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Abstract

Introduction: Tumor cells can effectively be killed by heat, e.g. by using magnetic hyperthermia. The main
challenge in the field, however, is the generation of therapeutic temperatures selectively in the whole tumor
region. We aimed to improve magnetic hyperthermia of breast cancer by using innovative nanoparticles which
display a high heating potential and are functionalized with a cell internalization and a chemotherapeutic
agent to increase cell death.

Methods: The superparamagnetic iron oxide nanoparticles (MF66) were electrostatically functionalized with
either Nucant multivalent pseudopeptide (N6L; MF66-N6L), doxorubicin (DOX; MF66-DOX) or both (MF66-N6LDOX). Their
cytotoxic potential was assessed in a breast adenocarcinoma cell line MDA-MB-231. Therapeutic efficacy was analyzed
on subcutaneous MDA-MB-231 tumor bearing female athymic nude mice.

Results: All nanoparticle variants showed an excellent heating potential around 500 W/g Fe in the alternating magnetic
field (AMF, conditions: H = 15.4 kA/m, f = 435 kHz). We could show a gradual inter- and intracellular release
of the ligands, and nanoparticle uptake in cells was increased by the N6L functionalization. MF66-DOX and
MF66-N6LDOX in combination with hyperthermia were more cytotoxic to breast cancer cells than the respective free
ligands. We observed a substantial tumor growth inhibition (to 40% of the initial tumor volume, complete tumor
regression in many cases) after intratumoral injection of the nanoparticles in vivo. The proliferative activity of the
remaining tumor tissue was distinctly reduced.

Conclusion: The therapeutic effects of breast cancer magnetic hyperthermia could be strongly enhanced by the
combination of MF66 functionalized with N6L and DOX and magnetic hyperthermia. Our approach combines two
ways of tumor cell killing (magnetic hyperthermia and chemotherapy) and represents a straightforward strategy for
translation into the clinical practice when injecting nanoparticles intratumorally.
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Introduction
Nanoparticles are extensively investigated in the field of

nanomedicine because they can be utilized in a wide

range of applications, such as drug delivery, disease im-

aging and therapy. Functionalization of nanoparticles

with cytotoxic drugs or tumor-specific proteins has been

proven a promising technique, especially in cancer re-

search, to selectively target tumor cells, improve drug

delivery and reduce systemic toxicity of drugs [1–5]. A

defined subgroup of nanoparticles, particularly the

superparamagnetic ones (MNP), can release heat during

the exposure to an alternating magnetic field (AMF) in

order to kill tumor cells with hyperthermic temperatures

[6–8]. This so-called magnetic hyperthermia approach

has also yielded encouraging results in preclinical re-

search [9–11]. Translation into clinical practice is par-

ticularly expected for intratumoral injection of the

magnetic material [9]. The advantages are that MNP are

directly deposited at the target site and the amount of

MNP can be selectively modulated based on tumor size.

For intravenous application, quantities of MNP higher

than physiological levels, that might even be cytotoxic,

need to be injected [12]. Here, the biggest challenge is

selective accumulation within the tumor, which can be

prevented by the intratumoral injection.

Adding biologically active functionalization to the

MNP bears great potential to further refine and improve

magnetic hyperthermia therapy [13, 14]. Among them, the

nucleolin antagonist multivalent pseudopeptide Nucant

(N6L), which is currently being applied in a phase II

clinical trial, is of particular interest. This molecule targets

a nucleolin-receptor complex overexpressed selectively at

the cell surface of tumor cells, and mediates lethal effects

to cancer cells after internalization [15–17], and antitumor

activities [18].

Furthermore, the chemotherapeutic drug doxorubicin

(DOX) is currently used in clinical cancer therapy. How-

ever, to reduce its systemic toxicity and side effects, this

drug is constantly under investigation to be used in a

drug carrier system that can be activated (e.g. by heat or

pH-sensitive liposomes) [19–23]. Functionalization of

DOX to iron oxide nanoparticles is a straightforward al-

ternative, because the release, and therefore the activa-

tion of DOX can be triggered by magnetically induced

heating [24], particularly if the biologically active sub-

stances N6L and DOX [25] are electrostatically bound

to the nanoparticles. Thus, upon change of the ionic

strength or the pH, the cargo molecules will be released

in the close vicinity or inside the target cells after intra-

tumoral application of the magnetic material.

Here, we propose a strategy to improve the perform-

ance and the outcome of heat treatment for tumors by

magnetic hyperthermia, using newly developed MNP

that are functionalized through electrostatic interaction.

By using a tumor-specific cell internalization moiety

(N6L) and/or an anti-cancer drug (DOX) on the MNP

surface, we aim at enhancing the intracellular MNP

uptake as well as mediating cytotoxic effects beyond

hyperthermia, to reach tumor cells that escape the heat

treatment. To the best of our knowledge, we developed

a novel combination therapy based on multifunctiona-

lized MNP to selectively target and successfully elimin-

ate breast cancer cells.

Methods

Nanoparticle synthesis

The MNP used in this study, denominated MF66, were

produced by means of the co-precipitation technique

[26]. Coating with dimercaptosuccinic acid (DMSA) was

performed as described previously [27, 28]. Briefly, the

MNP were initially coated with oleic acid and dispersed

in toluene and a solution of DMSA in dimethyl sulfoxide

(DMSO) was added to perform a ligand exchange from

oleic acid to DMSA. The DMSA-coated MNP precipi-

tated and were washed several times with water. Finally,

the MNP were resuspended in distilled water, the pH

adjusted and sterile filtration carried out. The MF66

MNP used in this study are already characterized and

their magnetic properties have been studied [28]. The

hydrodynamic diameter was measured by dynamic light

scattering (DLS) and expressed as the Z-average size of

the MNP dispersed in water. Furthermore, we measured

the ζ- potential (Zetasizer Nano ZS, Malvern Instruments)

of the MNP at pH 7.4.

MNP functionalization

For the electrostatic immobilization, either 5.1 μl of an

N6L solution (1.93 mM) or 202 μl of a DOX hydrochlor-

ide solution (500 μM, Cell pharm, Bad Vilbel, Germany)

were incubated with 1 ml MF66 for 6 h at room

temperature. N6L multivalent pseudopeptide was synthe-

sized, purified and analyzed for its biological effect as pre-

viously described [18]. In the case of N6L, the mixture

was purified by ultrafiltration or centrifuged. MF66-DOX

was centrifuged and the supernatant was removed. MNP

pellets were re-dispersed at 2.4 mg Fe/ml.

To immobilize both DOX and N6L onto MF66 MNP,

the same protocol as described above was used; here,

DOX was immobilized first onto MF66 MNP followed

by N6L. To quantify the amount of immobilized N6L,

an N6L fluorescently labeled with Alexa Fluor 546 (N6L-

AF546) was synthesized and used for immobilization onto

MF66 under the same conditions as described for N6L.

The unbound N6L-AF546 recovered during the washes was

measured (λexc = 555 nm, λem = 560–750 nm). Similarly,

immobilized DOX was quantified by measuring the fluores-

cence of unbound DOX in the supernatant (λexc = 495 nm,

λem = 520–750 nm).
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For the preparation of the MNPs used for the in vitro

and in vivo studies, the bare MNPs were sonicated for 3

minutes and then filtered through a 0.22-μm strainer for

sterilization. The iron concentration was measured after

filtration by Inductively coupled plasma – mass spectrom-

etry (ICP-MS) before functionalization. All functionalization

processes were then carried out under sterile conditions and

all molecules used (N6L or DOX solutions) were filtered

through a 0.22-μm strainer.

Specific absorption rate of MNP

To assess the heating potential of the MNP in an AMF

(conditions H = 15.4 kA/m, f = 435 kHz) we determined

the specific absorption rate (SAR) and intrinsic loss

power (ILP) using colorimetric methods as described

before [28].

Release of DOX and N6L-AF546

The mode of the release of the electrostatically

immobilized molecules onto MNP was monitored [13].

Water was used to determine the stability of the three

formulations over time. Then, the same experiments were

performed in PBS buffer (pH 7.4) and in phenol red-free

DMEM with 10% (v/v) fetal bovine serum (FBS) (complete

DMEM) to modulate desorption of N6L-AF546 and

DOX from the MNP in the presence of salts. MNP were

dispersed at a final concentration of 0.3 mg Fe/ml. The

samples were then placed at 37°C and at different time

points (up to 120 h), 100 μl of each sample were collected,

centrifuged and supernatants were analyzed by fluorescence

and compared to a reference sample.

Cell culture

Three genotypically diverse breast-derived cell lines were

used for in vitro testing of the MNP. Two cell lines

(MCF-7 and MDA-MB-231, both ATCC) were selected

due to their distinct cancer phenotypes. In comparison

to the two cancerous cell line models, a third non-

cancerous cell line MCF-10A (ATCC, mammary epithe-

lial cells) was used as a control. Cell lines were cultured

at 37°C in a humidified atmosphere containing 5% CO2

and maintained in DMEM with 10% (v/v) FBS and 1%

PenStrep (all products from Gibco®, Paisley, Scotland,

UK). Cells were tested regularly using the MycoAlert®

PLUS test kit (Lonza, Switzerland) for the presence of

mycoplasma and prior to freezing stock. All experiments

were conducted using sub-confluent cells in the expo-

nential phase of growth. Depending on the experiment,

cells were seeded in 24-well or 96-well plates and incu-

bated for 24 h prior to MNP exposure.

MNP internalization and subcellular localization

MDA-MB-231 cells grown on coverslips were incubated

for 24 h with MF66, MF66-N6L, MF66-DOX or MF66-

N6LDOX (all at 100 μg Fe/ml) in cell culture medium.

To remove non-internalized MNP, samples were washed

and observed immediately or after 48 h, under bright

light for internalization, or by fluorescence microscopy

for subcellular location of DOX (n = 3 independent

experiments).

Prussian blue staining for iron detection

The presence and localization of iron particles in MDA-

MB-231 cells were assessed by Prussian blue staining.

Cells were incubated with MNP for 24 h and then ana-

lyzed immediately or 48 h post incubation. Cells were

washed, fixed in methanol, and stained with equal vol-

umes of 4% hydrochloric acid and 4% potassium ferro-

cyanide trihydrate (all Panreac Química) for 15 minutes,

and counterstained with neutral red.

Impact of nanoparticles on cells in the absence of

hyperthermic conditions

Cells were allowed to attach to the culture plate for 24 h

and then exposed for 24 h and 72 h to the MNP formu-

lations. Concentrations in the range of 5 to 200 μg Fe/mL

were employed to determine if the selected MNP

formulation elicited a cytotoxic response in each cell

line. Triplicate experiments were conducted with three

wells per concentration. Positive and negative controls

were included as previously described [29]. Following 24 h

incubation, cells were washed, stained for 30 minutes using

LysoTracker® (Molecular Probes, Eugene, OR, USA), an

indicator for cell membrane permeability, fixed using 3.7%

paraformaldehyde (PFA) for 20 minutes and further stained

for 10 minutes with Hoechst 33342 nuclear dye (Thermo

Fisher Scientific Inc., Waltham, MA, USA). Screening

was carried out by high content analysis using the GE

Healthcare InCell1000 Analyzer, Buckinghamshire, UK

by bright field and three fluorescent channels as de-

scribed before [29].

In vitro cell viability determination under hyperthermic

conditions

The sensitivity of MDA-MB-231 cells to hyperthermic

temperatures and the effect of the MNP formulations on

cell viability in the presence and absence of heat were

assessed. At 24 h after seeding 5000 cells/well in a 96-

well plate (Greiner BioOne, Frickenhausen, Germany),

cells were incubated with either medium, MF66, MF66-

N6L, MF66-DOX or MF66-N6LDOX in a concentration

of 100 μg Fe/ml or the equivalent molar amount of free

N6L (400 nM), DOX (4 μM) or N6L and DOX for 24 h

at 37°C.

For hyperthermia treatment, cells were put in the in-

cubator at 46°C for 30 minutes, corresponding to a

temperature dosage of 90 cumulative equivalent minutes

at 43°C (CEM43T90, for details see Additional file 1), or
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else cells were left in the incubator at 37°C. At 48 h after

hyperthermia, cells were washed twice with Hank's bal-

anced salt solution (HBSS), once with medium and then

AlamarBlue® reagent was added for 4 h [30]. Fluores-

cence was measured (Tecan Infinite M1000 Pro, Grödig,

Austria; λexc = 530–560 nm, λem = 590 nm) and normal-

ized to the fluorescence of untreated cells (no MNP in-

cubation and no hyperthermia).

Hyperthermia treatment in tumor-bearing athymic

nude mice

All in vivo hyperthermia experiments, the experimental

workflow, determination of temperature dosage and heat

distribution and data analysis were carried out as de-

scribed before in detail [28]. All experiments were in ac-

cordance with international guidelines on the ethical use

of animals and were approved by the regional animal

care committee (02-068/11, Thüringer Landesamt für

Verbraucherschutz, Bad Langensalza, Germany). Ani-

mals were maintained under artificial day-night cycles

(12 h light-dark cycles; 23°C room temperature, 30%–

60% environment humidity) and received food and water

ad libitum.

Briefly, to induce xenografts we injected 120 μl

Matrigel™ containing 2 × 106 MDA-MB-231 cells sub-

cutaneously on the rear backside of the nude mice and

allowed tumor growth until a volume between 100 and

250 mm3 was reached. MNP formulations MF66, MF66-

N6L, MF66-DOX or MF66-N6LDOX were used in con-

centrations of 0.25 mg Fe/100 mm3 for intratumoral

injection 24 h prior to the first in vivo hyperthermia

treatment (Figure 1). Depending on the tumor size this

equaled a concentration range of 0.15–0.375 mg N6L/kg

body weight and 0.22–0.55 mg DOX/kg body weight.

Hyperthermia treatment were conducted on days 0 and 7.

Tumor volume was measured with a caliper every 3 days

and compared to the untreated control animals (ddH2O

injection, no AMF treatment). The tumors of anesthe-

tized animals were placed inside the coil of the AMF

(H = 15.4 kA/m, f = 435 kHz) for magnetic hyper-

thermia treatment. The tumor surface and rectal

temperatures were monitored by fiber optic temperature

sensors. To ensure animal safety, we ensured that the

temperatures in non-tumor tissue and the rectum did not

exceed 38°C during hyperthermia treatment. We calculated

the temperature dosage on the tumor surface, namely T90

temperatures and CEM43T90 values according to Sapareto

et al. [31] based on the infrared thermography data. To

determine complete tumor regression, a relative tumor

volume of 20% was chosen as the cutoff value to account

for remaining skin and cicatrical tissue.

Micro computed tomography (µCT) imaging of

intratumoral MNP distribution

For optimization of the applied heat distribution on

tumors, we analyzed the individual intratumoral MNP

distribution during in vivo hyperthermia treatment.

Therefore, we conducted µCT imaging of the animals

directly after MNP application and for follow up on

days 7 and 28 (TomoScope Synergy Twin, CT Imaging,

Figure 1 Experimental workflow for magnetic hyperthermia in vivo. After tumor implantation, magnetic nanoparticles (MNP) were applied
intratumorally 24 h prior to the first magnetic hyperthermia treatment (60 minutes, alternating magnetic field (AMF) H = 15.5 kA m−1, f = 435 kHz). Seven
days later a second hyperthermia treatment was performed. Tumor volume, blood count and MNP distribution were monitored by micro computed
tomography (μCT) on the indicated days. After the experimental period of 28 days the animals were sacrificied and the tumors dissected.
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Erlangen, Germany) using a low radiation-dose protocol

(29 s, 65 kV). MNP distribution and volume were analyzed

with the Imalytics Research Software (Philips Technologie,

Aachen, Germany). Using these data, the AMF power was

controlled individually to reach 43°C in tumor areas far-

thest away from MNP deposits.

Iron determination in organs

To investigate MNP biodistribution and degradation,

the iron content of tumors and organs was quantified

using flame atomic absorption spectroscopy as previously

described [28].

Histology

The proliferative behavior of cells depending on mag-

netic hyperthermia treatment and the MNP formulation

was investigated at day 28 after the first magnetic hyper-

thermia treatment by assessing the Ki67 and Bcl2 pro-

tein abundance in paraffin-embedded tissue sections.

The degree of vascularization was assessed by CD31

staining. The primary antibodies used were a monoclo-

nal anti-Ki67 antibody (Abcam, Cambridge, UK, 1:500

dilution), a monoclonal mouse anti-human Bcl2 (1:500

dilution, Dako, Hamburg, Germany) and a polyclonal

rabbit anti-CD31 (1:500 dilution, Abcam, Cambridge,

UK). Antigen detection was visualized via streptavidin-

alkaline phosphatase or horseradish peroxidase (for

details of staining protocols see Additional file 1). The

slides were evaluated by three blinded observers. Ki67/

Bcl2-positive areas over the whole tumor sections were

evaluated and divided into five categories based on their

expression level: (I) no expression to (V) very high ex-

pression as described before [28].

Statistics

Statistical analysis of cell staining with LysoTracker® was

performed as previously described for multiparametric

assessment [29]. To determine if differences of tumor

volume between animal groups were significant, we con-

ducted the Mann-Whitney U test for analysis of tumor

volume and one-way analysis of variance (ANOVA) for

in vitro data analysis. For histological differences the

Mann-Whitney U test was conducted for MNP with and

without hyperthermia, and for comparison between the

different MNP based on the expression level. The signifi-

cance level was set at p ≤0.05.

Results

Functionalized nanoparticles with high heating potential

The MF66 MNP, consisting of an iron oxide core of

12 ± 3 nm (magnetite) coated with DMSA [28], were

successfully functionalized with N6L, DOX or both. The

loading of MF66 with the N6L peptide was estimated using

a derivate labeled with a fluorescent dye (N6L-AF546).

Thus, using the nanoparticle MF66-N6L-AF546 we were

able to quantify the unbound peptide and calculate the

immobilization yield (98%). This approach produced stable

MNP loaded with 4 μmol N6L/g Fe (9.6 μM N6L at

2.4 mg Fe/ml). In the case of MF66-DOX, the yield

of immobilization was 95% DOX leading to stable

MNP loaded with 40 μmol DOX/g Fe (96 μM DOX

at 2.4 mg Fe/ml) (Figure 2). This equals a mass ratio

of 40/60 N6L/DOX and a molar ratio of 1/10 N6L/

DOX based on the immobilization of 0.015 g N6L

and/or 0.022 g DOX on 1 g of Fe. In water the dis-

persions were stable for at least 10 days with a uni-

form size distribution (Additional file 2: Figure S1a).

In complete DMEM a protein corona was formed and

led to an increased hydrodynamic size; however, the

MNP did not fully agglomerate and were stable for at

least 48 h (Additional file 2: Figure S1b).

One of the decisive characteristics of nanoparticles is

their potential to absorb energy and release heat, which

is lethal to tumor cells. The investigated MNP (water

suspension) displayed high SAR values between 400 and

700 W/g Fe (H = 15.4 kA/m, f = 435 kHz), correspond-

ing to ILPs between 4.5 and 7 nHm2/kg (Figure 3a).

Without functionalization, MF66 displayed a SAR of

900 ± 22 W/g Fe and an ILP of 8.7 ± 0.2 nHm2/kg,

respectively. Under different degrees of immobilization

in agarose and a Polyvinyl alcohol (PVA) hydrogel, where

Brownian motion of the MNP is inhibited, the SAR

was reduced. Interestingly, the largest SAR reduction

of 50% occurred in the MF66-DOX, which had the

highest SAR before immobilization, resulting in com-

parable SAR values between 314 and 370 W/g Fe

(ILP 3.0–3.6 nHm2/kg) of all MNP formulations after

immobilization in PVA.

The hydrodynamic diameter was increased in

MF66-N6LDOX (175 nm) compared to MF66-N6L

(134 nm), MF66-DOX (110 nm) and bare MF66 (75 nm)

(Figure 3b). The functionalized MNP displayed a less nega-

tive ζ-potential compared to bare MF66 (−41.8 ± 0.3 mV at

pH 7). MF66-DOX had a ζ-potential of −34.7 ± 0.6 mV at

pH 7.4, MF66-N6L displayed −30.2 ± 1.1 mV at pH 7.2

and MF66-N6LDOX had a surface charge of −30.2 ± 0.5 at

pH 7.2 (Figure 3c).

N6L-AF546 and DOX are released in different biological

media

The use of the electrostatic conjugations for in vitro and

in vivo application was assessed by quantifying the re-

lease of N6L-AF546 and DOX molecules from the MF66

functionalized with fluorescently labeled N6L (MF66-

N6L-AF546), with DOX (MF66-DOX) or with both mol-

ecules (MF66-DOXN6L-AF546). In PBS and complete

DMEM, N6L-AF546 and DOX were released in rela-

tively high concentrations due to the presence of
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salts and biomolecules in these media. In both media,

the release stopped after around 80 h of incubation

(Figure 4). At this point, 40% in PBS or 69% in

complete DMEM of the total conjugated N6L-AF546

was released. For the DOX functionalization, the max-

imal release corresponded to 78% in PBS and 64% in

complete DMEM of the total conjugated DOX. MF66-

DOXN6L-AF546 showed similar releases of both

immobilized molecules (N6L-AF546 and DOX) as the

ones observed for MF66-N6L-AF546 or MF66-DOX. In

water, the storage condition for the nanoparticles, the

release of N6L-AF546 and DOX functionalization was

very low (below 15% of the total conjugated amount),

highlighting the overall stability of the molecules bound

to the MF66 MNP.

N6L enhanced MNP internalization and DOX diffused into

the nucleus

After 24 h incubation of MDA-MB-231 cells with bare

MF66 MNP, a substantial fraction of internalized MF66

MNP were accumulated in the lysosomal compartment

of cells (Additional file 3: Figure S2). However, 0 h or 48 h

Figure 2 Design of the functionalized magnetic nanoparticles (MNP). a The maximum amount of doxorubicin (DOX) loaded electrostatically,
keeping the colloidal stability of the MF66 MNP, was 40 μmol/g Fe. MF66, redispersed at 2.4 mg Fe/ml, gave a final concentration of DOX of
96 μM. b The maximum amount of Nucant multivalent pseudopeptide (N6L) loaded electrostatically, keeping the colloidal stability of the MF66,
was 4 μmol/g Fe. c To quantify the amount of N6L effectively adsorbed onto the MF66, N6L-AF546 fluorescent variant was used to monitor the
unbound N6L-AF546 recovered in the washes by fluorescence. When 4.1 μmol N6L-AF546 per 1 g Fe was added the yield of immobilization was
above 98%, obtaining a final amount of 4 μmol N6L-AF546/g Fe. d Multifunctionalization of MF66 was achieved following a sequential procedure.
First, DOX was immobilized onto the surface of MF66 using the same protocol described above. Then, N6L was added over MF66-DOX leading to
the formation of bifunctional MNP. Multifunctionalized MNP with both DOX and N6L were re-dispersed at 2.4 mg Fe/ml leading to concentrations
of DOX = 96 μM and N6L = 9.6 μM.
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post-incubation with MF66-DOX and MF66-N6LDOX, we

detected DOX not only in lysosomes (colocalization

with the brown colored MNP in the bright field images;

Figure 5a), but also in cytoplasm and nuclei (diffuse

red fluorescence in fluorescence images; Figure 5a).

These results strongly suggest that DOX molecules

gradually diffused into nuclei, a necessary condition to

induce DNA damage. MDA-MB-231 cells incubated

with MF66 and MF66-N6L and control cells did not

show any appreciable red fluorescence. We confirmed

Figure 3 High heating potential of magnetic nanoparticles (MNP) in conjunction with moderate hydrodynamic size and negative ζ-potential.
Specific absorption rate (SAR) and intrinsic loss power (ILP) values of MF66-N6L, MF66-DOX, MF66-N6LDOX and the non-functionalized variant
MF66 after suspension in different media (water, 1% (w/v) agar in water, 10% PVA in dimethyl sulfoxide (DMSO)/water (80/20% (v/v)). a Immersion
in agar and PVA mimics different degrees of MNP immobilization, as it occurs after uptake in tumor tissue. Values of hydrodynamic size (z-average)
(b) and ζ-potential (c) are also displayed for the three functionalized MNP formulations and for the non-functionalized variant.

Figure 4 Nucant multivalent pseudopeptide labeled with Alexa Fluor 546 (N6L-AF546) and doxorubicin (DOX) were slowly released from
magnetic nanoparticles (MNP) in the presence of salts. Release behavior of the electrostatically immobilized molecules was studied by dispersing:
a MF66-N6L-AF546, b MF66-DOX, c MF66-DOXN6L-AF546 in water (blue), PBS buffer (pH 7.4) (red) or phenol-red-free complete DMEM (green).
Plain lines represent the release of DOX and dashed lines represent the release of N6L-AF546. Samples were incubated at 37°C and at different
times supernatants were analyzed by fluorescence (Dox λexc = 495 nm, λem = 600 nm and N6L-AF546 λexc = 555 nm, λem = 575 nm; for
MF66-DOXN6L-AF546 each emission signal was corrected for the fluorescence of the other immobilized molecule). Values were compared
to a reference sample containing the total amount of the corresponding molecule immobilized on the MNP.
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that MF66, monofunctionalized and multifunctionalized

MF66 were efficiently internalized into MDA-MB-231

cells by Prussian blue staining (specific for iron detection).

Furthermore, nanoparticles within cells were still ob-

served 48 h after incubation. As shown in Figure 5b,

immediately after incubation cells showed an elon-

gated shape and were partially superimposed on each

other, similar to control cells (non-treated), indicating

that MNP accumulation into the cells did not

induce cytotoxic effects. On the contrary, 48 h after

treatment with MF66-DOX or MF66-N6LDOX we

detected a decrease in cell number compared to

their respective non-treated controls. In addition, in

both samples, but especially in MF66-N6LDOX, we

Figure 5 Magnetic nanoparticle (MNP) uptake depends on functionalization and Nucant multivalent pseudopeptide (N6L) and doxorubicin (DOX)
were slowly released intracellularly. Cell uptake of the different MNP formulations (MF66, MF66-N6L, MF66-DOX or MF66-N6LDOX) in living
MDA-MB-231 cells incubated with MNP at 100 μg Fe/ml for 24 h visualized on optical microscopy immediately (0 h) or 48 h post incubation
(Olympus BX61 epifluorescence microscope equipped with an Olympus DP50 digital camera (Olympus, Tokyo, Japan), and processed using
Photoshop CS2 software (Adobe Systems, San Jose, CA, USA)). a Live cells were imaged under bright field (MNP, brown spots) and fluorescence
microcopy (DOX, red emission). i, i’ Untreated control cells. ii, ii’ Cells incubated with MF66 MNP. iii, iii’ Cells incubated with MF66-N6L. iv, iv’ Cells
incubated with MF66-DOX. v, v’ Cells incubated with MF66-N6LDOX. b Internalization and uptake of MNP (blue spots) inside MDA-MB-231 cells
stained with Prussian blue reaction for iron oxide detection after 0 and 48 h post incubation. i Untreated control cells. ii Cells incubated with MF66
MNP. iii Cells incubated with MF66-N6L. iv Cells incubated with MF66-DOX. v Cells incubated with MF66-N6LDOX. Scale bar = 10 μm.
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visualized cells with clear apoptotic morphology, in-

cluding cell shrinkage and condensed and fragmented

nuclei (magnified images 5b iv and v). On the other

hand, we also observed higher amounts of MF66-N6L and

MF66-N6LDOX internalized and still retained at 48 h post

incubation, compared to MF66 and MF66-DOX. These

results indicate that N6L enhanced cellular uptake of MNP

(Figure 5b).

Cytotoxic effects of MNPs in vitro were more pronounced

in combination with hyperthermia

The multiparametric analysis in absence of hyperthermia

showed differences in the cytotoxicity between MNP-

induced response and the response of free N6L or

DOX at two time points (24 and 72 h). It was found that

concentrations up to 100 μg Fe/ml did not trigger MNP-

induced cytotoxicity (Figure 6, first column compared to

subsequent five columns). Interestingly, the normal-like

MCF10A cell model did show a consistent pattern

across all MNP in the lysosomal and cell permeability

response. Conversely, the MCF7 and MDA-MB-231

showed incremental drug-induced toxicity response

when subjected to higher load of MNP; this was particu-

larly evident at the 72 h time point. Interestingly, a

different drug-activity response was shown by the MNP

when coated with N6L or DOX or both N6L and DOX,

with the latter combination inducing an equivalent cyto-

toxic response in the breast cancer cell lines compared

to free DOX at the 72 h time point.

In combination with hyperthermia, MF66-DOX un-

folded a higher cytotoxic potential than MF66 and

MF66-N6L 48 h after hyperthermia treatment in MDA-

MB-231 cells (Figure 7). The combination of N6LDOX

on MF66 led to the highest reduction of cell viability 48

h post hyperthermia (p <0.01 compared to untreated

control cells, t test). Importantly, our in vitro experi-

ments revealed that the influence on cell viability of

MF66 functionalized with DOX (MF66-DOX and MF66-

N6LDOX) was synergistically increased by the hyper-

thermia treatment, which can trigger the release of

DOX. The free DOX was equally cytotoxic with and

without hyperthermia to MDA-MB-231 breast cancer

cells (Figure 7). Hence, the cytotoxic potential of DOX-

functionalized MNP can be triggered by heat to protect

healthy cells and tissues.

Therapeutic temperature dosages were reached in vivo

The calculated temperature dosages (CEM43T90) of the

in vivo hyperthermia treatment showed temperature

dosages in the therapeutic regime, but also large varia-

tions due to heterogeneity of the temperature distribution.

The median CEM43T90 values were 23 minutes for

MF66-N6L treated animals, 10 minutes in the MF66-DOX

group and 17 minutes for the MF66-N6LDOX animals

(Figure 8a). Tumor surface temperatures were monitored

with a thermal camera, as shown in Figure 8b. Heteroge-

neous MNP distribution was confirmed by µCT im-

aging, here shown exemplary for a mouse injected with

MF66-N6LDOX and segmented for bone, the injected

MNP and skin (Figure 8c). The exact three-dimensional

MNP distribution within the tumor in relation to non-

tumor structures (e.g. spinal cord) allowed for a more

specific heat generation within the tumor. Safety of the

treatment was verified by monitoring blood count

parameters, hemoglobin, and white and red blood cells,

which did not change over the experimental period

(Additional file 4: Figure S3).

Significant tumor volume reduction following

hyperthermia treatment in vivo

Tumor growth was strongly inhibited by in vivo mag-

netic hyperthermia treatment after intratumoral injec-

tions of all MNP formulations. For all formulations, we

observed an immense reduction of tumor volume to

around 40% of the initial tumor volume (Vt0) over the

course of 28 days, while it increased to a mean of 251%

of Vt0 in the untreated control group (ddH2O, no AMF

treatment, Figure 9a). The relative loss of tumor volume

was greatest between day 17 and day 21 of the therapy,

while afterwards tumor volume slightly increased by 5–

10% during the last week of the experiment.

Hence, the magnetic hyperthermia treatment resulted

in comparable tumor volumes at day 28 independent

from the MNP formulation: MF66 (50 ± 29% of Vt0),

MF66-N6L (43 ± 39% of Vt0), MF66-DOX (37 ± 59% of

Vt0), and MF66-N6LDOX (44 ± 41% of Vt0). A complete

tumor regression, i.e. a tumor volume below 20% of Vt0,

varied with 50% (3 out of 6 cases) for MF66, 43% (3 out

of 7 cases) for M66-N6L, 71% (5 out of 7 cases) for

MF66-DOX, and 33% (2 out of 6 cases) for MF66-

N6LDOX-treated mice. In contrast, treatment with

MNP alone (without hyperthermia treatment) revealed

pronounced differences in the effects of the MNP for-

mulations (Figure 9b). The intratumoral injection of

MF66 led to a tumor volume of 246 ± 50% of Vt0

whereas intratumorally injected MF66-N6L resulted in a

tumor volume of 234 ± 138% of Vt0, comparable to the

untreated control group (ddH2O, no AMF treatment,

251 ± 164% of Vt0). Intratumoral MF66-DOX injection

slowed down tumor growth considerably and resulted

in a final tumor volume of 183 ± 124% of Vt0. The

strongest growth-reducing effect was caused by MF66-

N6LDOX, where tumors showed barely any growth with

a final tumor volume of 125 ± 61% of Vt0. Even without

hyperthermia the functionalization of MNPs mediated

an anti-cancer effect which was highest when the cell in-

ternalization moiety and cytotoxic agent were combined.

Macroscopically the hyperthermia treatment resulted in
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the occurrence of eschars over the tumor area and the

subsequent loss of tumor volume, whereas these effects

were not observed in animals without hyperthermia

treatment (Additional file 5: Figure S4).

Nanoparticles remained within the tumor after MNP

application

The iron content at the tumor site equaled the expected

amount of approximately 2.5 mg Fe per g dry mass for

the animals without hyperthermia treatment. A reduc-

tion of the iron content was detected for all AMF-

treated groups. The hyperthermia treatment led to crust

formation which also comprised internalized MNP; thus,

during the healing process the crust fell off and de-

creased detectable iron concentrations. The iron content

of the ddH2O-treated animals was attributed to intrinsic

iron from tumor vasculature. The iron content in the

animal organs 29 days after intratumoral MNP injection

was not increased compared to animals that did not

receive MNP (Figure 10). This shows that the MNP were

not kinetically removed from the tumor site. Only in the

group treated with MF66-N6L and hyperthermia did we

detect increased iron content in the lung, which did not

appear in animals that received MF66-N6L without

hyperthermia treatment. Interestingly, in all groups that

received MNP, we observed a decrease in the iron con-

tent of the spleen of about 25% compared to the un-

treated control group (Figure 10).

Increased apoptosis after hyperthermia treatment

Proliferation (Ki67 expression) of cells in excised tumors

was reduced after magnetic hyperthermia, but a statisti-

cally significant effect was not detected (Additional file 6:

Figure S5, p = 0.37). Interestingly, among all formula-

tions, MF66-DOX inhibited the proliferative activity even

without magnetic hyperthermia (Figure 11). On the other

hand, MF66-N6L and MF66-N6LDOX led to a slight

increase of proliferation, and decreased proliferation

(See figure on previous page.)
Figure 6 Color-coded map of multiparametric cytotoxicity evaluation in three breast cell lines (two with distinct cancer phenotypes (MCF7 and
MDA-MB-231) and one normal-like (MCF10A)) exposed to magnetic nanoparticles (MNP) for 24 h and 72 h. Controls are free Nucant multivalent
pseudopeptide (N6L), free doxorubicin (DOX) and untreated cells. Each segment represents the analysis of n = 3 experiments with triplicate wells
for each parameter: cell count reduction, lysosomal mass and cell permeability as indicated. Colorimetric gradient ranges from: dark green = <15%
of maximum value measured; bright green = 30%; yellow = 50%; bright orange = 60%; dark orange = 75%; red = >75%. Color-coded map values
are normalized using the percentage of the negative controls. N/C negative control, P/C positive control.

Figure 7 In combination with hyperthermia, functionalized magnetic nanoparticles (MNP) were more cytotoxic than non-functionalized MNP in
MDA-MB-231 cells. Concentration-dependent reduction of NADH content of MNP formulations and free ligands at the highest concentration of
100 μg Fe/ml (equivalent to 400 nM Nucant multivalent pseudopeptide (N6L) and 4000 nM doxorubicin (DOX)) with and without hyperthermia
(0 CEM43T90 vs 90 CEM43T90) after 48 h in MDA-MB-231 cells. Means and standard error of the mean of three individual experiments with three
parallels each. *Statistically significant at p <0.01.
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was observed when magnetic hyperthermia was applied.

Apoptosis was also significantly triggered after magnetic

hyperthermia, but not after MNP application alone

(Additional file 6: Figure S5, p = 0.008), as suggested by

the reduction of Bcl2 expression. Significantly different

Ki67 or Bcl2 expression was not identified in relation

to the various MF66 formulations and magnetic hyper-

thermia. No differences in vascularization (CD31 ex-

pression) were detected when the different MNP

were injected into the tumors, independent of mag-

netic hyperthermia treatment.

Discussion

The SAR (461–900 W/g Fe) and ILP (4.5–8.7 nHm2/kg)

values of the MNP formulations are among the top

values reported in the literature [7, 32, 33] and corres-

pond to previously described features of heating po-

tential and structure [34]. In water suspension the

functionalization of the MNP lowered the SAR and

ILP by up to 50% compared to non-functionalized

MF66. Our results show size-dependence. The smaller

the hydrodynamic diameter of the MNP, the higher the

SAR was in water suspension. MNP were found to be

immobilized to membranes or in intracellular vesicles

leading to inhibition of Brownian motion as the heating

mechanism; therefore, the heating potential of MNP in

an immobilized state is more relevant [35, 36]. We

showed that after PVA immobilization, ILP values of

functionalized MNP (3.0–3.6 nHm2/kg) were almost

as high as the values of non-functionalized MF66

(4.7 nHm2/kg), supporting the theory that Neel relax-

ation is the predominant heating mechanism. Import-

antly, ILP values were still high compared to values

for other nanoparticles reported in the literature [14],

rendering the MNP with these exceptional physico-

chemical properties suitable candidates for in vivo mag-

netic heating applications.

The particles were stable in water as well as in cell cul-

ture medium (complete DMEM). Stability of the nano-

particles is supported by the strongly negative ζ-potential

of −30 mV or lower, provided by carboxylic acid func-

tions of the DMSA coating. Values below −30 mV or

above +30 mV promote strong electrostatic repulsion

between particles, whereas values near 0 mV lead to

particle flocculation and nanoparticle clusters [21].

The ζ-potential values for functionalized MF66 were

Figure 8 Individual temperature dosages over tumor areas. a By using tumor surface temperature during hyperthermia treatment, median
temperature dosages were calculated as cumulative equivalent minutes (CEM43T90) and displayed as box plots. b Example of a treatment
sequence within the alternating magnetic field (AMF), the corresponding temperature distribution over the tumor surface and the effect on
tumor volume. c Intratumoral distribution of magnetic nanoparticles (MNP) (MF66-N6LDOX) was determined using micro computed tomography
24 h prior to the first hyperthermia treatment. N6L Nucant multivalent pseudopeptide, DOX doxorubicin.
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slightly higher compared to bare MF66 due to the

quenching of negative charges by the adsorbed mole-

cules. In the case of N6L, the quenching was higher

because N6L is highly positively charged. However,

each formulation displays enough negative charge to

be stable at a physiological pH.

N6L and DOX were released from the MNP slowly in

the presence of salts over a period of 80 h, whereas the

cellular uptake of the MNP was much faster within the

first 24 h. Therefore, the intratumoral application was

completed 24 h prior to the initial hyperthermia treat-

ment to ensure that most of the nanoparticles will pro-

spectively enter the cells before releasing DOX or N6L.

The differences in the release profiles of DOX and N6L

can be attributed to the positively charged lysine and

arginine residues in N6L and its stronger electrostatic

interactions with the DMSA coating [15]. More N6L

molecules were released in complete DMEM than in

PBS, whereas a higher release was observed in PBS than

in complete DMEM for the DOX samples. Hence, the

main parameters influencing the release are ionic

strength and concentration of other molecules in the

environment of the MNP. Cations or other positively

charged biomolecules might displace DOX or N6L in

the tumor in vivo. Furthermore, the acidic intracellular

pH might also play a role in the intracellular release.

Interestingly, substantially higher amounts of MF66-

N6L and MF66-N6LDOX were internalized by the cells

compared to MF66 and MF66-DOX as seen for the

Prussian blue staining. Even though the mechanism of

MNP internalization is not fully understood, it is as-

sumed that the multivalent pseudopeptide N6L partici-

pates in the internalization of MNP [18]. Therefore, it

is postulated that higher levels of N6L-functionalized

MNP accumulate in vivo as well. Accumulation and/or

internalization of MNP is crucial towards a successful

Figure 9 Magnetic hyperthermia treatment with magnetic nanoparticles (MNP) led to a significant reduction in tumor volume compared to
untreated animals. Tumor volume was calculated relative to the tumor volume at day 0 (Vt0) in percent. a Tumor volume development after
magnetic hyperthermia (60 minutes at H = 15.4 kA/m, f = 435 kHz) with the different MNP formulations compared to the untreated control
(ddH20, no magnetic hyperthermia). b Effect of intratumoral presence of MNP without hyperthermia treatment on tumor volume as well as the
ddH20 control (*p ≤0.05, Mann-Whitney U test, treated vs untreated). Means and SD of n ≥6 animals/group.
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therapy combining hyperthermia and local chemother-

apy in vivo [37]. These features make the MNP particu-

larly useful for intratumoral application, where the

biomolecules are allowed to desorb from the MNP be-

fore starting the magnetically induced heating process.

The amount of DOX conjugated to the MNP was

highly cytotoxic to cells when applied as free DOX.

When conjugated to the MNP, the same molar amount

of DOX had almost no influence on cell viability at a

short exposure time of 24 h. Following exposure for

72 h the cytotoxic potential of MF66-N6LDOX was

comparable to free DOX in the breast cancer cell lines.

Conversely, minimal decrease in cell count was recorded

in the MCF10A cell line. Hence, it is of interest to point

out that in the conjugated state the systemic cytotoxicity

of DOX was time-dependent. Release occurred either by

longer incubation times, as shown by live cell imaging,

or by heat treatment, leading to a synergistic effect of

heat and DOX. Consequently, MF66-DOX and MF66-

N6LDOX mediated more damage to cells than MF66 or

hyperthermia only.

The MNP presented in this study are highly capable

tools for in vivo hyperthermia treatment. Independent of

the MNP formulation, magnetic hyperthermia led to

hyperthermic temperatures in the tumor area which

resulted in significantly reduced tumor volumes com-

pared to the untreated control, and in 50% there was

macroscopically complete tumor regression. In fact, the

remaining tumor volume after 28 days was due more to

cicatricle tissue at the tumor site and less to the actual

tumor mass. A distinct effect of the functionalization on

tumor growth was observed in vivo. Here, MF66-DOX

diminished tumor growth also in the absence of hyper-

thermia treatment, whereas MF66-N6L did not to the

same extent. The strongest growth-reducing effect

was mediated by MF66-N6LDOX, where the tumors

remained at their initial tumor volume over the period

of 28 days, indicating a synergistic effect of the multi-

functionalization in vivo, supporting our in vitro results.

The MF66-N6L particles proved capable cell internaliza-

tion agents. Higher concentration of N6L molecules on

the MNP surface would further increase their antitu-

moral effect (unpublished data).

With consideration of the tumor volumes after AMF

treatment, we assume that the effects mediated by func-

tionalization were masked by the stronger effects of the

heat treatment alone, which was highly effective in sub-

cutaneous xenografts. The presence of high local con-

centrations of chemotherapeutic agents in the tumoral

region is important to avoid tumor relapse after hyper-

thermia treatment, especially in tumor areas where

temperature under-dosage is more likely to occur [38].

Intratumoral MNP application showed no systemic

side effects and demonstrated good biocompatibility for

the DOX-functionalized and N6L-functionalized MNP

by an unaltered blood composition. The biodistribution

analysis confirmed only negligible release of intratumo-

rally injected MNP from the tumor area into other body

compartments. Therefore, several AMF treatments can

be conducted without re-injection of MNP, and mag-

netic hyperthermia will not affect any organs if MNP are

administered intratumorally [10], in contrast to intraven-

ous injection where most of the injected MNP are de-

posited in the liver and the spleen [39]. Interestingly, we

observed a decrease in iron content in the spleen upon

intratumoral injection of MNP. To our knowledge such

an effect has not been reported before. Yallapu et al. [40]

observed little uptake in the liver but no change in the

iron content of the spleen after intratumoral injection of

curcumin-loaded iron oxide nanoparticles.

Figure 10 Biodistribution analysis revealed that intratumorally injected magnetic nanoparticles (MNP) were not transported to the organs. Iron
content was determined using flame atomic absorption spectrometry after drying and ashing of the tissues and subsequent solubilization of
the samples with 65% nitric acid. Means and standard error of the mean of n ≥4 animals/group. N6L Nucant multivalent pseudopeptide,
DOX doxorubicin.
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Immunohistochemistry showed that MF66-DOX

themselves affected the tumor cells and decreased their

viability by increasing apoptosis and inhibiting cell

proliferation. MF66-N6L and MF66-N6LDOX were

almost inert without hyperthermia treatment, but all

MNP mediated strong cytotoxic effects in conjunction

with hyperthermia, revealing an additive effect of lig-

and and heat.

We believe that the proposed MNP formulations have

high potential for translation to clinical practice. They

Figure 11 Histological staining for the proliferation marker Ki67, anti-apoptotic protein Bcl2 and tumor vascularization by CD31. Immunohistochemistry
of paraffin-embedded formaldehyde-fixed tumor tissue sections stained for expression of Ki67 (red), Bcl2 (red) and CD31 (brown) antigens for animals
treated with MF66-Nucant multivalent pseudopeptide (MF66-N6L), MF66-doxorubicin (MF66-DOX) or MF66-N6LDOX with or without alternating magnetic
field (AMF) exposure as well as the ddH2O controls (Control) without AMF treatment. One representative image for each group is shown.
Scale bar = 100 μm.
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are basically made up of components previously ap-

proved by the Food and Drug Administration (FDA)

(particularly iron oxide and DOX). The intratumoral ap-

plication of the MNP using stereotactic methods com-

monly used in radiology would allow a very local exposure

of the human body, a strategy that distinctly minimizes

the known side effects of DOX.

Conclusions
The MNP presented in this study are well-suited for

hyperthermia treatments. We demonstrated in vitro

that N6L functionalization improved intracellular up-

take and DOX functionalization mediated additional

cytotoxicity compared to non-functionalized MNP. In

vivo the MNP led to an immense reduction in tumor

volume and almost complete regression in many cases.

We observed that proliferative activity of tumor cells

was abolished most prominently by MF66-DOX MNP.

The functionalized MNP presented here offer new

prospects for optimizing tumor treatment by magnetic

hyperthermia using MNP with high heating potential.

The additional electrostatic conjugation with N6L and

DOX will prospectively increase the MNP load in cells

and further improve their cell inactivation potential.

The MNP presented here are particularly suitable for

intratumoral application of magnetic materials. With

this technique, particularly early stages of breast can-

cer with solitary tumors and negative lymph node sta-

tus could be treated, which are increasingly detected

as a result of implementation of improved diagnostic

methods in radiology.

Additional files

Additional file 1: Description of supplementary method.

Additional file 2: Figure S1. Magnetic nanoparticles (MNP) are stable
in water and do not agglomerate in complete cell culture medium.
a All particle formulations are stable in water for at least 10 days at
a concentration of 0.1 g/L (no increase of the hydrodynamic sizes
observed over time). b In order to simulate biological conditions, the
MNP were transferred from water to complete DMEM (gray vertical line) at
a final concentration of 0.1 g/L. The hydrodynamic size increased after
transfer to complete DMEM as proteins adsorb to the MNP. Here, a
complete agglomeration of the MNP was not observed; therefore, the
MNP are stable in complete DMEM for at least 48 h.

Additional file 3: Figure S2. Subcellular localization of MF66 magnetic
nanoparticles (MNP). Visualization of MDA-MB-231 cells after 24 h incubation
with MF66 MNPs or untreated cells in bright field, fluorescence microscopy,
and merged images, respectively. Lysotracker® Red displays localization
of lysosomes in cells. A substantial fraction of the red fluorescence from
the LysoTracker® dye co-localizes with the brown spots, which represent
internalized MNP. Scale bar = 10 nm.

Additional file 4: Figure S3. Application of magnetic nanoparticles
(MNP) with or without hyperthermia treatment did not alter the blood
composition, indicating good biocompatibility of the therapeutic
modality. The number of white blood cells (*103/μl), red blood cells
(*106/μl), and the amount of hemoglobin (g/dl) are displayed for animals
treated with MF66-N6L (a), MF66-DOX (b) or MF66-N6LDOX (c) with or

without alternating magnetic field (AMF) treatment in comparison to
untreated control animals before, and at 2 and 4 weeks after MNP
application. Black lines refer to reference values (Harlan Laboratories,
Venray, The Netherlands; http://www.harlan.com).

Additional file 5: Figure S4. Magnetic hyperthermia treatment of
superficial tumors leads to crust building and disappearance or volume
reduction of tumors. Photographs of animals at the indicated time points
qualitatively show the development of tumors between day 0 and day
28 of the therapy. Animals were either treated or not treated with magnetic
hyperthermia after intratumoral injection of MF66-N6L, MF66-DOX or
MF66-N6LDOX. Shown are three representative animals per time
point and group (n = 6/group). Arrows point to subcutaneous tumors.

Additional file 6: Figure S5. Error bars of the mean expression levels
indicate a significant difference in apoptosis (Bcl2) after hyperthermia
treatment. Histological slides of the tumor tissues were grouped into five
categories based on the expression levels of tumors for (a) Ki67 and
(b) Bcl2. The Mann-Whitney U test was conducted for magnetic
nanoparticles (MNP) with and without hyperthermia based on the
mean expression level. The significance level was set at p ≤0.05.
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