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We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent
one of the simplest generalizations of matrix product states and the density matrix renormalization
group. While matrix product states encode a one-dimensional entanglement structure, tree tensor net-
work states encode a tree entanglement structure, allowing for a more flexible description of general
molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We
introduce the concept of half-renormalization which greatly improves the efficiency of the calcula-
tions. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor
network states versus matrix product states. We carry out benchmark calculations both on tree sys-
tems (hydrogen trees and  -conjugated dendrimers) as well as non-tree molecules (hydrogen chains,
nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer
renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules,
whether this translates into a computational savings is system dependent, due to the higher prefactor
and computational scaling associated with tree algorithms. In tree like molecules, tree network states
are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with
tree tensor network states correlates 110 electrons in 110 active orbitals. © 2013 American Institute

of Physics. [http://dx.doi.org/10.1063/1.4798639]

I. INTRODUCTION

Currently, there is much effort devoted to finding effi-
cient numerical techniques for strongly correlated electrons.
Amongst several approaches, the Density Matrix Renormal-
ization Group (DMRG)"? has provided many new insights
in challenging systems. In recent years, efficient DMRG im-
plementations have also appeared for quantum chemistry.>~
Originally, the DMRG was formulated as an algorithm in the
language of Wilson’s numerical renormalization group. How-
ever, more recently, attention has expanded to the underlying
class of wavefunctions optimized by the DMRG, which are
the Matrix Product States (MPS).

MPS provides a compact description of entanglement
in 1D systems, thus DMRG calculations for chain-like
molecules are very efficient.!% ! However, when used in 2D
and 3D systems, much larger bond-dimensions, usually de-
noted by M and referred to as the number of renormalized
states in DMRG calculations, must be used to reach a tar-
get accuracy. The need for larger M reflects the sub-optimal
representation of 2D and 3D entanglement by the MPS wave-
function structure.

The generalization of MPS to tensor network states
(TNS) provides a natural way to compactly describe 2D
and 3D entanglement. There are several families of TNS
that differ in the way the entanglement is encoded, and
a brief overview of the classes of TNS is given in
Refs. 12—17. While the formal properties of general TNS are
appealing, efficient computation with these states lags far be-
hind computation with MPS. In this work, we explore effi-
cient computation for quantum chemistry with Tree Tensor
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Network States (TTNS),'>!8-2! one of the simplest families
of TNS.

TTNS encodes a tree entanglement structure, as illus-
trated in Figure 1. A tree of maximal degree Z has at most
Z neighbours at any site. MPS is a special case of TTNS
with Z = 2. The absence of cycles in a TTNS simplifies
many algorithms. In particular, the variational minimization
of TTNS wavefunctions can be carried out by generalizing
the DMRG algorithm used for MPS, from a two-block for-
mulation, to a Z-block formulation. Multi-block DMRG al-
gorithms have been studied for some time,?>~>’ although to
the best of our knowledge, their interpretation in terms of the
underlying class of TTNS variational states first appeared in
Ref. 19. Thus, Ref. 19 can be considered as a starting point
for the current work.

In Ref. 19 the authors considered a prototype application
of TTNS to quantum chemistry with a minimal basis beryl-
lium atom calculation. Although this provided evidence that
for a given M, TTNS of degree Z > 2 capture more entangle-
ment than the corresponding MPS with the same M, for prac-
tical computation many questions were left unanswered. For
example, although TTNS is more flexible than MPS for de-
scribing entanglement, there is an implicit trade-off of higher
computational scaling with M. Furthermore, the calculation
in Ref. 19 used an unrealistically small M = 3, whereas typi-
cal DMRG calculations use M = 1000-10000. Thus, the rel-
evance of TTNS for quantum chemistry calculations remains
to be established.

In the current work, we address this question by describ-
ing and implementing an efficient TTNS algorithm that can

© 2013 American Institute of Physics
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Z=3,A=4

FIG. 1. Examples of trees. The left panel shows a tree with degree Z = 3 and
depth A = 4, and the right panel shows a tree with degree Z = 4 and depth
A=3.

be used for realistic calculations. Our algorithm is formulated
to have an optimal computational scaling for quantum chem-
istry Hamiltonians. We achieve a much lower cost than earlier
formulations through a “half”’-renormalization transformation
which exactly maps the multi-block DMRG to a conventional,
efficient, two-block DMRG. We also address the issue of or-
bital ordering on trees which is necessary to use TTNS in
chemistry. Using our efficient implementation, we assess the
performance of TTNS relative to MPS used in quantum chem-
istry DMRG calculations. We compare TTNS and MPS on
several benchmark molecular systems, including ideal hydro-
gen trees and chains, and benchmark molecules such as the
nitrogen and chromium dimers. Finally, to demonstrate the
power of TTNS, we carry out complete active space calcula-
tions in ;-conjugated dendrimer molecules, correlating up to
110 electrons in 110 orbitals.

Il. OVERVIEW OF THE DMRG ALGORITHM
BASED ON MPS

We first present a brief overview of MPS wavefunctions
and the DMRG algorithm that optimizes their energy. This
will allow us to establish basic notation which will be used
to discuss TTNS in Sec. III. However, as the presentation is
not entirely self-contained, for further details we refer to ad-
ditional articles and reviews. !4 14.28.29

We use the following notation for MPS: »; is the many-
body basis at site i, k is number of sites, and M is the num-
ber of renormalized states. The (one-site) MPS wavefunction
is obtained by expressing the coefficient of the determinant
|ny...ng) as a product of matrices for each occupancy n;...1n,

W)= > LM L' R R nyng). (1)

...k

For a MPS with M renormalized states, the matrices are of
maximum dimension M x M, except for the first and last,
which are of maximum dimension 1 x M and M x 1, re-
spectively. Note that the MPS is invariant to a number of
transformations of the matrices.>?° We remove this invari-
ance by choosing a MPS canonical form. In the canonical
form at site i, the rotation matrices to the left of site i are
constrained to satisfy orthonormality conditions } LmTLm
= 1, while those to the right of site 7 are constrained to satisfy
Do R"R"T = 1.

The left and right rotation matrices allow us to define
left and right renormalized many-body states, |/;_;) and |r;),
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respectively. These renormalized representations are used to
construct the computational intermediates (renormalized op-
erators) in the DMRG algorithm. Carrying out the matrix mul-
tiplications from L"' through L"-', and from R"™ through
R"+1 we obtain

li_y) = Z L™ . L"|ny..ni_y), )
ny...nj—1

i) = > RYR™|ngg.ny). 3)
Niyp...Ng

The orthonormality conditions on the rotation matrices L and
R imply that the renormalized bases are orthonormal

{Lialli_y) = dur, “)

(ri|r,'/> :(Srr" (5)

The DMRG (canonical) form of the MPS wavefunction
is obtained by rewriting the MPS wavefunction (1) in terms
of the renormalized many-body bases |/;_;) and |r;),

W)= 37 Wi, o). ©

li—inir;

In this interpretation, ¥ is viewed as a wavefunction coef-
ficient vector in a Hilbert space spanned by the renormalized
product states, |l;_in;r;) = |li—1)|n;)|r;).

Computations using MPS involve tensor-tensor contrac-
tions. To express such operations, it is helpful to use a graph-
ical representation, shown in Figure 2. Each vertex is a tensor
and the number of edges connected to the vertex determines
the tensor rank. In the case of a MPS, each L™ or R"% is a
rank-3 tensor, represented by a vertex with three edges. Here,
we always choose the vertical index to represent n;. The MPS
wavefunction is obtained by contracting the horizontal edges
of all the tensors (Fig. 2(b)), leading to Eq. (1). The computa-
tion of the overlap of two MPS is shown in Fig. 2(c).

We optimize the MPS energy, by minimizing the
Lagrangian (WIH|Y) — A(¥|W) — 1) with respect to the
tensors in the MPS. In the (one-site) DMRG sweep algorithm,
this minimization is carried out with respect to a single tensor
at a time. In step i of the DMRG sweep, the MPS is expressed
in the DMRG form (6), and the coefficient vector ¥ is opti-
mized, holding the rotation matrices to the left and right of
the site which define the bases |[;_1), |r;), fixed. Because the
energy is a quadratic form in ¥, minimization leads to a stan-
dard eigenvalue problem,

o min| B nryyy =g =0, (7)
li_ynjri
In subsequent steps of the sweep, the MPS is transformed to
the DMRG form at successive sites, and the coefficient vec-
tors at these sites are optimized.
The most expensive operation in the sweep is comput-
ing (W|H|¥) and performing Hy to solve the eigenvalue
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FIG. 2. Graphical representations of MPS. (a) one-site coefficient vector ¢ is a rank-3 tensor, (b) the MPS wavefunction is given by contracting all horizontal
bonds, (c) the overlap of two MPS wavefunctions can be efficiently computed recursively.

problem (7). This is because the second-quantized Hamilto-
nian contains a large number of terms,

A RO stata
H= Zhija;aj +5 Z Uijlkaja;[akal, (®)
ij

ijki

and for each term we need its matrix representation in the
basis {|/;_in;r;)}. There are two generic strategies to handle
the large number of terms. The first, used in existing quantum
chemistry DMRG implementations, is through Complemen-
tary Operators.>*3° The second uses the more recent concept
of Matrix Product Operators.’'=3

Complementary operators are a way to maximize the
reuse of intermediates. For example, there are O(k*) terms in
the summation (8), and each expectation value individually is
of O(M?) cost, leading to a naive scaling of O(M>k*) for the
energy. However, much information can be reused between
terms. For example, the two terms (a1a§a3a4) and (aIa;amﬂ
involve the same partial expectation value over aia; Comple-
mentary operators reuse and combine such partial traces. At
site i in the DMRG sweep, we partition the Hilbert space into
two subspaces: A, containing the left block of sites (sites 1...i
— 1) and site i, spanned by renormalized states |/;_;n;), and
B, containing the right block of sites i + 1...k, and spanned
by renormalized states |r;) (see Fig. 3). H is correspondingly
partitioned as

H = Hs+ Hg + Hyp, )

H, and Hj are acting locally on A and B, respectively, and
have non-trivial expectation values with only |/;_n;) and |r;)
separately. H,p describes the interactions between A and B,
and is given by a sum of products acting separately on the two

n n. n

)

FIG. 3. Graphical representations of DMRG wavefunction. Canonical form
of MPS wavefunction (top) can be re-written as a block diagram in DMRG
language (bottom).

ff._lni)
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spaces
A AAT A Bt & AATAA A
Hap = Z (a; Ky —|—alt 4+aat 0f)
i€A,jeB
+ Y (@tat Pl +alMal OF) + adjoint, (10)
i>jeA
where P;; i 0i ;, and S; are the Complementary Operators,
PE =" vy, (1)
kleB
= Z(Uika - viklj)&lialv (12)
kieB
B — Ztij&j + Z Uijlk&j'&k&l- (13)
jeB jkleB

Using complementary operators, the total complexity of
evaluating (W|H|W¥) and performing AWV is reduced to
O(M3k> + M*k*) per sweep, including the cost of con-
structing the components of H in the partitioned form
(renormalization).* This is the standard procedure to evaluate
the energy in the DMRG algorithm.

An alternative approach to handle complicated Hamilto-
nians is through Matrix Product Operators (MPO). MPO’s
provide a convenient way to reason about operators in MPS
algorithms and have been employed extensively in time-
dependent MPS simulations.?! Here we provide a brief anal-
ysis of this approach for quantum chemistry. The basic idea
in a MPO is extend the matrix product like representation to
operators. Writing the Hamiltonian in the occupation number
basis as a general rank-2k tensor, [I:I ]"""”k”/l"'”/k, it is decom-
posed into a set of tensors analogously to a MPS,

[Ifl]nl...nkn']...n,’( — W[l]nln’] ...W[i]nin; ...W[k]nknL . (14)

This is illustrated graphically in Figure 4 where W' is a rank-
4 tensor and the contraction of horizontal edges describes the
quantum “entanglement” of the Hamiltonian operator. To de-
compose H exactly, the dimension of the horizontal edge of
Wil needs to be exactly the same as the number of comple-
mentary operators, that is O(k?). Consequently, the cost of
computing the expectation value (W|H|W) with a MPO rep-
resentation becomes O(M3k* + M?k’). Note that this cost
is larger than in the complementary operator approach. The
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FIG. 4. Graphical representations of MPO. The Hamiltonian operator is a
rank-2k tensor (top panel). This can be divided into a contracted product of
site-independent tensors similar to a MPS, leading to a Matrix Product Oper-
ator representation (MPO, bottom panel), in which each site tensor is a rank-4
tensor.

difference arises because we have not considered the spar-
sity of the individual W'/ tensors that arise in the Hamil-
tonian decomposition. However, incorporating element-wise
sparsity into a MPO algorithm eliminates much of the concep-
tual and algorithmic simplicity of the MPO approach. Conse-
quently, in our view, the complementary operator algorithm
is a more practical and efficient route for MPS computations
with quantum chemistry Hamiltonians. The relative benefit of
using complementary operators versus tensor product opera-
tors (TPO’s) is even greater for TTNS than for MPS, thus we
focus on the complementary operator approach when consid-
ering trees.

lll. TREE TENSOR NETWORK STATES (TTNS)

Tensor Network States (TNS) are mathematical general-
izations of the MPS that can code more general entanglement
networks. The form of a TNS wavefunction is directly analo-
gous to a MPS wavefunction,

(W) = Z ttr[A" - AT LA ]|y, (15)

ny...ng

the only difference being that A is now a tensor, rather than
a rotation matrix as in the MPS, and the multiplication opera-
tor together with ttr denotes a general contraction over tensor
indices. The flexibility of TNS wavefunctions arises from the
fact that whereas the matrices in a MPS can only be contracted
along a 1D-lattice, there are many different ways to connect
general tensors together to form a network of entanglement.

Tree tensor network states (TTNS) are a special class of
TNS where the tensors are connected as a tree as shown in
Figure 5. A tree is a graph that has no loops, which leads to
many simplifying mathematical properties that parallel those
of a MPS (indeed, a MPS is simply a tree with Z = 2 legs).
For example, at a given site i in the tree, we can define renor-
malized bases for each of the Z legs connected to the site. This
allows us to rewrite (15) as

D Ui e lblbfn), (16)

1 7,
b;...b{n;
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FIG. 5. Graphical representation of TTNS. Left panel shows overall struc-
ture of TTNS as described in Eq. (15), and right panel shows the one-site
wavefunction spanned by the renormalized basis, as described in Eq. (16).
Note that physical indices (vertical bonds) are omitted in the right panel.

where |b7) is the renormalized basis in the ath branch of
site 7. This basis is defined by recursively contracting ten-
sors in the branch from the leaves up to site i. Thus |bY) is
obtained as

= Y Ay

1 A 1
bl

gl b ) am

where sites j are adjacent to i in the branch. Note that for
a Z degree TTNS with M renormalized states, the tensor

AZ{ 471, has O(M?) elements.
j-bi b

Analogous to the rotation matrices in MPS, the tensors
A" in a given branch around site i can be chosen to satisfy
orthonormality constraints, rendering the TTNS in canonical
form,

Z A bZ ‘b’“A

th

ety = Obbe (18)

As a result, the renormalized basis states |b7') are orthonor-
mal.

The above mathematical properties make a DMRG en-
ergy optimization algorithm for TTNS very similar to that for
MPS. Similarly to the DMRG algorithm for MPS, we opti-
mize one site at a time. The TTNS is expressed in canonical
form around site 7, then the coefficient tensor ¥ is optimized,
and the sites of the tree are traversed during the sweep. The
computational challenge is once again how to efficiently com-
pute the representation of the Hamiltonian in the renormalized
bases, namely (b} ...b% n; |H Ib'}...b'71’;), and its action on the
coefficient vector 1#”', Hvr. As we discussed for the case of
MPS, for quantum chemistry Hamiltonians the complemen-
tary operator approach is most natural.

We rewrite the Hamiltonian in complementary operator
form by partitioning into Z + 1 blocks, A, B, C, D, and so on,
corresponding to the Z branches around site 7, and site i itself.
The Hamiltonian is re-expressed in terms of operators acting
on each of the blocks separately,

H=Hy+Hp+Hc+Hp+ -

+HABC + I:IACD + I:IBCD + -
+ Hagep -+ s (19)
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where,
y ~ATQB | ABTGA | AATAAAB
HAB_Z(iSi+a Sj+i i ll)
icA,jeB
~AAA BB AATAA AB ..
+ Z (al- a; Pyl + 4 'aj Q[j)—f—adjomt, (20)
i>jeA
b ~AAB HC ~AtAB AC
Hipe = ) (afafBf +a]Maf Off)
ieA,jeB
~ A
+ > (@ T +aas OFf)
ieA,jeC

+ > (aPaS BT +al"af O)) + adjoint, (21)

In the above form, ). zla?1® [P 1 is of O(16M3k)
cost, []éiBCT]I/I"" is of O(64Mz+lk) cost, and finally
S Al IR Tyr] s of O(AMZH k) cost.

We have carefully optimized the order of tensor con-
tractions for each of the terms in (20)—(22), obtaining the
complexities shown in Table 1. For a general Z degree tree,
the total cost of a single A (sigma vector) computation is
O(M?#Hk3 + M?k>) per sweep. To this must be added the
construction of the matrix representations of the components
of H in the different blocks (renormalization steps), which
costs O(M? k3 + M?k>) per sweep (The renormalization is
described explicitly in the Appendix). In the case of Z = 2
(MPS) we have already noted that the cost per sweep is lower
than in the general case (O(M3k® + M?k*)). This is due to the
absence of several terms in Table I. The same is true for the Z
= 3 tree, where the total cost of a sweep is O(M*k> + M?k*)
(Hy) and O(M*k® + M?k’) (renormalization). Because of
the special efficiency of the Z = 3 tree, our later computations
focus on this kind of tree.

TABLE I. Complexity of optimal tensor contractions for H per site. Mul-
tiplying by O(k) gives complexity per sweep.

Terms in H Complexity

a8t OM**k)

afat bl OM# k%)

allatof OM#*1k2)

&ifﬁa]l_ﬁ Al_]c_ O(Mz“kz + MZ+]k)

~At B A

a; TajB QS O(MZ+lk2 4 MZ+1k)
&:‘W&ff&f&[D @(MZJrlkZ + MZ+lk + MZk4)

by
Z 1'bblbz

J. Chem. Phys. 138, 134113 (2013)

v,]lka a TakCa,D—i—permutation.

Auco=3 3.

€A, jeB
keC,leD

(22)
As in the case of MPS, the full matrix representation of
H is never built explicitly as the storage requirements would
be immense. Instead only H is computed in the Davidson
algorithm. Note that when computing H+/ the order of mul-
tiplication of the various terms in the complementary opera-
tor decomposition of H is important. For example, the term
&{‘& f ﬁiqu/f in which A and C are large blocks with O(k) sites
and M renormalized states (indices b; and b, below) and B is
the site being optimized, with 4 states (index »; below) should
be computed as

> [T AT ) |- 23)

by ,n; jeB

A. Half-renormalization

We have found additionally that it is possible to sig-
nificantly reduce the computational prefactor of a TTNS
DMRG calculation through an additional step we call half-
renormalization (Fig. 6). Half-renormalization involves first
constructing an exact mapping of the TTNS onto an equiv-
alent Z = 2 MPS, then carrying out the Hv operations in
this simpler representation. Although the mapping is itself

M | 57

Half-renormalized states: §

| i
left block i 1

right block

FIG. 6. Half-renormalization (HR) algorithm on TTNS. (a) One-site al-
gorithm: Z — 1 system blocks {|b}')} are mapped into one system block.
(b) Two-site algorithm: additionally, Z — 1 environment blocks {|biﬂ 1)) are
mapped into one environment block. The half renormalized block contains
only 4M states for any Z > 2.
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expensive (and retains the full computational scaling of the
TTNS sweep described above), it needs only be carried out
once per site, while the Hv/ operations typically need to be
carried out many times per site during a Davidson diagonal-
ization. To map a TTNS onto a MPS, we consider the coeffi-
cient tensor at site i, 1//2’; e Through a singular value decom-
position (SVD), this tensor can be exactly decomposed into a
rank-3 tensor and a residual tensor,

AU = 3 Ui S Vi

=Y Up. ¥, (24)
s

where U is the residual tensor and SV' is a MPS-like
pseudo-coefficient tensor tﬁ" /MPS) Note that S is a diago-
nal matrix with only 4 x M non-zero singular values, thus
1ﬁ;’;(ZMPS) has O(M?) values, similar to a MPS coefficient ten-
sor with M renormalized states. U,i_,z-1, defines the half-
renormalization mapping from the states on Z — 1 branches,
o =1...Z— 1of ageneral tree to a single set of 4M renormal-
ized states |b;) on a single effective branch. These new “half-
renormalized” states, together with the states on the remaining
branch o = Z, define the left and right states of an effective
MPS, together with the pseudo-coefficient tensor W?b(ZMPS) In
the case of Z = 3, the mapping costs O(M*k> + M?k>) per
sweep which leads to the same scaling as the one-site algo-
rithm without half-renormalization. However, the H Y opera-
tions now carry the MPS cost, namely O(M>k?) per sweep,
leading to a significant savings in computation time. As the
mapping is exact, there is no approximation involved, al-
though one drawback is that we typically see slower con-
vergence, as at a given site we optimize only the pseudo-
coefficient tensor rather than the full coefficient tensor of the
TTNS.

The full DMRG sweep on a tree is carried out using
depth-first search with backtracking. Applying this to a Z = 2
tree, as in a MPS, recovers the usual DMRG sweep algorithm.
Figure 7(a) shows the details of the one-site sweep algorithm
on TTNS.

(1) Define any site as the root (depth = 0). Construct the
TTNS in canonical form at the site, construct the renor-
malized states and operators by contracting from the
leaves to the root site.

FIG. 7. Sweep algorithm on a tree (Z = 3), by depth-first search with back-
tracking, where the labels indicate the order of the search. (a) One-site algo-
rithm: starting from the center site, 1 sweep contains 18 one-site optimization
steps, and (b) Two-site algorithm: starting from the center site and one adja-
cent site, 1 sweep contains 12 two-site optimization steps.
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(2) Optimize the wavefunction at site { with Davidson diag-
onalization. Renormalize to construct the canonical form
at a neighbouring site.

(3) Continue (2) by carrying out a depth-first search with
backtracking to optimize the entire tree.

(4) Continue (2) and (3) until the energy is converged to a
target accuracy.

B. Two-site TTNS algorithm

Although our discussion of MPS focused for simplic-
ity on the one-site MPS and the corresponding one-site
DMRG algorithm, it is well known from practical experience
that one-site DMRG calculations tend to get stuck in local
minima and suffer from poor convergence characteristics.
Thus, the two-site MPS and DMRG algorithm are more com-
monly used.*28-36 In the case of MPS, the two-site MPS
wavefunction is obtained by modifying the coefficient tensor
to span two sites,

W)= Yy i), (29)

Limininigirivy

A Z-branch two-site TTNS is modified in a similar way

NNy 1 Z—1
E W LBEBL b b;. b,‘ 'n; ”z+1b,+1 b,+1 ) (26)
niljy1
bibi+l

An important difference however, between a general two-site
tree and two-site MPS is that whereas around sites i, i + 1
in a MPS we can define left and right renormalized basis,
just as for an one-site MPS, in the case of a TTNS, there
are 2Z — 2 branches around sites i, i + 1 (Fig. 8), rather
than the Z branches around a single-site. Consequently, the
naive cost of the Hy operations in a two-site TTNS DMRG
sweep using complementary operators is much higher than
that for an one-site TTNS sweep, with a prohibitive cost of
OM?*?~ k3 + M?*?72k>). However, by employing two sets of
half-renormalization steps, we can map the two-site TTNS
onto a two-site MPS, reducing the cost of the Hy opera-
tions to only O(M?3k®) per sweep with an additional half-
renormalization cost of O(MZ*1k® + MZk>) per sweep for
general Z degree trees, or O(M*k® + M*k>) per sweep in the
case of Z = 3. This is the same cost as an one-site TTNS
sweep with half-renormalization, and thus the two-site TTNS

0O N

left block i #l right block
b b

Z-1 i i+l Z-1
b b

FIG. 8. Block structure of the two-site algorithm. Top panel shows the two-
site MPS which contains one system block, system site, environment site,
and one environment block. Bottom panel shows the two-site TTNS which
contains Z — 1 system blocks, system site, environment site, and Z — 1 envi-
ronment blocks.
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FIG. 9. Approximate degree-fixed minimum spanning tree (MST, Z = 3)
for 24 orbitals from a RHF/cc-pVDZ calculation of the water molecule. Left
panel shows a representation of the exchange integral Kj;, where solid lines
denote Kj; > 0.10, dashed lines denote K;; > 0.07, and dotted lines denote K;;
< 0.07. Colored lines are connected lines in the right panel and gray lines are
ignored interactions. For K;; < 0.07, only connected lines are shown. Labels
in the right panel indicate the MOs (as indexed by energy).

sweep becomes practical. We compare the cost and con-
vergence characteristics of the one-site and two-site TTNS
sweeps with half-renormalization in our later calculations.

C. Tree shape and site ordering

When carrying out a quantum chemistry DMRG calcula-
tion using a MPS, it is necessary to choose a mapping of the
sites to the 1D lattice. Generally, this should be done to min-
imize entanglement between distant sites on the lattice, 3739
but computing the entanglement and carrying out an exact
minimization are costly procedures. In practice, an approx-
imate proxy for the entanglement between orbitals is con-
structed, and it is approximately minimized.* One example
of such a proxy which has been used in prior DMRG studies
is a weighted exchange integral K;; D;;, where Kj; is the ex-
change integral between orbitals i and j, Dj; is the separation
on the lattice, and # is an adjustable parameter.

In the case of ordering for trees, we need to consider not
only the mapping of the orbitals onto a given tree, but also the
shape of the tree as well, even if we restrict ourselves to trees
of a fixed maximum degree. Since the computational cost of a

7

)
(8)’6\(8)
-
@3
(3 Y‘Xl?' (3)
@ @

=

S e s

FIG. 10. Minimum-entangled tree (MET, Z = 3) for 24 orbitals from a
RHF/cc-pVDZ calculation of the water molecule. Left panel shows the step-
wise construction of MET. First, 24 sites are divided into 1 center site and 3
branches containing 7, 8, and 8 sites. Second, 7 sites are divided into 1 site
and 2 branches containing 3 sites for each, and 8 sites are divided into 2 sites
and 2 branches containing 3 sites for each. Finally, we used a genetic algo-
rithm to map the orbitals to the tree sites as shown in right panel. Labels in
right panel indicate MO indices (as indexed by energy).
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TABLE II. The ground state energies of water molecule calculated with two
different trees.

MST MET
M E/a.u. CPU time/s sweep Ela.u. CPU time/s sweep
100 —76.242805 307.9 —76.242242 220.6
200 —76.243652 1209.9 —76.243491 826.5

sweep also depends on the tree shape (changing the prefactor
associated with the cost of the sweep) the tree which gives
the lowest energy for a given M is not necessarily the most
efficient tree to use in practice.

To illustrate these issues we consider the water molecule
in a cc-pVDZ basis set, which has 24 orbitals. We have
considered two shapes of trees: a degree-fixed Minimum-
Spanning Tree (MST) shown in Figure 9, and a Minimum-
Entangled Tree (MET). The MET is defined as the shape of
tree, for a given degree, where the number of renormalized
states required to achieve an exact calculation is minimized.
Its construction is shown in Figure 10. Because of its balanced
nature, the MET also minimizes the prefactor of the cost of
the TTNS calculation for a given M.

For each of these trees, we mapped the orbitals onto the
sites by a genetic algorithm*® that minimized the cost function
> Kij Dl.zj, where Dj; is the counting distance between the
sites 7 and j in the tree.

The ground state energies computed with the two differ-
ent trees and two different M (100 and 200) are summarized in
Table II. From these calculations, we see that the MST gives a
slightly better energy than that the MET, but the MST sweep
is 50% slower than the MET sweep for the same M, due to
the unbalanced nature of the MST. For larger M, because the
MET minimizes the number of renormalized states for the

10 sites(g=2) 22 sites (g = 3)

46 sites (g=4)

FIG. 11. Hydrogen atoms on Cayley-trees (Z = 3, ¢ = 2 (10 sites),
3 (22 sites), and 4 (46 sites)). Top panel shows the actual structures of the
hydrogen trees, in which red atoms are the core region, orange atoms are for
g = 2, yellow atoms are for g = 3, and green atoms are for g = 4. The dis-
tance between adjacent hydrogens is 2.0 bohrs and torsional angle between
different generations is 30°. Bottom panel shows corresponding Cayley-tree
diagrams. The red-dotted line denotes the site ordering used in the MPS.
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FIG. 12. Energy convergence and total CPU time computed with normal
two-site TTNS (denoted full) and half-renormalized two-site TTNS (denoted
HR-TTNS).

exact calculation, we expect it to eventually give a lower en-
ergy for a given M than the corresponding MST. Although
these results are system dependent, they indicate the impor-
tance of tree shape in determining the cost of practical TTNS
calculations. We adopt the MET in our calculations unless an-
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other tree shape is trivially indicated by the molecular struc-
ture, e.g., in a tree shaped molecule such as a dendrimer.

IV. ILLUSTRATIVE CALCULATIONS

We now present several benchmark applications to
molecular systems to understand the performance of TTNS
and to compare with that of MPS. For the MPS calculations,
we used our TTNS code with Z = 2. This was to allow a fair
comparison of timings using the same implementation.

To start, we consider an idealized system: hydrogen
atoms on Cayley-trees in an (orthogonalized) minimal STO-
3G basis. This is a model system where TTNS is expected to
work very well. To avoid nearly overlapping hydrogens which
would arise in a planar geometry, the tree structures are taken
to be slightly twisted as shown in Figure 11. All geometries
are provided in the supplementary material.*’

We first illustrate the importance of the half-
renormalization algorithm by comparing the normal two-site
TTNS algorithm and the HR-TTNS two-site algorithm on a
small 10 site hydrogen tree. The energy convergence along
the sweeps and total process time (CPU time) is shown in
Figure 12. Though the convergence per sweep is slower

1.0E-02
(b)

1.0E-03 +
o 1.0E-04 +
m‘% 1.0E-05 +
] MPS
W 40E.08 + TTNS

1.0E-07 +

1.0E-08 t +

0 10 20 30
CPU times/ sweep sec.
1.0E-01
(d)
o 1.0E-02 +
§ MPS
w
I
W 1pE-03 |
TTNS
1.0E-04 | |
0 1,000 2,000 3,000
CPU times/ sweep sec.

FIG. 13. Energy convergence of hydrogen trees plotted with respect to the number of renormalized states M and CPU time (s) per one sweep; (a) and (b) show
energy versus M and CPU time per sweep, respectively, for 10 sites, and (c) and (d) show energy versus M and CPU time per sweep, respectively, for 22 sites.
All calculations are for the triplet ground state energy in an orthogonalized STO-3G basis.

RIGHTSE LI MN iy



134113-9 N. Nakatani and G. K.-L. Chan

in the HR-TTNS algorithm, the total CPU time is much
smaller than in the normal two-site TTNS algorithm due to
the much less expensive H1 operation. Thus, the remaining
calculations have been done using the HR-TTNS algorithm,
which we henceforth shorten to TTNS.

Next, we compare the performance of the MPS and
TTNS on three hydrogen trees of different sizes: 10 sites,
22 sites, and 46 sites. We focus on two aspects: energy con-
vergence with M, and CPU time per sweep. In general, the
energy convergence of the TTNS is much faster than the
MPS, both with increasing M and both as a function of CPU
time, as seen in Figure 13 for the 22 site tree. (In the 10 site
tree, the strange behaviour of the CPU time, where larger M
required smaller CPU time, is an artifact of our Davidson
diagonalization implementation, which required a large num-
ber of iterations when M was very small.) In the 46 site tree,
we only carried out calculations with small M because of
the large computational cost. For the CPU time per sweep,
we found that a calculation with MPS with M = 200 (6182
s/sweep), and TTNS with M = 100 (6839 s/sweep) were com-
parable. However, the corresponding energies were computed
to be —22.705014E);, and —22.958219E),, respectively, and
thus the TTNS gave a much better energy than the MPS at

10E-01
(@)
ui
: MPS
mﬂ
1
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TTNS
1.0E-02 ; ;
0 200 400 600
M
1.0E+00
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Ty
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a comparable computational cost. These results demonstrate
that TTNS is more cost effective than MPS when the system
is tree-shaped. Moreover, the relative benefits of the TTNS
increase as the tree size increases.

We now consider a model system designed to mimic
more difficult molecular structures for MPS and TTNS. In
the previous tree structures we used a local atomic basis.
This, together with the underlying tree connectivity of the
molecule, allowed the TTNS to completely exploit the lo-
cal nature of correlation in the system. Though the system
was not linear, the MPS still benefitted from the local basis
in the calculations, as not every orbital was correlated with
every other. (For similar reasons, in DMRG calculations lo-
calized molecular orbitals are often used to minimize long-
range entanglement.) However, in some situations, it may
be unavoidable for a MPS or TTNS to describe some long-
range entanglement, either due to the underlying physics,
or due to a poor mapping of the molecular structure onto
a chain or tree. To mimic this situation we carry out MPS
and TTNS calculations in a canonical molecular orbital ba-
sis. Because these orbitals are delocalized, each orbital can
be considered to interact with each other. We choose as our
model system a set of hydrogen chains in a minimal STO-3G

1.0E-01
(b)
L 3
\
u
z MPS
u‘“
I
w
TTNS
1.0E-02 } } }
0 500 1,000 1,500 2,000
CPU times/ sweep sec.
1.0E+00
(d)
u
z MPS
§ 1.0E-01 1
w
I
w
TTNS
1.0E-02 i

0 1,600 2000 3,000 4,000 5,000

CPU times/ sweep sec.

FIG. 14. Energy convergence of hydrogen chains with canonical molecular orbitals (CMOs) plotted by number of renormalized states M and CPU time (s) per
one sweep; (a) and (b) showed those of M and CPU time per sweep, respectively, for 20 sites, and (c) and (d) showed those of M and CPU time per sweep,
respectively, for 30 sites. Singlet ground state energy was computed with STO-3G basis sets.
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FIG. 15. Energy errors for bond dissociation of nitrogen dimer using (10e,
260) active space and cc-pVDZ basis sets. Reference energies were from
previous full-CI work in Ref. 41.

basis. Although these are chain molecules, the use of canon-
ical molecular orbitals means that this is not an ideal system
for the MPS.

Figure 14 shows the energy convergence as a function of
M and CPU time per sweep. Both MPS and TTNS exhibit
very slow energy convergence as a function of M due to the
use of canonical molecular orbitals, but it is clear that the con-
vergence with M is always better in TTNS than in MPS by a
factor of 2 or more. As a function of CPU time, we find that
the decreased M means that TTNS performs better in compar-
ison with MPS, although the improvement is slight due to the
higher scaling of TTNS with M.

These results provide some promise that in general
molecules without a tree or chain structure, TTNS can
perform better than MPS, although this involves a delicate
balance between the decreased number of renormalized states
used by the TTNS, and the higher computational scaling with
M. To examine this in a more realistic setting, we now con-
sider calculations on two benchmark diatomics, the nitrogen
dimer and the chromium dimer.

1.0E-01

(a)

MPS

E= Ecnmf."‘ E!I

1.0E-02 . - |
0 100 200 300 400

J. Chem. Phys. 138, 134113 (2013)

TABLE III. CPU times per sweep in s for MPS and TTNS calculations for
the nitrogen dimer using (10e, 260) active space and cc-pVDZ basis sets.

MPS TTNS
RIA M =500 M = 1000 M =250 M =500
1.1208 706 2998 794 5088
1.4288 1027 4684 1337 7510
1.9050 1155 5053 992 5945

The bond dissociation curve of nitrogen dimer is often
used as a good benchmark to evaluate whether a method can
describe strong electron correlation correctly. We evaluated
ground state energies at three points on the bond dissociation
of nitrogen dimer, 1.1208(R,), 1.4288, and 1.9050 A. A frozen
core active space (10e, 260) with a cc-pVDZ basis set was em-
ployed as used in previous DMRG calculations* and full-CI
(configuration interaction) calculations*' (see supplementary
material for the tree graphs and the site orderings®). Figure
15 shows the energy errors from full-CI results*! as a function
of bond length and CPU times per sweep are summarized in
Table III. In TTNS, half the M can be used at R = 1.1208
and 1.4288 A and a quarter the M can be used at R = 1.9050
A as compared with MPS. TTNS with half the M of the cor-
responding MPS required approximately the same CPU time
per sweep. This indicates that the TTNS gives comparable
and/or slightly better performance at short bond-lengths but
much better performance at long bond-lengths compared to
the MPS in this molecule. We conclude that the TTNS works
better in the case of the nitrogen dimer than the MPS.

Since the chromium dimer has an unusual multiple bond,
its ground state is very complicated and difficult to describe
by conventional methods. Recently, DMRG calculations of
the chromium dimer have been carried out for relatively large
active spaces.”*> We performed MPS and TTNS calculation
at 1.5 A using the same basis sets and the same active space
(24e, 300) as in earlier DMRG calculations* (see supple-
mentary material for the tree graph and the site ordering®).
Figure 16 shows the energy convergence as a function of M

1.0E-01

(b)

TTNS

£ ECIII'N.". Eh

MPS

1.0E-02 . - |
0 500 1,000 1,500

CPU times/ sweep sec.

2,000

FIG. 16. Energy convergence of the chromium dimer at 1.5 A using a (24e, 300) active space and Ahlrichs’ split-valence plus polarization (SVP) basis set. (a)
Plotted as a function of M and (b) as a function of CPU time per sweep. Reference energies were from previous DMRG work in Ref. 42.
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FIG. 17. Structures of stilbenoid dendrimers g = 0, 1, and 2. Geometries
were optimized at the B3LYP/cc-pVDZ level of theory.

and CPU time per sweep. Since the previous DMRG cal-
culation employed very large M (up to 10 000), the energy
reported here is far from convergence because we only em-
ployed M up to 150 in the TTNS. Nonetheless compared to
our MPS benchmarks, we find that smaller M can be used in
the TTNS. In comparing CPU time per sweep, however, we
see that MPS gives much better performance than the TTNS
in this molecule. Thus, we conclude that the MPS works bet-
ter in the case of the chromium dimer than the TTNS.

These two benchmark calculations on the nitrogen dimer
and chromium dimer show that the performance of the
MPS and TTNS in general molecules depends sensitively
on the electronic structure and the nature of the quantum
entanglement of the molecule, thus their relative merits must
be determined on a molecule by molecule basis.

Finally, to demonstrate the power of TTNS, we consider
a TTNS calculation on more realistic tree-shaped molecules.
Stilbenoid dendrimers are prototypical m-conjugated den-
drimers, with each unit being a stilbene fragment.*> These
dendrimers are potentially attractive for chemistry because

-

(a)

-

S~

) i
el
i

benzene frag.

ethylene frag.
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photo-induced electron-transfer or exciton-transfer may pro-
ceed from the leaves to the core, mimicking a biological
antenna system (we note that dendrimer systems have also
been previously studied using semi-empirical DMRG?%#),
Although it is the excited states and dynamical properties
of these systems that are of primary interest, here we focus
on the ground-state energy for benchmarking and reserve the
study of excited states to future work.

We consider three different sizes of stilbenoid dendrimers
denoted by the generation g as shown in Figure 17. We car-
ried out w-full valence MPS and TTNS calculations with
STO-3G and 6-31G basis sets. Single valence calculations
were performed for ¢ = 0, 1, and 2 with (14e, 140), (46e,
460), and (110e, 1100) active-spaces, respectively, and dou-
ble valence calculations were performed for g = 0 and 1 with
(14e, 280) and (46e, 920) active-spaces, respectively. To con-
struct the tree graph, m-orbitals computed from a RHF cal-
culation were localized for occupied and unoccupied spaces
separately. Localized MOs were grouped for each ethylene
and benzene fragment, and were ordered on the tree according
to the underlying dendritic structure, as shown in Figure 18.
The orderings within each fragment were determined to put
strongly interacting pairs (evaluated by K;;) on neighboring
sites.

For the g = 0 dendrimer (stilbene), the MPS and TTNS
gave similar energy convergence as a function of M in
the single-valence (STO-3G) calculation, and the MPS gave
somewhat better performance with respect to CPU time per
sweep (see Figures 19(a) and 19(b)). In the double-valence
(6-31G) calculation, the TTNS gave an improved energy con-
vergence with M compared to MPS, and the MPS and TTNS
gave almost the same performance with respect to CPU time

ethvlene firag. 3 3
S e

- . = -

FIG. 18. Tree graphs for TTNS calculation of stilbenoid dendrimer (g = 1). (a) Selected molecular orbitals of the localized ethylene and benzene fragments,
(b) Tree graph of the single-valence (STO-3G) calculation, and (c) tree graph of the double-valence (6-31G) calculation where the filled circles represent local
7 and 7 * orbitals and empty circles represent local 3p orbitals. Note that identical orbitals are omitted in the tree graphs.
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FIG. 19. Energy convergence of stilbenoid dendrimers ¢ = 0 and ¢ = 1 plotted by number of renormalized states M and CPU time (sec.) per sweep; (a) and
(b) shows energy versus M and CPU time per sweep, respectively, for g = 0, single valence (14e, 140), (c) and (d) shows energy versus M and CPU time per
sweep, respectively, for ¢ = 0, double valence (14e, 280), (e) and (f) shows energy versus M and CPU time per sweep, respectively for g = 1, single valence

(46e, 460). All energies are for the singlet ground-state energy.

per sweep (see Figures 19(c) and 19(d)). The competitive per-
formance of MPS relative to TTNS in the g = 0 dendrimer
reflects the very small size of the system, which is almost lin-
ear in nature and thus nearly ideal for MPS.

For the larger ¢ = 1 dendrimer, in the single-valence
space the TTNS required a quarter the M to obtain the
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same energy accuracy as the MPS. The computational cost
of the TTNS for this accuracy was also much lower than that
of the MPS (see Figures 19(e) and 19(f)). The double-valence
calculations were very expensive, hence we only performed
calculations with M = 100 for MPS and with M = 50 for
TTNS. Although the resulting energies were not converged to
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chemical accuracy, the correlation energies (E — Eyp) of the
MPS, —0.644736E), and the TTNS, —0.678678E},, indicate
that the TTNS is once again much more accurate.

Finally, for the g = 2 dendrimer, even the single-valence
active space calculation was quite expensive with our imple-
mentation, consequently, we only performed single-valence
calculations using M = 100 for MPS and M = 50 for TTNS.
These calculations had comparable timings. The computed
correlation energies were —1.943651F), and —2.021378E),
with MPS and TTNS, respectively, indicating once again that
the TTNS works much better than the MPS in this large
dendritic molecule. Although we could not reach fully con-
verged energies in this work, the ability to even approximately
target such systems with TTNS demonstrates the promise of
the technique for complex systems.

V. CONCLUSIONS

In this work we investigated tree tensor network states
(TTNS) for quantum chemistry. We formulated an efficient
tree tensor network algorithm that is analogous to the density
matrix renormalization group (DMRG) algorithm in quan-
tum chemistry for matrix product states (MPS). We intro-
duced the additional step of half-renormalization that greatly
reduced the computation cost. We found that our TTNS calcu-
lations were competitive with MPS and DMRG calculations
in general molecules, requiring significantly fewer renormal-
ized states for the same accuracy, although this did not al-
ways translate into a savings in computational time. In tree
like molecules, TTNS was clearly superior to MPS requir-
ing both fewer renormalized states and less time to reach the
same accuracy. This bodes well for the application of TTNS
to study a wide class of interesting optically active systems
based on dendritic structures, as illustrated in our calculations
on stilbenoid dendrimers.

Tree tensor network states are one of the simplest gener-
alizations of the matrix product states, because the tree net-
work structure has no cycles. More complex tensor networks
which describe even more general entanglement require the
treatment of cycles. The improvements observed with tree
tensor networks here suggests that investigating these more
complex classes will be fruitful, particularly to describe quan-
tum chemistry of larger systems, where the molecules or
materials acquire an extended two-dimensional and three-
dimensional structure.
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APPENDIX: OPTIMAL TENSOR CONTRACTION
FOR TTNS RENORMALIZATION

During the TTNS renormalization procedure, it is nec-
essary to construct matrix representations of operators act on
bl..b%'n; = |n;)|b?7")...|b}). Because of the quartic terms
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in the Hamiltonian, this can involve products of up to four
operators. The corresponding product formulae follow.

The matrix representation of an operator O, which acts
only on renormalized states in block « is given by

[0 ]b/}...b’f*‘n’ib}...b;‘-‘n,

= (B} 011 Ol |7 71).... |
VIV s P((BS b il On),
where [OAa]b/i‘Yb? is the matrix representation of Oa spanned
by states |b') and P is a parity operator which gives +1 or
—1 depending on the particle numbers of (b/o“rl b’Z |

and 0 Sumlarly, those of operators 0 0,3, 0 0,3 Oy, and
0,050, O5 are computed as follows,

= [0.] (A1)

[0, O‘ﬁ]b’,-l...b/fz’ln’;b} by,
= [0, 051"
x P((¢H (o il O,)

x P(B"P |27 (i, Op), (A2)
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<P 0. 0)
xP(

(BT ', Oy), (A3)

(0,050, 0 ]b" B b} b

= (0,177 (05177 10,1770 105101
< P[] Ap T o', O
((b/ﬂ+1| (b/Z 1’ n | 0,3)
< P77 (il Oy)
xP({

b T, O). (A4)

Here, the representation of operator
Al el gl pZ-l, 7 74 .
[O]7iPe mibibi i qs 4 AM* x 4M“ matrix. In the

TABLE IV. Complexity of optimal tensor contractions for TTNS renormal-
ization per site. Multiplying by O(k) gives complexity per sweep.

Complementary

operator Complexity

g OMZH2 + M%K%
a; OM?**1k)

S; OM?HI2 + MZk*)
aia; OMZH1k2)

Ajﬁj O(MZsz)

B OM?Fi% + M?k*)
0ij OMZk2 + M?k*)
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renormalization step, this is reduced to M x M matrix
A 11217 . .

(01770 spanned by renormalized states |b7) using a tensor

A" as

Z n'it AT LB ET bl P g

Ab'}...b',.Z[O] Ab}...biz' (A3)
b/,-l...b’izfln',»
bl..bf ' n;

i i

It is necessary to minimize the cost of tensor contractions for
TTNS renormalization (A5) is just as for A Yr, as described
in the text. To compute representations of complementary
operators, each complementary operator can be further di-
vided into Z — 1 renormalized blocks and the site i itself. We
carefully minimized these tensor contraction costs for each
complementary operator and their complexities per site are
summarized in Table IV for a general tree. Thus, for a gen-
eral tree, the computational complexity of a TTNS sweep is
O(M?+ '3 + M?k3). As discussed in the text, the complexity
can be further reduced to O(M3k® + M?k*) for Z = 2 (MPS)
and O(M*k3 + M?*k>) for Z = 3.

I'S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

2S. R. White, Phys. Rev. B 48, 10345 (1993).

3S. R. White and R. L. Martin, J. Chem. Phys. 110, 4127 (1999).

4G. K.-L. Chan and M. Head-Gordon, J. Chem. Phys. 116, 4462 (2002).

5G. K.-L. Chan and S. Sharma, Annu. Rev. Phys. Chem. 62, 465
(2011).

60). Legeza, J. Roder, and B. A. Hess, Phys. Rev. B 67, 125114 (2003).

7G. Moritz and M. Reiher, J. Chem. Phys. 126, 244109 (2007).

8K. H. Marti and M. Reiher, Z. Phys. Chem. 224, 583 (2010).

9Y. Kurashige and T. Yanai, J. Chem. Phys. 130, 234114 (2009).

103 Hachmann, W. Cardoen, and G. K.-L. Chan, J. Chem. Phys. 125, 144101
(2006).

1D, Ghosh, J. Hachmann, T. Yanai, and G. K.-L. Chan, J. Chem. Phys. 128,
144117 (2008).

12Y.Y. Shi, L.-M. Duan, and G. Vidal, Phys. Rev. A 74, 022320 (2006).

13G. Vidal, Phys. Rev. Lett. 99, 220405 (2007).

14E, Verstraete, V. Murg, and J. I. Cirac, Adv. Phys. 57, 143 (2008).

ISK. H. Marti and M. Reiher, Phys. Chem. Chem. Phys. 13, 6750 (2011).

RIGHTS LI N Hig

J. Chem. Phys. 138, 134113 (2013)

160, Legeza, T. Rohwedder, and R. Schneider, “Numerical approaches
for high-dimensional PDE’s for quantum chemistry,” in Encyclopedia of
Applied and Computational Mathematics, edited by B. Engquist (Springer,
2012).

17G. K.-L. Chan, Comput. Mol. Sci. 2, 907 (2012).

187, Tagliacozzo, G. Evenbly, and G. Vidal, Phys. Rev. B 80, 235127 (2009).

Py, Murg, F. Verstraete, O. Legeza, and R. M. Noack, Phys. Rev. B 82,
205105 (2010).

20W. Li, J. Delft, and T. Xiang, Phys. Rev. B 86, 195137 (2012).

21Y, . Changlani, S. Ghosh, C. L. Henley, and A. Lauchli, Phys. Rev. B 87,
085107 (2013).

22H. Otsuka, Phys. Rev. B 53, 14004 (1996).

23B. Friedman, J. Phys.: Condens. Matter 9, 9021 (1997).

24R. J. Bursill, Phys. Rev. B 60, 1643 (1999).

25M. B. Lepetit, M. Cousy, and G. M. Pastor, Eur. Phys. J. B 13, 421 (2000).

26M. A. Martin-Delgado, J. Rodriguez-Laguna, and G. Sierra, Phys. Rev. B
65, 155116 (2002).

27M. Kumar, S. Ramasesha, and Z. G. Soos, Phys. Rev. B 85, 134415 (2012).

287, Schollwéck, Rev. Mod. Phys. 77, 259 (2005).

290. Schollwéck, Ann. Phys. 326, 96 (2011).

30T, Xiang, Phys. Rev. B 53, 10445 (1996).

3IE Verstraete, J. J. Garcia-Ripoll, and J. I. Cirac, Phys. Rev. Lett. 93, 207204
(2004).

321, P. McCulloch, J. Stat. Mech.: Theory Exp. 2007, P10014.

33G. M. Crosswhite and D. Bacon, Phys. Rev. A 78, 012356 (2008).

34B. Pirvu, V. Murg, J. L. Cirac, and F. Verstraete, New J. Phys. 12, 025012
(2010).

35F. Frowis, V. Nebendahl, and W. Dur, Phys. Rev. A 81, 062337 (2010).

36S. R. White, Phys. Rev. B 72, 180403 (2005).

370. Legeza and J. S6lyom, Phys. Rev. B 68, 195116 (2003).

3] Rissler, R. M. Noack, and S. R. White, Chem. Phys. 323, 519 (2006).

39G. Barcza, O. Legeza, K. H. Marti, and M. Reiher, Phys. Rev. A 83, 012508
(2011).

40S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithm
(Springer-Verlag, Berlin/Heidelberg, 2010).

4TH. Larsen, J. Olsen, P. Jgrgensen, and O. Christiansen, J. Chem. Phys. 113,
6677 (2000).

42S. Sharma and G. K.-L. Chan, J. Chem. Phys. 136, 124121 (2012).

43H. Meier and M. Lehmann, Angew. Chem., Int. Ed. 37, 643 (1998).

44S. Mukhopadhyay, B. J. Topham, Z. G. Soos, and S. Ramasesha, J. Phys.
Chem. A 112, 7271 (2008).

45See supplementary material at http://dx.doi.org/10.1063/1.4798639 for the
geometries of hydrogen trees, and the tree graphs of nitrogen dimer and
chromium dimer.


http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1063/1.478295
http://dx.doi.org/10.1063/1.1449459
http://dx.doi.org/10.1146/annurev-physchem-032210-103338
http://dx.doi.org/10.1103/PhysRevB.67.125114
http://dx.doi.org/10.1063/1.2741527
http://dx.doi.org/10.1524/zpch.2010.6125
http://dx.doi.org/10.1063/1.3152576
http://dx.doi.org/10.1063/1.2345196
http://dx.doi.org/10.1063/1.2883976
http://dx.doi.org/10.1103/PhysRevA.74.022320
http://dx.doi.org/10.1103/PhysRevLett.99.220405
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1039/c0cp01883j
http://dx.doi.org/10.1002/wcms.1095
http://dx.doi.org/10.1103/PhysRevB.80.235127
http://dx.doi.org/10.1103/PhysRevB.82.205105
http://dx.doi.org/10.1103/PhysRevB.86.195137
http://dx.doi.org/10.1103/PhysRevB.87.085107
http://dx.doi.org/10.1103/PhysRevB.53.14004
http://dx.doi.org/10.1088/0953-8984/9/42/016
http://dx.doi.org/10.1103/PhysRevB.60.1643
http://dx.doi.org/10.1007/s100510050053
http://dx.doi.org/10.1103/PhysRevB.65.155116
http://dx.doi.org/10.1103/PhysRevB.85.134415
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1103/PhysRevB.53.R10445
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1088/1742-5468/2007/10/P10014
http://dx.doi.org/10.1103/PhysRevA.78.012356
http://dx.doi.org/10.1088/1367-2630/12/2/025012
http://dx.doi.org/10.1103/PhysRevA.81.062337
http://dx.doi.org/10.1103/PhysRevB.72.180403
http://dx.doi.org/10.1103/PhysRevB.68.195116
http://dx.doi.org/10.1016/j.chemphys.2005.10.018
http://dx.doi.org/10.1103/PhysRevA.83.012508
http://dx.doi.org/10.1063/1.1311294
http://dx.doi.org/10.1063/1.3695642
http://dx.doi.org/10.1002/(SICI)1521-3773(19980316)37:5<643::AID-ANIE643>3.0.CO;2-4
http://dx.doi.org/10.1021/jp8012078
http://dx.doi.org/10.1021/jp8012078
http://dx.doi.org/10.1063/1.4798639

