
Efficient Universal Computing Architectures for
Decoding Neural Activity

Citation
Rapoport, Benjamin I., Lorenzo Turicchia, Woradorn Wattanapanitch, Thomas J. Davidson, and
Rahul Sarpeshkar. 2012. Efficient universal computing architectures for decoding neural activity.
PLoS ONE 7(9): e42492.

Published Version
doi:10.1371/journal.pone.0042492

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10536043

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:10536043
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Efficient%20Universal%20Computing%20Architectures%20for%20Decoding%20Neural%20Activity&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=3ecbbf2c3dc45f79d736e047515d43c3&department
https://dash.harvard.edu/pages/accessibility

Efficient Universal Computing Architectures for
Decoding Neural Activity
Benjamin I. Rapoport1,2,3, Lorenzo Turicchia2, Woradorn Wattanapanitch2, Thomas J. Davidson4,

Rahul Sarpeshkar2*

1 M.D.–Ph.D. Program, Harvard Medical School, Boston, Massachusetts, United States of America, 2 Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 3 Division of Health Sciences and Technology, Harvard University and

Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 4 Department of Bioengineering, Stanford University School of Medicine,

Stanford, California, United States of America

Abstract

The ability to decode neural activity into meaningful control signals for prosthetic devices is critical to the development of
clinically useful brain– machine interfaces (BMIs). Such systems require input from tens to hundreds of brain-implanted
recording electrodes in order to deliver robust and accurate performance; in serving that primary function they should also
minimize power dissipation in order to avoid damaging neural tissue; and they should transmit data wirelessly in order to
minimize the risk of infection associated with chronic, transcutaneous implants. Electronic architectures for brain– machine
interfaces must therefore minimize size and power consumption, while maximizing the ability to compress data to be
transmitted over limited-bandwidth wireless channels. Here we present a system of extremely low computational
complexity, designed for real-time decoding of neural signals, and suited for highly scalable implantable systems. Our
programmable architecture is an explicit implementation of a universal computing machine emulating the dynamics of a
network of integrate-and-fire neurons; it requires no arithmetic operations except for counting, and decodes neural signals
using only computationally inexpensive logic operations. The simplicity of this architecture does not compromise its ability
to compress raw neural data by factors greater than 105. We describe a set of decoding algorithms based on this
computational architecture, one designed to operate within an implanted system, minimizing its power consumption and
data transmission bandwidth; and a complementary set of algorithms for learning, programming the decoder, and
postprocessing the decoded output, designed to operate in an external, nonimplanted unit. The implementation of the
implantable portion is estimated to require fewer than 5000 operations per second. A proof-of-concept, 32-channel field-
programmable gate array (FPGA) implementation of this portion is consequently energy efficient. We validate the
performance of our overall system by decoding electrophysiologic data from a behaving rodent.

Citation: Rapoport BI, Turicchia L, Wattanapanitch W, Davidson TJ, Sarpeshkar R (2012) Efficient Universal Computing Architectures for Decoding Neural
Activity. PLoS ONE 7(9): e42492. doi:10.1371/journal.pone.0042492

Editor: Michal Zochowski, University of Michigan, United States of America

Received June 25, 2011; Accepted July 9, 2012; Published September 12, 2012

Copyright: � 2012 Rapoport et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Grant NS056140 from the National Institutes of Health (www.nih.gov). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rahuls@mit.edu

Introduction

Implantable Neural Decoding Systems for Brain–
Machine Interfaces

Recent years have seen dramatic progress in the field of brain–

machine interfaces, with implications for rehabilitation medicine

and basic neuroscience [1–3]. One emerging goal is the

development of an implantable system capable of recording and

decoding neural signals, and wirelessly transmitting raw and

processed neural data to external devices. Early versions of such

systems have shown promise in developing prosthetic devices for

paralyzed patients [4], retinal implants to restore sight to the blind

[5,6], deep brain stimulators for treating Parkinson’s disease and

related disorders [7], and systems for predicting and preventing

seizures [8]. Neural decoding has been essential to many of these

systems, conferring the adaptive ability to learn to extract from

neural data meaningful signals for controlling external devices in

real time.

Electronics implanted in the brain must be sufficiently energy-

efficient to dissipate very little power while operating, so as to

avoid damaging neural tissue; conserving power also extends

device lifetimes and reduces system size [9]. Yet experimental and

clinical neuroscience demand ever-increasing bandwidth from

such systems [10]: sampling rates on the order of 30 kHz per

recording channel are commonly used in applications requiring

discrimination of action potentials generated by individual cells,

and while contemporary systems rarely record from more than

hundreds of neurons simultaneously, much more extensive

sampling will be required to probe the state of an entire human

brain containing on the order of 1011 neurons. In this context,

neural decoding can be viewed not only as a computational

approach to extracting meaning from vast quantities of data [11],

but also as a means of compressing such data. Neural decoding as

a type of compression is ‘lossy’ in the formal sense that the

decoding operation cannot be inverted to reproduce the original

neural input signals, given only the decoder output. However, in

PLOS ONE | www.plosone.org 1 September 2012 | Volume 7 | Issue 9 | e42492

neural prosthetics and related applications, not the neural signals

but rather the information they encode is of primary interest.

Indeed, the neural signals themselves can be viewed as constituting

a redundant representation of underlying state information. In

such contexts, the principal concern is not lost neurophysiologic

information, but rather faithful reconstruction of encoded

information, such as movement trajectories. The compression

ratio, power consumption, and correlation of decoder output with

encoded states and trajectories are relevant measures of perfor-

mance. In previous work [12,13], we have shown that an

implanted neural decoder can compress neural data by a factor

of 100,000.

Considerable attention has been devoted to meeting the low-

power operation constraint for brain implantation in the context of

signal amplification [14,15], analog-to-digital conversion [16],

power and data telemetry [17–20], neural stimulation [21–23],

and overall low-power circuit and system architecture [9,24]. A

small amount of work has also been conducted on power-efficient

neural data compression [25]. However, almost no systematic

effort has been devoted to the problem of power-efficient neural

decoding [12,13].

Multiple approaches to neural decoding have been implement-

ed by several research groups. As we have discussed in [12], nearly

all of these have employed highly programmable algorithms, using

software or microprocessors located outside the body [26–41]. An

implantable, low-power decoder, designed to complement and

integrate with existing approaches, would add the efficiency of

embedded preprocessing options to the flexibility of a general-

purpose external processor. As illustrated in Figure 1, our

decoding architecture is designed to couple a power-efficient,

bandwidth-reducing, implanted decoder, with an external unit

that is less power-constrained and can therefore bear a compu-

tational load of greater complexity when postprocessing the

decoded neural data. Being optimized for low power consumption,

it sacrifices a small amount of algorithmic programmability—

posing algorithmic challenges with which we deal in this paper—to

reduce power consumption and physical size, and to facilitate

inclusion of the decoder within an implanted unit.

As we have described in previous work [9,24], such an

implanted unit consists of circuits for neural signal amplification,

digitization, decoding, and near-field power and data telemetry. In

association with an external unit that manages wireless power

transfer and far-field data telemetry, such an implanted unit forms

the electronic core of a brain– machine interface.

Biological and Universal Computing Primitives for Neural
Decoding

Our computational architecture for neural decoding operates

explicitly as a Turing-type universal computing machine, in which

the decoding operation is programmed by selecting the rule array

of the machine, which can also reprogram itself, resulting in an

overall system that emulates the dynamics of a network of

integrate-and-fire neurons. In contrast with existing approaches to

neural decoding, this framework facilitates extreme power

efficiency, requiring no arithmetic operations except for counting.

Our architecture decomposes the operation of neural signal

decoding, allocating the computational load across two processing

units: one implanted within the body, and therefore power-

constrained, and the other located outside the body, and therefore

less power-constrained. The overall architecture strategically

imbalances the computational load of decoding in a way that

leverages the relatively high computational power of the external

unit to minimize power consumption in the implanted unit.

Simultaneously, the system minimizes data throughput between

the internal and external units in order to reduce the power costs

of wireless communication between the two units.

Figure 1 shows the overall architecture of our neural decoding

system. The architecture is decomposed into a set of operations

implemented by Turing-type computing machines, shown as a

collection of heads (data processing units) reading from and writing

to a set of corresponding tapes (programs and data streams).

Amplification and digitization of raw neural data, and decoding of

that data, are performed by heads N and I, respectively, in the

implanted unit. The computations of these two system compo-

nents are streamed across a wireless data channel to an external

unit, which performs more power-intensive external computations

to postprocess the decoded output. In particular, further process-

ing of the decoded data is performed externally by head E, and the

final output of the system is reported by head O.

The core decoding function executed by the internal unit is an

evaluation of the probability that the system is in each of its

available states. At each time step, t, the internal unit reports a

one-bit binary score di(t), i[f1 . . . nsg for each of the ns possible

states, based on neural data observed at each time step. The binary

vector of scores, ~dd(t), is processed by the external unit, which

decides, on the basis of system history and a priori information,

which single state is most probable. It then broadcasts its decision,

for example to be used in controlling external devices.

The detailed operation of the internal unit is diagrammed in

Figure 2, in which functional blocks are color-coded in accord with

the scheme used in Figure 1. Neural inputs from an (n~32)-

channel array are amplified and digitized, and the resulting digital

bits are copied to the high-throughput neural data tape. As

indicated by the red rectangle in Figure 2, these operations

correspond to the function of the N head in Figure 1. The internal

decoding computations implemented by the I head in Figure 1 are

shown in detail within the green box in Figure 2. Digital circuits in

this subsystem monitor each input channel during successive time

windows of length tw, counting the number of spikes whose

amplitudes exceed channel-specific, programmable levels. The

resulting spike counts are evaluated by a program stored in

memory, which constitutes the core of the internal decoder. The

program defines a set of rules, one or more for each possible state,

that are configured during a learning period and that are then

used to evaluate the scores di on the basis of the spike counts

observed at each time step. Each rule also identifies the nt channels

that are most informative in decoding its corresponding state, and

typically only these channels are used for computing di for state i.
The spike-count thresholds for a given state-dependent rule are set

through statistical learning such that the state may be discrimi-

nated from others with sensitivity and specificity that may be tuned

to yield acceptable performance.

We use the terms sensitivity, specificity, and later positive predictive

value, as they are classically used in the context of binary

classification [42]. As we have cast the decoding problem, the

decoder must implement a binary classification function at each

time step, for each state, in deciding whether or not the observed

neural firing pattern encodes that state; the results of these

classifications are recorded as the components di(t). According to

this framework, decoder sensitivity with respect to a given state, si,

is defined as the proportion of cases in which state si is correctly

decoded by di(t)~1; single-channel sensitivity is defined analo-

gously, by restricting decoder input to a particular channel.

Similarly, decoder specificity with respect to state si is defined as

the proportion of cases in which states other than si, or the

collective state �ssi (not-si), is correctly classified with respect to si by

di(t)~0; single-channel specificity is also defined analogously. The

positive predictive value of decoding with respect to state si is

Efficient Universal Computing for Neural Decoding

PLOS ONE | www.plosone.org 2 September 2012 | Volume 7 | Issue 9 | e42492

Figure 1. Universal Computing Architecture for Neural Decoding. The overall architecture of a neural decoding system is decomposed into a
set of operations implemented by Turing-type computing machines, shown here as a collection of heads (data processing units) reading from and
writing to a set of corresponding tapes (programs and data streams). Amplification and digitization of raw neural data, and decoding of that data, are
performed by heads N and I, respectively, in a biologically implanted unit. The ‘Internal Computations’ of these two system components are streamed
across a wireless data channel to an external unit, which performs more power-intensive ‘External Computations’ to post-process the decoded
output. Further processing of the decoded data is performed externally by head E, and the final output of the system is reported by head O. The
external system implements a learning algorithm that is used to write the program on the threshold tape, which is executed by the internal unit.
doi:10.1371/journal.pone.0042492.g001

Figure 2. Decoding Architecture. Block diagram of the low-power processing system of the internal component of our neural decoder, as
implemented in one instantiation of our architecture. Functional blocks are color-coded in accord with the scheme used in Figure 1.
doi:10.1371/journal.pone.0042492.g002

Efficient Universal Computing for Neural Decoding

PLOS ONE | www.plosone.org 3 September 2012 | Volume 7 | Issue 9 | e42492

defined as the proportion of positive, di(t)~1, classification

decisions that are correct; single-channel positive predictive value

is again defined analogously. Finally, it is important to note that

sensitivity and specificity are properties of the decoding function

alone, independent of neural firing patterns, whereas positive

predictive values depend on the distributions of recorded neural

spikes [42].

The components of~ddi(t) are written to the decoder output tape.

The external unit examines the decoder output tape in a

noncausal manner, postprocessing the decoded output generated

by the internal unit to find a single most probable state. Our

architecture permits a wide variety of postprocessing schemes,

consistent with comparative studies of neural decoding algorithms

and their underlying assumptions, which have formally and

systematically demonstrated that movement smoothing is the most

significant algorithmic factor influencing decoder performance

[43]. We therefore implement a general-purpose decoding

algorithm in the implanted system, while permitting application-

specific choices in the external unit. Here we implement the

postprocessing using a Viterbi algorithm.

Pattern matching algorithms conceptually related to the one

implemented in our internal unit have previously been used to

decode neuronal activity, notably in the context of memory replay

during sleep [44,45], but until now the computational complexity

of such approaches has limited their applicability to off-line,

software-based implementations. Pattern matching systems have

the useful property of being able to emulate receptive field

structures—essential computational primitives of biological neu-

rons—in a direct and intuitive way: they learn and store a set of

templates, patterns corresponding to the activity of a given ensemble

of neurons in response to a particular set of external states.

Classical implementations of decoding by pattern matching

function by comparing observed neuronal activity against stored

templates (the system must store at least one template for each

state to be decoded) and choosing a best match. This approach is

typically computationally expensive for two reasons. First, the

ability to quantify the degree to which observed neuronal activity

matches a given template requires a defined metric, the value of

which must be computed for every stored template at every time

step of the decoder. And second, useful metrics themselves

typically require computationally expensive operations, such as

multiplication, root extraction, and division (or normalization).

Computation of continuous-valued metrics in a digital context can

also be accomplished only to a specified limit of precision.

The efficiency of application-specific digital microcontrollers

and digital signal processors (DSPs) arises in large part from their

ability to identify and prioritize the computational primitives, such

as Fourier transformation or specific kinds of filtering, that are of

greatest importance in particular applications [46]. In seeking a

minimal digital decoding system whose operation is consistent with

the computing primitives of biological neural networks, we have

retained pattern matching as an approach to embedding neuronal

receptive fields within the decoding architecture. However, we

have reduced the template-matching metric to a set of rules in

programmable logic. The structure of these rules as implemented

in the example system described here results in a decoding

architecture that behaves like a network of integrate-and-fire

neurons. However, the programmability of the system and its

explicitly rule-based architecture ensure that its scope encompasses

even complex, multimodal receptive fields, but is not limited to

such emulations [47]; the decoding architecture presented here is

an example of a universal computing machine customized for

neural decoding.

This paper is structured as follows: In this Introduction Section

and in the Discussion Section, we address the implications of this

work in the context of implantable brain– machine interfaces for

clinical applications and basic neuroscience. We present results

illustrating the performance of our neural decoding architecture in

an initial Results Section, which includes a subsection discussing

techniques for noise reduction. In the Methods Section we

describe the acquisition and format of our input signals, and

develop the decoding and smoothing algorithms themselves. A

Methods subsection describes in detail a concrete, hardware

implementation of the neural decoding architecture in a low-

power field-programmable gate array (FPGA).

Results

Neural Decoding
We applied our neural decoding system to decode head-position

trajectories from place cell ensemble activity in the hippocampus

of a behaving rat. Place cells in rat hippocampus exhibit receptive

fields tuned to specific locations in the environment [48–50]. Our

system was able to decode temporal firing patterns of ensembles of

such cells in real-time simulations using recorded neural data.

Spike train inputs were derived from spike-sorted tetrode

recordings from the hippocampus of a rat bidirectionally

traversing a maze for food reward, as described in [51]. In the

example described here, the training phase consisted of a 4:5-

minute interval during which the rat traversed the entire maze

once in each direction. This training interval directly preceded the

23:5-minute testing interval, during which the rat traversed the

maze three times in each direction.

In the context of our place-cell– based position decoding

problem, the states to be decoded, si, i[1 . . . ns~m~32, are 32
equally sized, discrete sections of a one-dimensional track maze,

constituting an arbitrary discretization of the continuous, linear,

10-meter track. The track was unbranched but contained several

right-angle turns.

Figure 3 illustrates the encoding of position in our ensemble of

n~32 place cells. The columns of the color-coded array are

normalized representations of spike activity for the place cells in

the ensemble, with bins (columns) corresponding to discretized

positions in the one-dimensional track maze. The rows have been

sorted based on the locations associated with maximal spike

activity. Figure 3 shows that the receptive fields within this

ensemble of neurons are distributed over the available one-

dimensional space, forming a basis for effective decoding.

Figure 4 graphically displays the data structure, g, in which the

decoding templates have been stored. We used nt~2, ts~0:5, and

tp~0:25 to compute the decoding templates, where nt refers to the

number of most informative channels used to decode each state,

and ts and tp respectively denote the global minimum thresholds

for the sensitivity and positive predictive value of state decoding, as

described in the Methods Section. In Figure 4, gsi j is displayed as

an (ns~m~32)|(n~32) array, in which column si contains the

template used to establish the spike count thresholds for state si.

Hence, each column contains nt~2 maximally informative

elements, color-coded in one of 2bc~4 shades of gray, with dark

values corresponding to a threshold spike count of 7 spikes counted

within the integration window, light gray corresponding to a

threshold spike count of 1 spike counted, and white corresponding

to channels that are not used in the decoding of that state. The

decoding rules displayed graphically and as fine print in Figure 4

are reproduced in Table 1.

Figure 5 displays the performance of our decoding algorithms at

both the spike-to-state and state-to-state stages. At each time step,

Efficient Universal Computing for Neural Decoding

PLOS ONE | www.plosone.org 4 September 2012 | Volume 7 | Issue 9 | e42492

the output of the decoder is displayed vertically, with black pixels

representing the ones in the binary vector ~dd(t). The locations of

those ones are observed to cluster along a trajectory reflecting the

position of the rat in time, with stray ones due to noise and

decoder error. The effects of noise and spike-to-state decoder

errors are reduced by the state-to-state smoothing algorithm (in

this case a Viterbi algorithm implemented by the external unit),

whose output is also shown. Using a window length of

tw~360 ms, our decoded output matches the correct trajectory

with a Pearson correlation coefficient of 0:70; the correlation rises

to 0:94 when the time window for input spike counting is widened

to tw~1440 ms, as spike rate estimation is more accurate and

smooth in longer time windows, enabling better interstate

discriminability. Our performance is comparable to those of other

implementations [29,52,53].

Compression Factor
Real-time decoding compresses neural data as it is acquired, by

extracting only meaningful information of interest from a high-

bandwidth, multichannel signal. For data acquired from an n-

channel array and digitized to bp bits of precision at s samples per

second, our algorithm yields a compression factor of

c~
nsbp

m=tw

: ð1Þ

In our work, data are digitized to at least bp~8 bits of precision,

typically at a rate of 31,250 Hz; time windows are rarely shorter

than tw~90 ms. In an (n~32)-channel system decoding m~32

states, decoding therefore yields a compression factor of

c§23,130. In this example we have used m~n to generate a

conservative value for c; in practice, the number of states decoded

is often fewer than the number of input channels, resulting in

larger compression ratios.

Computational Efficiency
We explicitly calculate the computational efficiency of our

decoding architecture in the Methods Section, following a detailed

description of its operation. We find that the total computational

load, L, associated with neural decoding, scales as

L~bmntfw, ð2Þ

where fw:
1

tw

, and b~
13

2
for the implementation employed here,

as explained in detail in the Methods Section. Thus, for

m~ns~32, nt~2, and fw~
1

90 ms
, L&4623 operations per

second, or approximately 4:7|10{3 MIPS (millions of instruc-

tions per second).

Noise Reduction and Cross-Validation
Input noise degrades the performance of the decoder, but our

system has a number of mechanisms for mitigating the effects of

noise. In considering the impact of noise on system performance, it

is helpful to distinguish between correlated and uncorrelated noise,

where the correlation is with reference to the collection of neural

input signals, ~hh(t), and hj(t), j[f1 . . . ng, refers to the signal

obtained from input channel j. More precisely, the covariance

matrix for~hh(t), computed over a designated time interval, reflects

the degree of correlation across input channels. In the context of

neural signal recordings, cross-channel correlations (for electrodes

spaced tens of micrometers apart) can in general arise from low-

frequency components of the electroencephalogram (EEG) or

from motion artifacts (movement of the recording array with

respect to the brain, as may occur with head acceleration).

Uncorrelated noise may be attributed to intrinsic properties of the

recording system or to the biological signal itself, as discussed

extensively in [9].

A useful feature of our internal decoding algorithm is its ability

to explicitly suppress output noise and tune performance by

adjusting tw, the duration of the window over which neural data

are integrated at each time step before making a prediction. In

particular, tw can be scaled in proportion to
1

fc

, where fc denotes a

low-frequency cutoff in the noise spectrum. Lengthening tw

sacrifices system response speed for improved performance

accuracy by integrating over more input data. Longer tw intervals

require more memory to store decoding templates of correspond-

ingly higher resolution, so the total memory available to the

implanted system (in our case, 18 kbits of RAM) places an upper

bound on decoding performance. As we illustrate in the ‘Neural

Decoding’ subsection of the Results section, we are able to reduce

the effects of output noise (effectively representing aggregated

correlated noise that affects all input channels simultaneously) by

lengthening tw. In particular, increasing tw from 360 ms to

1440 ms results in an improvement in the correlation of decoded

with observed output from 0:70 to 0:94.

The effects of correlated noise can also be suppressed in

postprocessing, by the nonimplanted component of the system

designated ‘External Computations’ in Figure 1. By virtue of its

ability to use a priori constraints, such as those imposed by

Figure 3. Encoding of Position by Place Cell Receptive Fields.
Normalized spike rate for each of n~32 neurons in ns~m~32 equal-
length intervals along a one-dimensional track maze. Neurons (rows)
have been sorted according to their positions of maximal activity to
illustrate that the receptive fields of the place cells in this population
cover the one-dimensional space of interest. Neuronal spike rates for
each cell in each state (row elements) have been normalized to the
highest spike rate (maximal row element) exhibited by the particular
cell over all states. (Black: Maximal Spike Rate, White: Zero Spike Rate,
Gray: Intermediate Spike Rates.).
doi:10.1371/journal.pone.0042492.g003

Efficient Universal Computing for Neural Decoding

PLOS ONE | www.plosone.org 5 September 2012 | Volume 7 | Issue 9 | e42492

continuity as well as the physical properties and relationships of

the states being decoded, the performance of the external system is

not entirely limited by the statistical properties of the input signals

and their associated noise levels.

Uncorrelated noise restricted to individual channels, associated

with low channel-specific signal-to-noise ratios (SNRs), can be

handled in the context of our decoding architecture by tuning the

value of nt on a channel-by-channel basis. The system is robust to

noise even in the absence of such channel-by-channel tuning,

however. In order to assess the robustness the decoder to channel

noise, we constructed a cross-validation analysis, in which we

evaluated the performance of the decoder when the input

Figure 4. Decoder Logic Program: Finite-State Automaton Rules for Neural Decoding. Decoding template array g stored in system
memory, resulting in the output shown in Figure 5, using the nt~2 most informative threshold values for each position state. Some elements of the
rule table (three pair) are empty, with corresponding columns having fewer than nt~2 nonwhite elements, because the associated states had fewer
than nt~2 channels able to satisfy ts~0:5 and tp~0:25, the minimum sensitivity and positive predictive value, respectively, for state decoding.
(White: Unused, Light Gray: 1 Spike per 1440-ms Window, Black: 7 Spikes per 1440-ms Window.) Intuitively, this set of templates can be understood as
the tape-reading rules for a Turing machine, whose symbols are generated by the time-windowed spike counts on neural input channels, and whose
states correspond to a discretized set of position states encoded by the underlying neuronal populations. At each time step, the neural decoder scans
down each column in the array to determine the states, if any, whose rules have been satisfied; the decoded output elements di(t) are set to 1 for
those states, and to 0 otherwise. The rules displayed graphically in the rectangular array are encoded numerically in the table displayed above the
array (which is reproduced in Table 1). The columns of the table are aligned with the states in the array for which they contain decoding data,
comprising the indices of the two most informative channels, C1 and C2 , and the corresponding spike thresholds, h1 and h2 .
doi:10.1371/journal.pone.0042492.g004

Efficient Universal Computing for Neural Decoding

PLOS ONE | www.plosone.org 6 September 2012 | Volume 7 | Issue 9 | e42492

consisted of 31 of the 32 available channels of neural data, with the

remaining channel replaced by noise. In this leave-one-out cross-

validation scheme, we systematically replaced each of the 32
channels, one channel at a time, with a noise signal constructed to

have the same spike rate as the original signal, but with spikes

occurring at random times. Whereas the Pearson correlation

between decoded (predicted) and experimentally observed animal

position is 0:94 when all 32 channels contain valid neural signals,

the mean correlation falls to 0:83+0:13 (maximum 0:94) when

only 31 channels contain valid neural signals and one is replaced

by noise in the fashion described. Thus, although system

performance is somewhat degraded in the presence of this form

of uncorrelated, single-channel noise, the overall performance, as

measured by a mean correlation of 0:83 with observed animal

position, nevertheless remains consistent with the levels of

performance described elsewhere in the literature [29,52,53].

Discussion

Generalizations
Our system for neural decoding, implemented as described

here, can be generalized in several ways.

First, consider the combinatorial logic we use to interpret spike

train data. We designed the decoding architecture to facilitate

applying primitive operations derived from the structure of

neuronal receptive fields. We model the receptive field of a

neuron with respect to a set of states as the probability distribution

of action potential firing as a function of state index. Discretizing

this model to a finite level of precision transforms the frequency

distribution to a histogram over states. The general problem of

evaluating the degree to which input spike counts represent

evidence of particular states has often been cast in terms of

Bayesian analysis [54]. In the context of a discrete-time digital

implementation, however, the most general analysis of a set~hh(t) of

input spike counts can be conducted by comparing each element

hj(t) to a finite set of thresholds. As the set of all possible composite

results of all such comparisons (made over all channels and all

states) is enumerable and finite, discrete-time digital decoding can

be implemented by a finite set of threshold-comparison rules. In

particular, although the template-matching algorithm we describe

here consists of logical conjunction operators applied to single,

unidirectional threshold crossings on designated sets of channels,

our decoding architecture is capable of using much more general

combinational logic in analyzing~hh(t). We note, further, that both

the versatility of pattern matching [55] and the theoretical

limitations of template matching [56] in the context of learning

algorithms for computational neuroscience have been explored

and reviewed in depth.

The combinational logic function we implement explicitly in

this work, described by Equation 3, is appropriate when decoding

Table 1. Tape-Reading Rules for a Turing Machine Decoder.

C1 1 1 10 15 15 8 7 7 4 11 11 1 14 11 1 14 24 15 17 20 10 14 16 16 25 24 27 3 20 5 3 7

H1 4 4 3 3 3 3 7 7 1 2 2 4 2 2 4 2 4 3 4 7 3 2 3 3 2 4 4 3 7 4 3 7

C2 3 29 16 16 13 17 10 20 16 16 17 29 15 24 27 17 32 20 16 17 17 26 26 32 19 31 31 31 17

H2 3 4 3 3 1 4 3 7 3 3 4 4 3 4 4 4 1 7 3 4 4 4 4 1 3 3 3 3 4

The decoding rules displayed graphically and as fine print in Figure 4 are reproduced here for clarity. The jth column of the table corresponds to the jth position state
(as reflected by the vertical alignment in Figure 4), and contains decoding instructions for the jth state that are specified by the indices of the two most informative
channels, C1 and C2 , and their corresponding spike thresholds, H1 and H2 . (As indicated in the context of Figure 4, some elements of the rule table are empty because
the associated states had fewer than nt~2 channels able to satisfy the minimum sensitivity and positive predictive value for state decoding.)
doi:10.1371/journal.pone.0042492.t001

Figure 5. Decoder Output when Decoding Position from Hippocampal Place Cells. Our system decodes the location of a maze-roaming rat,
from spike trains recorded from thirty-two hippocampal place cells. Raw output of the decoding algorithm, ~dd(t), is shown as a raster array, with the

output at each time step displayed as a vertical column of pixels (black pixels correspond to ~ddi(t)~1, white pixels to ~ddi(t)~0). Red lines show the
trajectories obtained after applying our Viterbi algorithm to the raw decoder output, as described in the text. The actual trajectories of the rat are
shown in blue. Decoding accuracy and decoder noise are affected by the length of the time window over which spikes are collected at each time

step: tw~2bw~4|90 ms (tw~1440 ms). Here the decoded trajectory matches the actual trajectory with a correlation coefficient of 0:94.
doi:10.1371/journal.pone.0042492.g005

Efficient Universal Computing for Neural Decoding

PLOS ONE | www.plosone.org 7 September 2012 | Volume 7 | Issue 9 | e42492

from neuronal populations that encode information in receptive

fields structured like those of the hippocampal place cells from

which we demonstrate effective decoding here. The prototypical

place cell has an approximately Gaussian, unimodal receptive

field, which can be coarsely approximated by an impulse or

threshold function that assumes a constant, nonzero value for

states in which the cell is most active, and vanishes over all other

states.

While such receptive-field encoding patterns are common, a

more precise and more general model based on the one we

describe here will have broader applicability. In a system with

more memory or more logic circuits, a decoding scheme could use

more logical functions with more conditions, operating on multiple

upper- and lower-bound thresholds per channel. Such an

approach could more smoothly model the state dependence of

neuronal activity present in most receptive fields, through level-

dependent conditions, where spike count levels are defined by

pairs of upper- and lower-bound thresholds. This approach should

be especially useful in decoding from multimodal receptive fields,

or from input channels carrying unsorted multiunit activity, as in

[57]. As indicated by the dashed ‘Operation Selection’ line in

Figure 2, the most general decoder can employ different logical

functions for each state.

Second, consider the information content of channel silence.

Our decoding scheme takes action on the basis of observed spikes.

Yet the absence of spikes also conveys information. A more

general version of the system we describe here could exploit the

information content of channel silence, constructing histograms

and templates for time-windowed spike absence in analogy with

those described here for observed spikes.

Third, consider cross-channel correlations in neural activity.

The logical operations and probabilistic assumptions we have

described here treat input channels, and indeed channel activity in

each position, as independent. While it is convenient to assume

such independence, neural activity across channels and positions

may in general exhibit nonzero correlations. In a more elaborate

version of our decoding system, such correlations could be

exploited, for example by implementing combinational logic

functions depending simultaneously on activity across multiple

channels.

Interpretations
Our decoding system, programmed as we have described here,

illustrates how a simple universal computing architecture can

implement effective, biomimetic neural decoding. In particular,

the rule-based decoding program we describe can be understood

as implementing a two-layer network of digitized integrate-and-

fire neurons. The first layer of this network consists of n input

neurons, corresponding to the n input channels of the system. The

second layer consists of m neurons, each connected to the nt

neurons in the first layer indicated by the decoding rules, and each

synaptic weight set to the reciprocal of the corresponding

threshold. Each second-layer neuron integrates its inputs for the

duration of each time window, resetting to zero every tw, and

firing when it accumulates a value of nt. The output of the neurons

in this second layer constitute the decoder output we have

designated ~dd(t).

The particular scheme we describe here for programming our

decoding architecture has an intuitive interpretation as an

emulation of a network of integrate-and-fire neurons. However,

the rule-based programming structure of the system is extremely

versatile, and by no means limited to intuitive, biomimetic

computations. Indeed, the computational universality of such

rule-based systems has been explored and described in detail by

several investigators, including Wolfram [47].

Methods

Ethics Statement
This study uses behavioral and neurophysiologic data acquired

from a live rodent. The data were provided to the authors by

collaborators (T. J. Davidson) at the Picower Institute for Learning

and Memory at the Massachusetts Institute of Technology.

Experimental protocols were designed in accordance with

guidelines set forth by the Department of Comparative Medicine

at the Massachusetts Institute of Technology in the 2010

Laboratory Animal Users’ Handbook, and were consistent with

the goals of minimizing suffering in all work involving nonhuman

vertebrate animals. All experimental methods were approved by

the Committee on Animal Care at the Massachusetts Institute of

Technology under protocol 0505-032-08, ‘Cortico-Hippocampal

Ensemble Memory Formation.’

Spike Detection
Our neural decoder is designed to process full-bandwidth,

multichannel neural signals in real time, by interfacing directly

with the digitized output stream from an array of amplifiers and

neural recording electrodes. Such a direct connection of the logic

to the amplifier array facilitates great flexibility in the spike

detection and decoding algorithms that the associated system can

implement. In the present work we describe a system for detecting

neuronal action potentials (‘spikes’) using a single-threshold

method; individual thresholds are programmable, and can be

fine-tuned channel by channel. In the tests of the decoding system

described here, however, we used acausally filtered, prerecorded

neural data, as described in this section.

More advanced spike-detection methods are also possible. One

such approach would be to implement dual-threshold detection,

with or without a refractory period. Another would be to use more

computationally intensive detection criteria, such as nonlinear

energy operators [58]. However, we have found that a basic single-

threshold method works well in practice.

Importantly, we can also estimate the noise level on each

channel in real time. Estimating the noise level is necessary in

high-channel-count systems because in such systems it is typically

desirable to set spike detection thresholds automatically. A

common approach is to set the detection threshold to a multiple

of the noise level, isolating spike events with approximate statistical

confidence bounds.

The results presented here were obtained from neural data

collected as follows: Spike train inputs were derived from

recordings from the hippocampus of a rat, while the animal

repeatedly, bidirectionally traversed a linear track for food reward,

as described in [51]. Spikes from multiple neurons were recorded

on each of several four-microwire tetrodes, and the spikes were

manually sorted (by identifying isolated clusters in spike amplitude

space). Decoder input waveforms were then constructed by

thresholding the spikes observed in isolated clusters, with the

additional constraint that only cells with clear spatial modulation

were included.

Neural Decoding Algorithm
Overall Scheme of Operation. The objective in neural

decoding is to infer an aggregate neural state, such as the intention

to move a limb in a particular way, from signals sampled from a

population of neurons encoding that state. The computational task

of a neural decoding system operating in discrete time can

Efficient Universal Computing for Neural Decoding

PLOS ONE | www.plosone.org 8 September 2012 | Volume 7 | Issue 9 | e42492

therefore be described in the language of universal computing

architectures, and our neural decoding architecture can be

understood in terms of Turing-machine– like architectures with

tapes and heads, as shown in Figure 1. At each time step, the

system accumulates a sample of activity from a targeted neuronal

population. This sample is interpreted as a symbol, or set of

symbols, on the ‘tape’ read by our processor. The state of the

system at that time step is inferred from the symbols by a discrete

set of rules, stored in the memory of the system and used in

reading the ‘tape.’

The rules for symbol interpretation are derived using a statistical

procedure that we describe here in detail. Intuitively, the

procedure treats neural spike counts from each input channel as

test statistics, used to evaluate the probability that the system is in

each of the possible states. The distributions of these test statistics,

conditioned on being in or out of each of the possible states, are

approximated as histograms collected during a learning phase.

Maximally informative spike-count values (thresholds) can there-

fore be derived and converted to logical rules involving only

comparison operations.

Our decoding architecture operates as follows:

Neural spikes are detected on each of n input channels using

digitally programmable thresholds, as described in the Methods

Section under ‘Spike Detection.’ Spikes detected from each

channel during an observation window of duration tw (typically

tens to hundreds of milliseconds) are registered in bc-bit counters.

At the end of each time window, the set of counter values is stored

in an n-dimensional spike-count vector, ~hh(t), describing neural

activity across all channels. This vector is compared, component

by component, to a set of m stored templates embodying the

decoding rules. Each template gi, i[f1 . . . mg is also an n-

dimensional vector, and its components gij , j[f1 . . . ng constitute

spike-count thresholds for corresponding channels hj(t) in ~hh(t).

The data structure g that contains the templates is therefore an

m|n array, mnbc bits in size; one such template array is illustrated

in Figure 4. The set of templates contains at least one member for

each of the ns states to be decoded.

At the end of every time window,~hh(t) is compared component-

wise to each of the m templates, gsk
, k[f1 . . . m§nsg,

sk[f1 . . . nsg; we index the templates in this way to make clear

that we allow states to be encoded by multiple templates. The

decoder output vector, ~dd(t), is then defined as follows:

dsk
~ ^

n

j~1
hj(t)wgskj , ð3Þ

where the condition specified in Equation 3 is the logical and of all

the component-wise comparisons between the spike counts in the

input at time t, and the corresponding stored thresholds in the

templates encoding a given state, sk. Thus, at every time step, the

decoder independently evaluates the strength of the evidence that

the state sk is encoded by the neural population over the time

window ½t{tw,t). The decoder output, ~dd(t), is an m-dimensional

binary vector whose components coarsely encode the correspond-

ing estimates as probable, di(t)~1, or improbable, di(t)~0.

In practice, as discussed in the Methods Section under ‘FPGA

Implementation,’ the decoder output can be computed by

implementing a reduced version of the full n-input logical and.

This is accomplished by storing the templates gsk
not as

n-component vectors, but as (ntv
n

2
)-component vectors contain-

ing the nt most informative threshold values for each state, paired

with pointers to their corresponding input channels. This

simplified version of the full decoding algorithm is useful in

practice because it reduces the amount of memory and the amount

of logic, and consequently the total power, required to implement

the algorithm. The reduction is possible because in most practical

applications the number of highly informative channels for any

state is considerably smaller than the full number of channels in

the system. The decoding algorithm itself permits selection of any

value ntƒn, and the selection nt~n would correspond to the full

decoding algorithm as reflected in Equation 3. In simplifying the

implementation of the algorithm to save memory, logic, and

power, a value of ntvn can be selected empirically to ensure that

decoding performance remains sufficiently comparable to that

achieved in the case of nt~n. As we discuss in the Results Section

under ‘Generalizations,’ and as indicated by the dashed ‘Oper-

ation Selection’ line in Figure 2, a more general form of the

decoder architecture can also store a pointer to a logical operation

to apply to the indicated channel thresholds. This pointer would

select among alternatives to the operation described in Equation 3,

which we apply uniformly across all channels. In a more general

decoder, a more flexible scheme along these lines might be

appropriate, in which optimized, channel-specific logical operators

are selectively applied to each channel.

The decoding algorithm itself makes no a priori assumptions

about the nature of the encoded states. As a result, it may be

equally well suited to decoding tasks involving continuous

trajectories (controlling a computer mouse, for example, or a

prosthetic limb) and to those involving discrete and discontinuous

decisions (such as typing on a computer keyboard, controlling the

click-state of a mouse, or selecting from among preprogrammed

grip states of a prosthetic hand). Decoder output predictions of

multiple simultaneous states, null predictions, and state-to-state

transitions that are implausible due to physical or other

constraints, are all handled by the smoothing algorithm described

in the Methods Section under ‘Trajectory Smoothing Algorithm.’

Computational Efficiency
In order to determine the total computational load associated

with our decoding architecture, we account for the number of

operations required in each computational frame, defined as a

single cycle through the input channels, in which a single spike-

count vector, ~hh(t), is acquired. Each spike-count vector must be

compared against nt thresholds in each of m stored templates. As

illustrated in Figure 2, each comparison is associated with the set of

b~5zbLz
1

nt

ð4Þ

operations enumerated in Table 2, where the parameter b denotes

the total number of basic operations per frame, and the parameter

bL denotes the number of basic operations associated with the

combinational logic used to compare incoming spike-count vectors

to each stored template. In the implementation we demonstrate

here, that logic consists of a single comparison, and so bL~1. In

general, however, when more intricate logic is used to evaluate
~hh(t), such as when a sum-of-products scheme is used to account for

receptive fields with multimodal activity patterns (or, equivalently,

input channels carrying multiunit spike activity), bL may be

greater than 1.

Spike-count vectors ~hh(t) are acquired at frequency fw, so the

total computational load, as indicated in Equation 2, is bmntfw.

Efficient Universal Computing for Neural Decoding

PLOS ONE | www.plosone.org 9 September 2012 | Volume 7 | Issue 9 | e42492

Computation of Templates
Decoding templates are constructed so as to be, in a statistical

sense, both sensitive and specific to their associated states. By

sensitive and specific we mean, respectively, that each template

should detect its corresponding state with high probability when

that state occurs, and that templates should discriminate well

between states.

The decoding templates are computed based on data gathered

during a training period, as shown in Figure 6, and are based on

the approximation that the system state is stationary over the

chosen time window, tw. From the training data the decoder learns

the tuning and firing rate properties of each input channel with

respect to the defined set of states, in the following way:

The template construction algorithm begins by computing two

sets, Hz and H{, of joint frequency histograms for neural spike

activity over all pairs of channels and all states. The sets Hz and

H{ are organized by state and by channel. More precisely, Hz
si

,

si[f1 . . . mg, is a data structure containing n joint frequency

histograms, Hz
si j

, j[f1 . . . ng, of the number of spikes detected on

channel j in a time interval of length tw during which the system

encodes state si. Similarly, H{
si

stores corresponding histograms of

the number of spikes detected on channel j in a time interval of

length tw during which the system encodes a state other than si. As

described in the Methods Section under ‘Overall Scheme of

Operation,’ a template gsk
consist of a set of n thresholds,

corresponding to the minimum number of spikes that must be

detected on each channel during a single time window in order to

meet the criteria for state si.

We use the following heuristic for setting these thresholds,

designed to yield decoding performance meeting at least a tunable

minimum quality. We begin by setting two parameters,

0ƒts,tpƒ1, representing a global minimum sensitivity and a

global minimum positive predictive value, respectively. We then

consider each pair of histograms, H+
si j

, and for every possible

threshold value from 0 to bs we compute the sensitivity and

positive predictive value with which the threshold discriminates

between si and �ssi, where the overbar denotes the set complement

(�ssi signifies not-si, any state other than si). The template value gsij is

Table 2. Basic Operations per Computational Frame of the
Decoding Architecture.

Operation Instances per Frame

Clock Counter (log2 (nsnt)~6 bits) 1

Memory Access 1

Multiplexer (n~32) : 1 1

Comparison (1 bit) bL~1

Binary Logic (and) 1

nt

~
1

2

Shift Register (nt~2 bits) 1

Shift Register (nt~2 bits) 1

Total
b~5zbLz

1

nt

~
13

2

Detailed accounting of the basic operations required in each computational
frame of neural decoding, corresponding to the system block diagram of
Figure 2. The parameter b denotes the total number of basic operations per
frame. The parameter bL denotes the number of basic operations associated
with the combinational logic used to compare incoming spike-count vectors to
each stored template.
doi:10.1371/journal.pone.0042492.t002

Figure 6. Histograms and Threshold. Histograms collected during the training phase of the decoding algorithm facilitate computation of
thresholds for windowed spike activity, which are stored as templates in memory and used to discriminate between states. This histogram of spike
activity, collected from recording channel 20, demonstrates that a threshold of g29,20~7 spikes per 16|90-ms window, on recording channel 20, is
sensitive and specific for state s29 (Sensitivity: 0:63, Specificity: 0:85, Positive Predictive Value: 0:86). This threshold is written on the threshold tape
used to program the internal unit of the decoder, and can be seen numerically in Figure 4 as the C1 and h1 row entries of column 29, and graphically
as the corresponding pixels in the rule array.
doi:10.1371/journal.pone.0042492.g006

Efficient Universal Computing for Neural Decoding

PLOS ONE | www.plosone.org 10 September 2012 | Volume 7 | Issue 9 | e42492

set to the lowest threshold value yielding a discrimination

sensitivity greater than or equal to ts and simultaneously a positive

predictive value greater than or equal to tp. In the reduced

implementations described in the Methods Section under ‘Overall

Scheme of Operation,’ ts and tp can be tuned either globally or on

a state-by-state basis until no template contains more than nt

predictive thresholds.

FPGA Implementation
Figure 2 shows our architecture for implementing the neural

decoding algorithm described in the Methods Section under

‘Overall Scheme of Operation.’ As a practical demonstration of

our computational architecture for neural decoding, we imple-

mented our system in a low-power, 6|6|1-mm3, AGL060

FPGA of the Actel IGLOO Low-Power Flash family, which is

tightly constrained by a number of parameters [59]. The measured

power consumption of the decoding architecture, obtained as the

difference between total power consumption of the FPGA (the

product of operating current and the 1:2-V supply voltage) when it

is programmed to contain or exclude the neural decoding

architecture, is 537 mW. We note that the same architecture,

implemented in an advanced-process application-specific integrat-

ed circuit (ASIC), should consume significantly less power, as even

the lowest-power FPGAs are power-inefficient in comparison with

custom ASICs. For example, custom digital architectures are often

an order of magnitude more efficient than general-purpose

architectures, such as those of FPGAs [9].

Our system accepts input from n~32 channels carrying

digitized neural data from an array of recording electrodes and

neural amplifiers [24]. The signal on each channel is thresholded

to detect spikes, as described in the Methods Section under ‘Spike

Detection,’ using a programmable comparator. Threshold-cross-

ing events on each channel are registered by a (bc~4)-bit

windowed counter, and the counters on all channels reset

synchronously after every interval of tw. The set of counter values

registered at the end of each time window constitute the input

spike-count vector ~hh(t) described in the Methods Section under

‘Overall Scheme of Operation.’

As described in the Methods Sections under ‘Overall Scheme of

Operation’ and ‘Computation of Templates,’ the decoding

algorithm functions by evaluating a set of m logical expressions

at each time step. The elements of these expressions are drawn

from ~hh(t) and the m templates, gsi
; the templates thus implement

programmable rules in combinational logic that are stored in the

memory of the FPGA. In order to compress the decoding

algorithm into the limited memory of our FPGA, we implement a

reduced version of the template matching scheme, as described in

the Methods Sections under ‘Overall Scheme of Operation,’ with

nt~2 rules per state; the thresholds and corresponding pointers

are stored in RAM.

In our implementation we use m~32 reduced templates to

decode ns~32 states. At each time step, for each template, the

nt~2 counters identified by the template pointers are compared to

the corresponding thresholds stored in the template. The logical

results of these comparisons are stored in 1-bit shift registers, and

each component of the decoder output, dsk
(t), is formed from the

logical and of the associated nt~2 registers. The m components of
~dd(t) are saved in an (n~32)-bit shift register, and ~dd(t) is

transmitted every tw, after all m templates have been applied.

Trajectory Smoothing Algorithm
Our decoding architecture separately implements routines

based purely on spike-to-state correlation statistics, and routines

based on physical or on other constraints on state-to-state

transitions, independent of neuronal activity. This separation

permits us to prioritize the former, the decoding computations

most closely associated with raw neural activity and most critical

for data compression, for execution within the implanted

component of the system, and benefit from its inherent compres-

sion capabilities. The latter routines, described in this section, can

then operate on the compressed data, outside the body. In the

context of an implanted system with a small power budget, this

scheme conserves power that would otherwise be spent in

telemetry, by greatly reducing the bandwidth required for data

transmission; and in computation, by offloading some of the

decoding to the external components of the system. It also

preserves algorithmic flexibility, as spike-to-state decoding, based

on a generalized notion of neuronal receptive fields, is far less

context-dependent than state-to-state decoding, which may

employ a very broad range of constraints and context-specific

statistical priors. For example, the priors employed to constrain

letter-to-letter and word-to-word transitions in a typing task are

very different from those used to smooth the trajectory of a

prosthetic limb, yet both decoding problems can be addressed at

the spike-to-state level by a pattern matching algorithm of the kind

we describe here. The external unit, more accessible and less

subject to power and size constraints, is better suited to tasks

requiring more intense computation and frequent reprogramming.

We applied our decoding system to a problem involving the

decoding of continuous movement, as described in the Results

Section under ‘Neural Decoding,’ and so the state-to-state

component of our decoding algorithm involves reconstruction of

smooth trajectories from the spike-to-state predictions of the

decoding algorithm described in the Methods Section under

‘Neural Decoding Algorithm’ and ‘FPGA Implementation.’

The classic Viterbi algorithm is an efficient, recursive approach

to state sequence estimation; it is optimal in the sense that it

generates a maximum a posteriori probability estimation of the

sequence of hidden states in a finite-state, discrete-time Markov

process operating in memoryless noise [60]. In casting our

decoding problem in terms of a discrete-time, finite-state Markov

process, we can construct trajectories by treating discretized

positions as states in a hidden Markov model, and applying a

modified Viterbi algorithm to convert the decoded output into a

maximum-likelihood trajectory.

In the context of our decoder, the observed states are the values

generated at the output of the decoder, ~dd(t), at each time step, t.

The actual positions s(t)[fsig at the corresponding times are the

associated hidden states. Implementing the Viterbi algorithm

requires recursively computing

ŝs(t)~ max
i

P ~dd(t)Dsi(t)
� �

P si(t)Ds(t{1)ð Þ, ð5Þ

where ŝs(t) is the optimal estimate for the trajectory position at time

step t. In the following paragraphs we explain the other terms in

Equation 5, as well as our approaches to computing them.

The first term in Equation 5 denotes the probability of

obtaining the decoder output ~dd(t) when the corresponding, true

position is si(t). We use the following method to estimate these

conditional probabilities. As the decoder output ~dd(t) consists of m

single-bit indicators reflecting the probability that s(t)~si, we treat

each component di(t) of ~dd(t) as being independent of the other

m{1. Under this assumption of independence,

Efficient Universal Computing for Neural Decoding

PLOS ONE | www.plosone.org 11 September 2012 | Volume 7 | Issue 9 | e42492

P ~dd(t)Dsi(t)
� �

&P
i

P ~ddj(t)Dsi(t)
� �

, ð6Þ

where the index j in Equation 6 runs over all components i of~dd(t)

for which ~ddi(t)~1. We estimate the probabilities forming the

individual terms in the product of Equation 6 empirically, by

computing a confusion matrix, C, describing the performance of

the decoder during its learning period. The element cij of this

confusion matrix is the ratio of the number of time windows

during which the decoder generated di(t)~1 when the correct

state was sj , to the total number of time windows during which the

decoder generated di(t)~1; hence, cij approximates

P ~ddj(t)Dsi(t)
� �

.

The second term in Equation 5 represents a probability of

transition from one state to the next; in our system, these

transitions correspond to movements from one position to another.

Such movements must obey physical constraints, and so the most

probable transitions at adjacent time steps are those between each

position and itself, and between a given position and its nearest

neighbors. We therefore set the prior probability of transition

between positions si and sj according to the diffusion-like

expression in Equation 7:

P si(t)Dsj(t{1)
� �

:
1

Zj

e
{a

D(si ,sj)
� �2

Dt ð7Þ

Zj:
Xns

i~1

e
{a

D(si ,sj)
� �2

Dt , ð8Þ

where D(si,sj) denotes the physical distance between the indicated

states, and Zi is the normalization constant for transitions from sj

to si. The inverse proportionality to Dt, the time interval since the

decoder generated at least one nonzero bit, permits transitions

between more distant states with increased probability as time

elapses, by broadening the probability distribution with elapsed

time between informative observations; a is a constant, related in

our system to mean speed of movement, that tunes the rate of this

spreading. We set a~0:85 to obtain the results shown in Figure 5.

Acknowledgments

Behavioral and neurophysiologic data used in the present work were

collected in the laboratory of Matthew A. Wilson, Picower Institute for

Learning and Memory, MIT Department of Brain and Cognitive Sciences.

Author Contributions

Conceived and designed the experiments: BIR LT RS. Performed the

experiments: BIR LT WW TJD. Analyzed the data: BIR LT. Contributed

reagents/materials/analysis tools: TJD. Wrote the paper: BIR LT.

References

1. Patil PG (2009) Introduction: Advances in brain-machine interfaces. Neurosur-

gical Focus 27: E1.

2. Nicolelis MAL (2003) Brain–machine interfaces to restore motor function and

probe neural circuits. Nature Reviews Neuroscience 4: 417–422.

3. Schwartz A, Cui XT, Weber D, Moran D (2006) Brain-controlled interfaces:

Movement restoration with neural prosthetics. Neuron 56: 205–220.

4. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, et al. (2006)

Neuronal ensemble control of prosthetic devices by a human with tetraplegia.

Nature 442: 164–171.

5. Chader GJ, Weiland J, Humayun MS (2009) Artificial vision: needs, functioning,

and testing of a retinal electronic prosthesis. Neurotherapy: Progress in

Restorative Neuroscience and Neurology 175: 317–332.

6. Shire DB, Kelly SK, Chen JH, Doyle DP, Gingerich MD, et al. (2009)

Development and implantation of a minimally invasive wireless subretinal

neurostimulator. IEEE Transactions on Biomedical Engineering 56: 2502–2511.

7. Tarsy D, Vitek J, Starr P, Okun M, editors (2008) Deep brain stimulation in

neurological and psychiatric disorders. Current Clinical Neurology. Totowa:

Humana Press.

8. Salanova V, Worth R (2007) Neurostimulators in epilepsy. Current Neurology

and Neuroscience Reports 7: 315–319.

9. Sarpeshkar R (2010) Ultra Low Power Bioelectronics: Fundamentals, Biomed-

ical Applications, and Bio-Inspired Systems. Cambridge University Press.

10. Narasimhan K (2004) Scaling up neuroscience. Nature Neuroscience 7: 425.

11. Eliasmith C, Anderson CH (2003) Neural Engineering, MIT Press, chapter 4.

pp. 112–115.

12. Rapoport B, Sarpeshkar R (2011) A Biomimetic Adaptive Algorithm and

Micropower Circuit Architecture for Implantable Neural Decoders, IGI Global,

chapter 10. pp. 216–254. In System and Circuit Design for Biologically-Inspired Learning,

Edited by T. Temel.

13. Rapoport BI, Wattanapanitch W, Penagos HL, Musallam S, Andersen RA, et

al. (2009) A biomimetic adaptive algorithm and low-power architecture for

implantable neural decoders. Pro-ceedings of the 31st Annual International

Conference of the IEEE Engineering in Medicine and Biology Society 2009:

4214–4217.

14. Holleman J, Otis B (2007) A sub-microwatt low-noise amplifier for neural

recording. 29th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society 2007: 3930–3933.

15. Wattanapanitch W, Fee M, Sarpeshkar R (2007) An energy-efficient micro-

power neural recording amplifier. IEEE Transactions on Biomedical Circuits

and Systems 1: 136–147.

16. Wattanapanitch W, Sarpeshkar R (2011) A low-power 32-channel digitally-

programmable neural recording system. IEEE Transactions on Biomedical

Circuits and Systems 5: 592–602.

17. Ghovanloo M, Atluri S (2007) A wideband power-efficient inductive wireless link

for implantable microelectronic devices using multiple carriers. IEEE Transac-
tions on Circuits and Systems I: Fundamental Theory and Applications 54: 71–

77.

18. Baker MW, Sarpeshkar R (2007) Feedback analysis and design of RF power
links for low-power bionic systems. IEEE Transactions on Biomedical Circuits

and Systems 1: 28–38.

19. Mandal S, Sarpeshkar R (2008) Power-efficient impedance-modulation wireless

data links for biomedical implants. IEEE Transactions on Biomedical Circuits
and Systems 2: 301–315.

20. Mohseni P, Najafi K, Eliades SJ, Wang X (2005) Wireless multichannel

biopotential recording using an integrated fm telemetry circuit. IEEE
Transactions on Neural Systems and Rehabilitation Engineering 13: 263–271.

21. Theogarajan LS (2008) A Low-Power Fully Implantable 15-Channel Retinal
Stimulator Chip. IEEE Journal of Solid-State Circuits 43: 2322–2337.

22. Kelly SK, Wyatt JL (2011) A power-efficient neural tissue stimulator with energy

recovery. IEEE Transactions on Biomedical Circuits and Systems 5: 20–29.

23. Arfin SK, Sarpeshkar R (2012) An Energy-Efficient, Adiabatic Electrode

Stimulator with Inductive Energy Recycling and Feedback Current Regulation.
IEEE Transactions on Biomedical Circuits and Systems 6: 1–14.

24. Sarpeshkar R, Wattanapanitch W, Arfin SK, Rapoport BI, Mandal S, et al.

(2008) Low-power circuits for brain-machine interfaces. IEEE Transactions on
Biomedical Circuits and Systems 2: 173–183.

25. Olsson RH, Wise KD (2005) A three-dimensional neural recording microsystem
with implantable data compression circuitry. IEEE Journal of Solid-State

Circuits 40: 2796–2804.

26. Warland D, Reinagel P, Meister M (1997) Decoding visual information from a

population of retinal ganglion cells. Journal of Neurophysiology 78: 2336–2350.

27. Serruya M, Hatsopoulos NG, Fellows M, Paninski L, Donoghue J (2003)
Robustness of neuropros-thetic decoding algorithms. Biological Cybernetics 88:

219–228.

28. Sanchez JC, Erdogmus D, Principe JC, Wessberg J, Nicolelis MAL (2005)

Interpreting spatial and temporal neural activity through a recurrent neural

network brain machine interface. IEEE Transactions on Neural Systems and
Rehabilitation Engineering 13: 213–219.

29. Wu W, Black MJ, Mumford D, Gao Y, Bienenstock E, et al. (2004) Modeling
and decoding motor cortical activity using a switching Kalman filter. IEEE

Transactions on Biomedical Engineering 51: 933–942.

30. Wu W, Gao Y, Bienenstock E, Donoghue JP, Black MJ (2006) Bayesian
population decoding of motor cortical activity using a Kalman filter. Neural

Computation 18: 80–118.

31. Wu W, Shaikhouni A, Donoghue JP, Black MJ (2004) Closed-loop neural

control of cursor motion using a Kalman filter. Proceedings of the IEEE
Engineering in Medicine and Biology Society 26: 4126–4129.

Efficient Universal Computing for Neural Decoding

PLOS ONE | www.plosone.org 12 September 2012 | Volume 7 | Issue 9 | e42492

32. Wu W, Hatsopoulos NG (2008) Real-time decoding of nonstationary neural

activity in motor cortex. IEEE Transactions on Neural Systems and
Rehabilitation Engineering 16: 213–222.

33. Brockwell AE, Rojas AL, Kass RE (2004) Recursive Bayesian Decoding of

Motor Cortical Signals by Particle Filtering. Journal of Neurophysiology 91:
1899–1907.

34. Brown EN, Frank LM, Tang D, Quirk MC, Wilson MA (1998) A statistical
paradigm for neural spike train decoding applied to position prediction from

ensemble firing patterns of rat hippocampal place cells. Journal of Neuroscience

18: 7411–7425.
35. Eden UT, Frank LM, Barbieri R, Solo V, Brown EN (2004) Dynamic analyses

of neural encoding by point process adaptive filtering. Neural Computation 16:
971–998.

36. Srinivasan L, Eden UT, Mitter SK, Brown EN (2007) General-purpose filter
design for neural prosthetic devices. Journal of Neurophysiology 98: 2456–2475.

37. Sarma SV, Eden UT, Cheng ML, Williams ZM, Hu R, et al. (2010) Using Point

Process Models to Compare Neural Spiking Activity in the Subthalamic Nucleus
of Parkinson’s Patients and a Healthy Primate. IEEE Transactions on

Biomedical Engineering 57: 1297–1305.
38. Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal

structure in neuronal activity during working memory in macaque parietal

cortex. Nature Neuroscience 5: 805–811.
39. Musallam S, Corneil BD, Greger B, Scherberger H, Andersen RA (2004)

Cognitive control signals for neural prosthetics. Science 305: 258–262.
40. Santhanam G, Ryu SI, Yu BM, Afshar A, Shenoy KV (2006) A high-

performance brain-computer interface. Nature 442: 195–198.
41. Shenoy KV, Meeker D, Cao SY, Kureshi SA, Pesaran B, et al. (2003) Neural

prosthetic control signals from plan activity. Neuroreport 14: 591–596.

42. Japkowicz N, Shah M (2011) Evaluating Learning Algorithms: A Classification
Perspective. Cam-bridge: Cambridge University Press.

43. Koyama S, Chase SM, Whitford AS, Velliste M, Schwartz AB, et al. (2010)
Comparison of brain–computer interface decoding algorithms in open-loop and

closed-loop control. Journal of Computational Neuroscience 1–2: 73–87.

44. Louie K, Wilson MA (2001) Temporally Structured Replay of Awake
Hippocampal Ensemble Activity during Rapid Eye Movement Sleep. Neuron

29: 145–156.

45. Lee AK, Wilson MA (2002) Memory of Sequential Experience in the

Hippocampus during Slow Wave Sleep. Neuron 36: 1183–1194.
46. Madisetti V, editor (2009) The Digital Signal Processing Handbook. Electrical

Engineering Hand-book. Boca Raton, Florida: CRC Press, 2nd edition.

47. Wolfram S (2002) A New Kind of Science. Champaign, Illinois: Wolfram
Media.

48. O’Keefe J, Nadel L (1978) The Hippocampus as a Cognitive Map. Oxford,
England: Clarendon Press.

49. Best PJ, White AM, Minai A (2001) Spatial processing in the brain: The activity

of hippocampal place cells. Annual Review of Neuroscience 24: 459–86.
50. McNaughton BL, Battaglia FP, Jensen O, Moser FI, Moser MB (2006) Path

integration and the neural basis of the ‘cognitive map’. Nature Reviews
Neuroscience 7: 663–678.

51. Davidson TJ, Kloosterman F, Wilson MA (2009) Hippocampal replay of
extended experience. Neuron 63: 497–507.

52. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, et al. (2006)

Neuronal ensemble control of prosthetic devices by a human with tetraplegia.
Nature 442: 164–171.

53. Paninski L, Fellows MR, Hatsopoulos NG, Donoghue JP (2004) Spatiotemporal
tuning of motor cortical neurons for hand position and velocity. Journal of

Neurophysiology 91: 515–532.

54. Pouget A, Dayan P, Zemel RS (2003) Inference and computation with
population codes. Annual Reviews of Neuroscience 26: 381–410.

55. Jain AK, Duin RP, Mao J (2000) Statistical pattern recognition: A review. IEEE
Transactions on Pattern Analysis and Machine Intelligence 22: 4–37.

56. Bengio Y (2007) On the challenge of learning complex functions. Progress in
Brain Research 165: 521–534.

57. Stark E, Abeles M (2007) Predicting movement from multiunit activity. Journal

of Neuroscience 27: 8387–8394.
58. Rizk M, Wolf PD (2009) Optimizing the Automatic Selection of Spike Detection

Thresholds Using a Multiple of the Noise Level. Medical and Biological
Engineering and Computing 47: 955–966.

59. Actel Corporation. IGLOO Low Power Flash FPGAs with Flash*Freeze

Technology. Data Sheet. November 2009.
60. Forney GD (1973) The Viterbi Algorithm. Proceedings of the IEEE 61: 268–

278.

Efficient Universal Computing for Neural Decoding

PLOS ONE | www.plosone.org 13 September 2012 | Volume 7 | Issue 9 | e42492

