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Efficient unbiased variance reduction techniques for Monte Carlo
simulations of radiative transfer in cloudy atmospheres: The solution
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a b s t r a c t

We present five new variance reduction techniques applicable to Monte Carlo simulations

of radiative transfer in the atmosphere: detector directional importance sampling,

n-tuple local estimate, prediction-based splitting and Russian roulette, and circum-

solar virtual importance sampling. With this set of methods it is possible to simulate

remote sensing instruments accurately and quickly. In contrast to all other known

techniques used to accelerate Monte Carlo simulations in cloudy atmospheres – except

for two methods limited to narrow angle lidars – the presented methods do not make any

approximations, and hence do not bias the result. Nevertheless, these methods converge

as quickly as any of the biasing acceleration techniques, and the probability distribution of

the simulation results is almost perfectly normal. The presented variance reduction

techniques have been implemented into the Monte Carlo code MYSTIC (‘‘Monte Carlo

code for the physically correct tracing of photons in cloudy atmospheres’’) in order to

validate the techniques.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Clouds and their interaction with radiation are in the
center of attention in atmospheric research. Current efforts
concentrate on improving the understanding of cloud phy-
sics, on providing more detailed and more accurate remote
sensing observations, as well as on developing more accurate
parameterizations for climate and numerical weather pre-
diction models. With the continuously improving spatial
resolution of numerical models as well as of remote sensing
observations, horizontal cloud inhomogeneity and its impact
on irradiance and radiance must no longer be neglected and
three-dimensional radiative transfer models therefore
become more and more important. Examples for their
practical application are the inclusion of three-dimensional

radiative transfer in cloud resolving models [1] or the first
developments of three-dimensional cloud retrievals [2]. With
the increased sophistication of satellite instruments it has
become important to simulate radiative transfer with high
accuracy, and the simulation of radiances in presence of
inhomogeneous water and ice clouds is one of the most
difficult radiative transfer problems, due to the strong
forward peak of the scattering phase function. While this
obstacle can be removed at least for the calculation of
irradiances using a delta-scaling or peak-truncation techni-
que [3,4] it remains a challenge for radiance calculations even
in the one-dimensional approximation: Radiance calcula-
tions in general require accurate treatment of the phase
function as detailed below; in particular novel remote sensing
techniques using e.g. the rainbow area [5] or the backscatter
glory [6], or even worse, calculations of circum-solar irra-
diance required e.g. for concentrating solar power plants
require highly accurate consideration of the phase function in
one- and three-dimensional radiative transfer codes.

Monte Carlo methods have long be a means of simulat-
ing three-dimensional radiative transfer of light in cloudy
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atmospheres [7–19]. When using the local estimate tech-
nique (described e.g. by Marchuk et al. [9]) the strong
forward peaks of the scattering phase function lead to rare
events that contribute significantly to the total result, also
known as ‘‘spikes’’. The accuracy of the result is then no
longer determined by the number of simulated photons,
but by the number of spikes having occurred, which can
make the calculation unfeasible. Several solutions have
been found to resolve this problem. One widely used group
of solutions, the above mentioned truncation or delta-
scaling methods, include the delta-M method [4,20], the
delta-fit method [21,22], and delta-scaling with geometric
truncation of the scattering phase function [18,23,24].
However, all of these methods introduce a bias to the
result because they alter the scattering phase function.
Although these methods have been driven to quite a
sophisticated level [25], the magnitude of the bias cannot
be estimated by the method itself and therefore it remains
unknown whether the bias is small enough. The only
practicable solutions without any alteration of the phase
function were the variance reduction techniques proposed
by Platt [10] and Noormohammadian [14]. Unfortunately,
these methods only work for the special case of lidars, and
are only applicable at small optical depths.

We here present a set of variance reduction methods
(VRM) that allow to perform Monte Carlo simulations
without having to alter the phase functions, no matter
how strong the forward peak is. These methods get rid of
the spikes normally encountered, and at the same time
have computational convergence times of the order of
those found for simulations with altered (smooth) phase
functions, or even smaller. The methods are applicable for
all Monte Carlo simulations aiming at calculating radiances
by local estimators, including lidars. Some of these meth-
ods, in particular the detector directional importance
sampling (DDIS), the n-tuple local estimate (NLE),
prediction-based splitting (PBS), prediction-based Russian
roulette (PBRR), and circum-solar virtual importance sam-
pling (CS-VIS), are completely new.

The set of methods have been implemented into the
Monte Carlo code MYSTIC [19] – which is part of the
radiative transfer package libRadtran [26] – and run under
the name Variance Reduction ‘‘Optimal Options’’ Method
(VROOM). VROOM has already been used in various
applications, see [27,28].

In Section 2 we describe the different VRM and justify
why they are needed and how they solve the problems
occurring. Section 3 validates VROOM and compares the
computational speed between VROOM and other (biasing)
acceleration techniques.

2. Variance reduction methods

For an introduction to Monte Carlo methods in the
atmosphere and in particular to the well-known local
estimate method we refer the reader to the pioneering
work of Marchuk et al. [9], the mathematically compre-
hensive Evans and Marshak [17, Chapter 4.2], as well as the
illustrative Mayer [19]. Absorption, surface reflection, and
polarization are implemented as explained in [19,29] and

will be ignored in the following discussion, but general-
ization of VROOM is intuitive and straightforward.

2.1. A short introduction to Monte Carlo

The aim is to solve the radiative transfer equation (RTE),
which is the valid approximation of the Maxwell equations
in the atmosphere [30,31].

In short, in a standard Monte Carlo simulation irra-
diances are sampled by tracing and counting ‘‘photons’’,2

thereby randomly choosing each step length and scatter
direction according to pre-calculated probability density
functions (PDF).

In particular, the step length until the next scattering is
determined by Lambert–Beer’s law:

pstepðtÞ ¼ expð�tÞ ð1Þ

where pstepðtÞ is the probability that the photon scatters at
the scattering optical depth t. The new direction is then
sampled according to the scattering phase function

pðmÞ ¼
X

j

bjpjðmÞ=
X

j

bj: ð2Þ

where bj and pj are the scattering coefficient and phase
function of particle type j, respectively, and the sum is over
all existing particle types.m¼ cosy is the cosine of the angle
y between the photon directions before and after scatter-
ing. For this discussion we will assume the phase function
to be independent of the scattering azimuth f. This is valid
for spherical as well as for randomly oriented particles.
Hence f is chosen randomly from ½0,2p½.

The most convenient way to calculate radiances for
certain directions is by applying the local estimate method
(LE), see also Fig. 1: At each scatter event the local estimate
is calculated, that is, the probability that the photon
scatters into the direction of the detector times the
probability that the photon travels to the detector without
being absorbed or scattered again. For a scatter event, the

Fig. 1. Illustration of the local estimate method. The photon (solid line,

scatters three times before leaving the cloud. Each time, a local estimate is

performed, i.e. the probability that the photon turns towards the detector,

pðmleÞ, and travels to it without being extinct, expð�textÞ, is calculated. To

this end, a virtual photon is created (dashed lines) each time which is

propagated to the detector in order to calculate the extinction text.

2 We use the term ‘‘photon’’ to represent an imaginary discrete

amount of electromagnetic energy transported in a certain direction. It is

not related to the QED photon [32].
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LE is given by the weight

wle,i ¼Wi�1pðmleÞexpð�textÞ ð3Þ

where Wi�1 is the photon weight before the ith scatter, mle

is the cosine of the angle yp between the photon direction
before scattering and the direction towards the detector,
and text is the extinction (i.e. the sum of scattering and
absorption) between the scatter location and the detector.
As can be proven by expanding the RTE with help of the
Von-Neumann series (see e.g. [17]), adding up all local
estimates gives the radiance. The total contribution of the
photon to the radiance is the weight

wle ¼
Xn

i ¼ 1

wle,i ð4Þ

where n is the number of scatterings the photon performs.
Although the LE allows us to calculate radiances with

help of Monte Carlo, it features a big disadvantage in the
presence of particles with very strong forward peaks in the
scattering phase functions, see e.g. Fig. 2, such as those of
cloud droplets, ice crystals, and large aerosols: Whenever a
photon coincidentally scatters approximately into the
direction of the detector, the following scatter will produce
a very large LE since pðmle � 1Þ is very large (see Fig. 3).
These events, which happen rarely, are called ‘‘spikes’’ and
can slow down the statistical convergence of the Monte
Carlo code by several orders of magnitude.

Fig. 4 shows a typical example of how the average of the
radiance being calculated evolves with the number of
photons in a simulation, once with local estimate, but
without VRMs, and once with the VRMs presented in this
paper. Clearly, only the latter case has a nice asymptotic
behavior. The simulation without VRM seems to have
reached 1% standard deviation after 5000 photons, but
then a spike occurs which strongly increases the standard
deviation. Even after 106 photons the standard deviation is

still more than 1%. This shows that the standard deviation
calculated for this model cannot be trusted.

The rest of this section will describe the VRMs needed in
order to obtain a nicely converging result. The goal hereby
is to get rid of spikes. However, contrary to intuition, this is
achieved not by reducing the probability of a spike, but by
increasing this probability artificially. The result is an
increased statistic of spikes, each of which contributes
less to the result than it would in the absence of VRMs. If
done correctly, the physics of radiative transfer is not
altered, but the photon paths formerly leading to spikes
can no longer be distinguished from other photon paths in
their contribution to the result.

2.2. Detector directional importance sampling (DDIS)

To get rid of the spikes it is necessary to increase the
probability of the spiky events. To this end, at each scatter,

Fig. 2. Examples of scattering phase functions. The red line depicts the

phase function for water droplets with effective radius reff ¼ 16 mm, the

black line shows the phase function for ice crystals with effective radius

reff ¼ 55 mm [33]. The two phase functions correspond to the phase

functions with the strongest forward peaks occurring in the simulations

shown in Section 3. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

Fig. 3. (a) Example of a small local estimate in case of double scattering:

At the first scattering, the photon (solid line) scatters in a direction not

towards the detector; at the second scattering the probability of the

photon scattering into the direction of the detector (dashed line) is small

according to the phase function, hence the local estimate is small.

(b) Example of a very large local estimate (‘‘spike’’) in case of double

scattering: At the first scattering, the photon scatters coincidentally

towards the detector; at the second scattering the probability of the

photon scattering into the direction of the detector is very large according

to the phase function, hence the local estimate is very large.

Fig. 4. Example of convergence behavior of two simulations, one without

VRMs (black), and one with the VRMs of this paper (red). Shown is how the

result (solid lines) improves with increasing photon number. The dashed

lines depict the corresponding standard deviations. The results were

taken from the simulations in geometry ‘‘S’’ presented in Section 3 (At

y=18.75 km). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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the photon is scattered according to an altered phase
function:

pyðm,fÞ ¼ ð1�eddisÞpðmÞþeddispddisðmuðm,fÞÞ ð5Þ

where eddis 2 ½0,1½ is a free parameter to be optimized
(normally of order 0.1), mu is the cosine of the angle yu
between the direction to the detector and the photon
direction after scattering, and pddisðmuÞ is a phase function
which needs to be optimized for the problem.

We can interpret the usage of Eq. (5) with help of Fig. 5:
With a probability of ð1�eddisÞ the new photon direction is
determined as usual using the PDF pðmÞ, resulting in a
random value for m. However, with a probability of eddis the
photon is first turned exactly toward the detector (mu¼ 1)
and then ‘‘scattered’’ according to the PDF pddis, resulting in
a random value formu. Then the actual scattering anglem is a
function of mu and the corresponding azimuth fu (latter is
chosen randomly). The consequence is that in the presence
of strongly forward-peaked phase functions we strongly
enhance the number of photons scattered (approximately)
into the direction of the detector, therefore the name
‘‘detector directional importance sampling’’ (DDIS). We
will call the process of scattering the photon according to
the second term in Eq. (5), see also Fig. 5b, ‘‘DDISsing’’, i.e.
the photon is being ‘‘DDISsed’’. In contrast to this, a photon
not being ‘‘DDISsed’’ is said to scatter ‘‘naturally’’.

Of course, this modification of physics needs to be
corrected with a weight factor for the photon [34],3

wi ¼ pðmÞ=pyðm,fÞ ð6Þ

This is the probability that the photon should move in the
direction ðm,fÞ, given by pðmÞ, divided by the probability
with which we send the photon in that same direction,
given by pyðm,fÞ. The weight factor is multiplied to the

photon weight (initially 1) at each scatter:

Wi ¼
Yi

j ¼ 1

wj ð7Þ

Let us show that DDIS prevents spikes on the example of
double scattering: Consider a photon initially moving in a
direction not towards the detector, see Fig. 3b. If this
photon happens to move towards the detector after
scattering, the photon weight will be reduced due to the
strongly enhanced probability that this direction is chosen,
with respect to the probability that the direction should be
chosen (see Eq. (6)), independent of whether the photon
chose the direction ‘‘naturally’’ or by being DDISsed. The LE
of the photon at the second scatter is (omitting the
azimuthal dependencies)

wle,2 ¼W1pðmle,2Þexpð�tÞ

¼
pðm1Þpðmle,2Þ

ð1�eddisÞpðm1Þþeddispddisðm1u Þ
expð�tÞ ð8Þ

Note that for geometric reasons mle,2rm1u (the equality
holds for detectors at infinite distance). Further assuming
that pðmle,2Þrpðm1u Þ (which normally is true at least for the
forward peak of the phase function), and for illustration
using eddis ¼ 0:5 and pddis=p, and ignoring extinction, Eq. (8)
can be approximated by

wle,2r2
pðm1Þpðm1u Þ

pðm1Þþpðm1u Þ
r2minðpðm1Þ,pðm1u ÞÞ ð9Þ

where the second inequality can easily be proven. Hence
the local estimate will never be extremely large, and spikes
can no longer occur. The only case wle,2 can get large is
when both pðm1Þ and pðm1u Þ are very large. This can only
happen if both m1 and m1u are almost 1, which means that
the photon is already moving toward the detector from the
start. In this case, very large local estimates will be
frequent, and hence cannot be considered as spikes.

A few words on the choice of pddis: In a realistic scene,
the phase function depends on the location and we can
have both ice and water clouds with different effective
radii, and aerosols of different types and effective radii as
well as regions with Rayleigh scattering only. Since the
location, and hence the phase function of the next scatter is
not known, pddis should be chosen expecting the worst
cases. An intuitive choice is to define a phase function
which, for each scattering angle m, takes the maximum
value of all phase functions present in the simulated scene
for the given m:

pddisðmÞ ¼ Cddismax
i
½piðmÞ� for all m 2 ½�1,1� ð10Þ

where i runs over all phase functions (e.g. for water and ice
clouds of all present effective radii, and aerosol types). The
normalization Cddis is chosen such that

R 1
�1 pddisðmÞ ¼ 2.

With DDIS spikes can no longer occur in optically thin
atmospheres. The optimal choice for eddis for e.g. double
scattering is obviously 0.5 because then the natural and the
spiky photon paths occur with the same frequency. How-
ever, for optically thicker atmospheres this choice gets
problematic: While DDIS decreases the variance of the LEs
of the next few scatters, it reduces the number of photons
scattering according to the physical phase function p. For

Fig. 5. Illustration of DDIS (the azimuthal angles are not shown): (a) With

a probability of ð1�eddisÞ we scatter the photon as usual using pðmÞ. The

angle between the new photon direction and the direction toward the

detector, mu, can be obtained geometrically and depends also on the

scattering azimuth f. The photon weight factor wi is approximately

ð1�eddisÞ
�1
�Oð1Þ because forward scattering occurred and thus

pðmÞbpddisðmuÞ. (b) With a probability of eddis the photon is first turned

towards the detector (dotted line with arrow) and then the scattering is

performed using pddisðmuÞ. The resulting scattering angle m can be obtained

geometrically and depends also on fu. The photon weight factor wi is

approximately pðmÞ=ðeddispddisðmuÞÞ51 because the photon scattered into

an unlikely direction.

3 That this works can also be seen by looking at the so-called

maximum cross-section method [35, e.g.]. For a rigorous proof see

[9, p. 21–23].
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instance, solar photons reflected into space by a homo-
geneous cloud of optical thickness twill scatter on average
ct times, where c is a number of order of one [35,36], but
after ct scatterings only ð1�eddisÞ

ct photons still follow a
path unaltered by DDIS, see Fig. 6. Most photons will
have left the computational domain long before, and thus
large scatter orders occur very infrequently (and with very
large photon weight) for large scatter orders, which there-
fore is a problem in case of large optical depth. A small
value of eddis is then desirable, which is in contradiction to
the idea of DDIS. This will be addressed in the next section.

2.3. n-tuple local estimate (NLE)

The demand for the photons to move ‘‘naturally’’ and at
the same time low variance with help of DDIS is solved with
n-tuple local estimate (NLE), illustrated in Fig. 7: We
simulate photons without DDIS, let us call them ‘‘mother’’
photons (MP). Hence the ‘‘natural’’ path of the photon is not
altered. At each scatter of a MP, we perform an NLE: We
clone the photon, i.e. we make a copy of it, called ‘‘cloned’’
photon (CP), which is followed for a fixed number of
scatters nscCP�1, after which a LE is performed and the
CP is purged. The MP is then evolved further to the next
scatter.

With this method, a CP created at the nscth scattering of
the MP accounts for the LE of the nsc+nscCPth scatter order
of the MP. Of course, we have to make sure that each scatter
order of the Von-Neumann series (Eq. (4)) is accounted for
exactly once for each MP. To this end, single scattering is
accounted for by a LE from the first scatter of the MP, and
the first CP performs LEs for all scatterings up to nscCP in
order to account for the scattering orders 2 to nscCP, see
again the illustration in Fig. 7. This method has similarities
with the double local estimate [9], therefore its name.

Up to here NLE is simply a computationally expensive
alternative to LE, and spikes will occur in the presence of
forward peaked phase functions. However, if we apply

DDIS with a large eddis (of order 0.1) to the CP, the number of
photons moving toward the detector will be enhanced
greatly, and no spikes will occur.

Said in other words: On the one hand, because the MPs
are allowed to scatter ‘‘the natural way’’, i.e. without
applying DDIS, the number of photons scattering many
times are not reduced in the presence of large optical
depths. On the other hand, because DDIS is applied to the
CP several times before the LE is performed, the probability
of photons moving toward the detector is large.

We introduce two new parameters here, nfirstCP, which is
the scatter order at which the first CP is created, and
nLEperCP, which is the number of local estimates performed
by the CP (up to now these parameters were both 1). The
Von-Neumann series (Eq. (4)) then implies that a CP is
created at the scatter orders nfirstCP+ inLEperCP, i=0,1,2,y,
and each CP performs LEs for the scatter orders (counted
from the creation for the CP) nscCP to nscCP+nLEperCP�1. Of
course, the MP must perform LEs until the first CP is
created, and the first CP performs an LE for all scatter
orders. Optimizing these parameters can help reducing
computational time. For better understanding, please look
at Fig. 8.

2.4. Prediction-based splitting (PBS) and Russian roulette

(PBRR)

Still, MPs can by chance be moving directly towards the
detector when being cloned because DDIS is no longer
applied to the MPs after nfirstCP�1 scatter orders. The
created CP is likely to scatter away from the detector
direction during the nscCP scatters it encounters before the
LE is performed, but with a small probability it will still
point towards the detector when the LE is performed
without the photon weight having been reduced (note
that the weight cannot be reduced with DDIS when the
photon points towards the detector, because then m¼ mu,
and thus wi=1). This event, although rare, will produce a
spike, see Fig. 9.

Fig. 6. Explaining the problem with DDIS in thick clouds: Without DDIS,

the photon would e.g. take the ‘‘natural’’ path depicted by the solid line.

However, if DDIS was used, then at each scatter, with a probability of eddis ,

the photon would be scattered according to pddisðmuÞ (dashed lines). Hence

the path shown by the solid line would only be followed to its end with a

probability of ð1�eddisÞ
5 (five being the number of scatters in this

example). This means that, comparing a simulation with e.g. eddis ¼ 0:5

with a simulation without DDIS, the former would need ð1�eddisÞ
�5
¼ 32

times more photons to get the same number of ‘‘naturally moving’’

photons after five scatterings.

Fig. 7. Example of 3-tuple local estimate: The ‘‘mother photon’’ (MP, solid

line) follows its ‘‘natural’’ path, i.e. no DDIS is applied to it. At each scatter

of the MP, a ‘‘cloned photon’’ (CP, dashed lines) is created. Each CP scatters

twice in our example (the first scatter happens at the moment of creation

of the CP), DDIS is applied to the CP, which is DDISsed with a probability of

eddis. At the third scatter, a LE is performed (dotted lines). Note that the

local estimate is also performed at the MP’s first scatter, and at the first

CP’s second scatter. This is in order to simulate the first and second scatter

orders of the Von-Neumann series, which cannot be simulated with

3-tuple LE.
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This can be prevented by splitting CPs with expected
large LE, see also Fig. 10: We define a splitting weight

wspl ¼WipddisðmuiÞ ð11Þ

which is calculated after each scatter of a CP and is an
estimate of the LE (without extinction term) that the CP
would produce at the next scatter (assuming mle,iþ1 ¼ miu,
see also discussion of Eq. (8)). If wspl exceeds a critical
value wcrit, spl, the photon is split into nspl identical photons
with reduced weight Wi=Wi/nspl, where nsplCwspl is
an intuitive choice. Each of these split CPs (SCP) are

propagated independently of each other. An SCP should
of course be allowed to be split itself at a later scatter event
if necessary. It can be proven that this method limits the
values of LEs to wcrit,sple�1

ddisC�1
ddis, where Cddis was introduced

in Eq. (10).
Note that, although PBS also reduces the variance, DDIS

does so much more efficiently, but not for all cases.
Splitting a photon can be interpreted as starting a small
MC simulation for this special photon. Hence PBS is a very
slow method, which should only be used when DDIS fails to
prevent spikes.

Splitting has the disadvantage that it can significantly
slow down the computational time per started photon. We
will demonstrate this with two examples and present the
solutions. First, if the detector is looking approximately
into the direction of the photon emitter, wspl gets very large
values already at the first scatter, resulting in up to millions
of SCPs in case of phase functions with strong forward
peaks, e.g. of ice clouds. These clones are actually not
needed since the probability of photons moving toward the
detector is already large (we expect a strong signal!). By
dividing wspl by

wredspl �max 1, min
iu ¼ 1,i�1

ðpddisðmuiuÞÞ
� �

ð12Þ

(‘‘redspl’’ signifying ‘‘reduced splitting’’) and thus making
wspl smaller, this can be prevented. It is also useful to define
a maximum number of SCPs per scatter, nspl, max. Note that
this method was found by trial and error, and is more to be
understood intuitively.

Second, many CPs and SCPs have very small wspl, thus it
is unlikely that they will contribute significantly to the
signal. These photons cost a lot of computational time
without improving the result. The well-known method of
Russian roulette [9] can be applied here: If wspl drops below
a value wcrit, rr the photon is killed with a probability of
(1�wspl). The photons surviving (with probability wspl)
obtain an increased weight Wi=Wi/wspl so that the method

Fig. 9. Illustration of possible spike event with DDIS: The CP (dashed line)

starts off in a direction approximately towards the detector. Even though

DDIS is applied, the photon weight is not reduced significantly because the

probability of the photon moving towards the detector is large anyway.

The LE (dotted line) produces a spike. Note that this spike event is similar

to the spike events discussed in Fig. 5b, but due to DDIS these spikes occur

much more infrequently.

Fig. 8. Example of n-tuple local estimate using the parameter set nscCP=2,

nfirstCP=3, and nLEperCP=2. The numbers on top denote which scatter order

the LEs (dotted line) represent. The LEs of the first three scatter orders

(corresponding to nfirstCP=3) are performed by the MP (solid line), the first

CP (dashed lines) performs the LEs for the 4th scatter order (which is the

2nd scatter order of the CP, corresponding to nscCP=2), and for the 5th

scatter order (the CP performs two LEs, corresponding to nLEperCP=2). The

second CP is started before the fifth scattering of the MP in order to

perform a double LE at the 6th scatter order. Because the CP leaves the

scene before the 7th scatter order, no LE is performed. This does not

introduce any bias to the simulation. Finally, the third CP is started before

the seventh scatter order, and performs the 8th and 9th LE scatter orders.

Note that DDIS is applied to all scatterings of CPs (i.e. Eq. (5) is used), and to

the MP for the first two scatterings.

Fig. 10. Splitting and Russian roulette: If a photon becomes critical, i.e.

has the potential of producing a spike, it is divided into nspl identical

photons (black box), in this example three. These photons obtain a weight

reduced by a factor of three, hence the LE of the spike occurring for the

middle photon is reduced. The rightmost split photon moves at a large

angle to the detector and is unlikely to contribute much to the signal, it is

destroyed by Russian roulette (bar). The left photon contributes little to

the signal. Note that the advantage of splitting is to increase the frequency

of getting events like the middle photon.
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remains unbiased. In other words, of many photons which
will only contribute little more to the result (i.e. they have a
small wspl), some are killed randomly, and the surviving
continue with increased weight in order to account for the
killed photons.

Again, it is useful to define a moderating wrr, min, i.e. the
probability of killing photons for which wsplowcrit,rr

should not be larger than (1�wrr, min). Also, Russian
roulette should be limited such that the photon weight
Wi cannot get larger than one.

2.5. Circum-solar virtual importance sampling (CS-VIS)

Finally, following problem needs to be solved: If the
detector is looking approximately into the direction of the
photon emitter, and the optical thickness of atmospheric
components with strongly peaked phase functions
between emitter and detector is much smaller than one,
then most photons will not contribute significantly to the
signal. The few photons scattering on these critical com-
ponents (e.g. ice crystals), will produce large contributions.
This can be solved by artificially enhancing the scattering
coefficient b. This method is based on the importance
sampling described by Marchuk et al. [9] and is similar to
the ‘‘maximal cross-section’’ method described there (see
also [35]).

In particular, we enhance the scattering coefficient b in
case the photon is in a grid cell containing large particles
(clouds or large aerosols), the optical thickness the photon
passes in this cell is smaller than 1, and wredspl410. The
enhanced scattering coefficient is bIS ¼ 10�3wredspl=dl,
where dl is the step length in the grid cell, and where we
limit bIS to be smaller than dl�1 and larger than b. After
moving the photon as usual with a random optical depth
tIS, the local estimate is performed with a weight reduced
by a factor of b=bIS. Then, with a probability of b=bIS, the
photon scatters, i.e. changes direction. If the photon does
not scatter, it moves on without changing direction. Note
that the specific parametrization of this method was set by
intuition.

This method does not alter the photon path, it only
enhances the rate of calculating the local estimate where
needed. This is why we call it ‘‘virtual’’ importance
sampling.

2.6. Summary and set of parameters

We want to stress once more that the above methods do
not bias the result, as opposed to delta-scaling methods.
Also, DDIS is much more general than the similar methods
invented by [10] and [14], which are only applicable for the
back-scattering geometry and small optical depths, in
particular for lidars. Cloning and splitting further enables
us to speed up simulations where photons performing
more than just a few scatters contribute significantly to the
result.

The complete set of methods described above runs
under the acronym VROOM (Variance Reduction ‘‘Optimal
Options’’ Method).

The exact settings for the parameters defined above
needs to be found empirically; for passive instruments we

found the following set to be the most efficient:

eddis ¼ 0:1

nspl ¼ intðwsplÞ, wcrit,spl ¼ 3, nspl,max ¼ 5000

wcrit,rr ¼ 1=3, wrr,min ¼ 0:2

nfirstCP ¼ 4, nscCP ¼ 12, nLEperCP ¼ 11

DDIS and PBS are applied to the MP during the first nfirstCP

scatters only. They are always applied to the CPs. PBRR is
always applied.

Note that for extremely forward peaked phase functions
it might be necessary to increase nscCP, which should be of
the order of the number of scatterings needed to make the
photon direction isotropic.

Finally, an efficient method to reduce the computational
time of the LE without significantly reducing the conver-
gence rate has been proposed by Iwabuchi [18]. This
method has also been implemented into VROOM. In short,
the calculation of the extinction term of the LE is expensive,
involving the creation of a ‘‘virtual’’ photon that travels the
path between the scatter point and the detector and sums
up the total extinction in between. Therefore, a method
similar to Russian roulette is applied to these ‘‘virtual’’
photons when they reach a critical optical depth. The
method is described in detail in section 3a of [18]. However,
in VROOM, a simplified version has been implemented in
which the phase function (called Cn in the referenced
paper) is not taken into account. Also, we use tmax ¼ 3.

3. Validation and timings

The above methods have been implemented into the
Monte Carlo code MYSTIC [19,37]. In the following we
compare results for a typical cloud scene computed with
VROOM and with plain LE in order to validate VROOM. The
results are also compared with results computed with a
delta-scaling method in order to show the advantages of
VROOM with respect to biasing acceleration methods.

3.1. Setup

In order to validate VROOM, several simulations were
performed on a scene containing a thunderstorm cloud,
illustrated in Fig. 11. The clouds were taken from the large
eddy simulation described in [24] after 270 min of simula-
tion time. The scene has an extension of 64 km�64 km, a
horizontal resolution of 250 m, and a vertical resolution of
200 m. It contains ice clouds with effective radii between 1
and 56:3 mm, as well as water clouds with effective radii
between 4.9 and 15:9 mm. The maximum optical depths are
407 for the ice clouds and 742 for the water clouds. The ice
cloud optical properties were parameterized according to
[33,38,39]. The water cloud optical properties were calcu-
lated using the Mie theory for gamma size distributions:

n¼ n0raexp �
ðaþ3Þr

reff

� �
ð13Þ

witha¼ 7, corresponding to an effective variance of 0.1; reff

is the effective radius. As aerosol we used a parameteriza-
tion by [40], the settings correspond to a rural type aerosol
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in the boundary layer, background aerosol above 2 km,
spring–summer conditions and a visibility of 50 km. The
aerosol scattering was parameterized by a Henyey–Green-
stein phase function. The surface was assumed to reflect
Lambertian with an albedo of 0.1. A standard mid-latitude
summer atmosphere was used [41].

All simulations were performed at a wavelength of
500 nm, with the sun at a solar zenith angle of 301, being
301 west of the southern direction. In the first set of
simulations, denoted ‘‘S’’ for satellite, the radiance at the
top of atmosphere was calculated for a detector, looking at an
angle 101 from nadir, and from the north-east. In the second
set, denoted ‘‘C’’ for circum-solar, the radiance at the surface,
looking towards the south-west at a detector zenith angle of
301 and an azimuth of 30.21, i.e. looking 0.11past the center of
the sun, was calculated in order to validate the circum-solar
radiation. The sun was taken to be a point source of light. All
radiances were averaged over pixels of 250� 250 m2 size.
The radiances were simulated applying the backward Monte
Carlo method. For each pixel, 104 photons were used. The
resulting diffuse radiance fields can be seen in Figs. 12 and 13
(Models S_VROOM and C_VROOM, respectively, see below).
Because of limitations in computational time the statistical
test simulations were performed for only one line of pixels,
see the red lines in Figs. 12 and 13.

For each geometry, three types of simulations were
tested: Type ‘‘PLAIN’’ was performed with LE as the only
VRM, type ‘‘DELTA’’ with LE and a delta-scaling method
based on geometric truncation of the scattering phase
function, and type ‘‘VROOM’’ with the methods described
in this paper. The delta-scaling method works as follows:
scattering angles with m40:99 are no longer allowed, and
the scattering coefficient is rescaled, such that effectively
scattering angles with m40:99 now correspond to non-
scattering.

Each simulation was run 1000 times in order to evaluate
the statistics of the methods. Since the two PLAIN simula-
tions converge very slowly, they were run 5000 times each.

3.2. Timings and biases

Table 1 lists the pixel-averaged CPU time for a simula-
tion with 104 photons, run at a CPU speed of 2.3 GHz,
/tCPUSj, as well as the pixel-averaged standard deviation
/sSj, where the standard deviation of pixel j for a single
simulation is estimated using (for a derivation of the
equation see Appendix A)

sðjÞC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i ¼ 1

½s2
i ðjÞþx2

i ðjÞ��x2ðjÞ

vuut ð14Þ

Here, xi(j) is the radiance calculated by simulation run i for
pixel j, siðjÞ is the corresponding standard deviation and N

Fig. 11. 3D illustration of the cloud scene. Red boxes are filled with ice clouds, blue boxes with water clouds. (Zinner, private communication). (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Radiance fields as a result of the simulation S_VROOM. The plot

can be interpreted as a satellite image of the scene. The red line depicts the

line of pixels for which the statistical tests were performed. (For

interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)
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is the number of simulation runs. x(j) is the photon-
averaged radiance of pixel j:

xðjÞ ¼
1

N

XN

i ¼ 1

xiðjÞ ð15Þ

illustrated in Figs. 14a and 15a.
In order to compare the convergence speed of the

different methods it is better to look at the computational
time it takes to reach a relative standard deviation of 1%.
Hence, Table 1 also contains the pixel-average of this
normalized computational time, defined by

t1%ðjÞCtsimulationðjÞ
sðjÞ

0:01xðjÞ

� �2

ð16Þ

This is a good approximation in case the result of the Monte
Carlo simulation is normally distributed. The results are
illustrated in Figs. 14b and 15b.

Fig. 13. Radiance fields as a result of the simulation C_VROOM. The image

depicts the diffuse radiance hitting the ground at an angle of 0.11 from the

sun center. Hence the radiance is very low below the thick thunderstorm

cloud, but strongly enhanced at the thin edges of the clouds. The red line

depicts the line of pixels for which the statistical tests were performed.

(For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Table 1
Convergence speed of the different simulations.

Model /s=xSj /tCPUSj /t1%Sj /dSj 7s/dS

(%) (s) (s) (0.01 %)

S_PLAIN 51.5 29.1 1.7�105
�976

S_DELTA 1.86 13.2 49.6 1070.5

S_VROOM 1.88 65.6 211 –

C_PLAIN 53.2 48.7 2.1�106 4710

C_DELTA 2.11 23.3 216 �420070.6

C_VROOM 3.00 18.6 1039 –

C_VROOM* 2.75 18.5 373 –

All numbers are averages over all 256 pixels, denoted by the brackets /Sj .

/s=xSj is the relative standard deviation, /tCPUSj the computational

time, both correspond to simulations with 104 photons per pixel./t1%Sj is

the estimated computational time to reach a relative standard deviation of

one percent. /dSj is the systematic bias introduced by the different

simulation methods with respect to VROOM. Finally, s/dS denotes the

precision with which the bias could be calculated. Because VROOM is

taken as reference value, no bias is shown. C_VROOM* is the same as

C_VROOM, but the pixel with longest convergence time at x=39.25 km

was omitted in the calculation.

Fig. 14. Results for the simulations with satellite geometry (‘‘S’’).

(a) Calculated radiances by all simulations. All three lines lie almost on

top of each other. (b) Time it takes to achieve one percent precision for

each pixel individually. (c) Bias of simulation S_DELTA with respect to

S_VROOM. The dashed lines depict the standard deviation of the bias.
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Finally, we should have a look at the bias introduced by
the acceleration techniques. To this end, we look at the bias
of each pixel j, defined as

dðjÞ ¼
xðjÞ�xREFðjÞ

xREFðjÞ
ð17Þ

where xREF is the result from the reference run. The
corresponding standard deviation is

s/dSðjÞ �
xðjÞ

xREFðjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðjÞ
xðjÞ

� �2

þ
sREFðjÞ

xREFðjÞ

� �2
s

ð18Þ

Because the PLAIN simulations have too large variance,
they cannot be used as reference, which is why we used the
VROOM simulations as reference. In Figs. 14c and 15c we
only compare DELTA with VROOM, assuming VROOM to be
unbiased.

We can also evaluate the systematic bias, i.e. the bias
(Eq. (17)) averaged over all computed pixels. The systema-
tic bias and the corresponding standard deviation can be
seen in Table 1 for both the PLAIN and the DELTA simula-
tions, with VROOM as reference model.

From the numbers for PLAIN simulations in Table 1 it is
obvious that some kind of variance reduction is needed in
order to achieve convergence in a feasible time. Looking at
the satellite geometry (‘‘S’’), we see that on average DELTA
converges about four times faster than VROOM. However,
as can be seen in Fig. 14b, DELTA can be up to 18 times
faster in convergence, especially when looking at thick
clouds. Still, if we have a look at Fig. 14c, we see that the bias
made by DELTA can be up to 1.4%, in particular near
strongly inhomogeneous clouds. Although this does not
seem to be a large number, larger biases are likely to be
obtained in other geometries (see e.g. [25]). This suggests
that VROOM should be used when one is interested in
unbiased radiances.

Looking in the direction of the sun (‘‘C’’), the advantages
of VROOM become even more pronounced. Except for very
few exceptions (the pixel at x=39.25 km, which will be
discussed at the end of Section 3.3) the convergence times
of VROOM and DELTA are of similar order (see Fig. 15b and
Table 1). The bias made by DELTA, however, can be several
orders of magnitude, as expected, because the forward
peak of the scattering phase function has been cut off due to
delta-scaling. Hence, when calculating circum-solar
radiances, VROOM is the only option.

Finally, the systematic bias between the PLAIN and
the VROOM simulations are in both geometries of the order
of the standard deviation (see Table 1), i.e. is probably
caused by Monte Carlo noise. We can conclude that a
possible systematic bias introduced by VROOM is smaller
than 0.1%.

3.3. Spikiness

The main reason for developing these VRMs was to
reduce spikes. This can best be analyzed if we check how
close the different MC simulations are to a normal dis-
tribution of the results. This can be illustrated in a q–q-plot,
or quantile–quantile-plot. The plots that will be presented
here can be derived as follows:

Let us define a normalized deviation of the radiance of
pixel j obtained during simulation run i from its average
radiance:

qiðjÞ �
xiðjÞ�xðjÞ

sðjÞ
ð19Þ

Fig. 15. Results for the simulations looking towards the sun (‘‘C’’). (a) Calcula-

ted radiances by all simulations. The line for ‘‘C_PLAIN’’ lies below the green

line. (b) Time it takes to achieve one percent precision for each pixel indivi-

dually. (c) Bias of simulation C_DELTA with respect to C_VROOM. The dashed

lines depict the standard deviation of the bias. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web

version of this article.)
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For the normal, or Gauss, distribution, the probability
distribution function is given by

pgaussðqÞ ¼ cexpð�q2Þ ð20Þ

and the cumulative distribution function (CDF) is

PgaussðqÞ ¼

Z q

�1

dqupgaussðquÞ ð21Þ

where c is a normalization factor defined by Pgaussð1Þ ¼ 1.
The CDF of the data can by calculated using

PdataðqÞ ¼
1

N

XN

i ¼ 1

X½q�qi� ð22Þ

where N is the number of simulation runs, and X½x� is the
Heaviside step function, being 1 for x40 and 0 for xo0.

If we invert Eq. (22) to qi(Pdata), and set Pdata=Pgauss

(qgauss), we obtain qi(qgauss), which defines the q–q-plot.
qi(qgauss) can be interpreted such that the normalized
deviation from the average, qi, occurs with a probability
that corresponds to the probability with which one would
expect a deviation qgauss in case of a normal distribu-
tion. Hence, ideally we would like the VRM to obtain
qi(qgauss)=qgauss.

Figs. 16 and 17 show the q–q-plots for the two
geometries simulated, including all types of simulations.
In order to include all pixels at once into the plot, we used,
instead of Eq. (22),

PdataðqÞ ¼
1

NM

XM
j ¼ 1

XN

i ¼ 1

X½q�qiðjÞ� ð23Þ

where M is the number of pixels, i, e. M=256. In case all
pixels are normally distributed, this sorting of all qi(j) will
also lead to a normal distribution, whereas deviations from
normal distribution will analogously be visible.

Clearly, in Fig. 16, the run without VRM produces spikes,
visible in the strong deviation from a normal distribution at

large qgauss. For S_VROOM and S_DELTA, however, the
distribution of results is very close to the normal distribu-
tion so that we can argue that both VROOM and DELTA do
not produce spikes.

The same is valid for C_DELTA, see Fig. 17. For
C_VROOM, however, we see a moderate deviation from
gaussianity for large qgauss. However, if we omit the pixels
at x=0 and 39.25 km, this deviation completely vanishes
(C_VROOM* in Fig. 17).

Fig. 18 shows a high resolution simulation of the pixel at
x=39.25 km, where the pixel has been subdivided into
10�10 sub-pixels. The lower left sub-pixel contributes about
10% of the total signal, and the 20 brightest sub-pixels
contribute 86% of the total signal. Since the photons are
started evenly distributed over the full pixel, this means that
only few photons will contribute significantly to the signal.
The slow convergence in case of the pixel at x=39.25 km is
hence due to the strong optical heterogeneity of the pixel, i.e.
that it is situated below a thick cloud, but at the border of the

Fig. 16. q–q-plot for all simulations with the satellite geometry (‘‘S’’). The

interpretation of this plot is that the deviation from the average qis occurs

with a probability which would be expected for a deviation qgausss. Hence

the dashed line corresponds to the normal distribution, and the closer a

line lies to the dashed line, the more Gaussian the method is. Lines

deviating toward very large values for large qgauss denote methods with

spikes.

Fig. 17. q–q-plot for all simulations looking towards the sun (‘‘C’’). The

special line C_VROOM* is identical to C_VROOM, except that the results

from the pixels x=39.25 km and x=0 km were removed.

Fig. 18. High resolution picture of pixel x=39.25 km.
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cloud where a small part of the pixel is illuminated by the sun
through a thin cloud layer. The situation is similar for the
pixel at x=0 km.

This example shows that, even with all the tricks used in
VROOM, it can still not be guaranteed that the result will
converge quickly. However, as can be seen in Fig. 19,
VROOM does lead to a roughly Gaussian distribution
even in the worst cases. Hence, the standard deviation
that can be calculated for a given simulation can be trusted
and allows to estimate the required computational time.

Recall Fig. 4, where it was shown that the PLAIN simula-
tion seems to converge after 5000 photons, and then
suddenly an unexpected spike lets the standard deviation
increase dramatically. The sceptic reader would argue that
the same could be true for the VROOM calculations, but that
the simulations were simply not run long enough in order to
encounter a spike. Yet, while hundreds of spikes were
encountered in the PLAIN calculations (0.1% of the data
points result in qi410), not a single one was created with
VROOM calculations, even though 5�109 photons were
simulated. Although this is no proof of the absence of spikes
when using VROOM, it does give a good feeling.

4. Conclusions

We have developed a set of variance reduction methods
(VRM) for performing Monte Carlo simulations of radiances
in the presence of clouds that does not bias the result, but at
the same time converges in reasonable time even for phase
functions with extreme forward peak. The VRMs needed for
this are detector directional importance sampling, n-tuple
local estimate, and prediction-based splitting, as well as
prediction-based Russian roulette and circum-solar virtual
importance sampling.

The major advantage is that this set of VRMs prevents
the Monte Carlo simulation to produce spikes, i.e. statis-
tically rare but large contributions to the result. These
spikes make an estimation of the statistical uncertainty

impossible, since before the first spike pops up the calcu-
lated standard deviation will be too small, and with the
occurrence of the first spike will the standard deviation
jump to a very large value.

The new VRMs were implemented into the Monte Carlo
code MYSTIC [19] – which is part of the radiative transfer
package libRadtran [26] – and run under the name Variance
Reduction ‘‘Optimal Options’’ Method (VROOM). It was
shown that VROOM is only slightly slower than delta-
scaling. The parameter set defined for VROOM can possibly
be improved in order to achieve faster convergence.
However, it is unlikely that VROOM can be made much
faster than delta-scaling, since the latter has to deal with
about half as many scatters as VROOM and is thus naturally
faster in computational time.

For calculations of radiances in interesting directions
such as the rainbow or circum-solar radiation an unbiased
variance reduction method such as VROOM is absolutely
indispensable. But also for other geometries it is becoming
more and more important to use an unbiased method in
order to obtain correct radiances to a precision of better
than 1%.

It needs to be stated that VROOM does converge slowly
for few special conditions, e.g. when looking into the sun
through the edge of a thin cloud. These problems can only
be solved by analyzing the geometric peculiarities of the
scene in advance of the simulation, a task which we found
too tedious to automate. For the few cases where the
convergence is slow it is best to use good old brute force
and increase the number of photons in the simulation.

Although we have described VROOM only in the context
of scalar RTE without absorption, reflection, or polarisation,
we would like to stress once more that VROOM does work
together with these. Absorption and reflection were actu-
ally considered in the simulations presented in this paper,
and VROOM with polarization has been validated in [27].

The next step in the development of the MC code
MYSTIC will be to develop a Lidar simulator with
using VROOM.
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Appendix A. Proof of Eq. (14)

The squared standard deviation is defined as

s2C
1

M

XM
k ¼ 1

x2
k�

1

M

XM
k ¼ 1

xk

 !2

ðA:1Þ

where M=NL is the total number of photons simulated, N is
the number of simulations, L is the number of photons per

Fig. 19. q–q-plot of the two problematic pixels, calculated with and

without VROOM. The line for x=0 km without variance reduction (black

dashed) reaches values of 68.
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simulation, and xk is the contribution of photon k to the
result. We can write Eq. (A.1) as

s2C
1

N

XN

i ¼ 1

1

L

XL

j ¼ 1

x2
i,j�

1

N

XN

i ¼ 1

1

L

XL

j ¼ 1

xi,j

0
@

1
A2

ðA:2Þ

where xi,j=xk is the contribution of the jth photon of the ith
simulation to the result, i.e. k=(i�1)L+ j. For a single
simulation, we have

xi ¼
1

L

XL

j ¼ 1

xi,j ðA:3Þ

and

s2
i C

1

L

XL

j ¼ 1

x2
i,j�

1

L
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j ¼ 1
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0
@

1
A

2

ðA:4Þ

Reformulation of Eq. (A.4) leads to

1

L

XL

j ¼ 1

x2
i,jCs2
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1

L
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j ¼ 1

xi,j

0
@

1
A

2

ðA:5Þ

Inserting Eqs. (A.3) and (A.5) into Eq. (A.2) leads to

s2C
1

N

XN

i ¼ 1

½s2
i þx2

i ��
1

N

XN

i ¼ 1

xi

 !2

ðA:6Þ

Appendix B. Acronyms

CS-VIS circum-solar virtual importance sampling

CP clone photon

DDIS detector directional importance sampling

LE local estimate

MP mother photon

NLE n-tuple local estimate

PBRR prediction-based Russian roulette

PBS prediction-based splitting

SCP split clone photon

VRM variance reduction method

VROOM variance reduction ‘‘optimal options’’ method
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