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P. Wesseling, E. Oñate and J. Périaux (Eds)
c© TU Delft, The Netherlands, 2006

EFFICIENT UNCERTAINTY QUANTIFICATION USING A
TWO-STEP APPROACH WITH CHAOS COLLOCATION

Alex Loeven∗†, Jeroen Witteveen∗, and Hester Bijl∗

∗Delft University of Technology, Faculty of Aerospace Engineering
Kluyverweg 1, 2629 HS Delft, The Netherlands

† e-mail: G.J.A.Loeven@TUDelft.nl

Key words: Computational Fluid Dynamics, Fluid-Structure Interaction, Non-Intrusive,
Polynomial Chaos, Stochastic Collocation, Uncertainty Quantification

Abstract. In this paper a Two Step approach with Chaos Collocation for efficient uncer-
tainty quantification in computational fluid-structure interactions is followed. In Step I, a
Sensitivity Analysis is used to efficiently narrow the problem down from multiple uncertain
parameters to one parameter which has the largest influence on the solution. In Step II,
for this most important parameter the Chaos Collocation method is employed to obtain
the stochastic response of the solution. The Chaos Collocation method is presented in this
paper, since a previous study showed that no efficient method was available for arbitrary
probability distributions. The Chaos Collocation method is compared on efficiency with
Monte Carlo simulation, the Polynomial Chaos method, and the Stochastic Collocation
method. The Chaos Collocation method is non-intrusive and shows exponential conver-
gence with respect to the polynomial order for arbitrary parameter distributions. Finally,
the efficiency of the Two Step approach with Chaos Collocation is demonstrated for the
linear piston problem with an unsteady boundary condition. A speed-up of a factor of 100
is obtained compared to a full uncertainty analysis for all parameters.

1 INTRODUCTION

There is an increasing interest in uncertainty analysis applied to computational fluid-
structure interactions, since the influence of inherent physical uncertainties can no longer
be neglected. In the past decades numerical errors have been decreased due to more
accurate algorithms and more powerful computing facilities to such an extent, that un-
certainties are now the limiting factor in obtaining reliable results. When fluid-structure
interaction is concerned, small uncertainties in the input parameters can lead to unre-
liable solutions after long time integration. Therefore, to obtain more reliable results,
uncertainty quantification is necessary.

Deterministic computations for fluid-structure interaction problems are already com-
putationally intensive due to the dynamic coupling between the fluid and structure. Un-
certainty quantification requires an additional method to obtain the stochastic properties.
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This leads to an increase in the computational work compared to the deterministic case.
Especially for multiple uncertain parameters the amount of work increases rapidly. Effi-
ciency of the uncertainty quantification is, therefore, of great importance.

In this paper the efficiency of uncertainty quantification for multiple uncertain param-
eters is increased by following a Two Step approach9 with Chaos Collocation. In Step I,
a Sensitivity Analysis is employed to identify the most important parameter1 of the prob-
lem. In Step II, the stochastic response of the solution is obtained for the most important
parameter using the Chaos Collocation method. Since computational fluid-structure in-
teraction problems are computationally intensive, the second step has to be performed as
efficiently as possible.

Sensitivity Analysis is an efficient way to identify the most important uncertain pa-
rameter of the problem. Sensitivity Analysis compares the scaled sensitivity derivatives.
Only the standard deviations of the uncertain parameters are taken into account, which
is a good measure of the uncertainty. Sensitivity derivatives give the sensitivity of the
solution with respect to a parameter. They are computed using the continuous sensitivity
equations.11 The parameter with the largest scaled sensitivity derivatives has the largest
influence on the solution and is identified to be the most important parameter of the
problem.

A previous study9 showed that there was no method available which is most efficient
for arbitrarily distributed uncertain parameters to be applied in Step II. Therefore, the
Chaos Collocation method is introduced in this paper. It is a non-intrusive method
which shows exponential convergence with respect to the polynomial order for arbitrarily
distributed input parameters. The Chaos Collocation method consists of a Lagrange-
Chaos interpolation between the collocation points. The collocation points coincide with
the quadrature points used in the Gauss-Chaos quadrature for integrating the Chaos
Collocation approximation to obtain high order approximations of the mean and variance.

The efficiency of the Chaos Collocation method is compared to the Monte Carlo
method, the Polynomial Chaos method, and the Stochastic Collocation method. The
efficiency of the methods is compared by looking at the error convergence with respect
to the computational work. The computational work is expressed in the number of times
a deterministic system is solved. The methods are compared for short and long time
integration with uniformly, exponentially, and normally distributed input parameters.

Finally, the Two Step approach with Chaos Collocation is demonstrated for the linear
piston with an unsteady boundary condition. First a Sensitivity Analysis is performed
for the four uncertain parameters of the test problem. For the most important parameter
the Chaos Collocation method is used to find to probability distribution of the piston
position. A speed-up factor of 100 is found compared to a full uncertainty analysis for all
four parameters.
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2 TWO STEP APPROACH FOR EFFICIENT UNCERTAINTY QUAN-

TIFICATION

Since the propagation of probability distributions for multiple uncertain parameters
is computationally intensive a two step approach is followed. The first step consists of
a Sensitivity Analysis, which is performed to identify the most important parameter of
the problem. After that in the second step the uncertainty of the identified parameter is
propagated using the Chaos Collocation method which results in the stochastic response
of the solution based on the input distribution of the uncertain parameter. The Chaos
Collocation method is introduced in this paper. It is compared on efficiency with Monte
Carlo simulation, the Polynomial Chaos method, and the Stochastic Collocation method.
In section 4 the efficiency of these methods is compared.

In this section the methods are explained using the following general differential equa-
tion

Lu(x, t, θ) = S(x, t, θ), (1)

where u(x, t, θ) is the solution and L is a differential operator which contains space and
time differentiation and can be nonlinear. For example L = ∂/∂t + u∂/∂x results in
Lu = ut + uux. The solution u(x, t, θ) is a function of space x, time t and the random
event θ ∈ [0, 1]. S(x, t, θ) is a space and time dependent source term which can also depend
on the random event θ. The random event θ is introduced by an uncertain parameter
p(θ).

2.1 Step I: Sensitivity Analysis to obtain the most important parameter

Sensitivity Analysis is based on the sensitivity derivative. In this paper sensitivity
derivatives11 are used to identify the most important uncertain parameter in a particular
physical system. Sensitivity is used here as an efficient way of reducing the amount of
uncertain parameters.

The sensitivity derivative of the solution u(x, t, θ) with respect to the uncertain pa-
rameter p(θ) is defined as

up =
∂u(x, t, θ)

∂p(θ)
. (2)

Here the continuous sensitivity equation approach11 is used to compute the sensitivity
derivative since the implementation is straightforward and the solution is exact. The
continuous sensitivity equation solves for the sensitivity derivatives directly, it is the
derivative of the original equation with respect to the uncertain parameter. Two equations
have to be solved, namely

Lu(x, t, θ; µp) = S(x, t, θ; µp) (3)

∂

∂p

{

Lu(x, t, θ; p(θ)) = S(x, t, θ; p(θ))
}

∣

∣

∣

∣

∣

p(θ)=µp

, (4)
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where µp is the mean of the parameter p(θ). The first is the original differential equation
of the problem (1) using µp for p(θ). The second equation (4) is called the continuous
sensitivity equation.

When more parameters are involved in the problem the sensitivity derivative with
respect to each parameter is calculated. By scaling the sensitivity derivatives with the
standard deviation of the parameters all sensitivity derivatives have the dimension of
u(x, t, θ) and can be compared. The standard deviation is used for scaling since this is a
good measure of the amount of uncertainty of the parameter. If the solution depends on
N parameters, the most important parameter is

max
{

up1σp1
, up2σp2

, . . . , upNσpN

}

. (5)

Once the most important parameter is obtained by Eq. (5) the stochastic response of the
solution can be computed based on the input distribution of the uncertain parameter.

2.2 Step II: Uncertainty quantification methods to obtain the stochastic re-

sponse of the solution

In Step II only methods are used which result in the complete probability distribution
function of the solution. The methods for Step II increase the amount of work with respect
to deterministic computations. Therefore, in case of the computationally intensive fluid-
structure interactions, the method which is used to obtain the stochastic response also
has to be efficient. Different method exist, here Monte Carlo simulation, the Polynomial
Chaos method, and the Stochastic Collocation method are compared on efficiency with
the Chaos Collocation method, which is introduced in section 3.

2.2.1 Monte Carlo simulation

Monte Carlo simulation is the most natural way to obtain the stochastic response.
Monte Carlo simulation works as follows:

1. Take a value from the domain [0,1], this is called sampling;

2. Calculate the corresponding value for the random variable using its distribution
function;

3. Solve the problem like a deterministic problem;

4. Repeat this many (M) times and analyze the statistical properties of the set of
solutions.

Typically in the order of thousands of samples are required to obtain reasonable accu-
racy. Techniques exist to minimize the number of samples, like stratified sampling (Latin
Hypercube) or variance reduction. The original Monte Carlo simulation uses random
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sampling, with a convergence rate of O(M−1/2). Here stratified or Latin Hypercube sam-
pling is used, the convergence is improved, but to O(M−1) only. An advantage of Monte
Carlo simulation is that the method is non-intrusive, a disadvantage is the amount of
computational work.

2.2.2 Polynomial Chaos

The Polynomial Chaos method results in a spectral representation of the stochastic
response of the solution and high order approximations of the mean and variance. Based
on the Homogeneous Chaos theory of Wiener13 the original Polynomial Chaos method
was developed by Ghanem and Spanos.4 This framework was extended by Xiu and Kar-
niadakis16 to the Askey Polynomial Chaos. Due to the chaos representation the input
uncertainties can be expressed in two terms only. The Askey Polynomial Chaos has been
successfully applied to several problems, among others fluid-structure interactions. Re-
cently, the Polynomial Chaos framework has been extended to obtain exponential conver-
gence for arbitrary distributions12 ,14 using numerical techniques to construct an optimal
set of orthogonal polynomials. An advantage of the Polynomial Chaos method is the
exponential convergence with respect to the polynomial order, a disadvantage is the in-
trusiveness due to the coupled system of equations that has to be solved. A lot of research
to non-intrusive polynomial chaos6 methods is done to simplify the implementation using
existing solvers.

The Polynomial Chaos method starts with the polynomial chaos expansion of the
solution u(x, t, θ) and all uncertain parameters, with the infinite sum truncated at a finite
number of P + 1 terms:

u(x, t, θ) ≈
P
∑

i=0

ui(x, t)Ψi(ζ(θ)). (6)

This expansion is a spectral expansion in the vector of random variables ζ(θ) with the
random trial basis {Ψi}. Equation (6) divides the random variable u(x, t, θ) into a de-
terministic part, the coefficients ui(x, t) and a stochastic part, the polynomials Ψi(ζ(θ)).
The total number of expansion terms is P + 1, which is determined by the dimension n
of the vector of random variables ζ(θ) (i.e. the number of uncertain parameters) and the
highest order p of the polynomials {Ψi}

P + 1 =
(n + p)!

n!p!
. (7)

Substituting the polynomial chaos expansion (6) into the differential equation (1) results
in

L
P
∑

i=0

ui(x, t)Ψi(ζ(θ)) ≈ S(x, t, θ). (8)
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Here, the source term S has to be expanded as well, however for convenience in this
notation it is omitted. To ensure that the truncation error is orthogonal to the functional
space spanned by {Ψi} a Galerkin projection on each basis {Ψk} is applied

〈

L
P
∑

i=0

ui(x, t)Ψi,Ψk

〉

= 〈S,Ψk〉 , k = 0, 1, . . . , P. (9)

This deterministic set of P + 1 coupled equations can be solved using standard numer-
ical techniques. Here a Block-Gauss-Seidel iterative method is employed to obtain the
coefficients of the expansion. Since some iterations are required, the amount of work
increases to several times P + 1. From Eq. (9) the coefficients ui(x, t) are calculated and
the stochastic solution u(x, t, θ) is reconstructed using Eq. (6). The mean µu and the
variance σ2

u of the stochastic solution can be determined using:

µu = u0, (10)

σ2
u =

P
∑

i=1

ui(x, t)2
〈

Ψ2
i

〉

. (11)

These expressions follow from the definition of the mean and variance.

2.2.3 Stochastic Collocation

A different spectral approach is the Stochastic Collocation method. It was developed
by Mathelin and Hussaini10 to reduce the costs of the Askey Polynomial Chaos method in
case of nonlinear equations. The method is successfully applied to a quasi-1D nozzle with
uncertain inlet conditions and nozzle shape. Mathelin and Hussaini showed a substantial
decrease of computing time using the Stochastic Collocation method compared to the
Polynomial Chaos method. For each collocation point the problem is solved determinis-
tically. The distribution function of the solution is reconstructed using global polynomial
interpolation. The mean and variance are obtained using Gaussian quadrature. In case
of the Stochastic Collocation method the distribution function of the random variable is
projected from [0, 1] on the domain [−1, 1], which is called the α domain, by the linear
transformation

Fũ (ũ) = 2Fu (u) − 1 or α = 2θ − 1, (12)

where Fũ (ũ) is the projected distribution function on the α domain [−1, 1] and Fu (u)
the distribution function on θ ∈ [0, 1]. The projected solution is ũ(x, t, α). The α do-
main is a stochastic space which is defined according to a standard domain of orthogonal
polynomials [−1, 1]. From the α domain Np collocation points αi are taken. The method
proposed by Mathelin and Hussaini10 uses Np Gauss-Legendre quadrature points and La-
grange interpolating polynomials of order Np − 1 for the function approximation. The
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projected stochastic solution ũ(x, t, α) is approximated by the following expansion

ũ(x, t, α) ≈
Np
∑

i=1

ũi(x, t)hi (α) , (13)

with ũi(x, t) the values of ũ(x, t, α) in the collocation points αi and hi (α) interpolating
polynomials of degree Np − 1, with hi(αj) = δij. Transformation (12) is applied to the
differential equation (1) after which expansion (13) is substituted. A Galerkin projection
on each basis {hl} is applied to ensure that the error is orthogonal to the functions basis
spanned by {hi}:

〈

L
Np
∑

i=1

ũi(x, t)hi, hl

〉

= 〈S, hl〉 , l = 1, . . . , Np. (14)

The Galerkin projection (14) is approximated using Gaussian quadrature. For a general
inner product 〈f(α), g(α)〉 of two functions f(α) and g(α) Gaussian quadrature results
in:

〈f(α), g(α)〉 =

Np
∑

i=1

Np
∑

j=1

Np
∑

l=1

figjhi(αl)hj(αl)wl,

=

Np
∑

i=1

Np
∑

j=1

Np
∑

l=1

figjδilδjlwl,

=

Np
∑

l=1

flglwl, (15)

where wl are the quadrature weights corresponding to the collocation points αl. The
resulting set of equations is fully decoupled. The mean µu and the variance σ2

u of the
stochastic solution can be determined using:

µu =

Np
∑

i=1

1
2
ui(x, t)wi, (16)

σ2
u =

Np
∑

i=1

1
2
(ui(x, t))2 wi −

(

Np
∑

i=1

1
2
ui(x, t)wi

)2

, (17)

where wi are the weights corresponding to the collocation points αi. These relations are
derived from the definition of the mean and variance.
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3 CHAOS COLLOCATION

The Chaos Collocation method is based on the idea of a chaos transformation which
is also used in the Polynomial Chaos methods. Exponential convergence of the Chaos
Collocation is shown in section 4 for three standard distributions. The Chaos Collocation
method converges exponentially for arbitrary probability distributions. In the Chaos Col-
location method first Lagrange-Chaos interpolation is used for the distribution function
approximation. With Lagrange-Chaos interpolation it is possible to describe the input
distribution with two collocation points only. Just as for the Polynomial Chaos method,
where two polynomial coefficients describe the input distribution. Secondly, Gauss-Chaos
quadrature is used to compute the Galerkin projection and the integration of the approx-
imation of the distribution function. Like ordinary Gauss quadrature is able to integrate
polynomials exactly, the Gauss-Chaos quadrature integrates polynomial chaoses exactly.
By using Gauss-Chaos quadrature a decoupled set of equations and a higher order ap-
proximation of the mean and variance are obtained.

Chaos Collocation expansion with Lagrange-Chaos interpolation

Each variable depending on the uncertain input parameter is expanded as follows:

u(x, t, θ) =
P
∑

i=0

ui(x, t)hi (ξ(θ)) , (18)

where ui(x, t) is the solution u(x, t, θ) at the collocation point θi and hi is the Lagrange
interpolating polynomial chaos corresponding to the collocation points θi. P is the order of
the interpolating polynomial chaos. The difference with ordinary Lagrange interpolation
is that here a polynomial chaos is used instead of ordinary polynomials. The Lagrange
interpolating polynomial is a function in terms of the random variable ξ(θ). The random
variable ξ(θ) is chosen on the standard domains [−1, 1], [0,∞) or (−∞,∞), such that
the uncertain input parameter p(θ) is a linear transformation of ξ(θ):

p(θ) =
p(θ1)ξ(θ0) − p(θ0)ξ(θ1)

ξ(θ0) − ξ(θ1)
+

p(θ0) − p(θ1)

ξ(θ0) − ξ(θ1)
ξ(θ) = p̃0 + p̃1ξ(θ), (19)

which follows from the expansion of p(θ) similar to equation (18). The Lagrange interpo-
lating polynomial chaos is the polynomial chaos h (ξ(θ)) of order P that passes through
the P + 1 collocation points. It is given by:

hi (ξ(θ)) =

P
∏

k=0
k 6=j

ξ(θ) − ξ(θk)

ξ(θi) − ξ(θk)
, (20)

with hi (ξ(θj)) = δij. The collocation points are chosen such that they correspond to the
Gauss-Chaos quadrature points used to integrate the function u(x, t, θ) in the θ domain.
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The solution has to be integrated in order to obtain for instance the mean or variance.
To find the Gauss-Chaos quadrature points and weights the procedure below is followed.

Computing Gauss-Chaos quadrature points with corresponding weights

A powerful method to compute Gaussian quadrature rules is by means of the Golub-
Welsch algorithm.5 This algorithm requires the recurrence coefficients3 of polynomials
which are orthogonal with respect to the weighting function of the integration. Exponen-
tial convergence for arbitrary probability distributions is obtained when the polynomials
are orthogonal with respect to the probability density function of ξ, so w(ξ) = fξ(ξ).
The recurrence coefficients are computed using the discretized Stieltjes procedure,2 which
is a stable method for arbitrary distribution functions. For convenience of notation the
argument θ is omitted from here on.

First the recurrence coefficients have to be computed. Orthogonal polynomials satisfy
the three-term recurrence relation:

πi+1(ξ) = (ξ − αi)πi(ξ) − βiπi−1 i = 0, 1, . . . , P,

π−1(ξ) = 0, π0(ξ) = 1, (21)

where αi and βi are the recurrence coefficients determined by the weighting function w(ξ)
and {πi(ξ)}P

i=0 is a set of (monic) orthogonal polynomials with πi(ξ) = ξi + O(ξi−1), i =
0, 1, . . . , P . The recurrence coefficients are given by the Darboux’s formulae:3

αi =
(ξπi, πi)

(πi, πi)
i = 0, 1, . . . , P,

βi =
(πi, πi)

(πi−1, πi−1)
i = 1, 2, . . . , P, (22)

where (·, ·) denotes an inner product. The first coefficient β0 is given by (π0, π0). Gander
and Karp2 showed that discretizing the weighting function leads to a stable algorithm.
Therefore the discretized Stieltjes procedure is used to obtain the recurrence coefficients.
Hereto, first the weighting w(ξ) is discretized by

wN(ξ) =
N
∑

j=1

wjδ(ξ − ξj), wj > 0, (23)

where δ is the Dirac delta function. Stieltjes’ procedure starts with i = 0. With (22) the
first coefficient α0 is computed, β0 =

∑N
j=1 wj. Now π1(ξ) is computed by (21) using α0

and β0. This is repeated for i = 1, 2, . . . , P . When continuous weighting functions are
considered P � N , for discrete measures P ≤ N . The inner product is defined as

(p(ξ), q(ξ)) =

∫

S

p(ξ)q(ξ)wN(ξ)dξ =

N
∑

j=1

wjp(ξj)q(ξj), (24)
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for two functions p(ξ) and q(ξ).
From the recurrence coefficients αi and βi, i = 0, 1, . . . , P , the collocation points ξi and

corresponding weights wi are computed using the Golub-Welsch algorithm.5 With the
recurrence coefficients the following matrix is constructed:

J =



















α0

√
β1√

β1 α1

√
β2 ∅√

β2 α3

√
β3

. . .
. . .

. . .

∅
√

βP−1 αP−1

√
βP√

βP αP



















. (25)

The eigenvalues of J are the collocation points ξi, i = 0, . . . , P , which are the roots of the
polynomial of order P+1 from the set of the constructed orthogonal polynomials. The
weights are found by wi = β0v

2
1,i, i = 0, . . . , P , where v1,i is the first component of the

normalized eigenvector corresponding to eigenvalue ξi.
Now the collocation points ξi in the ξ-domain are known. They are mapped to the

θ-domain using the distribution function of ξ. The chaos collocation points θi are found
by

θi = Fξ(ξi), i = 0, . . . , P. (26)

For a uniformly distributed parameter the Chaos Collocation method results in the orig-
inal Stochastic Collocation method,10 if ξ(θ) is chosen to be U(−1, 1) distributed.

Application to a general differential equation

Substitute expansion (18) into the general differential equation (1). A Galerkin pro-
jection on each basis {hk (ξ(θ))} is applied:

〈

L
P
∑

i=1

ui(x, t)hi, hk

〉

= 〈S, hk〉 , k = 1, . . . , P. (27)

This projection is approximated using Gauss-Chaos quadrature. The result is a determin-
istic system of equations which is fully decoupled. The mean and variance of the solution
are found by equations (16) and (17), but here with ui(x, t) the solution at the collocation
point u(x, t, θi) and wi the weight correspondent with collocation point θi.

The presented Chaos Collocation method has one disadvantage compared to the Poly-
nomial Chaos method. The number of required collocation points increases rapidly with
the number of uncertain parameters. When the number of uncertain parameters increases,
the collocation points are generally found using tensor products of one-dimensional poly-
nomials. Improvements in this area have been performed by Xiu and Hesthaven15 for the
Stochastic Collocation method. An extension to the Chaos Collocation method will be
investigated in the near future.
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4 EFFICIENCY OF THE CHAOS COLLOCATION METHOD

The efficiency of the Chaos Collocation method is investigated for a simple fluid-
structure interaction problem, a linear piston problem. Here the spring stiffness k is
assumed to be uncertain with a uniform, exponential, and normal probability distribu-
tion function, respectively. These three distributions are chosen since they represent a
different parameter domain: finite [a, b], semi-infinite [a,∞), and infinite (−∞,∞). For
all three distributions the same mean and variance are used for an equal comparison. The
method is compared with Monte Carlo simulation, the Polynomial Chaos method, and
the Stochastic Collocation method. The error convergence with respect to the amount
of computational work is used. The work is expressed as the number of times a deter-
ministic problem needs to be solved. For the Polynomial Chaos method the amount of
work is I ∗ (P +1) where P is the order of the approximation and I the number of Block-
Gauss-Seidel iterations required to obtain the polynomial coefficients with an accuracy of
10−8. For the following computations about 3-5 iterations were required. The Stochastic
Collocation and Chaos Collocation method both use one deterministic computation for
every collocation point. As Lin et al.8 stated the performance of the Polynomial Chaos
method strongly depends on the length of the time integration. Therefore, the efficiency
of all methods is investigated for both short and long time integration.

4.1 The linear piston problem

The test problem is the linear piston problem indicated in Figure 1. The linear piston
is chosen since it is a test problem which is easily evaluated, but still has all aspects
of fluid-structure interaction problems. It consists of a one-dimensional fluid domain on
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Figure 2: Realizations using different values for
the spring stiffness k of the linear piston prob-
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one side bounded by a mass which is attached to a spring. The fluid is modeled using
the linearized isentropic Euler equations. The piston position q(t) and velocity q̇(t) are
determined by the mass of the piston m, the spring stiffness k, the length of the fluid
domain L, the fluid state U = (ρ, ρu)T and the ambient pressure pamb. A second-order
central finite volume discretization is used for the flow. The time integration is performed
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using an ESDIRK-4 scheme.17 The complete and equations can be found in Reference [9].

4.2 Efficiency for short time integration

In this section short time integration is considered. The piston position is evaluated
till T = 10 which corresponds to approximately 1.5 period. The error convergence is
considered of the relative error of the mean of the piston position q, which is defined as

εq(T ) =
µq(T ) − µq,reference(T )

µq,reference(T )
. (28)

The reference solution is computed using a 20th order Polynomial Chaos approximation.
The relative error of the mean with respect to the amount of computational work is
indicated in Figures 3(a) till (c). From the figures the following can be concluded.
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Figure 3: Error convergence of the mean of the piston position µq at T = 10 (approximately 1.5 period)
with respect to the amount of computational work, expressed in the number of times a deterministic
system has to be solved.

12



Alex Loeven, Jeroen Witteveen, and Hester Bijl

For all distributions the Chaos Collocation method is the most efficient method. Only
for the uniform distribution the Chaos Collocation method is the same as the Stochastic
Collocation method. The Chaos Collocation method converges just as the Polynomial
Chaos method exponentially with respect to the polynomial order. Due to the decoupled
system of equations that has to be solved the amount of work decreased with a factor
3–5, since no iterations are required to obtain the polynomial coefficients.

4.3 Efficiency for long time integration

The long time integration is investigated by evaluating the piston position till T = 100,
which corresponds to approximately 15 periods. The reference solution for this case is
computed using Monte Carlo simulation with 106 samples. Figures 4(a) till (c) show the
convergence of the relative error of the mean of the piston position q with respect to the
amount of work.
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Figure 4: Error convergence of the mean of the piston position µq at T = 100 (approximately 15 periods)
with respect to the amount of computational work, expressed in the number of times a deterministic
system has to be solved.
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For long time integration the convergence does not show a nice convergence behavior
anymore. However, the Chaos Collocation method is by far the most efficient method for
all distribution types. This is due to the exponential convergence and the low amount of
collocation points.

The results for short and long time integration show that the Chaos Collocation method
is the most efficient in all cases. The results hold for arbitrary distributions, since the
Chaos Collocation method is capable of approximating arbitrary distributions efficiently
by obtaining the optimal Gauss-Chaos quadrature points and weights numerically. For the
Polynomial Chaos method one has to use for example Gram-Schmidt orthogonalization14

to generate an orthogonal polynomial basis to obtain exponential convergence as well.
Due to the low amount of collocation points, the Chaos Collocation method will always
be more efficient than a Galerkin based Polynomial Chaos method, which requires several
iterations to solve for the polynomial coefficients.

5 DEMONSTRATION OF THE TWO STEP APPROACH WITH CHAOS

COLLOCATION FOR THE LINEAR PISTON PROBLEM

To demonstrate the Two Step approach with Chaos Collocation for uncertainty quan-
tification, the linear piston problem is used with a moving wall at the left boundary, see
Figure 5. The forcing is assumed to be harmonic according f(t) = A sin(ωt), with A the
forcing amplitude and ω the forcing frequency. The parameters are set to

k = 1 m = 1 A = 0.1 ω = 0.8.

These four parameters are assumed to be uncertain, and uniformly distributed according
U(µ − 10%, µ + 10%). The forcing frequency is set here to ω = 0.8 since the solution is
not diverging for this value. Taking ω close to 1 leads to a diverging oscillation.
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Figure 5: Linear piston with an unsteady forcing f(t) at the left wall.

5.1 Step I: Identifying the most important parameter for the piston problem

using Sensitivity Analysis

A Sensitivity Analysis is performed for the four uncertain parameters. Figures 6(a)
and (b) show the scaled sensitivity derivatives with respect to each parameter. The

14
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sensitivity derivatives with respect to m, k and ω diverge, which means they have an
increasing influence on the solution. For this testcase, however, clearly the sensitivity
derivative with respect to ω diverges much faster than the others. The forcing frequency
ω is the most important parameter. Therefore the next section presents the results for
the uncertainty quantification for an uncertain forcing frequency ω. The computational
cost of this first step is equal to 5 deterministic solves.
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Figure 6: Sensitivity derivatives of the piston position with respect to all dependent parameters. (a) the
structure parameters, piston mass m and spring stiffness k. (b) the boundary condition parameters, the
forcing amplitude A and the forcing frequency ω.

5.2 Step II: Obtaining the stochastic response of the piston position q using

the Chaos Collocation method

The forcing frequency is uniformly distributed by U(µω − 10%, µω + 10%) with mean
µω = 0.8, resulting in a variation around the mean of 10 percent. Since ω occurs in non-
polynomial terms in the equations as for instance ω cos(ωt) the Polynomial Chaos method
is not straightforward. The previous sections showed that for a uniformly distributed
parameter the Chaos Collocation method and the Stochastic Collocation method are the
most efficient method for both short and long time integration. The non-polynomial
terms are not a problem for both methods. To obtain more general results, the Chaos
Collocation method is used. When the forcing frequency had a different probability
distribution, the Chaos Collocation method would have been the most efficient, since the
Chaos Collocation method converges exponentially for arbitrary probability distributions.

Figures 7 and 8 make clear that deterministic computations can be unreliable when
uncertainties in the input parameters are present. Furthermore it is shown that com-
puting only the mean and variance of the solution is not sufficient, even for an interval
approximation. Figure 7 shows the response of the piston position q for t ∈ [0, 50]. The
deterministic solution with ω = µω is included as well as the results for a Monte Carlo
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simulation using 500 samples. A 7th order approximation is obtained efficiently using
8 collocation points for the Chaos Collocation method. A 7th order approximation has
the same order of accuracy as the used temporal and spatial discretizations of the de-
terministic solver. The exact interval which contains all possible values for the piston
position q is obtained from the Monte Carlo simulation. The interval is approximated
assuming a uniform distribution, using the mean and standard deviation the interval is
[µq −

√
3σq, µq +

√
3σq]. However, due to the non-linear dependence of the solution with

respect to the uncertain parameter the distribution is not uniform and not even symmetric
anymore. The approximated interval is symmetric, that is why in Figure 7 at some points
the real interval is outside the approximated interval. When the mean and variance are
used to approximate an interval based on the input distribution, the resulting interval
can differ significantly from the real interval. This can best be seen in Figure 7, at t = 27
the interval is too conservative, while at t = 30 the approximated interval is too small.

To stress the importance of computing the complete distribution function instead of just
the mean and variance figure 8 shows the probability distribution of the piston position
q at t = 50 resulting from a uniformly distributed forcing frequency ω. Figure 8(a) shows
the probability density function fq(q) and Figure 8(b) shows the probability distribution
function Fq(q) of the piston position q. The figure perfectly shows the importance of
computing the distribution function Fq(q) instead of only the mean and variance. The
mean value has a small probability to occur, just as the deterministic solution. From
Figure 8(a), it can be seen that the probability of the mean is equal to the probability
of the deterministic solution for this case. The highest probability of the solution is at
the edges of the domain. The piston position at t = 50 is most likely to be q(50) =
−0.04 or q(50) = 0.14 at the peaks of the probability density function fq(q). This is a
huge difference with both the mean and the deterministic solution. This result perfectly
illustrates the importance of uncertainty quantification.

5.3 Efficiency of the Two Step approach with Chaos Collocation

The use of the Two Step approach increases the efficiency of the uncertainty quan-
tification significantly. Table 1 shows an overview of the amount of computational work
required to obtain the stochastic response of the piston position q based on the four un-
certain input parameters. When the stochastic response is computed for all uncertain
parameters, the Polynomial Chaos method is the most efficient method. However, it still
requires 1320 deterministic solves. This is unacceptable, since deterministic computational
fluid-structure interaction computations are extremely computationally demanding. The
Two Step approach requires 5 deterministic solves to identify the most important param-
eter using Sensitivity Analysis, after which the Chaos Collocation method provides a 7th

order approximation of the stochastic response of the piston position requiring 8 deter-
ministic solves. Consequently, the Two Step approach uses only 13 deterministic solves in
total. When the Polynomial Chaos method was used for Step II, 37 deterministic solves
were required. This is due to the fact that 4 Block-Gauss-Seidel iterations were necessary
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to obtain the polynomial coefficients with an accuracy of 10−8.
Compared to the Polynomial Chaos method for four uncertain parameters, the Two

Step approach with Chaos Collocation results in a speed-up factor of 100. Here, one must
be aware that including all four parameters in the uncertainty quantification provides
more information about the solution and combined effects of uncertain parameters. How-
ever, the amount of work required for a full four parameter uncertainty quantification is
unacceptable for computational fluid-structure interaction problems.

Table 1: Overview of the amount of computational work expressed in the number of times a deterministic
system is solved for the linear piston problem with an unsteady boundary condition. Four parameters
are assumed to be uniformly distributed.

Approach (Step II) Method Sensitivity Obtain stoch. Total
Analysis response of q Work

[det. solves] [det. solves] [det. solves]

All four 7th order Chaos Collocation - 84 4096
parameters 7th order Polynomial Chaos - (4+7)!/(7!4!) · 4 1320

Two Step 7th order Chaos Collocation 5 8 13
approach 7th order Polynomial Chaos 5 8 · 4 = 32 37

6 CONCLUSIONS

In this paper a Two Step approach with Chaos Collocation is followed for efficient uncer-
tainty quantification in computational fluid-structure interaction problems with multiple
uncertain parameters. The first step consists of a Sensitivity Analysis to identify the most
important parameter of the problem. This is an efficient way to reduce the problem to
one uncertain parameter. In the second step the Chaos Collocation method is employed
to obtain the stochastic response based on the probability distribution of the uncertain
input parameter.

Since there was no method available which was most efficient for arbitrary input distri-
butions, the Chaos Collocation method was introduced. The Chaos Collocation method
combines the non-intrusiveness and ability to handle non-linearities easily of the Stochastic
Collocation method with the exponential convergence for arbitrary probability distribu-
tions of the Polynomial Chaos method. The Chaos Collocation method was compared on
efficiency with Monte Carlo simulation, the Polynomial Chaos method, and the Stochastic
Collocation method. Both short and long time integration were considered for three input
distributions: uniform, exponential, and normal. The comparison showed that the Chaos
Collocation method is the most efficient method for all cases. A big advantage of the
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Chaos Collocation method is that it is non-intrusive, which means existing deterministic
solvers can be used. Furthermore non-linearities are not a problem and only P + 1 col-
location points are required for a P th order approximation. A disadvantage is the rapid
increase in the required amount of collocation points when the number of uncertain pa-
rameters increases. But since the Two Step approach reduces the problem to a problem
with only one uncertain parameter the Chaos Collocation is the most efficient method for
this approach.

The Two Step approach with Chaos Collocation has been demonstrated for the linear
piston problem with an unsteady boundary condition. First in Step I Sensitivity Analysis
identified the forcing frequency ω as the most important parameter for this case. A
7th order Chaos Collocation approximation is computed with 8 collocation points. The
results show how uncertainty quantification is used to obtain reliable results. Also the
importance has been made clear why the complete stochastic response of the solution is
required and not only approximations of the mean and variance. The amount of work
significantly decreased using the Two Step approach: only 13 deterministic solves were
required for the 7th order approximation. When all four parameters would have been taken
into account, the Polynomial Chaos method is most efficient, requiring 1320 deterministic
solves. As a result, the Two Step approach shows a reduction factor of 100 compared to
the full uncertainty analysis of all uncertain parameters. Altough the Two Step approach
provides less information than uncertainty quantification for all parameter, the gain in
efficiency means the difference between feasible and non-feasible uncertainty quantification
for computationally intensive problems.
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