an experiment

described in [86]. All subjects gave written informed consent

before the experiment. The study was approved by the local ethics

committee (Johann Wolfgang Goethe University, Frankfurt,

Germany).

Evaluation of computational speedup
To test for an increase in performance due to the parallelization

of neighbor searches, we compared practical execution times of

the proposed GPU implementation to execution times of the serial

kNNS and RS algorithms implemented in the MATLAB toolbox

TSTOOL (http: www.dpi.physik.uni-goettingen.de/tstool/). This

toolbox wraps a FORTRAN implementation of kNNS and RS,

and has proven the fastest CPU toolbox for our purpose. All

testing was done in MATLAB 2008b (MATLAB 7.7, The

MathWorks Inc., Natick, MA, 2008). As input, we used increasing

numbers of chunks of simulated data from two coupled Lorenz

systems, further described below. Repetitions of simulated time

series were embedded and combined to form ensemble state

spaces, i.e. chunks of data (c.f. paragraph Input Data). To obtain

increasing input sizes, we duplicated these chunks the desired

number of times. While the CPU implementation needed to

iteratively perform searches on individual chunks, the GPU

implementation searched chunks in parallel (note that chunks

are treated independently here, so that there is no speedup

Figure 5. Practical performance measures of the ensemble
method for GPU compared to CPU. Combined execution times in s
for serial and parallel implementations of k-nearest neighbor and range
search as a function of input size (number of data chunks). Execution
times were measured for the serial implementation running on a CPU
(black) and for our parallel implementation using one of three GPU
devices (blue, red, green) of varying computing power. Computation
using a GPU was considerably faster than using a CPU (by factors 22, 33
and 50 respectively).
doi:10.1371/journal.pone.0102833.g005
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because of the duplicated chunk data). Note that for both, CPU

and GPU implementations, data handling prior to nearest

neighbor searches is identical. We were thus able to confine the

testing of performance differences to the respective kNNS and RS

algorithms only, as all data handling prior to nearest neighbor

searches was conducted using the same, highly optimized

TRENTOOL functionalities.

Analogous to TE estimation implemented in TRENTOOL, we

conducted one kNNS (with k~4, TRENTOOL default, see also

[87]) in the highest dimensional space and used the returned

distances for a RS in one lower dimensional space. Both functions

were called for increasing numbers of chunks to obtain the

execution time as a function of input size. One chunk of data from

the highest dimensional space had dimensions [30094|17] and

size 1.952 MB (single precision); one chunk of data from the lower

dimensional space had dimensions [30094|8] and size 0.918 MB

(single precision). Performance testing of the serial implementation

was carried out on an Intel Xeon CPU (E5540, clocked at

2.53 GHz), where we measured execution times of the TSTOOL

kNNS (functions ‘nn_prepare.m’ and ‘nn_search.m’) and the

TSTOOL RS (function ‘range_search.m’). Testing of the parallel

implementation was carried out three times on GPU devices of

varying processing power (NVIDIA Tesla C2075, GeForce GTX

580 and GeForce GTX Titan). On the GPUs, we measured

execution times for the proposed kNNS (‘fnearneigh_gpu.mex’)

and RS (‘range_search_all_gpu.mex’) implementation. When the

GPU’s global memory capacity was exceeded by higher input

sizes, data was split and computed over several runs (i.e. calls to

the GPU). All performance testing was done by measuring

execution times using the MATLAB functions tic and toc.

To obtain reliable results for the serial implementation we ran

both kNNS and RS 200 times on the data, receiving an average

execution time of 1.26 s for kNNS and an average execution time

of 24.1 s for RS. We extrapolated these execution times to higher

numbers of chunks and compared them to measured execution

times of the parallel searches on three NVIDIA GPU devices. On

average, execution times on the GPU compared to the CPU were

faster by a factor of 22 on the NVIDIA Tesla C2075, by a factor of

33 for the NVIDIA GTX 580 and by a factor of 50 for the

NVIDIA GTX Titan (Figure 5).

To put these numbers into perspective, we note that in a

neuroscience experiment the number of chunks to be processed is

the product of (typical numbers): channel pairs for TE (100) *

number of surrogate data sets (1000) * experimental conditions (4)

* number of subjects (15). This results in a total computational

load on the order of 6 � 106 chunks to be processed. Given an

execution time of 24.1 s/50 on the NVIDIA GTX Titan for a

typical test dataset, these computations will take 2:9 � 106 s or 4.8
weeks on a single GPU, which is feasible compared to the initial

duration of 240 weeks on a single CPU. Even when considering a

trivial parallelization of the computations over multiple CPU cores

and CPUs, the GPU based solution is by far more cost and energy

efficient than any possible CPU-based solution. If in addition a

scanning of various possible information transfer delays is

important, then parallelization over multiple GPUs seems to be

the only viable option.

Evaluation on Lorenz systems
To test the ability of the presented implementation to

successfully reconstruct information transfer between systems with

a non-stationary coupling, we simulated various coupling scenarios

between stochastic and deterministic systems. We introduced non-

stationary into the coupling of two processes by varying the

coupling strength over the course of a repetition (all other

parameters were held constant). Simulations for individual

scenarios are described in detail below. For the estimation of TE

we used MathWork’s MATLAB, and the TRENTOOL toolbox

extended by the implementation of the ensemble method proposed

above (version 3.0, see also [56] and http: www.trentool.de). For a

detailed testing of the used estimator TESPO (eq. 4) refer to [53].

Coupled Lorenz systems. Simulated data was taken from

two unidirectionally coupled Lorenz systems labeled X and Y .

Systems interacted in direction X?Y according to equations:

_UU i(t)~s(Vi(t){Ui(t)),

_VV i(t)~Ui(t)(ri{Wi(t)){Vi(t)z
X

i,j~X ,Y

cijV
2
j (t{dij),

_WW i(t)~Ui(t)Vi(t){bWi(t) ,

ð11Þ

Figure 6. Transfer entropy reconstruction from non-stationary Lorenz systems. We used two dynamically coupled Lorenz systems (A) to
simulate non-stationarity in data generating processes. A coupling cXY~0:3 was present during a time interval from 1000 to 2000 ms only (cXY~0
otherwise). The information transfer delay was set to dXY~45ms. Transfer entropy (TE) values were reconstructed using the ensemble method
combined with the scanning approach proposed in [53] to reconstruct information transfer delays. Assumed delays u were scanned from 35 to 55 ms
(1 ms resolution). In (B) the maximum TE values for original data over this interval are shown in blue. Red bars indicate the corresponding mean over
surrogate TE values (error bars indicate 1 SD). Significant TE was found for the second time window only; here, the delay was reconstructed as
u~49ms.
doi:10.1371/journal.pone.0102833.g006
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where i,j~X ,Y , dij is the coupling delay and cij is the coupling

strength; s, r and b are the Prandtl number, the Rayleigh number,
and a geometrical scale. Note, that cYX~cXX~cYY~0 for the

test cases (no self feedback, no coupling from Y to X ). Numerical

solutions to these differential equations were computed using the

dde23 solver in MATLAB and results were resampled such that

the delays amounted to the values given below. For analysis

purposes we analyzed the V-coordinates of the systems.

We introduced non-stationarity in the coupling between both

systems by varying the coupling strength c over time. In particular,

a coupling cXY~0:3 was set for a limited time interval only,

whereas before and after the coupling interval cXY was set to 0. A

constant information transfer delay dXY~45ms was simulated for

the whole coupling interval. We simulated 150 repetitions with

3000 data points each, with a coupling interval from approxi-

mately 1000 to 2000 data points (see Figure 6, panel A).

For each scenario, 500 surrogate data sets were computed to

allow for statistical testing of the reconstructed information

transfer. Surrogate data were created by permutation of data

points in blocks of the target time series (Figure 3), leaving each

repetition intact. The value k for the nearest neighbor search was

set to 4 for all analyses (TRENTOOL default, see also [87]).

Results. We analyzed data from three time windows from

200 to 450 ms, 1600 to 1850 ms and 2750 to 3000 ms using the

estimator proposed in eq. 10 with Dt~250ms, assuming local

stationarity (Figure 6, panel A). For each time window, we

scanned assumed delays in the interval u~½35,55�. Figure 6,

panel B, shows the maximum TE value from original data (blue)

over all assumed u and the corresponding mean surrogate TE

value (red). Significant differences between original TE and

surrogate TE were found in the second time window only

(indicated by an asterisk). No significant information transfer was

found during the non-coupling intervals. The information transfer

delay reconstructed for the second analysis window was 49 ms

(true information transfer delay dXY~45ms). Thus, the proposed

implementation was able to reliably detect a coupling between

both systems and reconstructed the corresponding information

transfer delay with an error of less than 10%.

Evaluation on autoregressive processes
To asses the performance of the proposed implementation on

non-abrupt changes in coupling, we simulated various coupling

scenarios for two autoregressive processes X , Y of order 1 (AR(1)-

processes) with variable couplings over time. In each scenario,

couplings were modulated using hyperbolic functions to realize a

smooth transition between uncoupled and coupled regimes. The

AR(1)-processes were simulated according to the equations

x(t)~aXx(t{1)zcYX (t)y(t{dYX )zgX (t), ð12Þ

y(t)~aYy(t{1)zcXY (t)x(t{dXY )zgY (t), ð13Þ

where aX , aY are the AR parameters, cYX (t), cXY (t) denote

coupling strength, dYX , dXY are the coupling delays and gX , gY
denote uncorrelated, unit-variance, zero-mean Gaussian white

noise terms.

Simulated coupling scenarios. We simulated three cou-

pling scenarios, where the coupling varied in strength over the

course of a repetition (duration 3000 ms): (1) unidirectional

coupling X?Y with a coupling onset around 1000 ms; (2)

unidirectional coupling with a two-step increase in coupling X?Y

at around 1000 ms and around 2000 ms; (3) bidirectional coupling

X?Y with onset around 1000 ms and Y?X with onset around

2000 ms. See table 1 for specific parameter values used in each

scenario.

We realized a varying coupling strength cXY (t) (and cYX (t) for
scenario (3)) by modulating coupling parameters bYX , bXY with a

hyperbolic tangent function. No coupling was realized by setting

b:~0. For scenarios (1) and (3) we used the coupling

cYX~bYX � 0:5 1z tanh 0:05(t{2000)½ �ð Þ ð14Þ

cXY~bXY � 0:5 1z tanh 0:05(t{1000)½ �ð Þ, ð15Þ

where 0.05 was the slope and 2000 and 1000 are the inflection

points of the hyperbolic tangent respectively. Note that we

additionally scaled the tanh function such that function value

ranged from 0 to 1. For coupling scenario (2), the two-step increase

in cXY was expressed as:

cXY~bXY � 0:5 0:5 1z tanh 0:05(t{1000)½ �ð Þ½

z0:5 1z tanh 0:05(t{2000)½ �ð Þ�
ð16Þ

We chose the arguments of the hyperbolic function such that

the function’s slope led to a smooth increase in the coupling over

an epoch of approximately 200 ms around the inflection points at

1 and 2 s respectively (Figure 7, panels A–D). For each scenario,

we simulated 50 trials of length 3000 ms with a sampling rate of

1000 Hz. We then estimated time resolved TE for analysis

windows of length Dt~300ms. Again, we mixed temporal and

ensemble pooling according to eq. 10. For the scenario with

unidirectional coupling (1) we used four analysis windows to cover

the change in coupling (from 0.2 to 0.5 s, 0.5 to 0.8 s, 0.8 to 1.1 s,

and 1.1 to 1.4 s, see Figure 7, panel E), for the two-step increase

Table 1. Parameter settings for simulated autoregressive processes.

Testcase aX aY bYX bXY dYX dXY

Unidirectional 0.75 0.35 0 20.35 0 10

Two-step
unidirectional

0.75 0.35 0 20.35 0 10

Bidirectional 0.475 0.35 20.4 20.35 20 10

doi:10.1371/journal.pone.0102833.t001
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(2) and bidirectional (3) scenarios, we used eight analysis windows

each (from 0.2 to 0.5 s, 0.5 to 0.8 s, 0.8 to 1.1 s, 1.1 to 1.4 s, 1.4 to

1.7 s, 1.7 to 2.0 s, 2.0 to 2.3 s, and 2.3 to 2.6 s, see Figure 7,

panels F and G). As for the Lorenz systems, 500 surrogate data sets

were used for the statistical testing in each analysis. Surrogate data

were created by blockwise (i.e. repetitionwise) permutation of data

points in the target time series. The value k for the nearest

neighbor search was set to 4 for all analyses (TRENTOOL

default, see also [87]).

Results – Scenario (1), unidirectional coupling. For

scenario (1) of two unidirectionally coupled AR(1)-processes with

a delay dXY~10ms, we used a scanning approach [53] to

reconstruct TE and the corresponding information transfer delay.

We scanned assumed delays in the interval u~½1,20� and used

four analysis windows of length 300 ms each, ranging from 0.2 to

1.4 s. For the first two analysis windows, no significant information

transfer was found (0.2 to 0.5 and 0.5 to 0.8 s). For the third and

fourth analysis window we detected significant TE, where we

found a maximum significant TE value at 7 ms for the third

analysis window (0.8 to 1.1 s) and a maximum at 9 ms for the

fourth window (1.1 to 1.4 s). Thus, the proposed implementation

was able to detect information transfer between both processes if

present (later than 1.1 s). During the transition in coupling

strength between 0.8 and 1.1 s TE was detected, but the method

showed a small error in the reconstructed information transfer

delay. This may be due to too little data to detect the weaker

coupling at this epoch of the simulated coupling (see below).

Results – Scenario (2), unidirectional coupling with two-

step increase. For scenario (2), we again used the scanning

approach for TE reconstruction, using an interval of assumed

delays u~½1,20�, where the true delay was simulated at

dXY~10ms. No TE was detected prior to the coupling onset

around 1 s. TE was detected for analysis windows 4, 5, and 6 (1.1

to 1.4, 1.4 to 1.7, 1.7 to 2.0 s) with reconstructed information

transfer delays of 10, 4, and 7 ms respectively. Further, significant

TE was found for analysis windows 7 and 8 (after the second

increase in coupling strength around 2 s). Here, the correct

coupling of 10 ms was reconstructed. One false positive result was

obtained in window 6 (1.7 to 2.0 s), where significant TE was

found in the direction Y?X .

Note, that the method’s ability to recover information transfer

from data depends on the strength of the coupling relative to the

amount of data that is available for TE estimation. This is

observable in the reconstructed TE in the third analysis window

for scenario (1) and (2): in scenario (2) no TE is detected, whereas

in scenario (1) weak information transfer is already reconstructed

for the third window. Note, that in scenario (2) the simulated

coupling between 1 and 2 s is much weaker than the coupling in

Figure 7. Transfer entropy reconstruction from coupled autoregressive processes. We simulated two dynamically coupled autoregressive
processes (A) with coupling delays dXY~10ms and dYX~20ms, and coupling scenarios: (B) unidirectional coupling X?Y (blue line) with onset
around 1 s, coupling Y?X set to 0 (red line); (C) unidirectional coupling X?Y (blue line) with onset around 1 s and an increase in coupling
strength at around 2 s, coupling Y?X set to 0 (red line); (D) bidirectional coupling X?Y (blue line) with onset around 1 s and Y?X (red line) with
onset around 2 s. (E-G) Time-resolved transfer entropy (TE) for both directions of interaction, blue and red lines indicate raw TE values for X?Y and
Y?X respectively. Dashed lines denote significance thresholds at 0.01% (corrected for multiple comparisons over signal combinations). Shaded
areas (red and blue) indicate the maximum absolute TE values for significant information transfer (indicated by asterisks in red and blue). (E) TE values
for unidirectional coupling; (F) unidirectional coupling with a two-step increase in coupling strength; (G) bidirectional coupling.
doi:10.1371/journal.pone.0102833.g007

Figure 8. Robustness of transfer entropy estimation with respect to limited amounts of data. Estimated transfer entropy (TE) values
TEX?Y for estimations using varying numbers of data points (color coded) as a function of u. Data was sampled from two Lorenz systems X and Y
with coupling X?Y . The simulated information transfer delay dXY~45ms is indicated by a vertical dotted line. Sampled data was embedded and
varying numbers of embedded data points (500, 2000, 5000, 10000, 30000) were used for TE estimation. For each estimation, the maximum TEX?Y

values for all values of u are indicated by solid dots. Dashed lines indicate significance thresholds (pv0:05).
doi:10.1371/journal.pone.0102833.g008
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Figure 9. Transfer entropy reconstruction from electrophysiological data. Time resolved reconstruction of transfer entropy (TE) from
magnetoencephalographic (MEG) source data, recorded during a face recognition task. (A) Face stimulus [88]. (B) Cortical sources after beamforming
of MEG data (L, left; R, right: L orbitofrontal cortex (OFC); R middle frontal gyrus (MiFG); L inferior frontal gyrus (IFG left); R inferior frontal gyrus (IFG
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the unidirectional scenario (1) (Figure 7, panels C and B). This

resulted in smaller and non-significant absolute TE values and in

reconstructed information transfer delays that were less precise.

Results – Scenario (3), bidirectional coupling. For

scenario (3), we used the scanning approach for TE reconstruction,

using an interval of assumed delays u~½1,30�, where the true delay
was simulated at dXY~10ms and dYX~20ms. No TE in either

direction was detected prior to the first coupling onset around 1 s.

TE for the first direction X?Y was detected after coupling onset

around 1 s for analysis windows 4, 5, 6, 7, and 8. Reconstructed

information transfer delays were 8 and 2 ms for analysis windows

4 and 5. For each of the following analysis windows 6 to 8 the

correct delay of 10 ms was reconstructed.

TE for the second direction Y?X was detected after coupling

onset around 2 s for analysis windows 7 and 8, where also the

correct coupling of 20 ms was reconstructed. Thus, the proposed

implementation was able to reconstruct information transfer in

bidirectionally coupled systems.

Evaluation of the robustness of ensemble-based
TE-estimation
We tested the robustness of the ensemble method for cases

where the amount of data available for TE estimation was severely

limited. We created two coupled Lorenz systems X , Y from which

we sampled a maximum number of 300 repetitions of 300 ms each

at 1000 Hz, using a coupling delay of dXY~45ms (see equation

11). We embedded the resulting data with their optimal

embedding parameters for different values of the assumed delay

u (30 to 60 ms, step size of 1 ms, also see equation 4). From the

embedded data, we used subsets of data points with varying sizeM

(M~f500,2000,5000,10000,30000g) to estimate TE according to

equation 10 (we always used the firstM consecutive data points for

TE estimation). For each u and number of data points M, we

created surrogate data to test the estimated TE value for statistical

significance. Furthermore, we reconstructed the corresponding

information transfer delay for each M by finding the maximum

TE value over all values for u. A reconstructed TE value was

considered a robust estimation of the simulated coupling if the

reconstructed delay value was able to recover the simulated

information transfer delay of 45ms with an error of +5%, i.e.

45+1:125ms.

A sufficiently accurate reconstruction was reached for 10000

and 30000 data points (Figure 8). For 5000 data points estimation

was off by approximately 7% (the reconstructed information

transfer delay was 48 ms), less data entering the estimation led to a

further decline in accuracy of the recovered information transfer

delay (here, reconstructed delays were 50 ms and 54 ms for 2000

and 500 data points respectively).

Evaluation on neural time series from
magnetoencephalography
To demonstrate the proposed method’s suitability for time-

resolved reconstruction of information transfer and the corre-

sponding delays from biological time series, we analyzed

magnetoencephalographic (MEG) recordings from a perceptual

closure experiment described in [86].

Subjects. MEG data were obtained from 15 healthy subjects

(11 females; mean + SD age, 25.4 + 5.6 years), recruited from

the local community.

Task. Subjects were presented with a randomized sequence

of degraded black and white picture of human faces [88] (Figure 9,

panel A) and scrambled stimuli, where black and white patches

were randomly rearranged to minimize the likelihood of detecting

a face. Subjects had to indicate the detection of a face or no-face

by a button press. Each stimulus was presented for 200 ms, with a

random inter-repetition interval (IRI) of 3500 to 4500 ms (9, panel

E). For further analysis we used repetitions with correctly

identified face conditions only.

MEG and MRI data acquisition. MEG data were recorded

using a 275-channel whole-head system (Omega 2005, VSM

MedTech Ltd., BC, Canada) at a rate of 600 Hz in a synthetic

third order axial gradiometer configuration. The data were filtered

with 4th order Butterworth filters with 0.5 Hz high-pass and

150 Hz low-pass. Behavioral responses were recorded using a fiber

optic response pad (Lumitouch, Photon Control Inc., Burnaby,

BC, Canada).

Structural magnetic resonance images (MRI) were obtained

with a 3 T Siemens Allegra, using 3D magnetization-prepared

rapid-acquisition gradient echo sequence. Anatomical images were

used to create individual head models for MEG source

reconstruction.

Data analysis. MEG data were analyzed using the open

source MATLAB toolboxes FieldTrip (version 2008-12-08; [89]),

SPM2 (http://www.fil.ion.ucl.ac.uk/spm/), and TRENTOOL

[56]. We will briefly describe the applied analysis here, for a more

in depth treatment refer to [86].

For data preprocessing, data epochs (repetitions) were defined

from the continuously recorded MEG signals from 21000 to

1000 ms with respect to the onset of the visual stimulus. Only data

repetitions with correct responses were considered for analysis.

Data epochs contaminated by eye blinks, muscle activity, or jump

artifacts in the sensors were discarded. Data epochs were baseline

corrected by subtracting the mean amplitude during an epoch

ranging from 2500 to 2100 ms before stimulus onset.

To investigate differences in source activation in the face and

non-face condition, we used a frequency domain beamformer [90]

at frequencies of interest that had been identified at the sensor

level (80 Hz with a spectral smoothing of 20 Hz). We computed

the frequency domain beamformer filters for combined data

epochs (‘‘common filters’’) consisting of activation (multiple

windows, duration, 200 ms; onsets at every 50 ms from 0 to

450 ms) and baseline data (2350 to 2150 ms) for each analysis

interval. To compensate for the short duration of the data

windows, we used a regularization of l~5% [91].

To find significant source activations in the face versus non-face

condition, we first conducted a within-subject t-test for activation

versus baseline effects. Next, the t-values of this test statistic were

subjected to a second-level randomization test at the group level to

obtain effects of differences between face and no-face conditions; a

right); L anterior inferotemporal cortex (aTL left); L cingulate gyrus (cing); R premotor cortex (premotor); R superior temporal gyrus (STG); R anterior
inferotemporal cortex (aTL right); L fusiform gyrus (FFA); L angular/supramarginal gyrus (SMG); R superior parietal lobule/precuneus (SPL); L caudal
ITG/LOC (cITG); R primary visual cortex (V1)). (C) Reconstructed TE in three single subjects (red box) in three time windows (02150 ms, 1502300 ms,
3002450 ms). Each link (red arrows) corresponds to significant TE on single subject level (corrected for multiple comparisons). (D) Thresholded TE
links over 15 subjects (blue box) in three time windows (02150 ms, 1502300 ms, 3002450 ms). Each link (black arrows) corresponds to significant
TE in eight and more individual subjects (pvv0:0001���, after correction for multiple comparisons). Blue arrows indicate differences between time
windows, i.e. links that occur for the first time in the respective window. (E) Experimental design: stimulus was presented for 200 ms (gray shading),
during the inter stimulus interval (ISI, 1800 ms) a fixation cross was displayed.
doi:10.1371/journal.pone.0102833.g009
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p-value v0.01 was considered significant. We identified 14

sources with differential spectral power between both conditions

in the frequency band of interest in occipital, parietal, temporal,

and frontal cortices (see Figure 9, panel B, and [86] for exact

anatomical locations). We then reconstructed source time courses

for TE analysis, this time using a broadband beamformer with a

bandwidth of 10 to 150 Hz.

We estimated TE between beamformer source time courses

using our ensemble method with a mixed pooling of embedded

time points over repetitions r and time windows t’ (eq. 10). We

analyzed three non-overlapping time windows Dt of 150 ms each

(0–150 ms, 150–300 ms, 300–450 ms, Figure 9, panel C). We

furthermore reconstructed information transfer delays for signif-

icant information transfer by scanning over a range of assumed

delays from 5 to 17 ms (resolution 2 ms), following the approach

in [53]. We corrected the resulting information transfer pattern for

cascade effects as well as common drive effects using a graph-based

post-hoc correction proposed in [54].

Results. Time-resolved GPU-based TE analysis revealed

significant information transfer at the group-level (pvv0:001

corrected for multiple comparison; binomial test under the null

hypothesis of the number of occurrences k of a link being

B(kDp0,n)-distributed, where p0~0:05 and n~15), that changed

over time (Figure 9, panel D and table 2 for reconstructed

Table 2. Reconstructed information transfer delays for magnetoencephalographic data.

Source Target 0–150 ms 150–300 ms 300–450 ms

SPL IFG left 5.00 - 5.50

SPL cITG - - 5.00

cITG IFG left 5.00 5.00 5.00

cITG FFA 5.00 5.00 5.00

cITG SMG - 5.00 -

STG aTL right 5.00 5.00 5.00

STG Premotor - - 5.83

STG FFA - 5.50 -

aTL right STG 5.00 5.00 5.00

aTL right Premotor 5.00 5.60 -

SMG SPL 5.00 - -

SMG V1 5.00 - -

SMG IFG left - 5.20 -

SMG FFA - 5.22 5.20

OFC IFG left 5.18 5.00 5.00

OFC FFA - 5.00 5.20

MiFG IFG right 5.00 5.00 5.00

MiFG Premotor 5.00 5.00 5.00

IFG right MiFG 5.00 5.00 5.00

IFG right Premotor 5.00 5.00 5.00

IFG left SPL 5.00 5.00 -

IFG left cITG 5.00 - 5.00

IFG left SMG 5.00 5.40 5.00

IFG left OFC 5.00 5.00 5.00

IFG left FFA 5.00 5.00 5.00

FFA cITG 5.00 5.00 5.22

FFA OFC 5.00 - -

FFA IFG left 5.00 - -

FFA SMG - 5.00 -

V1 cITG 5.25 - 5.25

V1 SMG - - 5.00

Premotor STG 5.00 - -

Premotor MiFG 5.00 5.00 5.00

Premotor IFG right 5.00 5.00 5.00

Cing STG 5.25 - -

Cing FFA - - 5.67

Mean over reconstructed interaction delays for significant information transfers in three analysis windows. Information transfer delays were investigated in steps of
2 ms, from 5–17 ms. Fractional numbers arise from averaging over subjects.
doi:10.1371/journal.pone.0102833.t002
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information transfer delays). Our preliminary findings of informa-

tion transfer are in line with hypothesis formulated in [92], [93]

and [86], and the time-dependent changes show the our method’s

sensitivity to the dynamics of information processing during

experimental stimulation, in line with the simulation results above.

Discussion

Efficient transfer entropy estimation from an ensemble of
time series
We presented an efficient implementation of the ensemble

method for TE estimation proposed by [55]. As laid out in the

introduction, estimating TE from an ensemble of data allows to

analyze information transfer between time series that are non-

stationary and enables the estimation of TE in a time-resolved

fashion. This is especially relevant to neuroscientific experiments,

where rapidly changing (and thus non-stationary) neural activity is

believed to reflect neural information processing. However, up

until now the ensemble method has remained out of reach for

application in neuroscience because of its computational cost.

Only with using parallelization on a GPU, as presented here, the

ensemble method becomes a viable tool for the analysis of neural

data. Thus, our approach makes it possible for the first time to

efficiently analyze information transfer between neural time series

on short time scales. This allows us to handle the non-stationarity

of underlying processes and makes a time- resolved estimation of

TE possible. To facilitate the use of the ensemble method it has

been implemented as part of the open source toolbox TREN-

TOOL (version 3.0).

Even though we will focus on neural data when discussing

applications of the ensemble method for TE estimation below, this

approach is well suited for applications in other fields. For

example, TE as defined in [14] has been applied in physiology

[42–44], climatology [94,95], financial time series analysis [45,96],

and in the theory of cellular automata [48]. Large datasets from

these and other fields may now be easily analyzed with the

presented approach and its implementation in TRENTOOL.

Notes on the practical application of the ensemble
method for TE estimation

Applicability to simulated and real world experimental

data. To validate the proposed implementation of the ensemble

method, we applied it to simulated data as well as MEG

recordings. For simulated data, information transfer could reliably

be reconstructed despite the non-stationarity in the underlying

generating processes. For MEG data the obtained speed-up was

large enough to analyze these data in practical time. Information

transfer reconstructed in a time-resolved fashion from the MEG

source data was in line with findings by [86,92,93], as discussed

below.

Note, that even though our proposed implementation of the

ensemble method reduces analysis times by a significant amount,

the estimation of TE from neural time series is still time consuming

relative to other measures of connectivity. For the example MEG

data set presented in this paper, TE estimation for one subject and

one analysis window took 93 hours on average (when scanning

over seven values for the assumed information transfer delay u and

reconstructing TE for all possible combinations of 14 sources).

Thus, for 15 subjects with three analysis windows each, the whole

analysis would take approximately six months when carried out in

a serial fashion on one computer equipped with a modern GPU

(e.g. NVIDIA GTX Titan). This time may however be reduced by

parallelizing the analysis over subjects and analysis windows on

multiple GPUs, as it was done for this study.

Available data and choice of window size. As available

data is often limited in neuroscience and other real-world

applications, the user has to make sure that enough data enters

the analysis, such that a reliable estimation of TE is possible. In the

proposed implementation of the ensemble method for TE

estimation the amount of data entering the estimation directly

depends on the size of the chosen analysis window and the amount

of available repetitions of the process being analyzed. Further-

more, the choice of the embedding parameters lead to varying

numbers of embedded data that can be obtained from scalar time

series. When estimating TE from neural data, we therefore

recommend to control the amount of data in one analysis window

that is available after embedding and to design experiments

accordingly. For example, the presented MEG data set was

sampled at 600 Hz, with 137 repetitions of the stimulus on

average, which - after embedding - led to 8800 data points per

analysis window of 150 ms. In comparison, for simulated data TE

was reconstructed correctly for 10000 data points and more. Thus,

in our example MEG data set, shorter analysis windows would not

have been advisable because of an insufficient amount of data per

analysis window for reliable TE estimation. If shorter analysis

windows are necessary, they will have to be counterbalanced by a

higher number of experimental repetitions.

Thus, the choice of an appropriate analysis window is crucial to

guarantee reliable TE estimation, while still resolving the temporal

dynamics under investigation. A further data limiting factor is the

need for an appropriate embedding of the scalar time series. To

embed the time series at a given point t, enough history for this

sample (embedding dimension times the embedding delay in

sample points) has to be recorded. We call this epoch the

embedding window. The need for an appropriate embedding thus

constitutes another constraint for the data necessary for TE

estimation. Thus, the choice of an optimal embedding dimension

(e.g. through the use of Ragwitz’ criterion [71]) is crucial as the use

of larger than optimal embedding dimensions wastes available

data and may lead to a weaker detection rate in noisy data [56].

Note, that the embedding window should not be confused with

the analysis window. The analysis window strictly describes the

data points, for which neighbor statistics enter TE estimation –

where neighbor counts may be averaged over an epoch Dt or may

come from a single point in time t only. The embedding window

however, describes the data points that enter the embedding of a

single point in time. Thus, the temporal resolution of TE analysis

may still be in single time steps t (i.e. only one time point entering

the analysis), even though the embedding window spans several

points in time that contain the history for this single point.

Repeatability of neuronal processes
When applying the ensemble method to estimate TE from

neural recordings, we treat experimental repetitions as multiple

realizations of the neural processes under investigation. In doing

so, we assume stationarity of these processes over repetitions. We

claim that in most cases this assumption of stationarity is justified

for processes concerned with the processing of experimental

stimuli and that the assumption also holds for stimulus-indepen-

dent processes that contribute to neural recordings. We will first

present the different contributions to neural recordings and

subsequently discuss their individual statistical properties, i.e. their

stationarity over repetitions. Note, that the term stationarity refers

to the stability of the probability distribution underlying the

observed realizations of contributions over repetitions and does

not require individual realizations to be identical; i.e. stationarity

does not preclude a variability in observed realizations, but rather
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implies some variance in observed realizations, that is reflective of

the variance in the underlying probability distribution.

Contributions to neural recordings may either be stimulus-

related (event-related activity) or stimulus-independent (spontane-
ous ongoing activity). Within the category of event-related activity,

contributions can be further distinguished into phase-locked and

non phase-locked contributions (the latter is commonly called

induced activity). Phase-locked activity has a fixed polarity and

latency with respect to the stimulus and – on averaging over

repetitions – contributes to an event-related potential or field

(ERP/F). Phase-locked activity is further distinguished into two

types of contributions, that are discussed as mechanisms in the

ERP/F-generation (e.g. [97–99]): (1) additive evoked contributions,
i.e. neural activity that is in addition to ongoing activity and

represents the stereotypical response of a neural population to the

presented stimulus in each repetition [100–102]; (2) phase- reset
contributions, i.e. the phase of ongoing activity is reset by the

stimulus, such that phase-aligned signals no longer cancel each

other out on averaging over repetitions [103–106]. In contrast to

these two subtypes of phase-locked activity, induced activity is

event-related activity that is not phase-locked to the stimulus, such

that latency and polarity vary randomly over repetitions and

induced activity averages out over repetitions.

We therefore have to consider four types of contributions to

neural recordings: (1) additive evoked contributions, (2) phase-reset

contributions, (3) induced contributions and (4) spontaneous

ongoing contributions, the last being stimulus-independent.

Stationarity can be assumed for all these contributions if no

learning effects occur during the experiment. Learning effects may

lead to slow drifts, i.e. changing mean and variances, in the

recorded signal. Such learning effects may easily be tested for by

comparing the first and second half of recorded repetitions with

respect to equal variances and means. If variances and means are

equal, learning effects can most likely be excluded. Empirically,

the stationarity assumption, specifically of phase-locked contribu-

tions, can also be verified using a modified independent

component analysis recently proposed in [107].

To sum up the statistical properties of different contributions to

neural data and their relevance for using an ensemble approach to

TE estimation, we conclude that all contributions to neural

recordings can be considered stationary over repetitions by

default. Non-stationarity over repetitions will only be a problem

in paradigms that introduce (slow) drifts or trends in the recorded

signal, for example by facilitating learning during the experiment.

Testing for drifts may be done by comparing mean and variance

in a split-half analysis.

Relation of the ensemble method to local information
dynamics
We will now discuss the relation of the ensemble approach

suggested here to the local transfer entropy (LTE) approach of

Lizier [4,15]. This may be useful as both approaches at first glance

seem to have a similar goal, i.e. assessing information transfer

more locally in time. As we will show, the approaches differ in

what quantities they localize. From this difference it also follows

that they can (and should be) combined when necessary.

In detail, the ensemble approach used here tries to exploit

cyclostationarity or repeatability of random processes to obtain

multiple PDFs from the different (quasi-) stationary parts of the

repeated process cycle, or a PDF for each step in time from

replications of a process, respectively. In contrast, local informa-

tion dynamics localizes information transfer in time (and space)

given the PDF of a stationary process.

The local information dynamics approach to information

transfer computes information transfer for stationary random

processes from their joint and marginal PDFs for each process

step, thereby fully localizing information transfer in time. The

quantity proposed for this purpose is the LTE [15]:

LTE(X?Y ,t,d)~log
p(ytDyt{1,xt{d)

p(ytDyt{1)
ð17Þ

LTE relates to TE in the same way Shannon information relates

to Shannon entropy – by means of taking an expected value under

the common PDF p(yt,yt{1,xt{d) of the collection of random

variables fXtg,fYtg that form the processes X, Y, which exchange

information. Stationarity here guarantees that all the random

variables X1,X2, . . . (Y1,Y2, . . .) have a common PDF (as the PDF

is not allowed to change over time):

TE(X?Y ,t,d)~vLTE(X?Y ,t,d)wp(yt ,yt{1,xt{d)
ð18Þ

In contrast, the approach presented here does not assume that

the random processes X , Y are stationary, but that either

replications if the process can be obtained, or that the process is

cyclostationary. Under these constraints a local PDF can be

obtained. The events drawn from this PDF may then be analyzed

in terms of their average information transfer, i.e. using TE as

presented here, or by inspecting them individually, computing

LTE for each event. In this sense, the approach suggested here is

aimed at extracting the proper local PDFs, while local information

dynamics comes into play once these proper PDFs have been

obtained. We are certain that both approaches can be fruitfully

combined in future studies.

Relation of the ensemble method to other measures of
connectivity for non-stationary data
Linear Granger causality (GC) is – as has been shown recently

by [26] – equivalent to TE for variables with a jointly Gaussian

distribution. Thus, for data that exhibit such a distribution,

information transfer may be analyzed more easily within the GC

framework. Similar to the ensemble method for TE estimation,

extensions to GC estimation have been proposed that deal with

non-stationary data by fitting time-variant parameters. For

example, Möller and colleagues presented an approach that fitted

multivariate autoregressive models (MVAR) with time-dependent

parameters to an ensemble of EEG signals [108]. Similar

measures, that fit time-dependent parameters in autoregressive

models to data ensembles, were used by [109] and [110]. A

different approach to dealing with non-stationarity was taken by

Leistritz and colleagues [111]. These authors proposed to use self-

exciting threshold autoregressive (SETAR) models to model neural

time series within a GC framework. SETAR models extend

traditional AR models by introducing state-dependent model

parameters and allow for the modeling of transient components in

the signal.

The presented methods for the estimation of time-variant linear

GC may yield a computationally less expensive approach to the

estimation of information transfer from an ensemble of data.

However, linear GC is equivalent to TE regarding the full

recovery of information transfer for data with a jointly Gaussian

distribution only. For non-Gaussian data, linear GC may fail to

capture higher order interactions. As neural data are most likely

non-Gaussian, the application of TE may have an advantage for
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the analysis of information transfer in this type of data. The non-

Gaussian nature of neural data can for example be seen, when

comparing brain electrical source signals from physical inverse

methods to time courses of corresponding ICA components [112].

Here, ICA components and extracted brain signals closely match.

Given that ICA components are as non-Gaussian as possible (by

definition of the ICA), we can infer that brain signals are very

likely non-Gaussian.

We also note that a nonstationary measure of coupling between

dynamic systems building on repetitions of time series and next-

neighbor statistics was suggested by Andrzejak and colleagues

[113]. The key difference of their approach to the ensemble

method suggested here is that the previous states of the target time

series are not taken into account explicitly in their method. Hence,

their measure is not (and was not intended to be) a measure of

information transfer (see [53] for details why a measure of

information transfer needs to include the past state of target time

series, and [48] for the difference between measures of (causal)

coupling and information transfer). In addition, their methods

explicitly tries to determine the direction of coupling between to

systems. This implies that there should be a dominant direction of

coupling in order to obtain meaningful results. Transfer entropy,

in contrast, easily separates and quantifies both directions of

information transfer related to bidirectional coupling, under some

mild conditions related to entropy production in each of the two

coupled systems [53].

Relation of the ensemble method to the direct method
for the calculation of mutual information of Strong and
colleagues
The ensemble method proposed here shares the use of

replications (or trials) with the so called ‘direct method’ of Strong

and colleagues [114]. The authors introduced this method to

calculate mutual information between a controlled stimulus set

and neural responses. Similarities also exist in the sense that the

surrogate data method for statistical evaluation used in our

ensemble method builds on trial-to-trial variability, as does

Strong’s method (by looking at intrinsic variability versus

variability driven by stimulus changes).

However, the two methods differ conceptually on two accounts:

First, the quantity estimated is different – symmetric mutual

information in Strong’s method compared to inherently asym-

metric conditional mutual information in the case of TE. Second,

the method of Strong and colleagues requires a direct intervention

in the source of information (i.e. the stimuli) to work, whereas TE

in general is independent of such interventions. This has far

reaching consequences for the interpretation of the two measures:

The intervention inherent in Strong’s method places it somewhat

closer to causal measures such as Ay and Polani’s causal

information flow [47], whereas intervention-free TE has a clear

interpretation as the information transfered in relation to

distributed computation [48]. As a consequence, TE maybe easily

applied to quantify neural information transfer from one neuron

or brain area to another even under constant stimulus conditions.

In contrast, using Strong’s method inside a neural system in this

way would require precisely setting of the activity of the source

neuron or brain area, something that may often be difficult to do.

Application of the proposed implementation to other
dependency measures
The use of ensemble pooling of observations for the estimation

of time-resolved dependency measures has been proposed in a

variety of frameworks. For example, Andrzejak and colleagues

[113] use ensemble pooling of delay-embedded time series in

combination with nearest neighbor statistics as a general approach

to the estimation of arbitrary non-linear dependency measures.

However, the practical application of ensemble pooling and

nearest neighbor statistics together with the necessary generation

of a sufficient amount of surrogate data sets (typically w 1000 in

neuroscience applications where correction for multiple compar-

isons is necessary) was always hindered by its high computational

cost. Only with the presentation of a GPU algorithm for nearest

neighbor searches, we provide an implementation of the ensemble

method that allows its practical application. Note that even though

we use ensemble pooling and GPU search algorithms to

specifically estimate TE, the presented implementation may easily

be adapted to other dependency measures that are calculated from

(conditional) mutual informations estimated from nearest neighbor

statistics.

Application to MEG source activity in a perceptual
closure task
Application of the ensemble-based TE estimation to MEG

source activities revealed a time varying pattern of information

transfers, as expected in the nonstationary setting of the visual task.

While a full discussion of the revealed information transfer pattern

is beyond the scope of this study, we point out individual

connections transferring information that underline the validity of

our results. Notable connections in the first time window transfer

information from the early visual cortices (V1) to the orbitofrontal

cortex (OFC) – in line with earlier findings by Bar an colleagues

[92], that suggest a role of the OFC in early visual scene

segmentation and gist perception. Another brain area receiving

information from early visual cortex is the caudal inferior temporal

gyrus (cITG)[115], an area responsible for the processing of shape-

from-shading information, which is thought to be essential for

perception of Mooney stimuli as they were used here. Both of these

areas, OFC and cITG at later stages of processing exchange

information with the fusiform face area, which is essential for the

processing of faces [116–118], and thereby expected to receive

information from other areas in this task. Indeed, FFA seems to be

an essential hub in the task-related network investigated in this

study and receives increasing amounts of incoming information

transfer as the task progresses in time. This is in line with the fact

that the most pronounced task-related differences in FFA activity

were found at latencies w 200 ms previously [86].

Our data also clearly show a great variability in information

transfer pattern across subjects, which we relate to the limited

amount of data per subject, rather than to true variation.

Moreover, future investigations will have to show whether more

fine grained temporal segmentation of the neural information

processing in this task is possible and whether it will provide

additional insights.

Conclusion and further directions
We presented an implementation of the ensemble method for

TE presented in [55], that uses a GPU to handle computationally

most demanding aspects of the analysis. We chose an implemen-

tation that is flexible enough to scale well with different

experimental designs as well as with future hardware develop-

ments. Our implementation was able to successfully reconstruct

information transfer in simulated and neural data in a time-

resolved fashion. Nearest neighbor searches using a GPU

exhibited substantially reduced execution times. The implemen-

tation has been made available as part of the open source

MATLAB toolbox TRENTOOL [56] for the use with CUDA-

enabled GPU devices.
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We conclude that the ensemble method in its presented

implementation is a suitable tool for the analysis of non-stationary

neural time series, enabling this type of analysis for the first time. It

may also be applicable in other fields that are concerned with the

analysis of information transfer within complex dynamic systems.
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