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ABSTRACT

Many real-world applications such as robotics provide hard constraints on power
and compute that limit the viable model complexity of Reinforcement Learning
(RL) agents. Similarly, in many distributed RL settings, acting is done on un-
accelerated hardware such as CPUs, which likewise restricts model size to pre-
vent intractable experiment run times. These “actor-latency” constrained settings
present a major obstruction to the scaling up of model complexity that has recently
been extremely successful in supervised learning. To be able to utilize large model
capacity while still operating within the limits imposed by the system during act-
ing, we develop an “Actor-Learner Distillation” (ALD) procedure that leverages a
continual form of distillation that transfers learning progress from a large capacity
learner model to a small capacity actor model. As a case study, we develop this
procedure in the context of partially-observable environments, where transformer
models have had large improvements over LSTMs recently, at the cost of signif-
icantly higher computational complexity. With transformer models as the learner
and LSTMs as the actor, we demonstrate in several challenging memory environ-
ments that using Actor-Learner Distillation recovers the clear sample-efficiency
gains of the transformer learner model while maintaining the fast inference and
reduced total training time of the LSTM actor model.

1 INTRODUCTION

Compared to standard supervised learning domains, reinforcement learning presents unique chal-
lenges in that the agent must act while it is learning. In certain application areas, which we term
actor-latency-constrained settings, there exists maximum latency constraints on the acting policy
which limit its model size. These constraints on latency preclude typical solutions to reducing the
computational cost of high capacity models, such as model compression or off-policy reinforcement
learning, as it strictly requires a low computational-complexity model to be acting during learning.
Here, the major constraint is that the acting policy model must execute a single inference step within
a fixed budget of time, which we denote by Tactor – the amount of compute or resources used during
learning is in contrast not highly constrained. This setting is ubiquitous within real-world applica-
tion areas: for example, in the context of learning policies for robotic platforms, because of inherent
limitations in compute ability due to power and weight considerations it is unlikely a large model
could run fast enough to provide actions at the control frequency of the robot’s motors.

However, for many of these strictly actor-latency constrained settings there are orthogonal chal-
lenges involved which prevent ease of experimentation, such as the requirement to own and main-
tenance real robot hardware. In order to develop a solution to actor-latency constrained settings
without needing to deal with substantial externalities, we focus on the related area of distributed on-
policy reinforcement learning (Mnih et al., 2016; Schulman et al., 2017; Espeholt et al., 2018). Here
a central learner process receives data from a series of parallel actor processes interacting with the
environment. The actor processes run step-wise policy inference to collect trajectories of interaction
to provide to the learner, and they can be situated adjacent to the accelerator or distributed on dif-
ferent machines. With a large model capacity, the bottleneck in experiment run-times for distributed
learning quickly becomes actor inference, as actors are commonly run on CPUs or devices without
significant hardware acceleration available. The simplest solution to this constraint is to increase
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the number of parallel actors, often resulting in excessive CPU resource usage and limiting the total
number of experiments that can be run on a compute cluster. Therefore, while not a hard constraint,
experiment run-time in this setting is largely dominated by actor inference speed. The distributed
RL setting therefore presents itself as a accessible test-bed for solutions to actor-latency constrained
reinforcement learning.

Within the domain of distributed RL, an area where reduced actor-latency during learning could
make a significant impact is in the use of large Transformers (Vaswani et al., 2017) to solve partially-
observable environments (Parisotto et al., 2019). Transformers (Vaswani et al., 2017) have rapidly
emerged as the state-of-the-art architecture across a wide variety of sequence modeling tasks (Brown
et al., 2020; Radford et al., 2019; Devlin et al., 2019) owing to their ability to arbitrarily and in-
stantly access information across time as well as their superior scaling properties compared to recur-
rent architectures. Recently, their application to reinforcement learning domains has shown results
surpassing previous state-of-the-art architectures while matching standard LSTMs in robustness to
hyperparameter settings (Parisotto et al., 2019). However, a downside to the Transformer compared
to LSTM models is its significant computational cost.

In this paper, we present a solution to actor-latency constrained settings, “Actor-Learner Distillation”
(ALD), which leverages a continual form of Policy Distillation (Rusu et al., 2015; Parisotto et al.,
2015) to compress, online, a larger “learner model” towards a tractable “actor model”. In particular,
we focus on the distributed RL setting applied to partially-observable environments, where we aim
to be able to exploit the transformer model’s superior sample-efficiency while still having parity with
the LSTM model’s computational-efficiency during acting. On challenging memory environments
where the transformer has a clear advantage over the LSTM, we demonstrate our Actor-Learner Dis-
tillation procedure provides substantially improved sample efficiency while still having experiment
run-time comparable to the smaller LSTM.

2 BACKGROUND

A Markov Decision Process (MDP) (Sutton & Barto, 1998) is a tuple of (S,A, T , γ,R) where S
is a finite set of states, A is a finite action space, T (s′|s, a) is the transition model, γ ∈ [0, 1] is a
discount factor and R is the reward function. A stochastic policy π ∈ Π is a mapping from states
to a probability distribution over actions. The value function V π(s) of a policy π for a particular
state s is defined as the expected future discounted return of starting at state s and executing π:
V π(s) =

∑∞

t=0
γtrt. The optimal policy π∗ is defined as the policy with the maximum value at

every state, i.e. ∀s ∈ S, π ∈ Π we have V π∗

(s) > V π(s). The optimal policy is guaranteed to
exist (Sutton & Barto, 1998). In this work, we focus on Partially-Observable MDPs (POMDPs)
which define environments which cannot observe the state directly and instead must reason over
observations. POMDPs require the agent to reason over histories of observations in order to make
an informed decision over which action to choose. This motivates the use of memory models such
as LSTMs (Hochreiter & Schmidhuber, 1997) or transformers (Vaswani et al., 2017).

In this work, we use V-MPO (Song et al., 2020) as the main reinforcement learning algorithm.
V-MPO, an on-policy value-based extension of the Maximum a Posteriori Policy Optimisation algo-
rithm (Abdolmaleki et al., 2018), used an EM-style policy optimization update along with regular-
izing KL constraints to obtain state-of-the-art results across a wide variety of environments. Similar
to Song et al. (2020), we use the IMPALA (Espeholt et al., 2018) distributed RL framework to par-
allelize acting and learning. Actor processes step through the environment and collect trajectories
of data to send to the learner process, which batches actor trajectories and optimizes reinforcement
learning objectives to update the policy parameters. The updated parameters are then communicated
back to actor processes in order to maintain on-policyness.

In the following, we first refer to a single observation and associated statistics (reward, etc.) as a
step. We refer to an environment step as the acquisition of a step from the environment after an
action is taken. The total number of environment steps is a measure of the sample complexity of an
RL algorithm. We refer to a step processed by an RL algorithm as an agent step. The total number
of agent steps is a measure of the computational complexity of the RL algorithm. We use steps per
second (SPS) to measure the speed of an algorithm. We refer to Learner SPS as the total number
of agent steps processed by the learning algorithm per second. We refer to Actor SPS as the total
number of environment steps acquired by a single actor per second.
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Model
% Idle

for Traj.
Actor
SPS

LSTM 34% 1053
GTrXL 84% 70

Figure 1: Left: On the I-Maze environment (see Sec. 5.1), there is a clear sample efficiency advan-
tage of the Gated Transformer-XL (GTrXL) (Parisotto et al., 2019), which rapidly reaches 100%
success rate compared to the LSTM. Center: When the x-axis is changed to wall-clock time, the
LSTM becomes the more efficient model. Right: Table showing, for both 32-dim. LSTM and 4-
layer GTrXL, (1) percentage of time the learner spends waiting for new on-policy trajectory data
from distributed actor processes, (2) how many environment steps are processed per second (SPS)
on a single actor process. We can see that for the much more computationally expensive transformer,
the learner is spending a majority of its time idling and this is due to the order-of-magnitudes slower
actor inference. Plots averaged over 3 seeds, all run using reference machine A (Appendix B).

3 ACTOR-LEARNER DISTILLATION

Within the setting of distributed RL, a major challenge in applying transformers to reinforcement
learning is their significant computational cost owing to their high actor latency. As an example,
in Fig. 1 we present some results comparing a transformer to an LSTM on the I-Maze memory
environment (see Sec. 5.1). In Fig. 1, Left, a 4-layer Gated Transformer-XL (GTrXL) (Parisotto
et al., 2019) agent significantly surpasses a 32-dim. LSTM in terms of data efficiency, with the x-
axis as environment steps. However, in the center diagram, when the x-axis is switched to wall-clock
time the LSTM becomes the clearly more efficient model.

In order to work towards an ideal model with both high sample efficiency and low experiment run
time, we analyzed which parts of the distributed actor-critic system led to the transformer’s main
computational bottlenecks. As shown in the table on the right-hand-side of Fig. 1, we found the
percentage of time that the asynchronous learner process was spending waiting for new trajectory
data was substantially higher for the transformer than for the LSTM. Further looking at actor SPS
between models revealed that the cause of this idling is mainly due to the transformer’s actor SPS
being over 15 times slower than the LSTM. This substantial decrease in SPS could even render
the transformer not viable in actor-latency-constrained settings, e.g. robotic control environments,
which entails a hard constraint on actor inference speed.

These findings suggest that considerable improvements in training speed could be attainable if the
actors produced data faster. While de-coupling actor and learner speeds using an off-policy RL
algorithm could be a suitable solution for many applications, we desired a solution that respected
strict constraints on actor latency, which precludes ever running a large model during inference. As
an alternative solution which respected this constraint, we designed a model compression procedure
termed “Actor-Learner Distillation” (ALD) which continually performs distillation between a large-
capacity “Learner” model, which is trained using RL but never run directly in the environment, and
a fast “Actor” model, which is trained using distillation from the learner and is used to collect data.

As we use an actor-critic training paradigm in this work, each of these models effectively comprises
two functions, the policy and value function. We denote the actor model by MA = (πA, V

π
A ) and

learner model by ML = (πL, V
π
L ). The actor model is chosen with the appropriate model capacity

to compute an inference step on the target hardware as fast as possible, i.e. within time Tactor. In
contrast, there are far fewer constraints on learner model ML, as it is typically running on a central
process with accelerated hardware. While there are no restrictions besides latency concerns on the
model class of actor and learner in the context of ALD, in this work we choose to focus on the case
of the actor model being an LSTM and the learner model being a transformer. As there is a clear
data efficiency advantage to the transformer and a clear computational advantage to the LSTM, the
success of ALD at extracting the benefits of both models can be more clearly recognized.

Actor-Learner Distillation proceeds with the learner model ML being trained using a standard re-
inforcement learning algorithm, with the exception of the environment data being generated by the
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Figure 2: Top: An overview of distributed Actor-Learner Distillation, showing the processes as
boxes and communication as arrows (data flow shown as blue arrows, parameter flow as orange).

actor model. The actor model is trained using a policy distillation loss:

Lπ
ALD = Es∼πA

[DKL(πA(·|s)||πL(·|s))] = Es∼πA

[

∑

a∈A

πA(a|s) log
πL(a|s)

πA(a|s)

]

(1)

Similar to previous distillation work in the multitask setting (Teh et al., 2017), we employ this loss
bidirectionally: the actor is trained towards the learner policy and the learner policy is regularized
towards the actor policy. This regularization loss on the learner was seen to enable smoother opti-
mization. As actor and learner policy will naturally be different at some points during training, an
off-policy RL algorithm for the learner could be thought to be required if the divergence is large
enough. We found leveraging off-policy data to be effective for the actor, and sampled trajectory
data from a replay buffer when computing Eq. 1 during actor model optimization.

Beyond a distillation loss, we experimented with a value distillation loss:

LV
ALD = Es∼πA

[

1

2
(V π

L (s)− V π
A (s))2

]

(2)

This loss functions to encourage actor model representations to model task reward structure. The use
of value distillation in order to improve representations in a policy network has also been explored
in concurrent work (Cobbe et al., 2020). Unlike the policy distillation loss, this loss is only used to
train the actor model. The final Actor-Learner Distillation loss is:

LALD = απL
π
ALD + αV L

V
ALD (3)

where απ and αV are mixing coefficients to control the contribution of each loss.

4 DISTRIBUTED ACTOR-LEARNER DISTILLATION

In order to make more efficient use of computational resources, we develop a distributed system for
Actor-Learner Distillation based on IMPALA (Espeholt et al., 2018). An overview of this system is
shown in Fig. 2, and we detail the function of each distinct process below, in the order of data flow:

Actor: There are NA parallel actors, each executing on single-threaded processes with only CPU
resources available. Each Actor process steps through environment steps sequentially until a trajec-
tory of TU time steps is gathered. Actions are sampled from a local copy of the actor policy πA.
Once a completed trajectory is acquired, it is communicated to a Queue process.

Queue: The Queue process receives trajectories asynchronously across actors and accumulates them
into batches. The batched trajectories are then passed to the Learner Runner.

Learner Runner: The Learner Runner process runs ML in inference mode on the incoming batches
of data using a hardware accelerator. This is done to provide (1) learning targets to the Distill pro-
cesses downstream and (2) to make sure learner model initial memory states are updated for the
Learner. Specifically when ML is a transformer model, we additionally batch over the time dimen-
sion to process data even more rapidly. The Learner Runner then passes the batched trajectories it
received along with computed learner model outputs to two separate parallel processing streams, the
Learner process and the Replay process.

Learner: The Learner process receives batched trajectories from the Learner Runner and computes,
using a hardware accelerator, all relevant RL objectives (V-MPO in our case (Song et al., 2020)),
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Figure 3: Left: On the Meta-Fetch environment with 3 objects, we evaluated the importance of
the ”Distillation steps per RL step” ratio. Shown on the left, as we increased this ratio we clearly
observed an improved sample efficiency in the Actor-Learner Distillation procedure, until saturation
at a ratio of 10. However, higher ratios came at the cost of substantial increase in wall-clock time, as
the high number of distillation steps quickly becomes the bottleneck of the system’s speed. Right:
Parallelizing the distill processes using HOGWILD! improved the DpRL ratio without causing a
slowdown in system speed. enabling an increase in data efficiency without a decrease in system
speed, as shown in this result on 9x9 I-Maze.

along with the loss in Eq. 1 to regularize the learner model towards the actor model. In the Learner
process, only the learner model parameters are updated. Similarly to recent work on deep actor-critic
algorithms (Song et al., 2020; Luo et al., 2020), we use a “target network” where we only communi-
cate updated learner parameters to the Learner Runner every KL optimization steps. Although not
used here, the Learner process can additionally receive data from the Replay process.

Replay: The Replay process manages a replay buffer containing a large store of previously collected
batched trajectories. Incoming batches of trajectories from the Learner Runner are archived in a large
first-in-first-out queue. The Learner and Distill processes can then request batches of trajectories
which are uniformly sampled from this queue.

Distill: Distill processes request data from the Replay buffer and use the retrieved trajectories to
compute the distillation loss in Eq. 3, which is then used to update the actor model parameters.
Similar to the Learner process, we utilize a target network scheme which updates model parameters
on the Actor processes every KA optimization steps.

4.1 IMPROVING DISTILL / RL STEP RATIO

An observation found early in the development of ALD was the significance of the ”distillation steps
per RL steps” (DpRL) ratio. The DpRL ratio measures how many agent steps are taken per second
on the actor model (which takes ”distillation steps”) comparatively with the learner model’s agent
steps per second (which takes ”reinforcement learning steps”). This is exemplified in the left side
of Fig. 3, where in the Meta-Fetch environment with 3 objects (see Sec. 5.2), we ran ALD but set a
fixed number of Actor agent steps for every Learner agent step. The graph shows a greatly enhanced
sample efficiency when the number of actor agent steps is increased in relation to learner agent steps,
until saturating at around 10 actor agent steps per learner agent step. Out of all hyperparameters we
tested, we found that a high DpRL ratio was consistently the most critical parameter in increasing
the sample efficiency of ALD. However, increasing the DpRL ratio naturally increased the total run
time of the system, as now the distillation process became the main system bottleneck, and this
encouraged investigation into parallelized ways of improving actor agent steps.

To avoid a complete system slowdown while maintaining a high DpRL ratio, we leveraged the
parallelized training procedure HOGWILD! (Recht et al., 2011) as a replacement to the single-
Distill-process system originally tested. In this setting, there are now ND parallel Distill processes,
all of which asynchronously sample batched trajectories from the replay buffer to update actor model
parameters. As there are typically more than 1 available accelerators on a single machine (see e.g.
reference machines in App. B), the parallel Distill processes can be evenly distributed between
available accelerators to make the best use of the resources at hand. In the right side of Figure 3, the
HOGWILD! Actor-Learner Distillation variant consistently achieved better sample complexity with
equivalent time complexity, across a wide sweep of hyper-parameter settings.

5 EXPERIMENTS

Algorithm Details: For experiments, we use the V-MPO algorithm (Song et al., 2020) as the RL
algorithm underlying each of the procedures we test. For ALD, we use V-MPO with V-trace correc-
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Figure 4: Results on the 9 × 9 I-Maze environment for all models. Left: x-axis as number of
environment steps. Right: x-axis as wallclock time. All curves have 3 seeds. Obtained on reference
machine A (App. B).

Figure 5: Results on the Meta-Fetch environment with 4 objects. Left: y-axis as environment returns
(objects fetched correctly per episode). Right: y-axis as success rate (all 4 objects fetched correctly
at least once in an episode). All curves have 3 seeds. Obtained on reference machine B (App. B).

tions (Espeholt et al., 2018) which worked slightly better in preliminary experiments. For baseline
models V-MPO without V-trace worked better, as in Song et al. (2020). For all experiments, we
use a single-layer LSTM of varying dimension depending on the environment as the actor model.
For transformers, we use the Gated Transformer-XL (Parisotto et al., 2019), which we initially ob-
served had better sample efficiency and optimization stability than standard transformers. We vary
the number of transformer layers dependent on the difficulty of the environment. More details on
the experimental procedure can be found in App. A.

Baselines: For each environment, we individually run the actor and learner model architectures used
in ALD as baselines. As an additional baseline besides the learner and actor models in isolation, we
introduce a model which maintains a distinct policy and value network. Here the policy network has
the same architecture as the actor model in ALD (i.e. a small LSTM) and the value network has the
same architecture as the learner model (i.e. a transformer). As the value function does not need to
be run on actor processes, only the policy, this baseline achieves similar run time as ALD without
requiring any extra insights. This baseline is an instance of Asymmetric Actor-Critic (Asymm.
AC) (Pinto et al., 2017), but where instead of the value function having privileged access to state
information it has privileged access to computational resources. Comparison of ALD to Asymm.
AC will reveal whether the introduction of distillation losses has any positive effect over the simpler
method of creating independent policy/value functions.

5.1 I-MAZE

The I-Maze environment has the agent start at the top-left corner of a grid-world with the shape of
an “I” (Fig. 7, Left). The agent must travel from the top-left corner to one of the bottom corners of
the I, where the episode is ended and the agent receives reward. The particular corner the agent must
travel to is revealed in the top-right corner of the I, which contains an “indicator” tile that is either
0 or 1 depending on whether the left or right bottom corner contains the reward. If the agent does
not enter a terminating corner state in H time steps, the episode ends without a reward. The agent
entering the correct bottom corner goal based on the indicator receives a reward of 1. Entering the
incorrect corner results in the episode terminating with no reward. As memory is the main concern
of these results instead of exploration, for larger maze results (i.e. a maze of width 15), we add a
shaping reward of 0.01 whenever the agent visits a state along the main corridor of the “I”. Once the
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Figure 6: Left: Value distillation consistently provides a slight improvement to results. Results here
were taken over a hyperparameter sweep with either value distillation enabled or disabled, and the
best performing curves were chosen from each setting. Center, Right: Plotting per-seed curves
(Center) of results in 15 × 15 I-Maze reveals that the Asymm. AC and LSTM baseline spend a
significant amount of time achieving a mean success rate around 0.5 (quantified in the right-hand
bar plot). A success of 0.5 suggests both models have learnt to enter a goal but are not yet able to use
their memory to make the inference between goal entered and indicator identity. In contrast ALD
and GTrXL rapidly learn to reach a perfect return of 1 and do not spend much time near 0.5.

agent has traversed a particular state, it cannot gain another shaping reward for returning there until
the next episode. The agent has an orientation and observes every pixel directly in front of it until it
reaches an occluding wall.

The environment provides a clear test on an agent’s ability to remember events over long horizons, as
the only way to reliably terminate an episode successfully is by remembering the indicator observed
near the start of the maze. In Figure 4, we provide complete reward curves for a maze of dimension
9× 9. We plot curves with two different x-axes: environment steps, measuring sample complexity,
and wall-clock time. All curves were obtained on Reference Machine A (see Appendix B) under
identical operating conditions, meaning wall-clock time is a fair comparison. We can first observe
the clear sample efficiency gains of the transformer over the LSTM as well it’s poorer performance
when considering wall-clock time. Furthermore, we can observe that Actor-Learner Distillation
achieves significantly improved sample complexity over the stand-alone LSTM. This confirms the
ability of ALD to recover the sample-efficiency gains of the learner model. In terms of wall-clock
time, the Actor-Learner Distillation procedure is unmatched by any other procedure, demonstrating
its clear practical advantage.

In contrast to Actor-Learner Distillation, the Asymm. AC baseline does not seem to perform as well
despite equivalent model complexity and equivalent time complexity, as it contains both identical
actor and learner models. To gain insight into this result, we plotted the per-seed curves of Actor-
Learner Distillation and Asymm. AC on the 15× 15 I-Maze task in Figure 6. We can clearly see an
underlying pattern to the seed curves, all models have a local optimum at around 0.5 success where
each model class spends a varying amount of time. A return of 0.5 suggests that the model has learnt
to enter a goal, but not yet learnt to use the indicator to correctly determine which goal contains the
positive reward. We measured how many environment steps each model class spent in this local
minima out of the 10 million total, and found that the LSTM and Asymm. AC spend a majority
of their time there. While it can be expected that the transformer can easily exit this optima due to
its ability to directly look back in time, interestingly ALD seems to recover the same efficiency at
escaping this minima as the stand-alone transformer. This suggests that ALD can successfully impart
the learner model’s inductive biases to the actor model during learning in a way that is substantially
more effective than just using the transformer as a value function (Asymm. AC). Finally, in the left-
hand-side of Fig. 6 we ran an ablation on 9 × 9 I-Maze to determine whether the value distillation
loss provided benefit to learning. We performed a hyperparameter sweep for each setting of value
distillation enabled or disabled. The results demonstrated that using value distillation provides a
slight but significant improvement.

5.2 META-FETCH

The “Meta-Fetch” environment, shown in Figure 7, requires an agent to fetch a number of objects
distributed randomly on an empty gridworld, with each object required to be fetched in a particular
hidden sequence. Crucially, in Meta-Fetch (1) the agent can not sense the unique identity of each
object, meaning each object looks the same to the agent, (2) the agent does not know beforehand the
sequence of objects it must obtain, and (3) observations consist of local views of pixels in front of
the agent’s current orientation (see Fig. 7). When the agent collects an object, it can either receive
a positive reward if this object is the next correct one in the sequence, or receive no reward and
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the sequence of objects is reset. To prevent cheating (i.e. the agent obtaining a reward and then
immediately resetting the sequence, and repeating), the agent receives a positive reward only on the
first instance of it collecting the next correct object in the sequence. Once all objects in the sequence
have been fetched, the objects and rewards are reset and the environment proceeds as it did at the start
of the episode (except the agent is now in the position of the last object fetched). Meta-Fetch presents
a highly challenging problem for memory architectures because the agent must simultaneously learn
the identity of objects by mapping their spatial relations using only local egocentric views, as well as
learn a discrete search strategy to memorize the correct sequence of objects to hit. Meta-Fetch was
inspired by the meta-learning environment “Number Pad” used in previous work (Humplik et al.,
2019; Parisotto et al., 2019).

Results are reported in Figure 5 for a Meta-Fetch environment with 4 randomly located objects.
We present plots of average return using both environment steps and wall-clock time as x-axes
(left plots), along with an additional plot which measures “success” (right plots). Success in Meta-
Fetch is defined as the agent completing at least 1 full object fetch sequence (agents can accomplish
multiple full fetch sequences for additional reward). As in I-Maze, we re-confirm the observation
that transformers achieve a clearly superior sample efficiency over LSTMs, while at the cost of
a much slower wall-clock performance. Additionally, unlike I-Maze where Asymm. AC had a
more positive effect on sample efficiency, there is a less substantial difference between LSTM and
Asymm. AC.

However, we can see a major difference between the baselines and Actor-Learner Distillation, which
early on achieves close to the transformer’s sample efficiency with a much smaller model. Addi-
tionally, it seems that in this much more challenging environment, which requires both memory and
compositional reasoning, the LSTM actor model in ALD suffers in performance later on when the
GTrXL achieves a higher rate of increase in reward. Examining the success rate reveals an interest-
ing trend where the ALD-trained LSTM achieves better generalization than the LSTM and Asymm.
AC models. In particular, we can see that although the LSTM and Asymm. AC have average return
that is increasing, their success rate is relatively stagnant (Asymm. AC) or even decreasing (LSTM).
This suggests the increase in return these baselines are observing mainly stem from them learning
how to search through a fraction of possible object layouts more efficiently. In contrast, the ALD-
trained LSTM’s success rate is correlated with its return, suggesting it is learning to succeed in a
larger variety of object layouts.

6 RELATED WORK

Whether a deep neural network could be compressed into a simpler form was examined shortly after
deep networks were shown to have widespread success (Ba & Caruana, 2014; Hinton et al., 2015).
Distillation objectives revealed that not only could high-capacity teacher networks be transferred
to low-capacity student networks (Ba & Caruana, 2014), but that training using these imitation ob-
jectives produced a superior low-capacity model compared to training from scratch (Hinton et al.,
2015), with this effect generalizing to the case where student and teacher share equivalent capac-
ity (Furlanello et al., 2018). Similar to this work’s desired goal to leverage the rapid memorization
capabilities of transformers while training an LSTM, other work showed that distillation between
different architecture classes could enable the transfer of inductive biases (Kuncoro et al., 2019;
Abnar et al., 2020). Within RL, distillation has most often been used as a method for stabilizing
multitask learning (Rusu et al., 2015; Parisotto et al., 2015; Teh et al., 2017; Berseth et al., 2018).

The method most closely related to ALD is Mix&Match (Czarnecki et al., 2018), where an ensemble
of policies is defined such that each successive model in the ensemble has increasing capacity. All
models in the ensemble are distilled between each other, and a mixture of the ensemble is used for
sampling trajectories, with the mixture coefficients learnt through population-based training (Jader-
berg et al., 2017). There are however significant difference from ALD: the distillation procedure was
meant to transfer simple, quick-learning skills from a low-capacity model to a high-capacity model
(the opposite intended direction of the benefit of distillation in ALD) and a mixture policy was used
to sample trajectories which did not consider actor-latency constraints (and preferred sampling from
the larger model if it performed better).

Similar to ALD, various works have looked at exploiting asymmetries between acting and learning
in reinforcement learning (Pinto et al., 2017; Humplik et al., 2019). In (Pinto et al., 2017), since the
value function is ultimately not needed during deployment, it was given privileged access to state
information during training (whereas the policy must operate directly from pixels). Our baseline
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Asymm. AC was derived from this insight that value networks are solely needed during learning,
but our variant had a value function that utilized privileged compute resources instead of state access
during training. Another closely related method is the training paradigm of Humplik et al. (2019),
where a belief network was trained to predict hidden state information in partially-observable meta-
learning environments. The hidden representations from the belief network were then used as an
auxiliary input to an agent network trained to solve the task, enabling representation learning to use
privileged information during training.

As an alternative to model compression, architecture development can reduce the computational cost
of certain model classes. Transformers in particular have had a large amount of attention towards
designing more efficient alternatives (Tay et al., 2020), as gains from increased model scale have yet
to saturate (Brown et al., 2020). This architectural development has taken many forms: sparsified
attention (Child et al., 2019), compressed attention (Rae et al., 2020; Dai et al., 2020), use of kNN
instead of soft-attention (Lample et al., 2019), etc. (See Tay et al. (2020) for a comprehensive
review). However, architectural development is largely orthogonal to the ALD procedure, as it
means we can further scale actor and learner models by a corresponding degree.

7 CONCLUSION

In conclusion, towards the development of efficient learning methods in actor-latency-constrained
settings, we developed the Actor-Learner Distillation (ALD) procedure, which leverages a continual
form of model compression between separate actor and learner models. In the context of learn-
ing in partially-observable environments using a distributed actor-critic system, ALD successfully
demonstrated the ability to largely capture the sample efficiency gains of a larger transformer learner
model while still maintaining the reduced computational cost and lower experiment run time of the
LSTM actor model. As supervised learning demonstrates ever increasing gains in performance from
increasing model capacity, we believe the development of effective methods of model compression
for RL will become a more prominent area of study in the future. In future work, we wish to inves-
tigate whether integrating the ALD procedure with batched inference for actors would still maintain
the same performance increases we demonstrated in our results, while at the same time enabling
larger actor models to be used and correspondingly larger learners.
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Figure 7: Left: Example of the 15 × 15-size I-Maze environment, with the indicator in this case
being red. Center: An example of the agent observation, which is a 3-pixel-wide egocentric beam
starting in the direction of the agent’s orientation. The agent cannot see behind itself or through
walls. Right: Example of the Meta-Fetch environment with 4 randomly located objects shown in
brown. The agent is shown in orange with its orientation indicated by the direction of the arrow.

APPENDIX

A EXPERIMENT DETAILS

For all models, we sweep over the V-MPO target network update frequency KL ∈ {1, 10, 100}.
In initial experiments, we also sweeped the “Initial α” setting over values {0.1, 0.5, 1.0, 5.0}. All
experiment runs have 3 unique seeds. For each model, we choose the hyperparameter setting that
achieved highest mean return over all seeds. Additionally we use PopArt (Hessel et al., 2019) for
the value output.

Hyperparameter Value

Optimizer Adam
Learning Rate 0.0001
NA 30
ND 8
Batch Size 64
TU 20
Discount Factor (γ) 0.99
Grad. Norm. Clipping Disabled
Initial η 1.0
Initial α {0.1, 0.5, 1.0, 5.0}
ǫη 0.1
ǫα 0.004
KL {1, 10, 100}
PopArt Decay 0.0003

Table 1: Common hyperparameters across experiments.

A.1 I-MAZE EXPERIMENTS

Observations, Actions and Metrics: Observations in I-Maze are the single row of pixels starting
at the agent’s current position and extending in the direction the agent is facing. The row of pixels
extends as far as the maze dimension. If the agent has a wall in its field of view (represented as
black pixels in Fig. 7), pixels further away from that point are occluded. For the 9 × 9 maze, a
reward is only given when the agent enters the correct goal as decided by the indicator. For the
15 × 15 maze, it is the same but there is an additional shaping reward where whenever the agent
enters one of the states along the central column of the “I” for the first time within its current episode,
it receives a small reward of 0.01. This reward is meant to encourage exploration and prevent the
very large number of environment steps otherwise necessary for the agent to end up at a goal when
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taking actions randomly. The agent has 4 actions, move forward, turn left, turn right and do nothing.
Moving forward into a wall causes no change in state. 9 × 9 I-Maze episodes last for a horizon
of 150 time steps while 15 × 15 I-Maze episodes last for 350 steps. Observations have 3 channel
dimensions, one for whether the pixel is free space or a wall, one for the green goal indicator and
one for the red goal indicator.

LSTM: We use a single-layer LSTM with a hidden dimension of 32 for all experiments in this
domain.

GTrXL: We use a 2-layer GTrXL for the experiments in 9× 9 and a 4-layer GTrXL for the experi-
ments in 9×9. We use an embedding size of 256, 8 attention heads, a head dimension of 32, a gated
initialization bias of 2 and a memory length of 64. Other details were followed from Parisotto et al.
(2019).

ALD: We use the corresponding LSTMs and GTrXL described above depending on the environ-
ment. During hyperparameter sweeps, we tested KA ∈ {1, 10, 100}. We set απ = 1 and sweep
αV ∈ {0, 0.1, 1}.

Asymm. AC: We use the corresponding LSTMs and GTrXL described above depending on the
environment.

A.2 META-FETCH

Observations, Actions and Metrics: In Meta-Fetch, an agent acts in an empty 2D gridworld of
size 7 × 7 given only local observations. At each step the agent can choose to either move forward
or turn left or right. Observations are the 15 pixels in front of the agent pointing in it’s orientation,
along with the 2 pixels on either side of this ray, for a complete observation size of C × 15 × 3
pixels (see Fig. 7). Each observation has C channels which determine whether that pixel represents
free space, a wall, an object, or a collected object. Every episode has the agent located in a new
configuration of object locations. We set a maximum episode length of 300 steps for Meta-Fetch.

The goal of the agent in Meta-Fetch is to collect, by colliding with, each of the randomly located
objects in a specific sequence. This sequence is not known beforehand and is randomized each
episode. The only clue to discovering this sequence is that when the agent hits the next right object
in the sequence, it gains a reward of 1 and the object is sensed as “collected”. Otherwise, if it hit
the wrong object in the sequence, then all previously collected objects are reset and the agent must
restart the fetch sequence from the beginning once again. Once all objects are collected, they are all
reset and the agent can restart the same sequence to once again gain reward for each collected reward.
Objects which have been reset before the complete fetch sequence is achieved do not give further
reward upon re-collection, to prevent the agent from falling into an local optimum of repeatedly
collecting a correct object and then immediately collecting an incorrect object to reset the correct
object.

LSTM: We use a single-layer LSTM with a hidden dimension of 128.

GTrXL: We use a 4-layer GTrXL, an embedding size of 256, 8 attention heads, a head dimension
of 32, a gated initialization bias of 2 and a memory length of 64. Other details were followed
from Parisotto et al. (2019).

ALD: We use the corresponding LSTMs and GTrXL described above depending on the environ-
ment. During hyperparameter sweeps, we tested KA ∈ {10, 100}. We set απ = 1 and sweep
αV ∈ {0, 0.1, 1}.

Asymm. AC: We use the corresponding LSTMs and GTrXL described above depending on the
environment.

B COMPUTE DETAILS

Reference Machine A: Reference Machine A has a 36-thread Intel(R) Core(TM) i9-7980XE CPU
@ 2.60GHz, 64GB of RAM, and 2 GPUs: a GeForce GTX 1080 Ti and a TITAN V.

Reference Machine B: Reference Machine B has a 40-thread Intel(R) Xeon(R) CPU E5-2630 v4
@ 2.20GHz, 256GB of RAM and 2 GPUs: a Tesla P40 and a Tesla V100-PCIE-16GB.
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Figure 8: Full wall-clock time curves. Top: 9x9 I-Maze success rate. Left: Meta-Fetch reward.
Right: Meta-Fetch success.

C DESCRIPTION OF HOGWILD!

In order to speed-up certain learning aspects of our proposed method, we use the HOGWILD! (Recht
et al., 2011) algorithm. HOGWILD! enables lock-free stochastic gradient optimization to be per-
formed by several parallel learning processes. Each process has shared access to the parameter
vector of the learning model, and can update it without requiring a mutually-exclusive lock. This
allows parameter updates to occur in parallel as soon as they are available, but potentially leads to
race conditions where the parameter vector is read during it being updated by a different process.
This means a fraction of the parameter vector can be stale when a learning process calculates the
parameter gradients. However, while this parallel overwriting of the parameter vector introduces
noise via this staleness, it usually does not significantly inhibit performance and is typically faster
than alternatives which use explicit locking to prevent race conditions.
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Figure 9: Per-seed curves for 9x9 I-Maze.
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