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Efficient Triangular Surface Approximations using
Wavelets and Quadtree Data Structures

Markus H. Gross, Associate Member, IEEE, Oliver G. Staadt, and Roger Gatti

Abstract—We present a new method for adaptive surface meshing and tri-

angulation which controls the local level-of-detail of the surface approxi-

mation by local spectral estimates. These estimates are determined by a

wavelet representation of the surface data. The basic idea is to decompose

the initial data set by means of an orthogonal or semi-orthogonal tensor

product wavelet transform (WT) and to analyze the resulting coefficients.

In surface regions, where the partial energy of the resulting coefficients

is low, the polygonal approximation of the surface can be performed with

larger triangles without loosing too much fine grain details. However, since

the localization of the WT is bound by the Heisenberg principle the meshing

method has to be controlled by the detail signals rather than directly by the

coefficients. The dyadic scaling of the WT stimulated us to build an hierar-

chical meshing algorithm which transforms the initially regular data grid

into a quadtree representation by rejection of unimportant mesh vertices.

The optimum triangulation of the resulting quadtree cells is carried out by

selection from a look-up table. The tree grows recursively as controlled by

detail signals which are computed from a modified inverse WT.

In order to control the local level-of-detail, we introduce a new class of

wavelet space filters acting as “magnifying glasses” on the data.

We show that our algorithm performs a low algorithmic complexity, so that

surface meshing can be achieved at interactive rates, such as required by

flight simulators. However, other applications are possible as well, such as

mesh reduction in complex data, FEM or radiosity meshing.

The method is applied on different types of data comprising both digital ter-

rain models and laser range scans. In addition, quantitative investigations

on error analysis are carried out.

Index Terms—Surface Meshing, Triangle Approximations, Level-of-Detail,

Quadtrees, Wavelet Transforms, Wavelet Space Filtering, Biorthogonal

Wavelets, Mean-Square Error, Digital Terrain Modeling

I. INTRODUCTION

P
OLYGONAL surface approximations are an essential pre-

processing step in scientific visualization [1], since most

modern graphics hardware supports the display of shaded and

textured triangles. Nevertheless, in order to treat complex data

sets efficiently, methods have to be found to reduce the number

of triangles representing the data. This problem is not only strik-

ing in the field of digital terrain modeling and flight simulation,

but also in many other applications, such as finite element, ra-

diosity [2] or parametric surface meshing [3]. Hence, adaptive

triangle reduction techniques were established in the past. Most

of them try to find mathematical criteria for the importance of a

particular mesh vertex, remove it if applicable and perform a lo-

cal retriangulation of the mesh. [4] for instance analyzes single

vertices in the mesh and defines a planarity criterion to decide on

the removal of the vertex. In order to avoid cracks in the surface,

a local Delaunay triangulation has to be performed. Quadtree-

based methods [5] were proposed mostly for radiosity meshing,

where the mesh is controlled by the illumination gradient. Other

implementations are used for representing rectangular B-spline

patches [3].

A lot of work has also been done for the topologically more chal-

lenging case of 3D isosurfaces. Based on analysis of topolog-

ical problems [6], [7] arising with the marching cubes method,

The authors are with the Computer Science Department, Swiss Federal Insti-
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different approaches have been published computing adaptive

triangulations or reductions of an existing isosurface mesh.

Specifically, [8] used octrees to efficiently manage the surface

polygons. As a result, the octree is usually built from the vol-

ume data set.

Although most of the existing methods work well within the

above limitations and can be found in a broad range of appli-

cations, the basic issues arising from these approaches are as

follows:

1. The criteria employed to thin the triangle mesh are usually

based on simple local geometric surface features, such as pla-

narity or Gaussian curvature. It is difficult to quantify global

error bounds of the overall approximation.

2. The reduction of the triangle mesh is computationally ex-

pensive and once local retriangulations are performed, extensive

work on data structures and list management is required.

3. There is no elegant way to focus the level-of-detail locally

onto interesting data features — a property of increasing impor-

tance in complex data sets.

On the other hand, the wavelet transform, as presented in [9],

[10] or [11] has been discovered for computer graphics: [12],

[13] and [14] proposed volume rendering techniques, whereas

[15] published a volume morphing method. Even approximate

solutions of the radiosity equation can be achieved using WTs

[16], as well as visualization of multidimensional features, such

as in [17]. Others [18], [19] constructed multiresolution curves

or surfaces.

All of these approaches employ the WT to expand the data and

to control the parameters of the approximation within the math-

ematical bounds of the L2-energy norm.

The goal of the following paper is to point out an alternative ap-

proach to the adaptive triangulation problem: the usage of the

wavelet transform as an overall mathematical framework which

controls the data approximation. In some sense, the WT pro-

vides a local spectral estimate of the data and describes local

variations which can be harvested to govern the courseness of a

surface mesh.

As opposed to existing methods [19], [20] our approach ex-

tends prior work significantly, since it performs on any type of

wavelet, not only in the trivial case of linear splines. Therefore,

our criteria for vertex removal are elaborated much differently

and employ a modified inverse WT, which carries out the detail

signals of each channel. Furthermore, the introduction of a new

type of wavelet space filtering enables us to harvest one of the

most striking properties of the WT: the localization. This filter

helps to define local regions of interest.

Since our method targets at real-time applications, such as flight

simulation or virtual reality, we combine the wavelet domain

representation with quadtree based meshing. In contrast to ex-

isting look-up tables we propose an elaborated algorithm, which

provides consistent triangulations, even in the case of level-two
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transitions of adjacent nodes. In particular, it is shown, that the

resulting mesh is much more flexible, whereas the look-up table

has to be enlarged only moderately.

Some basic ideas of our method have been summarized in [21].

In the current paper, we have extended our investigations in

terms of various important aspects. Specifically, we emphasize

interpolation and boundary problems arising with the usage of

the WT. Furthermore, our algorithm is elaborated, where all re-

quired look-up tables are given and explained. We thoroughly

investigate the algorithmic complexity of the different process-

ing steps, an aspect of fundamental importance in computer sci-

ence. Finally, the performance of our triangulation method is

analyzed on several data sets, ranging from digital terrain mod-

els to laser range scans.

In particular, the triangulation step is embedded in a modified

inverse wavelet transform. A quadtree representation grows it-

eratively as the data is transformed back into the spatial domain.

Due to some symmetries within the quadtree cells, the local tri-

angulations can be computed from our look-up table. Thus, we

avoid complex list management and perform the triangulation at

nearly interactive rates.

The concept of our method is illustrated in Fig. 1. The initially

regular surface data grid has to be transformed into a quadtree

structure and each quadtree cell has to be triangulated using a

look-up table. In order to decide, whether a particular mesh

vertex can be removed, we first apply a WT onto the data and

then iteratively reconstruct the detail signals. The amplitude of

the detail signal is taken as a measure for the local frequency

characteristics and decides on the removal of points. The dyadic

scale of the standard WT allows to reconstruct the detail signals

from the different frequency channels separately. After the first

step each second data vertex of the grid is analyzed. Then, as

the iteration proceeds the next detail signal is reconstructed and

each fourth vertex is analyzed and so forth. This scheme en-

forces a loop consisting of a modified inverse WT to recover a

particular detail signal and an analysis step to label unimportant

coefficients. Applying wavelet space filtering allows an elegant

control of the local level-of-detail of the triangulation and acts

as a local “magnifier”. Furthermore, particular emphasis has to

be given to the boundary problems.

Although the scope of our paper is to present a method for 2D

surface meshing, it can also be extended to 3D to handle isosur-

faces or volumes with tetrahedralizations [22]. Moreover, some

of the different ideas encompassed by this method, such as the

detail signal criterion and the wavelet space filters can also be

used to govern existing meshing methods.

The organization of the paper is as follows: For reasons of

readability, we describe the mathematical framework of the 2D

wavelet transform for surface approximation and particular em-

phasis is given to the required extensions, such as modifications

of the QM-Filter pyramids to figure out the inverse WT or finite

intervals. Furthermore, mathematical formulations of filters in

wavelet space are explained and their importance for level-of-

detail control is stressed. The next section sheds light on the

quadtree-based mesh representation we propose and shows how

to derive local optimal cell triangulations from a look-up table.

The algorithmic complexity of the method as well as an error

analysis is elaborated in section IV. Finally, some examples from
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Fig. 1. Illustration of the basic concepts of the method: estimation of the sur-

face parameters useing the local detail signal of the WT, point removal and

quadtree based meshing of the remaining suface points.

a digital terrain model of the Swiss Alps and from various laser

range scans illustrate the superiority of the proposed method.

II. SURFACE APPROXIMATION USING WAVELETS

A. The 2D Wavelet Transform

The 2D version of the Wavelet Transform (WT) expands any fi-

nite energy funtion f(x; y) 2 L2(R2 ) using a set of similar basis

functions  a;b(x; y). Its generic continuous form description is

provided as the following inner product:

WTf; (ax; ay; bx; by) = hf;  a;bi =
1Z

�1

1Z
�1

 a;b(x; y)f
�(x; y) dxdy (1)

with ax; ay; bx; by 2 R.

The basis functions are derived from each other by scaling and

shifting one prototype function (x; y) controlled by the param-

eters ax; ayandbx; by respectively [9].

 a;b =
1p

jaxayj
 

�
x� bx

ax
;
y � by

ay

�
(2)

h l;  ki = �(l � k); � : Kronecker-delta-function
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Most discrete formulations of the 2D-WT comprise a tensor

product extension along with a dyadic scaling of the bases with

ax = ay = 2 and a unit shift bx = by = 1, by which the

respective bases are derived:

'2mpq(x; y) := 2�m'
�
2�mx� p

�
'
�
2�my � q

�
 2;1mpq(x; y) := 2�m 

�
2�mx� p

�
'
�
2�my � q

�
 2;2mpq(x; y) := 2�m'

�
2�mx� p

�
 
�
2�my � q

�
 2;3mpq(x; y) := 2�m 

�
2�mx� p

�
 
�
2�my � q

�
(3)

m : 1; : : : ;M iteration step. ' stands for the so-called scaling

function. The upper index 2 denotes the dimension of the bases.

Consequently, any finite energy function f(x; y) 2 L2(R2 ) can

be approximated by the bases elucidated above.

f(x; y) =
X
p

X
q

�
cMpq'

2
Mpq

+

MX
m=1

�
cm;1
pq  2;1mpq + cm;2

pq  2;2mpq + cm;3
pq  2;3mpq

��
(4)

cmpq denotes the coordinate of f in functional space with respect

to the wavelet  mpq , i. e.

cmpq = hf;  mpqi (5)

Note, that the previous equation provides a multiresolution hier-

archy enabling the control of the bounds of any approximation.

For convenience, we will denote the coefficients simply with �ci.

B. Biorthogonal Wavelets

The final design of the wavelet bases is usually figured out

by further constraining the function’s shape and mathematical

properties. In most computer graphics applications [23] and

[24] we require strict local support along with an appropriately

smooth shape, symmetry and fast decay in frequency domain.

Unfortunately, these competing properties cannot be satisfied

with orthonormal wavelets. Chui [11] and Unser [25], however,

independently developed a class of B-spline wavelets which

meet the upper requirements. The bases are not orthogonal to

each other, but it is possible to set up a so-called dual frame to

perfectly reconstruct the signal from the transform.

Specifically, besides of scaling function ' and wavelet  the

entire transform is defined by a dual scaling function ~' and a

dual wavelet ~ .

The biorthogonal B-spline scaling functions of order j can be

defined as a recurrence relation and are assumed to be the cardi-

nal B-spline bases:

'j(x) := ('j�1 � '1) (x) =

1Z
0

'j�1(x� t) dt; j � 2: (6)

That is, the bases are derived from each other by self-

convolution of an initial basis of order 1 where:

'1(x) :=

�
1 : 0 � x � 1
0 : else

(7)

Note, that the support of a B-spline basis is always bound by

[0; j]. Furthermore, the scaling functions are symmetric with

respect to the center of support.

Fig. 2 illustrates a set of different B-spline scaling functions of

orders j = 1; 2; 3; 4.

a) b)

c) d)

Fig. 2. Cardinal B-Spline scaling functions of increasing order:

a) order 1. b) order 2. c) order 3. d) order 4.

The construction of a wavelet, which spans the orthogonal com-

plement space Um between two approximation spaces of scaling

functions Vm and Vm�1 of different resolution is pointed out in

[9]. It starts from the relations of the biorthogonal setting in

either spatial or frequency domain and provides piecewise poly-

nomial functions of minimal support. The details of this con-

struction scheme won’t be stressed here.

The symmetry of the resulting cardinal B-spline wavelet is re-

stricted to an even order. Fig. 3 shows the functional course of

B-spline wavelets of increasing order. The first order type is

orthogonal and known as the Haar wavelet.

a) b)

c) d)

Fig. 3. Cardinal B-spline wavelets of increasing order:

a) order 1. b) order 2. c) order 3. d) order 4.

The implementation of biorthogonal wavelet transforms em-

ploys the well known QM-Filter pyramids [25], as depicted in

Fig. 4.

The dualism of the frames, however, forces us to apply different

filter sequences for the decomposition (H(!) and G(!)) and

for the reconstruction ( ~H(!) and ~G(!)). The approximation
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Fig. 4. Filter banks for separable 2D-biorthogonal wavelet transforms:

a) Decomposition. b) Reconstruction

A2
m+1f and details D

2;1
m+1f , D

2;2
m+1f and D

2;3
m+1f , generated by

the decomposition path of the filter bank from the higher resolu-

tion approximation A2
mf . The reconstruction bank works vice

versa. Fast implementations of the WT can be found in [26] and

are modified appropriately.

C. How to Recover Detail Signals

One problem arising with the fast QMF implementations of the

wavelet transform is, that we need access to the difference sig-

nal in each iteration step m of the reconstruction. This is neces-

sary because the detail signal at a particular mesh vertex finally

decides whether or not it can be removed. For this purpose,

the reconstruction pyramid has to be modified, as indicated in

Fig. 5. The procedure recovers the full size detail signals �mf

represented by all wavelets at m = 1; : : : ;M and by the scal-

ing functions fM . This can be accomplished by reversing the

trace of each detail signal from the original down the decom-

position pyramid. In other words, any detail signal �mf at

iteration depth m can be obtained from the respective wavelet

coefficients by subsequent filtering and upsampling. The final

output results from superimposing all detail signals:

f(x; y) =

MX
m=1

�mf(x; y) + fM (x; y): (8)

The required extensions of the QM-filterbank are straightfor-

ward.

D1
1 f

D1
2 f

A1
M f f (x, y)

� 2

D1
m f

G
~
(�)

G
~
(�)

H
~
(�)

H
~
(�)

�1 f

�2 f

�m f

�

�

�

� 2 � 2

G
~
(�) H

~
(�)� 2 � 2 � 2

H
~
(�)H

~
(�)� 2 � 2 � 2H

~
(�) fM

Fig. 5. Modified 1D-version of a QM-filterbank to recover the detail signals.

Note, that this procedure requires additional computation, but

although the wavelet coefficients are arranged on a dyadic grid,

the Heisenberg principle prevents using them as a direct crite-

rion for vertex removal. We will address this problem again in

section III.

D. Interpolation problems with cardinal B-spline wavelets

A problem arising with cardinal B-spline wavelets is the one

of interpolating basis functions. For convenience, let’s con-

sider again the one-dimensional case of approximating a func-

tion f(x). If we assume the initial set of samples f (xp) = c0p =
fp; p : 0; : : : ; N � 1. To represent the wavelet coefficients at

iteration m = 0, the respective approximation obtained by the

corresponding scaling functions '0p 2 V0 yields:

f0(x) =

N�1X
p=0

c0p'
0
p(x) (9)

where '0p denote cardinal B-splines of any order. It is clear [25],

that this expansion does not reproduce the initial set of coeffi-

cients c0p = fp at positions xp, i. e.

f0 (xp) 6= fp (10)

In order to accomplish interpolation, we have to find a new set

of initial coefficients ĉ0p , which hold the interpolation equation

below:

f (xp) = fp =

N�1X
p=0

ĉ0p'
0
p (xp) 8p 2 [0; : : : ; N � 1] (11)

A further assumption of regular samples and a unit shift of the

bases with

'0p (xp) = '0 (x� xp) (12)

leads to the following linear system:

f = � � ĉ (13)

where

f =

0
BBBBBBB@

f (x0)
...
...
...

f (xN�1)

1
CCCCCCCA

� =

0
BBBBBB@

'(0) '(�1) '(�2) � � �
'(1) '(0) '(�1) � � �

... � � � � � � � � �

... � � � � � � � � �
'(N � 1) '(N � 2) � � � � � �

1
CCCCCCA

ĉ =

0
BBBBBB@

ĉ00
ĉ01
...
...

ĉ0N�1

1
CCCCCCA
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The unknown coefficient vector ĉ is carried out, for instance, by

matrix inversion of � which solves the linear systems of equa-

tions.

Note, that the upper linear operator corresponds to a discrete

convolution of f with �. In other words, interpolation can be

achieved by inverse low pass B-spline filtering.

E. Boundary Conditions

The wavelet transform and it’s fast implementation as a QM-

filter bank preassumes a periodic repetition of the samples in the

spirit of a torus topology. Consequently, the whole framework

is vulnerable to boundary problems on finite intervals. There

are several sources in literature (as [27] or [28], which attack

this problem and it turns out, that it is possible to construct

wavelets on finite intervals. However, this requires to relax the

self-similarity of the basis and ends up in different wavelets and

scaling functions at the boundaries. In the special case of B-

spline wavelets, the construction starts with a set of endpoint-

interpolating B-spline bases. The mathematical details should

not be explained here in detail, but although the respective pro-

jection operators become more complicated, the transform can

still be figured out in linear time. Some recipes are given in [12]

and [19].

Fig. 19 illustrates the influence of endpoint-interpolating mul-

tiresolution B-spline scaling functions as they decompose the

control vertices of a B-spline curve. In this example, the scaling

functions approximate the curve in different levels of detail.

F. Significance of Wavelet Coefficients

In the upper example, we eroded some curve details by decom-

position and rejection of detail coefficients. Consequently, if

any data set is transformed into wavelet space, it is necessary

to find appropriate criteria to control the accuracy of the surface

approximation provided by the wavelet bases. Furthermore, a

norm has to be found as a framework for the definition of error

bounds. This can be accomplished using the signal energy Etot
which is defined by the L2-norm:

Etot = kfk2 =

1Z
�1

1Z
�1

jf(x; y)j2 dxdy (14)

That is, in the discrete case of an N � N data set with values

(x1; : : : ; xN2) the squared sum of the data values represents the

signal energy. Due to the Parseval theorem, it equals the squared

sum of the wavelet coefficients �ci.

Etot =

N2X
i=1

jxij
2
=

N2X
i=1

j�cij
2

(15)

This relationship, however, is only valid for orthonormal func-

tion systems. In the case of biorthogonal wavelets, inner prod-

ucts do not vanish and modify eq. (15). Nevertheless, the upper

relations prove that any squared wavelet coefficient is a measure

for the fraction of energy provided by its basis functions. It is

clear that we can now formulate a simple criterion for the signif-

icance of particular wavelet coefficients introducing a threshold

� . Hence, we filter the coefficients according to:

~ci :=

�
0; j�cij

2
< �

�ci; j�cij
2 � �

(16)

Increasing � will result in increasing the error bounds of the

approximation and decreasing � will also decrease the approx-

imation error. A canonic quantification of the error is given by

the ratio of the remaining energy Er and Etot.

Those coefficients corresponding to the scaling functions should

be kept anyway, since they carry the DC part of the data.

The influence of global thresholding on a 2D laser range data

set of a human face (Sylvia) is illustrated in Fig. 20. We em-

ployed Haar wavelets to enhance the effect. As the number of

coefficients is dropped, the details of the approximation get lost.

G. Local Level-of-detail Filtering in Wavelet Space

The introduction of an energy threshold provides a tool for glob-

ally influencing the approximation of the wavelets. However,

one of the major strengths of the WT has not been harvested so

far: the localization properties. The local support of the basis

functions allows us to localize them both in spatial and in fre-

quency domain and rejecting a particular basis will only affect

its area of support. This important property enables an elegant

control of the local level-of-detail of the approximation. For this

purpose, the coefficients have to be weighted according to the

definition of the ROI which corresponds to a filter operation in

wavelet space. It can be defined in analogy with the well known

filters in spatial or frequency domain. Since the filter affects the

local frequency characteristics of the signal, we propose to call

it wavelet space filter.

Let g(x; y) be a Gaussian weighting function, centered at

(x0; y0), scaled by (�x; �y) and rotated by � which quantifies

the level-of-detail around some location in space (x0; y0) and

whose elliptical shape is depicted in Fig. 6a.

x

y

�x

2
�y

2 �

x0

y0

spatial domaina)

m=1

m=2

m=3

wavelet space

local coordinate system of the
frequency channels

ym

xm

b)

Fig. 6. Filtering in wavelet-space:

a) Rotated, translated and scaled 2D-Gaussian weighting function in spatial

domain. b) Transform of the filter into wavelet space results in multiple

Gaussians located in each channel.

In order to compute its transformation into wavelet space, we

have to note that any point (x0; y0) in spatial domain can only

be located within the Heisenberg bound in wavelet domain. Fur-

thermore, the spatial localization decreases with increasing iter-

ation depth m.

With the dyadic scale of our 2D-WT, however, the Gaussian

splits into all frequency channels and their centers are carried

out in wavelet space according to:
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xm0 :=
x0

2m
; ym0 :=

y0

2m
(17)

and the rotation angle � is invariant to the transform.

The set of Gaussian weighting functions fgm (xm; ym)g in

wavelet space can be elegantly described by using homogeneous

coordinates:

gm (xm; ym) = e�(Rm�pm)T (Rm�pm)+1 (18)

The matrix Rm stands for the affine transform of the Gaussian:

Rm =

0
B@

cos�
�m
x

sin�
�m
x

�x0 cos �+y0 sin�
�x

� sin�
�m
y

cos�
�m
y

x0 sin��y0 cos�
�y

0 0 1

1
CA (19)

and pm = (xm;ym;1)
T

denotes a position in homogeneous

coordinates.

To summarize this section: the control of the local level-of-

detail of the wavelet approximation can be accomplished by us-

ing one single Gaussian weighting function which surrounds the

region of interest in the initial data set. This Gaussian can be

interpreted as a filter which is transformed into multiple Gaus-

sians, one in each frequency channel in wavelet space. Premulti-

plying the coefficients with these Gaussian maps forces any sub-

sequent thresholding to pass only coefficients located within the

selected ROI. All others will be removed and hence the recon-

structed signal will be most accurate within the ROI along with

a Gaussian smoothing of the boundaries. Fig. 21 stresses the

effect of level-of-detail filtering. Sylvia’s model is decomposed

with Haar wavelets and filtered with Gaussians of different lo-

cations and parameters. The model is perfectly reconstructed

within the focus of the Gaussian, whereas only the scaling func-

tions represent the data outside. In the boundary region, less

and less high frequency information is provided and the data

becomes more and more “boxlike”. Obviously, the proposed

wavelet space filter acts as a magnifying glass onto the data.

We recommend applying the Gaussian filter and the thresholds

only to the wavelets and keeping all coefficients of the scaling

function, because they carry the DC fraction of the signal.

III. QUADTREE MESHING

A. Point Removal in Regular Triangle Meshes

So far, we elaborated some mathematical criteria for approxi-

mating a surface data set, sampled on a regular grid, using a

multiresolution hierarchy. In order to build an adaptive surface

triangulation, however, it is necessary to remove unimportant

mesh vertices and to find a triangulation of the remaining ones.

The basic criterion, by which a mesh vertex is labeled as unim-

portant is given by the mathematical framework of the wavelet

transform. In contrast to existing methods [18] which base on

linear spline wavelets, we aim at generalizing to any type of

wavelet. Therefore, our criteria require much more elaboration.

Keeping in mind that any triangulation of the surface provides a

planar approximation, we only have to bound the error between

the original surface function f(x; y) and the bilinear interpolant

provided by a triangle. Supposing furthermore that the initial

data is expanded by wavelet bases, the detail signal in iteration

m helps us to decide whether or not each 2m + 1th mesh ver-

tex is necessary for the triangle approximation. First, we visit

each second vertex and analyze the value of the detail signal of

iteration m = 1. If, let’s say, the detail signal �1f in some

neighborhood of vertex n is sufficiently low, then the vertex is

not important and the approximation can be accomplished by

a linear interpolation between vertex n � 1 and n + 1. This

scheme can now be applied recursively by subsequent computa-

tion of the detail signals �mf; m = 1; : : : ;M and by visiting

all dyadic vertices at positions n = 2mk + 1. Once the detail

signal is sufficiently small and the adjacent vertices in stepm�1
are already removed, we are allowed to label the current vertex

as well.

As a consequence, our procedure results in recursively building

a quadtree representation of the initial mesh by removing dyadic

vertices. Fig. 7 again illustrates the thinning method which fi-

nally figures out the symbolic quadtree representation of the

mesh vertices depicted as an example in Fig. 8. The nodes of

the quadtree contain either pointers to some child-nodes, or in

case of leaves, point to the entries of a vertex list.

quadtree at m=1regular mesh quadtree at m=2

vertices to be analyzed at m=2

vertices to be analyzed at m=1

vertices to be analyzed at m=3

single–step inverse WT

Fig. 7. Recursive growth of a quadtree from the regular mesh by analysing the

detail signals of the WT at each dyadic vertex.

a1 a2

a3 a4
b

dc

1 2 3 4

5
6

7

8
9 10

11

12 13 14

a b c d

a1 a3 a4

root

vertex list

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a2

m=1

m=2

Fig. 8. Symbolic representation of the mesh using a quadtree data structure.
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Note again here that the growth of our quadtree is entirely con-

trolled by a single energy threshold � embedded in the function

space of the wavelets. The final maximum depth of the tree de-

pends on the upper decomposition boundM of the WT.

At a first glance, it seems to be natural to take a particular

wavelet coefficient to decide whether or not a vertex can be

removed. This works out in the trivial case of simple linear

splines. Extending the methods to arbitrary types of wavelets,

however, requires to elaborate the criteria significantly. This is

ultimately founded in Heisenberg’s uncertainty principle, deter-

mining the lower bound of the spatial frequency localization. If,

let’s say a wavelet has a particular spatial support, the the inner

product with the data exactly represents it’s contribution in that

region. In the general case, however, it is not possible to recover

the contribution of the wavelet at a specific vertex position in

that region from the coefficients. Moreover, this would preas-

sume a wavelet, whose spatial localization drops to zero, such

as with Delta-distributions. Obviousely, we have to find more

appropriate criteria than wavelet coefficients.

Therefore, to finally decide on whether a mesh vertex can be

removed or not, we propose the following criteria which also

helps to preserve the topology of the tree. Only in cases, where

all criteria are TRUE, can the vertex be removed:
1. Wavelet-criterion: a vertex at iteration m can be removed, if

the sum of the squares of its difference signal and those within

a 4-neighborhood at resolution m is less than an upper bound �

(Fig. 9a). Upon removal, we preassume our difference signals

to be set to zero, but numerical reasons require to set � to a small

positive number.

2. Resolution-criterion: a vertex at iterationm can be removed,

if the four surrounding vertices at resolution m� 1 were previ-

ously removed (Fig. 9b).

3. m to m-2-criterion: a vertex can be removed, if the resulting

cell is not adjacent to any cell with higher resolution thanm�2.

Thus, we restrict the growth to cell transitions fromm to m� 2
which simplifies the triangulation algorithm (Fig. 9c).

A

D

B

P

C

A

D

B

P

C

P

a) wavelet criterion b) resolution criterion c) m to m–2 criterion

�
2
A � �

2
B � �

2
C � �

2
D � �

2
P � �

Fig. 9. Illustration of the different criteria to decide on the vertex removal.

Another aspect of the method is illustrated in Fig. 10a, where

vertex P is analyzed. Suppose P survives all of the above cri-

teria. If we remove P , however and if PU and PL are already

removed, i. e. if two adjacent cells have the same resolution,

then we must reject the verticesA andB on the cell boundaries,

too. Hence, when traversing the vertex array from upper left to

lower right, one has to keep track of upper and left vertices of

the same iteration step m as well.

This additional criterion ends up with a partitioning of the initial

array into different regions (see Fig. 10b). Within these differ-

ent regions, we have to check only left, upper or both adjacent

vertices.

P

B

APL

PU  UL  UC  UR

 LL  LC  LR

 CC LC RC

distance

cell boundary
a) b) array

Fig. 10. a) Criteria to remove vertices on the edges of adjacent cells of the same

resolution. b) Resulting partitioning of the initial array.

B. Look-up Tables for Local Triangulations

Once the tree is built from the above procedure, the quadtree

cells have to be triangulated. A generic problem arising from

meshing hierarchies of rectangular surface patches is the occur-

rence of cracks [2]. A crack occurs if we do not take care of

adjacency of quadtree cells of different depth and, hence, dif-

ferent resolution. The surface may break up, holes may appear

and any consistency required for normal interpolation gets lost.

Fig. 11 shows a crack and also shows how to modify the trian-

gulation to avoid it.

crack

adjacent cells

(m) (m – 1)

consistent triangulation

(m) (m – 1)

Fig. 11. The occurrence of cracks at the boundaries of adjacent quadtree cells

of different resolution.

The scheme we introduce here for fast and consistent cell trian-

gulation is based on the following observation: consider Fig. 12,

where two adjacent cells are depicted along with topological ar-

rangements that may occur for transitions from resolution m to

m � 1 and m � 2. There are only 5 cases at the respective

cell boundary. Let’s presume that we restrict the growth of the

quadtree so that only transitions up to m� 2 are possible (reso-

lution criterion). Consequently, the set of possible arrangements

of vertices at the four cell boundaries can now be derived from

Fig. 12. Moreover, some look-up tables may be built containing

the triangulations as explained below.

For cell transitions from m to m � 1 a look-up table with 16

entries is built as presented in Fig. 13. The central idea of the

algorithm is to first solve the triangulation within each cell form

to m � 1. This is accomplished by analyzing the mesh vertices

along each cell edge.

The fast computation of the look up table entry can be accom-

plished by a binary outcode, generated from bitwise addition of

the flags of the respective edge vertices, as indicated in Fig. 13.

Once the corresponding look-up table entry is identified, we

then consider mesh vertices which account for the m � 2 tran-

sitions. This may cause some triangles to be split up into two
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m m m m – 1 m m – 2

m

m – 2

m – 1

m – 1

m – 2m

Fig. 12. Topology of mesh nodes of adjacent cells for different resolutions m,

m� 1 andm� 2.

0=0000 1=0001 2=0010 3=0011 4=0100

5=0101 6=0110 7=0111 8=1000 9=1001

10=1010 11=1011 12=1100 13=1101 14=1110

15=1111

vertex removed vertex

Fig. 13. Look-up table representing the optimal triangulation of all possible

cases fromm tom� 1 and corresponding outcode.

pieces, as shown in Fig. 14. Consequently, the algorithm first

computes the case for m to m � 1 and then it decides on the

corresponding subcase, by simply analyzing the flags of all in-

termediate vertices responsible for transitions from m to m� 2.

Although we get 625 possible cases, the total number of trian-

gles required does not exceed 96. They are stored in a look-up

table depicted in Fig. 15.

case 14 m to m – 1 m to m – 2

Fig. 14. Cell triangulation for cases fromm tom�2 as derived from a look-up

table entry ofm tom� 1.

All subcases are hardcoded and contain references to these look-

up table entries. Note, that although there are 625 cases only one

computation of the outcode and at most 8 additional tests are

necessary to compute the triangulation. It is clear that we end

up with a very efficient algorithm by doing the meshing without

any geometric computation but by just checking vertices along

the cell edges.

A corresponding pseudocode for the recursive quadtree traversal

and meshing is given with:
// The initial array has a size of (N+1)(N+1).

// Let N be a power of 2, N = 2I.

1

2

3

4 5

6

7

8
9

10

11

12

13

14

15

16

17

18

19 20

21 22

23 24

25 26

27

28

29 30

31 32

33

34

35

36

37 38 39

40

41

42 43 44

45
46

47

48 49

50 51 52

53

57

58

59 60

61 62
63

64

65

66

6768 69

70

71 7273

74

75

76

77

78 79

8081 82

83

8485

86

87

88

8990 9192

93

94

95

96

54 55

56

Fig. 15. Look-up table with all 96 possible triangles which are necessary for

transitions fromm tom� 2.

// Each cell is addressed by its upper left corner vertex.

// root cell

x = y = 0;

i = I;

traverse_quadtree(x,y,i);

procedure traverse_quadtree(x,y,i)

{

// compute center vertex of son cells

mh = 2i-1;

xmh = x+mh;

ymh = y+mh;

if (i>0) and flag(xmh,ymh)

{

i = i-1;

//analyze the son cells

traverse_quadtree(x,y,i);

traverse_quadtree(xmh,y,i);

traverse_quadtree(x,ymh,i);

traverse_quadtree(xmh,ymh,i);

} else

triangulate(x,y,i);

}

IV. ERRORS AND COMPLEXITY

A. Error Analysis of Planar Approximations

One important aspect, when dealing with surface approxima-

tions is to quantify the error of the method. In our approach,

error quantification is figured out by the following mean-square

measure. Let f(x; y) be the original surface and g(x; y) be an

approximation. We define the mean-square error ��2, as:
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��2 =
1

�x�y

Z
�x

Z
�y

jf(x; y)� g(x; y)j
2
dxdy (20)

Note, that the error is normalized to the projected surface area

�x�y. In the discrete case, where K samples fi (xi; yi) of

the surface are provided at locations (xi; yi) ; i = 1; : : : ;K the

mean-square error is approximated by the following relation:

��2 �
1

K

KX
i=1

�(xi; yi)
2

(21)

where �(xi; yi) = f (xi; yi)� g (xi; yi).
Finally, in our triangle meshes the error integral of eq. (20) is

evaluated using Monte Carlo methods. For this purpose, we

compute a set of K randomized locations within each of our

triangles and calculate the surface value gi (xi; yi) by bilinear

interpolation. The respective reference value for the surface

fi (xi; yi) is obtained by bilinear interpolation of the four mesh

vertices in the initial data grid as depicted in Fig. 16. The con-

stant number of samples taken from each triangle forces the

overall number of samples for the evaluation to be distributed

according to the single triangle surface areas. Due to the adap-

tive triangulation, we end up with more samples in surface re-

gions of high curvature and accomplish a reasonable distribu-

tion. Thus, the local mean square errors of each triangle have

to be weighted with their corresponding surface area A2D
T pro-

jected into 2D. The final expression of the overall mean square

error of the surface yields

�� =

vuuut
P

all tri

�
1
K

KP
i=1

(f (xi; yi)� g (xi; yi))
2
A2D
T

�

�x�y
(22)

P0

P1

P2

Q0 Q1

Q2Q3

S

initial mesh

triangular
surface patch

: samples

Fig. 16. Computation of the mean square error using a Monte Carlo method.

B. Some remarks on Algorithmic Complexity

One of the very advantages of our method is the low algorithmic

complexity for both computation of the respective transforms

and for the quadtree meshing. Whereas 2D-FFT based trans-

forms usually require O
�
N2 log2(N)

�
computations, the 2D-

WT benefits from dyadic scaling and sparsity and requires only

O
�
N2
�

computations. Although we have to modify the initial

QMF-pyramid to compute the detail signal, the complexity still

remains O
�
N2
�
. The final expression for the complexity CWT

of a D-dimensional WT, however, depends both on the support

S of the wavelet and on the iteration depth M :

CWT � DND S

MX
m=1

1

2D(m�1)

<
2DDND S

2D � 1
= O

�
ND
�

(23)

This is another important reason for the usage of strict compact

support wavelets such as the biorthogonal ones we recommend

here.

Similar investigations can be carried out for the complexity of

building up the quadtree: If, in the worst case, the traversal is

done up to the maximum depth of the WT, M , we have to per-

form at worst 4 energy tests for the wavelet criterion, 4 resolu-

tion tests and 16 tests for the m to m � 2 criterion. Due to the

dyadic structure of the vertices to be analyzed, we end up with

CA = 24

MX
m=1

22I�2m

= 22I
�
8�

8

4M

�

= O
�
N2
�

(24)

to test the importance of vertices, which is still linear with re-

spect to the overall number of mesh vertices N2 = 22I .

The traversal of the array is carried out by the recursive proce-

dure of depth M given in the pseudocode. In the worst case

of none of the vertices to be labeled as being unimportant, it’s

complexity is quantified by

CB = SI�M
M�1X
m=0

4m

=
2I+M � 2I�M

3

= O
�
22I
�
= O

�
N2
�

(25)

It has to be noted, however, that the worst case analysis provides

only a theoretical upper bound. In “real life”, vertices labeled

as unimportant reduce the computational costs dramatically. A

single vertex removal in recursion depth m cuts a whole subtree

and saves

B =

MX
k=m

4k�m =
4M�k+1 � 4

3
(26)

tests.

V. APPLICATIONS

A. Mesh Reduction and Error Analysis

For the following investigation, a digital terrain model of the

Swiss Alps, Matterhorn/Zermatt DHM 1:25000 was selected.
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The initial resolution of the mesh is 256 � 256. The altitudes

range from 1855.1 m (La Monta) to 4431.9 m (Matterhorn). We

used cubic B-spline wavelets to decompose the data and the cor-

responding dual frames to approximate the reconstructions. The

iteration depth was M = 4, and K = 3 samples were taken at

each triangle to compute the mean square error. Fig. 17 illus-

trates, how the ratio of triangle reduction behaves as a function

of the threshold � . Furthermore, the ratio of remaining wavelet

coefficients is recorded which can be interpreted as some kind

of coding gain. Finally, the root of the mean-square error is plot-

ted as well in meters. Note, that due to the logarithmic scale of

the threshold, the functional behavior of both percentage of co-

efficients and triangles is approximately linear. The relation is

further stressed in Fig. 18, where the number of triangles and the

mean square error are recorded as a function of the percentage

of coefficients employed for the approximation.

0

20

40

60

80

100

0.01 0.10 1.00 10.00 100.00 1000.00

� Number of coefficients [%]
+ Number of triangles [%]

� Mean–square error [m]

[�]

[%]

[m]

Fig. 17. Number of triangles, wavelet coefficients and mean-square error of

digital terrain model as functions of treshold � .
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� Mean–square error [m]
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Fig. 18. Number of triangles and mean-square error as function of the coeffi-

cients used for the approximation.

Some results of intermediate steps of the triangle reduction are

depicted in Fig. 22. The criteria which we defined to reject

unimportant mesh vertices thin in particular in those regions of

low surface curvature. This is due to the wavelet criterion which

provides an estimate of the local spectral energy of the data in

different frequency channels. Thus, local high frequency varia-

tions in our data force the meshing to be more dense. The corre-

sponding Gouraud-shaded models are also presented in Fig. 22.

In addition, depth cueing is used to enhance the presentation.

B. Level-of-Detail Control

The effect of wavelet space filtering using the Gaussian is illus-

trated in the images of Fig. 23 for the same data set. Changing

the parameters of the Gaussian ellipse allows us to concentrate

on the triangulation of local regions of interest. Hence, for real

time animations, such as flight simulation, our method enables

us to move the Gaussian for each frame according to the pilots

field of vision or line of sight and to adapt the approximation to

these parameters. Finally, Fig. 23d presents the Gouraud-shaded

image. Obviously, the Gaussian enables the user to interact with

a local “magnifying glass”

C. Laser Range Data

The following results were obtained on laser range data sets.

Fig. 24a and b show a locally enhanced mesh and it’s shaded

counterpart of a laser range scan of the city of Hannover, Ger-

many.

Another test of our method was carried out in Fig. 25,

which presents both globally and locally thresholded images of

Sylvia’s face.

For the upper investigations, we took an orthogonal projection.

In the general case of cylindrical scans, however, we recommend

to interpret the angular coordinate immediately in the spirit of a

cylindrical projection [17].

Again, the local spectral estimation properties force the algo-

rithm to reduce the mesh either in low frequency regions or

where the user has directed the Gaussian filter.

D. Implementation

Our current implementation of the method is based on AVS 5

and was not tuned for real time performance. Nevertheless, we

achieve meshing rates of less than 1s for a 256x256 data set on

an SGI-Indy, 64 MB, R4400, also depending on the degree of

mesh reduction. Actually, the major bottleneck is the Geometry

Viewer module of AVS, rather than any of the described algo-

rithms.

In the previous examples, we compared two polynomial approx-

imations. Therefore, we picked an appropriate tolerance mea-

sure � and computed the resulting error. If, instead we base

the error analysis on the wavelet approximation, it is straight-

forward to predefine a particular error bound to be kept. This

requires, however, additional computations. After sorting the

wavelet coefficients, the detail signals reconstructed from the

recoverd wavelets can be used to compute a mean-square error

and can be summed up to a particular upper bound.

VI. CONCLUSIONS

We presented a method for fast and efficient surface meshing

which benefits from two basic ideas: First, any control of the

surface mesh is computed by using an initial wavelet decom-

position of the data samples. The mathematical framework of

the WT allows us to bound the errors of the approximation and

efficient criteria on whether or not single mesh vertices can be

removed are provided by analyzing WT outputs. Furthermore,
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wavelet space filters allow a control of the quality of the sur-

face approximation within local regions of interest and act as

local magnifying glasses. Secondly, the dyadic structure of the

2D-WT motivated us to build a quadmesh from the initial reg-

ular grid. Any triangulation of each quadtree cell is obtained

by using a look-up table and hence no additional computation is

required for the triangulation, as with standard Delaunay-based

methods.

Due to the low complexity of this algorithm, we can achieve

retriangulations of the surface at nearly interactive rates in the

current AVS implementation on SGI workstations. Thus, we

guess that our method is particularly well suited for real-time

applications, as virtual reality or flight and driving simulation.

Especially, when considering low altitude flights the Gaussian

filter could help to control the level-of-detail of the pilot’s field

of vision. Moreover, any object instance of a geometric data

base related to the terrain might also be controlled by the wavelet

transform. For this purpose, the actual depth of the quadtree at

the object’s location on the terrain is used to govern the data

base and to select the object instance to be rendered.

Although the method requires an inverse WT with each new tri-

angulation, we have proven the algorithmic complexity is still

low. It is clear that we can map the WT onto special purpose

hardware, such as signal processors. Currently, the method is

implemented in terms of different AVS modules.

Future research has to be conducted towards extensions of the

method for 3D isosurfaces in volume data using tetrahedraliza-

tions of an octree built from the WT. Additional tuning of the

mesh could also be carried out by using the directional selectiv-

ity of the WT.
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Fig. 19. Decomposition of a B-spline curve using cubig B-spline scaling functions of different resolutionM :a)M = 0. b)M = 1. c)M = 2. d)M = 3.
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a) b)

c) d)

Fig. 20. Different levels of approximation of Sylvia’s data set by global thresholding of Haar wavelets. C: percentage of remaining coefficients (data source

courtesy ZGDV, Darmstadt).

a) � = 0, C = 100%. b) � = 1, C = 13:7%. c) � = 100, C = 1:7%. d) � = 10000, C = 0:2%.
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a) b) c)

Fig. 21. Example for local level-of-detail filtering in wavelet space: Decomposition of Sylvia’s face with Haar wavelets and filtering with different Gaussian

space-frequency filters.

a) �x = 80, �y = 80, � = 0. b) �x = 50, �y = 30, � = 0 c) �x = 80, �y = 20, � = �=4
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a)

b)

c)

Fig. 22. Adaptive meshing of the digital terrain model: wireframe and Gouraud shaded. � : threshold, C: remaining coefficients, T : no. of triangles, ��: mean-

square error (data source: courtesy provided by Bundesamt für Landestopographie, Bern, Switzerland).

a) � = 0, C = 100%, T = 131072, �� = 2:8. b) � = 0:5, C = 18:6%, T = 72386, �� = 3:6. c) � = 15, C = 5:6%, T = 29901, �� = 7:2.
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a) b)

c) d)

Fig. 23. Level-of-detail meshing using wavelet space filtering (C: remaining coefficients, T : no. of triangles):

a) �x = 20, �y = 20, � = 0, C = 5:2%, T = 14753. b) �x = 30, �y = 10, � = 0, C = 4:2%, T = 11920. c) �x = 20, �y = 10, � = �=4,

C = 2:3%, T = 9101. d) �x = 20, �y = 20, � = 0, C = 5:2%, T = 14753.
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a) b)

Fig. 24. Locally adaptive mesh of a laser range image of the city of Hannover: C = 9:0%, T = 19:7%:

a) Gouraud shaded image. b) mesh as a wireframe.

(data source: courtesy provided by Dornier GmbH, Germany)

a) b) c)

Fig. 25. Globally and locally reduced meshes of Sylvia’s image:

a) original: � = 0, C = 100%, T = 95142. b) global threshold: � = 50, C = 3:1%, T = 9900 c) local threshold: �x = 20, �y = 25, � = 0, C = 5:9%,

T = 13876.


