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EFFICIENT UNIVERSAL PORTFOLIOS FOR PAST-DEPENDENT
TARGET CLASSES

JASON E. CROSS AND ANDREW R. BARRON

Yale University

We present a new universal portfolio algorithm that achieves almost the same level
of wealth as could be achieved by knowing stock prices ahead of time. Specifically
the algorithm tracks the best in hindsight wealth achievable within target classes of
linearly parameterized portfolio sequences. The target classes considered are more
general than the standard constant rebalanced portfolio class and permit portfolio
sequences to exhibit a continuous form of dependence on past prices or other side
information. A primary advantage of the algorithm is that it is easily computable in a
polynomial number of steps by way of simple closed-form expressions. This provides
an edge over other universal algorithms that require both an exponential number of
computations and numerical approximation.
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1. INTRODUCTION

Suppose an investor has a crystal ball that reveals stock prices at any point in the fu-
ture. Using information gleaned from the ball, the investor selects an investment strategy
among a target class of portfolio sequences B to which investment is limited. Assum-
ing rational behavior, the investor chooses the portfolio sequence in B that maximizes
terminal wealth or, equivalently, terminal growth of wealth. Since this optimal growth is
achieved by knowing future prices prior to investment it would seem unlikely that optimal
growth could be achieved without benefit of the crystal ball.

Surprisingly, this need not be the case and there is a growing literature concerning
portfolio algorithms that asymptotically grow wealth at the optimal “crystal ball rate“
without the crystal ball. To be more precise, for certain choices of target class B it is
possible to construct portfolio algorithms independent of future prices which, for any
given price outcome, asymptotically achieve the same growth rate as the best hindsight
strategy inB. The convergence of the growth rate to this optimal hindsight rate is not done
merely in a stochastic sense but rather uniformly over all price sequences satisfying certain
path properties. For this reason these algorithms are referred to as universal portfolios
because they achieve optimal growth universally over price paths.

Our aim here is to study universal portfolio strategies that make use of past wealth
information or other side information in terms of smoothly parameterized rules, and to
seek computationally feasible schemes to achieve close to optimal in hindsight wealth.
By way of background we first mention constant rebalanced portfolios in discrete and
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continuous time. Constant rebalanced portfolios are portfolio sequences that maintain
a fixed proportion of wealth in each underlying investment. For example, if an investor
starts with half of his wealth in cash and the other half in stock, the constant rebalanced
portfolio strategy mandates that the investor buy and sell enough stock at the end of each
trading period to return to the initial half/half wealth allocation.

Measuring time in, say, months t and trading in n times per month, the wealth at time t
achieved by investing one unit of wealth in a constant rebalanced portfolio b on m stocks
and cash is given by

W (n)
t (b) =

nt∏
k=1

b′xk/n,

where xk/n = (x0,k/n, x1,k/n, . . . , xm,k/n) and k/n denotes a fractional time (i.e., k/n = 3/2
is halfway through the second month). Here, x0,k/n = 1 denotes the wealth relative to
cash and (x1,k/n, . . . , xm,k/n) denotes the wealth relatives to stocks over the kth period. As
we shall see for stocks satisfying certain basic path properties, for large n this wealth is in
close agreement with a corresponding “continuous” wealth,

Wt(b) = exp

{
m∑

j=1

b jµt, j + 1
2

m∑
j=1

b j Kt, j, j − 1
2

m∑
i, j=1

bi Kt,i, j b j

}
,(1.1)

where vector µt and matrix Kt are empirical measures of stock price drift and covariance
respectively. This result is in concert with results of Merton (1969, 1971) and Larson
(1986) who also showed that the continuous wealth is expressible as the exponential of a
quadratic in b. It should be noted that expression (1.1) remains valid for cases where bi

is negative (i.e., when the stock is sold short) and that (1.1) also assumes investment in a
riskless asset (in particular, a fraction b0 = 1 − ∑m

i=1 bi is held in cash).
The best in hindsight wealths for both the discrete and continuous cases, maxb W (n)

t (b)
and maxb Wt(b), naturally depends on the realized path of stock prices. In an effort to
track optimal wealth in the discrete case, Cover (1991) introduced the idea of universal
portfolios that achieve wealth within a polynomial factor of maxb W (n)

t (b) without a
priori knowledge of the realized price path. The suggested universal portfolio invests in
the wealth-weighted average

b̂ (n)
k/n =

∫
bW (n)

(k−1)/n(b) dπ (b)∫
W (n)

(k−1)/n(b) dπ (b)
,(1.2)

and achieves wealth

Ŵ (n)
k/n =

∫
W (n)

k/n (b) dπ (b).

In this paper we have two main aims. One is to find universal procedures for tar-
get classes beyond the usual constant rebalanced portfolio class. All of the classes to
be considered are composed of portfolio sequences b(θ, st) that depend in a smoothly
parameterized way on the past month’s stock information or other side information st.
In this setting, the class of constant rebalanced portfolios become a special case. Cover
and Ordentlich (1996) developed universal procedures in the case where st takes a finite
number of values. In addition to the finite state case, our development encompasses more
general forms of dependence where it is now permissible for s to take values in a contin-
uum. Universality with respect to these more flexible target classes is achieved by taking
wealth-weighted averages over θ.
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Our second aim is to uncover a simple and easily computed universal strategy. Un-
fortunately, evaluation of the integrals in universal portfolio (1.2) can be problematic,
especially when more than a few stocks are considered. Computation requires numeri-
cal integration, and computations grow exponentially with the dimension of b (i.e., the
number of stocks). These issues are raised in Singer et al. (1998) where a more efficient
universal procedure, computable in a linear number of steps with the number of stocks,
is presented. We too seek a more efficient algorithm, although with different method-
ology and for different target classes of portfolios B. Our approach takes advantage of
the continuous time expression (1.1) of wealth Wt(b) to form a portfolio universal with
respect to the continuous time target wealth maxb Wt(b). In particular, for large n we
substitute continuous time wealth Wt(b) in place of W (n)

t (b) in expression (1.2) to define
a new portfolio

b̂k/n =
∫

bW(k−1)/n(b) dπ (b)∫
W(k−1)/n(b) dπ (b)

at time t = (k − 1)/n. Since (1.1) shows the wealth Wt(b) to be an exponential of a
quadratic in b, we see that a choice of initial allocation according to a Gaussian π leads to
an explicitly and easily computable universal portfolio. This is really just an application
of the Bayesian concept of normal conjugation in disguise. Although b̂k/n is easy to com-
pute, it remains a continuously traded portfolio. To be truly useful we would like to find a
discrete analog of b̂k/n that would remain universal. The last section of the paper shows
how we can achieve this goal by replacing wealth W(k−1)/n(b) in the derivation of b̂k/n

with a discretized approximation. This produces a discretely traded, easily computed,
universal portfolio that has an elegant closed-form representation.

The resulting portfolio will be computable in m2 time (m the number of stocks) which
is an improvement over portfolio (1.2) computable exponentially in m. Moreover, this
computationally advantageous universal portfolio extends to the case of generalized tar-
get classes with parameterized portfolio mappings b(θ, st) having linear dependence on
θ. The result is an efficiently computable universal procedure that can be adapted to a
wide variety of target classes and target wealths.

As a final note, we claimed earlier that the expression of wealth (1.1) of the continuously
traded portfolios would be the crux of our analysis in later sections of the paper. Since
(1.1) holds for cases of short selling (i.e., bi < 0), we will typically assume short selling
is permissible in these later sections. However for earlier discussions on discrete time
investment we limit considerations to the usual long positions (i.e., bi ≥ 0).

Lastly, since (1.1) depends on being able to invest in a riskless asset, we will assume
throughout the paper that a portion of assets, b0, is held in cash. Despite this convention,
the discrete time results of Section 3 do not explicitly require an investment in cash.
Rather, the convention is maintained here solely to provide continuity with the rest of the
paper.

2. PRELIMINARIES

In order to motivate our main results we begin with a general discussion of universal port-
folios in a discrete time setting. We begin with the challenge of allocating wealth among
m stocks and cash at the start of n consecutive trading periods indexed by i ∈ {1, . . . , n}.
The allocation at the beginning of period i can be represented by a portfolio vec-
tor bi = (bi,0, bi,1, . . . , bi,m) lying in the simplex B+ = {

bi :
∑m

j=0 bi, j = 1 and bi, j ≥ 0
}
,
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where bi,0 represents the proportion of total wealth in cash and bi, j represents the pro-
portion in stock j at the start of period i.

Letting pi, j be the price of stock j at the end of period i, we define the wealth relative,
xi, j = pi, j/pi−1, j , to be the ratio of the stock price at the end of period i to that at the
beginning of period i. Collectively we write the vector of wealth relatives as

xi = (xi,0, xi,1, . . . , xi,m),

with the understanding that the first component xi,0, the wealth relative of cash,1 is 1.
Given these definitions we see that an investor starting with initial wealth W0 and investing
in the sequence of portfolios b1, . . . , bn yields a wealth after n periods of

Wn = W0

n∏
i=1

b′
i xi .

Imagine that an investor is given a crystal ball or some other oracle that would allow
knowledge of wealth relatives xi up to n periods in the future. Given this information, the
best strategy would be to put all wealth in the best stock each period. To set a more modest
target, suppose the oracle restricts attention to portfolio sequences b1, . . . , bn within some
set of sequences B (the class of constant rebalanced portfolios is one possibility although
we will eventually consider more general classes of parameterized sequences). Therefore,
given a sequence of wealth relative vectors x1, x2, . . . , xn belonging to sequence class X ,
the best strategy would be to choose the optimal portfolio sequence in B, call it {b∗

i }n
i=1,

that maximizes wealth or, equivalently, the empirical growth rate of wealth,

Rn ≡ 1
n

log Wn/W0.

We label this optimal wealth W∗
n and the associated optimal growth rate R∗

n .
Suppose now that such an oracle is lacking. Is it still possible to achieve the optimal W∗

n
without knowing x1, x2, . . . , xn beforehand? Intuition suggests not and in a strict sense
this is usually the case. However for some choices of B we can do the next best thing,
which is to achieve the optimal growth rate of wealth R∗

n . Specifically we can sometimes
construct portfolio sequences {̂bi }n

i=1 independent of future knowledge of x1, x2, . . . , xn

that have growth rate R̂n asymptotically equal to R∗
n . Essentially, such a strategy will

achieve without future knowledge of prices almost the same wealth as if we were given
future knowledge of prices and then allowed to act according to any portfolio sequence
in B. We call such a portfolio sequence {̂bi }n

i=1 a universal portfolio because it achieves the
optimal growth rate uniformly over all price paths in X .

DEFINITION 2.1. Let R∗
n be the maximal growth rate achievable over a set of portfolio

sequences B when given future knowledge of x1, x2, . . . , xn lying in a set of permissible
wealth relative sequences X . We call a portfolio sequence {̂bi }n

i=1 determined indepen-
dently of future knowledge a universal portfolio (or simply universal) with respect to B
and X if its corresponding growth rate R̂n is such that

lim
n→∞ sup

{xi }n
i=1∈X

(
R∗

n − R̂n
) = lim

n→∞ sup
{xi }n

i=1∈X

1
n

log
W∗

n

Ŵn
≤ 0.

1 Here one might think of cash as a proxy for any riskless asset. For simplicity we assume it has a zero
rate of return although we can easily extend subsequent analysis to any nonzero risk-free rate of return r by
replacing wealth relative Xi, j with the discounted wealth relative Yi, j = (1 + r )−1 Xi, j . Under this substitution
expressions of wealth are now discounted to their net present value at time 0. However the fundamental
conclusions of the paper remain unaffected.
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Here W∗
n = W0

∏n
i=1 b∗′

i xi and Ŵn = W0
∏n

i=1 b̂′
i xi are the wealths of the best sequence

in B chosen in hindsight and the universal portfolio respectively. Additionally, we refer
to B as the target class of the universal portfolio, R∗

n as the target growth rate, and W∗
n =

W0 exp{n R∗
n} as the target wealth.

We should note that to successfully consider target classes B beyond the class of con-
stant rebalanced portfolios requires us to use a more restrictive class of wealth relative
sequences X than the set of all nonnegative wealth relative sequences previously consid-
ered by Cover (1991). In general we limit consideration to subsets of sequences satisfying
certain regularity conditions, one being that the wealth relatives are bounded above zero.
That said, when limiting consideration to only constant rebalanced portfolios, for the
discrete time results of the next section one may allow for all stock price sequences, as
Cover has shown.

3. A UNIVERSAL PORTFOLIO IN DISCRETE TIME

3.1. Introduction and Analysis

To set the foundation for future results we first present a simple universal portfolio
algorithm traded in discrete time. The portfolio is universal for certain parameterized
target classes B having possible dependence on various types of side information (past
prices, economic indicators, expert opinion, etc.). Information from time i is summarized
through a state variable si which takes values in some arbitrary domain S and is used to
form portfolios at the start of the subsequent investment period.

To define a parameterized target class we consider a parameter space � ⊆ Rd and
portfolio map b : � × S → B+ that for each period i sets the portfolio bi ≡ b(θ, si−1).
We think of the class as a set of functions {b(θ, ·) : θ ∈ �}. Each function in the class, or
equivalently each θ ∈ �, defines a distinct sequence of portfolios whose allocations are
determined at the start of period i through b(θ, si−1).

There are many different types of portfolio sequence classes that can be modeled in
this framework. For instance we have already briefly discussed the class of constant
rebalanced portfolios in the introduction. A constant rebalanced portfolio is a sequence
of portfolios for which the same portfolio is used at the start of each trading period.
Thus if we begin by using portfolio b we buy and sell enough of each stock at the end of
each trading period so that our wealth proportions return to b by the start of the next
trading period. For investment in cash and m stocks one possible parameterization of this
class is given by the parameter space � = {

θ ∈ Rm :
∑m

j=1 θ j ≤ 1, θ j ≥ 0
}

and mapping
bi ≡ b(θ) = (

1 − ∑m
j=1 θ j , θ1, . . . , θm

)
. In this case the state variable si is left undefined

because constant rebalanced portfolios do not use side information.
For an example of a class that uses past prices in forming the portfolio, suppose an

investor follows an investment strategy where he allocates wealth according to the most
recent stock gains. If he believes the outperforming stocks will continue to outperform
in the next period he might consider investment in a portfolio such as si = xi/

∑m
j=0 xi, j .

However the weak form of the efficient market hypothesis suggests such a trend should
not exist, so the investor hedges his bets by splitting wealth between xi/

∑m
j=0 xi, j and a

constant rebalanced portfolio. Consider the class of portfolio sequence for which, be-
fore investment, the investor fixes a constant rebalanced portfolio and a fraction of
wealth to put between the constant rebalanced portfolio and most recent wealth rela-
tive vector. In this case, our side information is the normalized wealth relative vector
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si = xi/
∑m

j=0 xi, j , and our parameters θ are used to set the constant rebalanced port-
folio and the fraction of wealth. Hence a possible parameterization of the class would
be given by parameter space � = {

θ ∈ Rm+1 : 0 ≤ θ j ≤ 1,
∑m

j=1 θ j ≤ 1
}

and mapping
bi ≡ b(θ, si−1) = (1 − θm+1)si−1 + θm+1

(
1 − ∑m

j=1 θ j , θ1, . . . , θm
)
.

Obviously there are many different possible target classes that we could consider. Re-
gardless, for any given target class (�, S, b(θ, s)), sequence of wealth relatives x1, x2, . . . ,

xn , and sequence of side information states s0, . . . , sn−1, the wealth achieved by the port-
folio sequence indexed by θ up to time n is given by

Wn(θ) = W0

n∏
i=1

b′(θ, si−1)xi .

The optimal wealth (or target wealth) achievable for a particular price outcome is denoted
by W∗

n ≡ maxθ∈� Wn(θ). It is possible that the target wealth could be achieved by more
than one portfolio sequence in the target class. Regardless of this, we use θ∗

n to refer to a
particular indexation of an optimizing sequence as of time n, and write W∗

n = Wn(θ∗
n).

We now endeavor to construct universal portfolios with respect to these parameterized
target classes. To this end we consider the portfolio sequence defined by the updating rule

b̂i =
∫
�

b(θ, si−1)Wi−1(θ) dπ (θ)∫
�

Wi−1(θ) dπ (θ)
,(3.1)

where π is some measure on � with π (�) = 1. At each step, b̂i constitutes a weighted
average of portfolios in the target class weighted according to how well these portfolios
have done in the past. In essence it is a simple extension of the procedure presented in
Cover (1991). Indeed if the target class is set to the class of constant rebalanced portfolios,
b̂i becomes the π -weighted version of Cover’s universal portfolio.

We now denote the wealth achieved by b̂i up to time n by Ŵn = W0
∏n

i=1 b̂′
i xi . Note

the following lemma.

LEMMA 3.1.

Ŵn=
∫

�

Wn(θ) dπ (θ).

Proof. The proof follows immediately from a telescoping product argument. Note
that

Ŵn = W0

n∏
i=1

b̂i xi

= W0

n∏
i=1

∫
�

b′(θ, si−1)Wi−1(θ) dπ (θ)∫
�

Wi−1(θ) dπ (θ)
xi

= W0

n∏
i=1

∫
�

Wi (θ) dπ (θ)∫
�

Wi−1(θ) dπ (θ)

=
∫

�

Wn(θ) dπ (θ) �

The portfolio sequence, b̂i , can be interpreted as an implementation of a strategy where
we split the initial wealth over a continuum of investment managers, each of whom uses a
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unique portfolio sequence in the target class indexed by θ. To see this suppose that at the
start of each period each manager invests according to his own θ in portfolio b(θ, si−1).
At the end of each period each manager has wealth proportional to Wi (θ). If originally we
had split our initial wealth according to π , we would have a collective wealth at time n of
Ŵn = ∫

�
Wn(θ) dπ (θ), but as we showed in Lemma 3.1 this is the same wealth achieved

by portfolio sequence b̂i . So in essence the use of b̂i is equivalent to distributing initial
wealth among a continuum of investment managers.

It can be shown that b̂i is universal in the sense that it achieves the same growth rate
of wealth as the best in hindsight strategy over the target class (�, S, b(θ, s)). Recall that
the best in hindsight strategy, indexed by optimal parameter θ∗

n , depends on knowing the
particular outcome of wealth relatives x1, x2, . . . , xn . At the start of period i the strategy
uses the portfolio b′(θ∗

n, si−1) to achieve optimal wealth

W∗
n ≡ max

θ∈�
Wn(θ) = W0

n∏
i=1

b′(θ∗
n, si−1

)
xi

and optimal growth rate of wealth R∗
n ≡ 1

n log W∗
n /W0. In order for b̂i to be universal (i.e.,

to achieve optimal growth of wealth R∗
n without a priori knowledge of wealth relatives)

we must assume the following minimal conditions on target classes and price sequences.

3.1.1. Investment Conditions.

1. There exists constant Lx > 0 such that 1/Lx ≤ xi, j ≤ Lx for all 1 ≤ i ≤ n and
0 ≤ j ≤ m.

2. � ⊆ Rd is convex, compact and has positive Lebesgue measure with respect to
Rd .

3. π has density f (θ) on � (with respect to Lebesgue measure) which is bounded
above 0 by some δ > 0.

4. b(θ, s) is Lipschitz in that there exists constant Lb > 0 independent of θ and s
such that ‖b(θ0, s) − b(θ1, s)‖ ≤ Lb‖θ0 − θ1‖ for all θ0,θ1 ∈ � and s ∈ S.

With these assumptions we now prove that b̂i is universal.

THEOREM 3.1. Suppose the investment conditions hold. Then the sequence of portfolios
b̂i of equation (3.1) is universal with respect to the target class (�, S, b(θ, s)) and achieves
target wealth Wn(θ∗

n) = maxθ∈� Wn(θ) in the sense that

Wn
(
θ∗

n

)
Ŵn

= O(nd )

uniformly over all wealth relative sequences x1, . . . , xn satisfying investment condition 1 and
possible state sequences s1, . . . , sn .

Obviously the above order bound implies b̂i is universal because

lim
n→∞ sup

{xi }n
i=1

(
R∗

n − R̂n
) = lim

n→∞ sup
{xi }n

i=1

1
n

log
Wn

(
θ∗

n

)
Ŵn

= lim
n→∞ O

(
log n

n

)
= 0.
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Proof. The idea of the proof is to show that the wealth generated by the universal
portfolio is concentrated in a small neighborhood of points around θ∗

n shrinking on order
O(n−d ). For this purpose define the neighborhood �∗

n = {θ ∈ � : ‖θ − θ∗
n‖ ≤ 1/n}. By

our investment assumptions the wealth ratio is bounded on these neighborhoods for all
n since

max
θ∈�∗

n

(
Wn

(
θ∗

n

)
Wn(θ)

)
= max

θ∈�∗
n

(
Wn

(
θ∗

n

) − Wn(θ)

Wn(θ)
+ 1

)

= max
θ∈�∗

n

(
W0

∏n
i=1 x′

i

(
b

(
θ∗

n, si−1
) − b(θ, si−1)

)
W0

∏n
i=1 x′

i b(θ, si−1)
+ 1

)

≤ max
θ∈�∗

n

(∏n
i=1 Lx Lb

∥∥θ∗
n − θ

∥∥∏n
i=1 L−1

x

)
+ 1

≤
(∏n

i=1 Lx Lb(1/n)∏n
i=1 L−1

x

)
+ 1

≤
(

L2
x Lb

n

)n

+ 1

< C for some constant C.

Now use the bound on the wealth ratio along with Lemma to note that

Ŵn

W∗
n

=
∫

�

Wn(θ)
W∗

n
dπ (θ)

≥
∫

�∗
n

Wn(θ)
W∗

n
dπ(θ)

= (1/C)π (�∗
n).

The rest of the proof hinges on bounding the π -measure of �∗
n . Since the volume of �∗

n
decreases as O(n−d ) and because we assume that π ’s derivative with respect to Lebesgue
measure is strictly positive it follows that there exists a constant R > 0 such that π (�∗

n) ≥
Rn−d . Therefore,

Ŵn

W∗
n

≥ (1/C)Rn−d .(3.2)

Inverting the ratio we conclude that W ∗
n

Ŵn
is O(nd ).

3.2. Computational Issues

Although portfolio b̂i of (3.1) has the desirable property of universality, its practical us-
age is limited by its computational properties. Unfortunately for any choice of measure
π the calculation of (3.1) generally requires computations that grow exponentially with
the dimensionality of �, as for parameter spaces of more than a few dimensions calcula-
tion can become prohibitively intensive. For most choices of target class and weighting
measure π , the portfolio b̂i lacks a simple formulaic expression and must be computed
via numerical integration.
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For these reasons we are motivated to find similar procedures that are explicitly com-
putable at a faster polynomial rate. Our approach will be to use continuous time versions
of the procedures we have developed thus far. With the specific choice of a Gaussian π

and b(θ, s) linear in θ we will find that our proposed procedure has a simple closed-form
expression that can be computed on order max{m2, d2} steps (m being the number of
stocks and d being the dimensionality of the parameter space �) at any time instance t.

4. UNIVERSALITY IN CONTINUOUS TIME

4.1. Continuously Traded Target Classes

Let us now consider investment in a sequence of continuously traded portfolios selected
among m stocks and cash. As before, we denote a portfolio by the vector b = (b0, b̃) =
(b0, b1, . . . , bm), where vector b̃ = (b1, . . . , bm) holds the proportions of wealth put in each
stock and b0 denotes the proportion of wealth put in cash. To ensure that the portfolio
is self financing we again require that

∑m
j=0 b j = 1. However, unlike the discrete case, we

no longer assume that the b j are nonnegative. In other words we now allow for short
selling and purchase on margin. For convenience we henceforth refer to the set of all such
portfolios as B, and write

B =
{

b ∈ Rm :
m∑

j=0

b j = 1

}
.

We wish to consider continuous time trading within each of T discrete time periods
indexed by τ ∈ {1, . . . , T}. As before, we assume that side information is used at the start
of each period to determine the portfolio to be used for the rest of the period. Again
we assume that such side information is represented by some variable s taking values in
domain S. The idea will be to use the side information to select a constant rebalanced
portfolio at the start of each period and then continuously trade that portfolio for the
rest of the period.

The classes of portfolio sequences we wish to consider are rigorously defined through a
portfolio mapping b : Rd × S → B. Note that unlike in the previous section the parameter
space of the mapping is now the entire Rd space rather than an arbitrary subspace �.
Also unlike the previous section we choose to restrict attention to those portfolio maps
that are linear in θ. Specifically, we consider mappings b(θ, s) = (b0(θ, s), b̃(θ, s)) with
cash component

b0(θ, s) = 1 −
m∑

j=1

b j (θ, s)

and vector of stock components

b̃(θ, s) = (b1(θ, s), . . . , bm(θ, s)) = A(s)θ.

Here A(s) is an m × d linear transformation dependent on the state of side information
s. Thus we write

b(θ, s) = (b0(θ, s), b̃(θ, s)) =
(

1 −
m∑

j=1

A j (s) · θ, A(s)θ

)
,(4.1)

where A j (s) denotes the jth row of matrix A(s).
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It should be noted that our restriction to linear portfolio maps allows us to take
advantage of a special property that we will derive shortly. Specifically, we shall see that
the wealth generated by continuously trading these linear portfolios has a convenient
closed-form expression. In turn, this expression drives the rest of the paper by allowing
us to construct easily computable universal portfolios. In general, similar closed-form
expressions of wealth do not exist for nonlinear mappings and hence we impose this
restriction.

To proceed, the types of strategies we wish to consider are as follows. At the start
of period 1, use the available side information s0 and portfolio mapping b(θ, s) to set
the constant rebalanced portfolio b1 = b(θ, s0). Then take b1 and trade it continuously
over time period t ∈ (0, 1]. At the start of the second period, take side information s1

and set the constant rebalanced portfolio b2 = b(θ, s1) and trade it continuously over
period t ∈ (1, 2]. Repeat the process T times until the invest horizon is reached at time
t = T.

As before, we think of the target class as a triplet of parameter space, side infor-
mation domain, and portfolio map (i.e., (Rd , S, b(θ, s))) or, equivalently for the linear
mapping case, as a triplet of parameter space, side information domain, and linear trans-
formation (Rd , S, A(s)). Every θ ∈ Rd corresponds to a member of the class that repre-
sents a sequence of T constant rebalanced portfolios traded continuously over T time
periods.

We now wish to calculate the wealth achieved by these strategies. This may be done by
looking at the wealth achieved by rebalancing only n times a period and then taking the
limit as n → ∞. Thus let pt, j denote the price of stock j at time t ∈ [0, T ]. As before, we
suppose that we start with some initial wealth W0. Clearly the end wealth achieved by
strategy θ rebalanced n times a period is

W (n)
T (θ) = W0

T∏
τ=1

n∏
k=1

(
b0(θ, sτ−1) +

m∑
j=1

b j (θ, sτ−1)
pkτ/n, j

p(k−1)τ/n, j

)
(4.2)

= W0

T∏
τ=1

n∏
k=1

(
1 +

m∑
j=1

b j (θ, sτ−1)
(

pkτ/n, j

p(k−1)τ/n, j
− 1

))
.

We would like to know what happens as n → ∞ (i.e., when we trade continuously). Thus
we seek an expression for the limiting wealth WT(θ) = limn→∞ W (n)

T (θ) for an arbitrary
price path pt, j . To derive this limit it will be convenient to work with the log price path
Zt ≡ (log pt,1, . . . , log pt,m). For any realization of this path we define the empirical log-
drift over period τ as

µτ ≡ (µτ,1, . . . , µτ,m) = (Zτ,1 − Zτ−1,1, . . . , Zτ,m − Zτ−1,m).

Similarly, we also define the sequence of empirical covariance matrices K(n)
τ for period τ

having entries

K (n)
τ,i, j ≡

n∑
k=1

(
Z(k/n)τ,i − Z((k−1)/n)τ,i

) (
Z(k/n)τ, j − Z((k−1)/n)τ, j

)
.

In order to derive a limiting wealth Wt(θ) we need to assume that price paths are not
too wild in their fluctuation. Specifically they need to exhibit finite quadratic variation.
We would also like the empirical covariance matrices to converge to some positive definite
limit. Henceforth we require the following conditions.
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4.1.1. Minimal Path Conditions.

1. There exists a constant Lp > 0 dependent on the path such that(
1 + Lp(1 + log n)√

n

)−1

≤ pkτ/n, j

p(k−1)τ/n, j
≤ 1 + Lp(1 + log n)√

n

for all n, k ∈ {1, . . . , n}, τ ∈ {1, . . . , T}, and j ∈ {1, . . . , m}.
2. There exists a positive definite matrix Kτ such that limn→∞ K(n)

τ = Kτ elementwise.

Given these assumptions we now derive the wealth achieved by continuously trading
b(θ, sτ−1). It should come as no surprise that the expression we derive is in agreement with
results previously published by Merton (1969, 1971) and Larson (1986). However, unlike
their results, which are proved using an underlying diffusion process for pt, we choose to
stay away from stochastic assumptions and instead presume only path properties. This
nonstochastic setting is consistent with our goal of developing universal procedures that
have growth optimal properties independent of stochastics.

THEOREM 4.1. If the minimal path conditions hold, the wealth factor from continuously
trading bτ = b(θ, sτ−1) each time period is

Wτ (θ)/Wτ−1(θ) = exp
{
µ′

τ b̃τ + 1
2

diag(Kτ )′̃bτ − 1
2

b̃′
τ Kτ b̃τ

}
with b̃τ = A(sτ−1)θ and hence the wealth achieved by time T is

WT(θ) = W0 exp

{
T∑

τ=1

µ′
τ A(sτ−1)θ + 1

2

T∑
τ=1

diag(Kτ )′A(sτ−1)θ(4.3)

− 1
2

T∑
τ=1

θ′A′(sτ−1)Kτ A(sτ−1)θ

}
,

an exponential quadratic in θ. Furthermore, if the d × d matrix

ΩT ≡ A′(s0)K1A(s0) + · · · + A′(sT−1)KTA(sT−1)

is invertible, then

WT(θ) = exp
{
−1

2
(θ − vT)′ΩT(θ − vT) + 1

2
v′

TΩTvT

}
,(4.4)

where

vT = Ω−1
T

(
A′(s0)

[
µ1 + 1

2
diag (K1)

]
+ · · · + A′(sT−1)

[
µ1 + 1

2
diag (KT)

])
.

Proof. The theorem is a corollary of Lemma 5.1 presented in Section 5.1. Both are
proved in the Appendix. �

Although Theorem 4.1 is stated in terms of the terminal wealth WT(θ) at an integer
time T, it is a straightforward exercise to show that the wealth Wt(θ) for any real-valued
time t < T is
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Wt(θ) = W0 exp

{ ∑
τ=I(t)

(µτ )′A(sτ )θ + 1
2

∑
τ=I(t)

diag (Kτ )′A(sτ )θ(4.5)

− 1
2

∑
τ=I(t)

θ′A′(sτ )Kτ A(sτ )θ

}
,

where I(t) = {1, . . . , �t� − 1, t} and st = s�t�. Here µt and Kt represent the empirical drift
and covariance measures over the truncated interval (�t� − 1, t]. Similarly, defining

Ωt ≡ A′(s0)K1A(s0) + · · · + A′ (s�t�−2
)

K�t�−1A
(
s�t�−2

) + A′ (s�t�−1
)

KtA
(
s�t�−1

)
and

vt = Ω−1
t

(
A′(s1)

[
µ1 + 1

2
diag (K1)

]
+ · · · + A′ (s�t�

) [
µt + 1

2
diag (Kt)

])
,

we can also write Wt(θ) as

Wt(θ) = exp
{
−1

2
(θ − vt)′Ωt(θ − vt) + 1

2
v′

tΩtvt

}
.(4.6)

4.2. Continuously Traded Universal Procedures

Our goal now is to find a universal procedure for the continuously traded target classes
just described. Many of our results will be similar to those derived by Jamshidian (1992)
for the constant rebalanced portfolio class.

In the continuous time setting we think of a universal portfolio as a nonanticipating
sequence of portfolios {̂bt}T

t=0 that generate wealth ŴT matching the hindsight optimal
wealth W∗

T ≡ maxθ∈Rd WT(θ) to first order in the exponent. An intuitive way to generate
such a procedure is to take the discrete-time universal portfolio (3.1) and trade it on finer
and finer time scales. Thus, at the start of period t = k/n we set the portfolio

b̂
(n)
t =

∫
�

b
(
θ, s�t�−1

)
W (n)

t (θ) dπ (θ)∫
�

W (n)
t (θ) dπ (θ)

.

Here we take � to be a large subset of Rd and time increments 1/n to be sufficiently small
such that W (n)

t (θ) mimics Wt(θ). In the limit as n → ∞ and � increases to Rd this results
in continuously trading the portfolio

b̂t =
∫

Rd b
(
θ, s�t�−1

)
Wt−1/n(θ) dπ (θ)∫

Rd Wt−1/n(θ) dπ (θ)
,(4.7)

at each time instance t.
In order to gain simple computation of b̂t it would help to choose a measure π (θ)

that yielded convenient closed-form expressions for (4.7). Here the Bayesian concept of
a normal conjugate prior proves to be very useful. Recall that when a prior Gaussian
density is used in conjunction with a Gaussian sampling density the resulting posterior
density is also Gaussian. To apply this to the present case note from (4.6) that Wt(θ)
is an exponential quadratic in θ and is hence equivalent to a nonnormalized Gaussian
density. Choosing π to be an arbitrary Gaussian measure we conclude from the normal
conjugation property that the measure

Wt(θ) dπ (θ)∫
Rd Wt(θ) dπ (θ)

(4.8)
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is also Gaussian. Therefore upon examining (4.7) we see that the calculation of b̂t is
equivalent to a normal expectation calculation.

Suppose then that we choose π ∼ N(λ,Λ) with λ ∈ Rd and positive definite Λ. By
completing the square in the exponent of Wt(θ) dπ (θ), it is quickly verified that (4.8) is
Gaussian with mean

ψt = (
Ωt + Λ−1)−1

(
A′(s0)

[
µ1 + 1

2
diag (K1)

]
+ · · ·

+ A′ (s�t�−1
) [

µt + 1
2

diag (Kt)
]

+ Λ−1λ

)
and covariance (

Ωt + Λ−1)−1
.

Thus it follows that the stock component, ˜̂bt, of {(4.7)} is now

˜̂bt =
∫

Rd b̃
(
θ, s�t�−1

)
Wt(θ) dπ (θ)∫

Rd Wt(θ) dπ (θ)
(4.9)

=
∫

Rd A
(
s�t�−1

)
θWt(θ) dπ (θ)∫

Rd Wt(θ) dπ (θ)

= A(s�t�−1
)
ψt

with cash component b̂t,0 = 1 − ∑m
j=1

(
A

(
s�t�−1

)
ψt

)
j .

Shortly we will prove the universality of b̂t with respect to instances of the general
continuously traded target class (Rd , S, A(s)). In preparation for the proof we restrict
attention to classes and price paths satisfying the following conditions.

4.2.1. Universality Conditions.

1. The minimal path conditions hold.
2. There exists a constant Lµ > 0 independent of T such that 1

T

∑T
τ=1 ‖µτ‖ < Lµ

for all T ∈ Z+.
3. There exists a constant LK > 0 independent of T such that 1

T

∑T
τ=1 λmax (Kτ ) <

LK, where λmax (Kτ ) denotes the maximum eigenvalue of Kτ .
4. For any s ∈ S, the m × d matrix A(s) has full rank and there exists a constant

LA > 0 independent of s such that λmax(A(s)A′(s)) ≤ LA,d .
5. There exists some integer β (possibly dependent on price path and side informa-

tion sequence) such that Ωt is invertible for all times t > β.
6. For T > β, there exists positive constants L−

Ω and L+
Ω independent of T such

that the minimum and maximum eigenvalues of ΩT satisfy, L−
ΩT ≤ λmin(ΩT) ≤

λmax(Ωt) ≤ L+
ΩT.

The key to the universality proof is the following lemma, which gives the wealth
achieved by trading b̂t continuously. Note the similarity to Lemma 3.1 of Section 3.1.

LEMMA 4.1. Suppose that the universality conditions hold. Let Ŵt be the wealth achieved
by trading b̂t (with stock component (4.9)) continuously over time interval [0, T ] with
respect to the class (Rd , S, A(s)). Then
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ŴT =
∫

Rd
WT(θ) dπ (θ)(4.10)

for all T.

Proof. The proof follows from building b̂t from discrete time procedures and then
examining the wealths of these discrete procedures in the limit.

First consider bτ = b(θ, sτ ) traded only n times per period for each period τ =
1, 2, . . . , T. Let W (n)

T (θ) be the wealth achieved by this strategy. We note from Theorem
4.1 that limn→∞ W (n)

T (θ) = WT(θ) with WT(θ) given in (4.3). From Lemma 5.1 (stated
and proved in the next section) it can be quickly verified that, for any λ ∈ R and compact
set �λ = {θ ∈ Rd : ‖θ‖ ≤ λ},

lim
n→∞ sup

θ∈�λ

∣∣∣W (n)
T (θ) − WT(θ)

∣∣∣ = 0.

From this it follows that there exists an N such that W (n)
T (θ) is uniformly bounded over

θ ∈ �λ and n ≥ N. It is straightforward to extend this conclusion to W (n)
t (θ) for any fixed

real time t < T.
Now consider investment in the discrete procedure in which integration over Rd is

replaced by integration over �λ,

b̂
(n)
t,λ =

∫
�λ

b
(
θ, s�t�−1

)
W (n)

t (θ) dπ (θ)∫
�λ

W (n)
t (θ) dπ (θ)

.

The procedure rebalances n times a period for T periods (i.e., we use b̂
(n)
0,λ at time t = 0,

then rebalance according to b̂
(n)
1/n,λ at time t = 1/n, rebalance to b̂

(n)
2/n,λ at t = 2/n, etc.).

By Lemma 3.1 this strategy yields a wealth of Ŵ
(n)
T,λ = ∫

�λ
W (n)

T (θ) dπ (θ). Now increase
the size of n. Since the functions W (n)

t (θ),θ ∈ �λ are bounded uniformly in n, for any
given t ≤ T we can use dominated convergence to show that

b̂t,λ ≡ lim
n→∞ b̂

(n)
t,λ =

∫
�λ

b
(
θ, s�t�−1

)
Wt(θ) dπ (θ)∫

�λ
Wt(θ) dπ (θ)

.(4.11)

Similarly we can apply dominated convergence once more to prove that

Ŵt,λ = lim
n→∞ Ŵ

(n)
t,λ =

∫
�λ

Wt(θ) dπ (θ).(4.12)

The final step in the proof is to let λ → ∞ and allow �λ to increase to all of Rd .
Looking at (4.5) it can be seen that Wt(θ) is π -integrable over Rd when π is taken to be
a Gaussian measure. Hence, by one more application of dominated convergence,

b̂t ≡ lim
λ→∞

b̂t,λ =
∫

Rd b
(
θ, s�t�−1

)
Wt(θ) dπ (θ)∫

Rd Wt(θ) dπ (θ)

and

Ŵt ≡ lim
λ→∞

Ŵt,λ =
∫

Rd
Wt(θ) dπ (θ). �

We now use Lemma 4.1 to prove the universality of b̂t. Recall that b̂t is universal with
respect to a target class if it comes within a polynomial factor of the hindsight optimal
wealth W∗

t = maxθ∈Rd Wt(θ).
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THEOREM 4.2. Suppose that the universality conditions hold. Then b̂t with stock com-
ponent (4.9) is universal with respect to the linear target class (Rd , S, A(s)) in the sense that
there is a constant C such that for any T > max

{
β, λmax(Λ−1)/L−

Ω

}
W∗

T

ŴT
≤ CTd/2.

Proof. Since T > β it follows that Ωt is invertible and expression (4.4) is valid for
WT(θ). Recall by Lemma 4.1 that ŴT = ∫

Rd WT(θ) dπ (θ). Use (4.4) and the fact that
π ∼ N(λ,Λ) to compute

∫
Rd WT(θ) dπ (θ) and conclude that

ŴT = W0
(|Λ| ∣∣ΩT + Λ−1

∣∣)−1/2
exp

{
1
2
ψ ′

T

(
ΩT + Λ−1) ψT − 1

2
λ′Λ−1λ

}
.

Compute W∗
T by maximizing (4.4) over θ. This yields θ∗ = vT and W∗

T =
W0 exp

{ 1
2 v′

TΩTvT
}
. Thus,

W∗
T

ŴT
= (|Λ| ∣∣ΩT + Λ−1

∣∣)1/2
(4.13)

× exp
{
−1

2
ψ ′

T

(
ΩT + Λ−1) ψT + 1

2
v′

TΩ−1
T vT + 1

2
λ′Λ−1λ

}
.

We bound each part of the expression in turn. First note that(|Λ| ∣∣ΩT + Λ−1
∣∣)1/2 = (|Λ�T + I|)1/2 .

Since det A ≤ (λmax(A))d for any d × d matrix A, it follows that

(|Λ�T + I|)1/2 ≤ [λmax (Λ�T + I)]d/2 .

But λmax(Λ�T + I) ≤ λmax(Λ)λmax(ΩT) + 1 ≤ λmax(Λ)L+
ΩT + 1, so(|Λ| ∣∣ΩT + Λ−1

∣∣)1/2 ≤ [
λmax(Λ)L+

ΩT + 1
]d/2 = O(Td/2).

All that remains is to show the exponential term of (4.13) is of constant order. First
note that

(4.14)

‖vT‖ = λmax
(
Ω−1

T

) T∑
τ=1

([
µτ + 1

2
diag Kτ

]′
A(sτ−1)A′ (sτ−1)

[
µt + 1

2
diag Kτ

])1/2

≤ 1
λmin(ΩT)

T∑
τ=1

λmax(A
(
sτ−1)A′ (sτ−1)

)1/2
∥∥∥∥µτ + 1

2
diag Kτ

∥∥∥∥
≤ L1/2

A,d

L−
ΩT

T∑
τ=1

(
‖µτ‖ +

√
m

2
λmax (Kτ )

)

≤ L1/2
A,d

L−
Ω

Lµ

√
m

2
LK = O(1).
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Since ψT = (ΩT + Λ−1)−1(ΩTvT + Λ−1λ), it follows that

‖ψT‖ = ‖ (
ΩT + �−1)−1 (

ΩTvT + �−1λ
) ‖(4.15)

≤ 1

λmin
(
ΩT + Λ−1) ∥∥ΩTvT + Λ−1λ

∥∥
≤ λmax (ΩT) ‖vT‖ + ‖Λ−1λ‖

λmin (ΩT)

≤ L+
ΩTO(1) + ‖�−1λ‖

L−
ΩT

= O(1).

Now take the exponential term of (4.13). Note that

exp
{
−1

2
ψ ′

T

(
ΩT + Λ−1) ψT + 1

2
v′

TΩTvT + 1
2
λ′Λ−1λ

}
(4.16)

= exp
{
−1

2
(ψT + vT)′ ΩT (ψT − vT) − 1

2
ψ ′

TΛ−1ψT + 1
2
λ′Λ−1λ

}
The third term in the exponent is constant by definition and the second term is bounded
by virtue of (4.15). Thus the proof is complete if we can show that

−1
2

(ψT + vT)′ ΩT (ψT − vT)

is bounded. Note that

−1
2

(ψT + vT)′ ΩT (ψT − vT)

≤ λmax (ΩT)
2

‖ψT + vT‖ ‖ψT − vT‖

≤ L+
ΩT
2

‖ψT + vT‖
∥∥∥(

ΩT + Λ−1)−1
Λ−1 (λ − vT)

∥∥∥
≤ L+

ΩT
2

‖ψT + vT‖ λmax
(
Λ−1)

λmin
(
ΩT + Λ−1) ‖(λ − vT)‖

≤ L+
ΩT
2

λmax
(
Λ−1)

λmin (ΩT)
(‖ψT‖ + ‖vT‖) (‖λ‖ + ‖vT‖)

≤ L+
Ωλmax

(
Λ−1)

2L−
Ω

(‖ψT‖ + ‖vT‖) (‖λ‖ + ‖vT‖)

= O(1)

by virtue of (4.14) and (4.15).
Hence the theorem is proved. �
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5. AN EFFICIENT UNIVERSAL PORTFOLIO

5.1. Definition and Main Theorem

We know from Theorem 4.2 that the continuously traded portfolio,

b̂t =
(

1 −
m∑

j=1

(
A

(
s�t�−1

)
ψt

)
j , A

(
s�t�−1

)
ψt

)
(5.1)

of Section 4.2 is universal with respect to the continuously traded target class (Rd , S, A(s)).
Moreover, due to the closed-form expression of ψt this portfolio is computable at any time
t in a polynomial number of steps. Although the properties of b̂t are certainly desirable,
its continuous updating makes it unusable for real-world application. For practicality we
would like to find a discretely traded adaptation of b̂t that retains the universality and ease
of computation. The thought is to trade portfolio b̂t following formula (5.1) only n times
a period (i.e., at times

{ 1
n , 2

n , . . . , T
}
) with nonanticipating discrete-time approximations

to ψt. Specifically, at time t = k/n we consider trading the portfolio

b̂
(n)
k/n ≡

(
1 −

m∑
j=1

(
A

(
s�k/n�−1

)
ψ

(n)
(k−1)/n

)
j
A

(
s�k/n�−1

)
ψ

(n)
k−1/n

)
,(5.2)

where intuitively

ψ
(n)
k/n ≡

(
Ω(n)

k/n + Λ−1
)−1

(
A′ (s0)

[
µ1 + 1

2
diag

(
K(n)

1

)]
+ · · ·(5.3)

+ A′ (s�k/n�−1
) [

µk/n + 1
2

diag
(

K(n)
k/n

)] )
+ Λ−1λ,

and

Ω(n)
k/n ≡ A′ (s0) K(n)

1 A (s0) + · · · + A′ (s�k/n�−2
)

K(n)
�k/n�−1A

(
s�k/n�−2

)
+ A′ (s�k/n�−1

)
K(n)

k/nA
(
s�k/n�−1

)
.

If n is large there is little difference between the wealth achieved by b̂
(n)
k/n and its con-

tinuously traded counterpart b̂t. Indeed the following analysis culminating in Theorem
5.1 shows this rigorously. The intuition behind the theorem can be summarized in a few
steps. First, note that for large n there is little difference between the wealths achieved by
trading b̂t continuously and trading it n times per period through formula

b̂k/n =
∫

Rd b
(
θ, s�t�−1

)
W(k−1)/n(θ) dπ (θ)∫

Rd W(k−1)/n(θ) dπ (θ)
.

However, for large n, W(k−1)/n(θ) is close to the exponential quadratic W0 exp{q(k−1)/n(θ)},
where

qk/n(θ) ≡
∑

τ∈I(k/n)

µ′
τ A

(
s�t�−1

)
θ + 1

2

∑
τ∈I(k/n)

diag
(
K(n)

τ

)′
A

(
s�t�−1

)
θ

− 1
2

∑
τ∈I(k/n)

θA′ (s�t�−1
)

K(n)
k/n, j, j A

(
s�t�−1

)
θ
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is a discrete version of the quadratic in expression (4.5) of continuously traded wealth
Wt(θ). (Recall that I(k/n) ≡ {1, . . . , �k/n� − 1, k/n}.) Therefore, trading b̂k/n achieves
almost the same wealth as trading

b̂
(n)
k/n =

∫
Rd b

(
θ, s�k/n�−1

)
exp

{
q(k−1)/n(θ )

}
dπ (θ)∫

Rd exp
{
q(k−1)/n(θ)

}
dπ (θ)

.(5.4)

However, using the form of qk/n(θ) we can quickly verify that measure

dGk,n(θ) ≡ exp{qk/n(θ)} dπ (θ)∫
Rd exp{qk/n(θ)} dπ (θ)

, π ∼ N(λ,Λ),(5.5)

is Gaussian with mean ψ
(n)
k/n and covariance

(
Ω(n)

k/n + Λ−1)−1
, and upon evaluating (5.4)

we end up with the originally defined b̂
(n)
k/n of (5.2).

Key to the analysis is that W(k−1)/n(θ) is closely approximated by the exponential
quadratic W0 exp{q(k−1)/n(θ)} This can be concluded from the following lemma.

LEMMA 5.1. Assume the minimal path condition holds. If at times t ∈ {k/n : k ∈ {0, . . . ,

Tn}} we rebalance according to b(θ, s�t�−1) with stock portfolio b̃(θ, s�t�−1) = A(s�t�−1)θ,

then for constant 0 < C < 1 and B such that B < C
√

n
Lp(1+log n) and θ satisfying

‖A(s�t�−1)θ‖1 ≤ B for all t, the wealth achieved by time k/n is

W(n)
k/n(θ) = W0 exp

{
qk/n (θ) + εk/n(θ)

}
,

where εk/n(θ) is O(B3kn−3/2 log3 n). Moreover, the distance between consecutive remainder
terms, |εk/n(θ) − ε(k−1)/n(θ)| is O(B3n−3/2 log3 n).

Proof. See the Appendix.

The lemma is essentially a refinement of Theorem 4.1, which gives expressions for con-
tinuous time wealth Wt(θ). If n → ∞ in the above lemma we can verify that quadratic
qk/n(θ) converges to the same quadratics used in the expressions of Wt(θ) found in
Theorem 4.1.

We now present a theorem showing that b̂
(n)
k/n achieves a growth rate of wealth arbitrarily

close to that of the hindsight optimal wealth W∗
T of the continuously traded target class

(Rd , S, A(s)). This is predicated on the following conditions.

5.1.1. Universality Conditions (Discretized Case). For all n ∈ N, T ∈ N and k ∈ {1, . . . ,

Tn}, the following hold.

1.
(
1 + Lp(1+log n)√

n

)−1 ≤ pk/n, j

p(k−1)/n, j
≤ 1 + Lp(1+log n)√

n for some Lp > 0.
2. There exists constant Lµ > 0, independent of n and k such that,

1
�k/n�

∑
τ∈I(k/n) ‖µ(n)

τ ‖ < Lµ. (Here, I(k/n) ≡ {1, . . . , �k/n� − 1, k/n}.)
3. The empirical covariance matrix K(n)

k/n is positive definite and there exists constant
LK > 0 independent of n and k such that 1

�k/n�
∑

τ∈I(k/n) λmax(K(n)
k/n) ≤ LK.

4. There exists a constant L̃K > 0 such that |λ|max(Kk/n − K(n)
k/n) ≤ L̃K√

n .
5. For any s ∈ S, the m × d matrix A(s) is of full rank and there exist positive

constants LA,m and LA,d such that λmax(A(s)A′(s)) ≤ LA,m and λmax(A′(s)A(s)) ≤
LA,d .
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6. The number of periods required for Ω(n)
k/n to become invertible is at most some

integer β.
7. For all k/n > β there exists positive constants L−

Ω and L+
Ω independent of T such

that L−
Ω(k/n − β) ≤ λmin(Ω(n)

k/n) and λmax(Ω(n)
k/n) ≤ L+

Ω(k/n − β).

THEOREM 5.1. Assume that the above universality conditions (discretized case) hold.
Let Ŵ(n)

T be the wealth achieved by trading portfolio sequence b̂
(n)
k/n of formula (5.2) to

time T. Let W∗
T be the wealth achieved by the best in hindsight strategy in the continuously

traded target class (Rd , S, A(s)θ). Then for any ε > 0 we can find an integer N and positive
constants α and C such that

W∗
T

Ŵ(n)
T

≤ CTd/2 exp
{
αT/n1/2−ε

}
for all n > N.

Proof. See the Appendix.

Theorem 5.1 explains how we can use b̂
(n)
k/n to be universal with respect to the target

wealth W∗
T. The first observation we make is that, for fixed n,

lim
T→∞

sup
pt

1
T

log
W∗

T

Ŵ(n(T ))
T

≤ lim
T→∞

1
T

log
(
CTd/2 exp

{
αT/n1/2−ε

})
= α/n1/2−ε.

(Here, suppt
represents the supremum over all price paths satisfying the minimal path

and universality conditions.) Hence b̂
(n)
k/n comes within a factor of α/n1/2−ε of the optimal

growth rate. However we can make this difference arbitrarily small by choosing n suffi-

ciently large. To be actually universal though, we need to trade b̂
(n)
k/n at increasingly smaller

intervals. By making n(T ) an increasing function of T such that limT→∞ n(T ) = ∞, we
see that

lim
T→∞

sup
pt

1
T

log
W∗

T

Ŵ(n(T ))
T

≤ lim
T→∞

α/n(T )1/2−ε = 0,

which implies that b̂
(n)
k/n is now universal. The second observation we make is that if

n(T ) ≥ T2+δ for some δ > 0 then the wealth ratio W∗
T/Ŵ(n)

T becomes O(Td/2). To justify
this, note that

W∗
T

Ŵ (n(T ))
T

≤ CTd/2 exp{αT/n1/2−ε}

≤ CTd/2 exp{αT/T1−2ε+δ/2−εδ}.
By choosing ε < δ

2(2+δ) , it follows that 1 − 2ε + δ/2 − εδ > 1 and hence T/T1−2ε+δ/2−εδ

is upper bounded by some constant, implying that

W∗
T

Ŵ (n(T ))
T

≤ CTd/2.

Hence b̂
(n)
k/n comes within a polynomial bound of the target wealth on this schedule.
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5.2. Final Note on Computation

A nice property of b̂
(n)
k/n is that it is computable in order max{m2, d2} steps where m is the

number of stocks and d is the dimension of the target class parameter space. To see this
note that computation at each step depends on computing ψ

(n)
(k−1)/n . To compute ψ

(n)
(k−1)/n

we start with stored values of Ω(n)
(k−2)/n and K(n)

(k−2)/n and note that

K(n)
(k−1)/n = K(n)

(k−2)/n + δ(k−1)/nδ
′
(k−1)/n(5.7)

and

Ω(n)
(k−1)/n = Ω(n)

(k−2)/n + A′ (s�k/n�−1
)
δ(k−1)/nδ

′
(k−1)/nA

(
s�k/n�−1

)
,(5.8)

where δ(k−1)/n is the m-dimensional incremental log drift vector

δ(k−1)/n = Z(k−1)/n − Z(k−2)/n .

Both updates (5.7) and (5.8) are computable on order max{m2, d2}. The next quantity
needed to compute ψ

(n)
(k−1)/n is the inverse

(
Ω(n)

(k−1)/n + Λ−1)−1
. Generally the computation

of the inverse of a d × d matrix such as Ω(n)
(k−1)/n + Λ−1 requires on the order of d3

steps. However if we store
(
Ω(n)

(k−2)/n + Λ−1)−1
it is possible to use the Sherman-Morrison

formula for matrix inversion (see Golub and Van Loan, 1997) to reduce the number
of steps to order d2. In particular, if M is any invertible d × d matrix and if v is any d
dimensional vector then it is true that

(M + vv′)−1 = M−1 + M−1vv′M−1

1 + v′M−1v
.

Since the right-hand side computes on order d2 steps we can set M to Ω(n)
(k−2)/n + Λ−1 and

v to δ(k−1)/n to conclude that
(
Ω(n)

(k−2)/n + Λ−1)−1
is computable on order d2 steps. Thus

every component of ψ
(n)
(k−1)/n is computable at the most on order max{m2, d2} steps, so it

follows that b̂
(n)
k/n is as well.

6. CONCLUSION

In this paper we have developed a discretely traded universal portfolio (i.e., b̂
(n)
k/n of (5.2))

that, under certain assumptions, achieves the same growth rate as the best hindsight
strategy among a user-specified, continuously traded target class. The portfolio offers
two main advantages over other previous procedures. The first advantage is that the
algorithm used to generate the universal portfolio can be adapted so that the resulting
portfolio can be universal with respect to different linearly parameterized target classes.
The target classes may also employ a continuous form of dependence on side information
not previously considered. In this setting the continuous rebalanced portfolio class used
by previous authors becomes a special case.

The second advantage of our portfolio is that, unlike previous procedures, the portfolio
is computable in a polynomial time through a simple closed-form expression. The motiva-
tion of the expression borrows heavily from the Bayesian concept of normal conjugation.
Knowing that the wealth function of continuously traded linearly parameterized target
classes is Gaussian (à la (4.3)) and that the universal portfolio is merely a wealth-weighted
combination of the target class portfolios, if one averages these portfolios using a second
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Gaussian measure, the resulting universal portfolio is interpretable as the mean of a “pos-
terior” Gaussian distribution for which elementary closed-form expressions exist. This is
an improvement over other procedures, which in general require numerical methods to
compute.

As a final note, we reiterate that obtaining an efficient universal procedure for more
general target classes comes at a cost in that universality is restricted to sets of price paths
satisfying certain regularity conditions, the most notable being that prices are bounded
above zero. When restricting consideration to the constant rebalanced portfolio target
class considered by Cover (1991) such regularity conditions are generally unnecessary
to achieve a universal procedure. Indeed this also true for our discrete time results in
the third section of the paper if we choose to use constant rebalanced portfolios as our
target class. This follows from noting that under this choice of target class our framework
reduces to a direct analog of the framework originally proposed by Cover. However
for the more general target classes considered in the bulk of the paper, the scope of
universality is reduced to a more restrictive set of price paths satisfying the given regularity
conditions.

APPENDIX: PROOFS

A.1 Proof of Theorem 3.1

To prove Theorem 3.1 we use the following lemma.

LEMMA A.1. Under the assumptions of Theorem 3.1, there exists a constant R > 0
independent of n such that π (�∗

n) ≥ Rn−d .

Proof. First note that because the density of π is uniformly bounded above 0 by δ > 0
it follows that π (�∗

n) ≥ δ Vol(�∗
n), where Vol(·) denotes the Lebesgue measure (or volume)

of a set.
To bound Vol(�∗

n) it is useful to use the identity �∗
n = �

⋂
B(θ∗

n,
1
n ), where B(θ∗

n,
1
n ) =

{θ ∈ Rd : ‖θ − θ∗
n‖ ≤ 1

n } is a θ∗
n centered closed ball in Rd . Using this identity we en-

deavor to show that there exists a constant C > 0 independent of n for which Vol(�∗
n) ≥

C Vol(B(θ∗
n,

ε
n )). This can be shown by taking a d-dimensional closed ball in � and con-

sidering its convex extension to θ∗
n . By examining the volume of the intersection between

this convex hull and B(θ∗
n,

1
n ) we are able to show that C exists.

First, to justify the existence of a d-dimensional closed ball in � we note that there
exist d points in � such that there is no d − 1 dimensional hyperplane containing all d
points. If this were not the case, � would lie in a d − 1 subspace and thus would have a
null Lebesgue measure, which contradicts our assumptions. By the convexity of �, the
convex hull of these d points is a subset of � and clearly a closed ball exists in such a
hull.

Suppose this closed ball has center θ0 and radius r > 0. Label it B(θ0, r ) ≡ {θ ∈
Rd |‖θ − θ0‖ ≤ r}. Now define a convex extension to this ball. For parameter θ∗

n ∈ �

we define H(θ∗
n) = {θ : θ = λθ∗

n + (1 − λ)θ′, λ ∈ [0, 1],θ′ ∈ B(θ0, r )}. By its definition,
H(θ∗

n) is the convex hull of B(θ0, r ) and maximal parameter θ∗
n . The set can be visualized

as an ice cream cone with tip θ∗
n and scoop B(θ0, r ). Since θ∗ is contained in � as is

B(θ0, r ), it follows from convexity of � that H(θ∗
n) is also in �.

Now consider the volume of the intersection between ball B(θ∗
n, 1/n) and cone H(θ∗

n).
The cone H(θ∗

n) has been purposely defined to have its tip coincide with the center of
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B(θ∗
n, 1/n). For sufficiently large n, the radius of B(θ∗

n, 1/n) will be smaller than that of
B(θ0, r ), the ball atop H(θ∗

n). In this case, a geometric argument shows that

Vol
(

B
(
θ∗

n, 1/n
) ⋂

H
(
θ∗

n

)) ≥ A
(
θ∗

n

)
Vol

(
B

(
θ∗

n, 1/n
))

,

where A(θ∗
n) is the proportion of the surface area of B(θ∗

n, 1/n) contained in H(θ∗
n).

As θ∗
n gets farther away from θ0 (the center of the scoop), the cone narrows and A(θ∗

n)
gets smaller. However it only vanishes completely when this distance between θ∗

n and
θ0 is infinite. Since � is compact, the distance is bounded and hence A(θ∗

n) is uniformly
bounded above 0 for all θ∗

n ∈ �. Thus we can select constant C > 0 such that

Vol
(

B
(
θ∗

n, 1/n
) ⋂

H
(
θ∗

n

)) ≥ C Vol
(
B

(
θ∗

n, 1/n
))

, ∀θ∗
n ∈ �∗.(A.1)

Although this inequality is only justified for n larger than some N > 0, we can make (A.1)
hold for all n by defining C to be the lesser of

inf
n≤N

{
Vol

(
B

(
θ∗

n, 1/n
) ⋂

H
(
θ∗

n

))
Vol (H (θ∗))

}
,

and

inf
θ∗

n∈�,n>N
A

(
θ∗

n

)
.

Both these infimums are strictly positive so we have C > 0 as required.
To end the proof we note that

π
(
θ∗

ε/n

) ≥ δ Vol
(
�∗

n

)
= δ Vol

(
B

(
θ∗

n, 1/n
) ⋂

�
)

≥ δ Vol
(

B
(
θ∗

n, 1/n
) ⋂

H
(
θ∗

n

))
≥ δ CVol

(
B

(
θ∗

n, 1/n
))

= δCKn−d for some K > 0

= Rn−d with R = δCK. �

A.2 Proof of Theorem 4.1 and Lemma 5.1

Theorem 4.1 follows from Lemma 5.1 so we prove the latter first.

Proof. Suppose we trade b(θ, s) a total of n times a period for T periods. For wealth
relatives xh/n = (xh/n,0, xh/n,1, . . . , xh/n,m), with xh/n, j = ph/n, j/p(h−1)/n, j denoting the
wealth relative for the jth stock and xh/n,0 = 1 denoting the wealth relative of cash, the
wealth achieved by this strategy by time t = k/n is

W(n)
k/n(θ) = W0

k∏
h=1

b′(θ, s�h/n�−1
)
xh/n .

For simplification we hereafter write bh/n for b′(θ, s�h/n�−1) with the understanding that
bh/n is dependent on θ and side information state s�h/n�−1. Now we define rh/n, j ≡
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log(xh/n, j ) and write

W(n)
k/n(θ) = W0

k∏
h=1

m∑
j=0

bh/n, j exp{rh/n, j }

= W0 exp

{
k∑

h=1

log

(
m∑

j=0

bh/n, j exp{rh/n, j }
)}

.

We interpret the exponent of (A.2) as a function of (rh/n,1, . . . , rh/n,m), (noting
that rh/n,0 is always 0 because xh/n,0 = 1), and we define f (rh/n,1, . . . , rh/n,m) =
log(

∑m
j=0 bh/n, j exp{rh/n, j }). Taking the Taylor expansion of f about (0, . . . , 0) we get

(A.3)

f (rh/n,1, . . . , rh/n,m) =
m∑

j=1

bh/n, j rh/n, j + 1
2

m∑
j=1

bh/n, j r 2
h/n, j − 1

2

(
m∑

j=1

bh/n, j rh/n, j

)2

+ 1
6

m∑
i, j,k=1

(
∂3 f

∂rh/n,i∂rh/n, j∂rh/n,k
(c1, . . . , cm)

)
rh/n,i rh/n, j rh/n,k

for some (c1, . . . , cm) between (rh/n,1, . . . , rh/n,m) and (0, . . . , 0). In order to bound the
remainder term in the expansion we first claim that

m∑
i, j,k=1

∂3 f
∂rh/n,i∂rh/n, j∂rh/n,k

(c1, . . . , cm) = 2
m∑

i, j,k=1

bh/n,i eci bh/n, j ec j bh/n,keck(
b0 + ∑m

j=1 bh/n, j ec j

)3(A.4)

− 3
m∑

i, j=1

bh/n,i eci bh/n, j ec j(
b0 + ∑m

j=1 bh/n, j ec j

)2

+
m∑

i, j=1

bh/n,i eci

b0 + ∑m
j=1 bh/n, j ec j

.

But note that since ‖A(s�h/n�+1)θ‖1 = ∑m
j=1 |bh/n, j | ≤ B it follows that∣∣bh/n,i eci

∣∣ ≤ B max
{

ph/n, j/p(h−1)/n, j , 1
}

(A.5)

≤ B
(

1 + Lp (1 + log n)√
n

)
= O(B).

Also note that

b0 +
m∑

j=1

bh/n, j ec j = 1 +
m∑

j=1

bh/n, j

(
ph/n, j

p(h−1)/n, j
− 1

)

≥ 1 − B
(

Lp (1 + log n)√
n

)
.

Since B is defined to be strictly less than C
√

n
Lp(1+log n) for constant C less than 1 it follows

from the above inequality that there exists some positive constant C′ independent of n
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such that

b0 +
m∑

j=1

bh/n, j ec j ≥ C′.(A.6)

Using (A.5) and (A.6) we return to (A.4) and conclude that
m∑

i, j,k=1

∂3 f
∂rh/n,i∂rh/n, j∂rh/n,k

(c1, . . . , cm) = O(B3).

Moreover, since |rh/n, j | = | log(ph/n, j/p(h−1)/n, j )| ≤ Lp(1+log n)√
n = O(n−1/2 log n) it follows

from this and the above equation that the remainder term in (A.3) is O(B3n−3/2 log3 n).
Hence we can write

f (rh/n,1, . . . , rh/n,m) =
m∑

j=1

bh/n, j rh/n, j + 1
2

m∑
j=1

bh/n, j r 2
h/n, j(A.7)

− 1
2

(
m∑

j=1

bh/n, j rh/n, j

)2

+ O(B3n−3/2 log3 n).

Recalling that we originally set f (rh/n,1, . . . , rh/n,m) = log
( ∑m

j=0 bh/n, j exp{rh/n, j }
)

we
return to (A.2) and use (A.7) to conclude that

W(n)
k/n(θ) = W0 exp

{
k∑

h=1

m∑
j=1

bh/n, j rh/n, j + 1
2

k∑
h=1

m∑
j=1

bh/n, j r2
h/n, j(A.8)

− 1
2

k∑
h=1

(
m∑

j=1

bh/n, j rh/n, j

)2

+ O(B3kn−3/2 log3 n)

}
.

Now note that
k∑

h=1

m∑
j=1

bh/n, j rh/n, j =
∑

τ∈I(k/n)

m∑
j=1

b j
(
θ, s�τ�−1

) (
Zτ, j − Z�τ�−1, j

)
(A.9)

=
∑

τ∈I(k/n)

µ′
t̃b

(
θ, s�τ�−1

)
=

∑
τ∈I(k/n)

µ′
tA

(
s�τ�−1

)
θ

and

1
2

k∑
h=1

m∑
j=1

bh/n, j r 2
h/n, j = 1

2

k∑
h=1

m∑
j=1

b j
(
θ, s�h/n�−1

) (
Z(h/n), j − Z((h−1)/n), j

)2
(A.10)

= 1
2

∑
τ∈I(k/n)

m∑
j=1

b j
(
θ, s�τ�−1

)
K(n)

τ, j, j

= 1
2

∑
τ∈I(k/n)

diag
(
K(n)

τ

)′
b̃
(
θ, s�τ�−1

)
= 1

2

∑
τ∈I(k/n)

diag
(
K(n)

τ

)′
A

(
s�τ�−1

)
θ
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and, finally, that

1
2

k∑
h=1

(
m∑

j=1

bh/n, j rh/n, j

)2

= 1
2

m∑
i=1

m∑
j=1

bh/n,i bh/n, j

n∑
k=1

(
Z(k/n),i − Z((k−1)/n),i

)
(A.11)

× (
Z(k/n), j − Z((k−1)/n), j

)
= 1

2

∑
τ∈I(k/n)

b̃′(θ, s�τ�−1
)
K(n)

τ b̃
(
θ, s�τ�−1

)
= 1

2

∑
τ∈I(k/n)

θA′ (s�τ�−1
)

K(n)
k/n, j, j A

(
s�τ�−1

)
θ.

Lemma 5.1 is proved upon substituting (A.9), (A.10), and (A.11) into (A.8) and setting
εk/n(θ) to be the O(B3kn−3/2 log3 n) term of (7.8).

As for Theorem 4.1, expression (4.3) is obtained by taking the results of Lemma 5.1
and letting n → ∞. The second expression for WT(θ), (4.4), is obtained upon completing
the square in (4.3). �

6.1. Proof of Theorem 5.1

Proof. At various points in the proof we will work with tails of Gaussian distributions.
For this reason we will say that a function f (x) is Ogt(x) (or of Gaussian tail order) if there
exist positive constants C1 and C2 such that f (x) ≤ C1 exp{−C2x2}. Recall the Gaussian
measure

dGk,n (θ) ≡ exp
{
qk/n (θ)

}
dπ (θ)∫

Rd exp
{
qk/n (θ)

}
dπ (θ)

, π ∼ N (λ,Λ) .(A.12)

By completing the square in the exponent of the density of Gk,n it can be verified that
Gk,n has mean

ψ
(n)
k/n ≡

(
Ω(n)

k/n + Λ−1
)−1

×
(

A′ (s0)
[
µ1 + 1

2
diag

(
K(n)

1

)]
+ · · · + A′ (s�k/n�−1

) [
µk/n + 1

2
diag

(
K(n)

k/n

)])
+Λ−1λ

and variance
(
Ω(n)

k/n + Λ−1
)−1

.

We argue that
∥∥ψ

(n)
k/n

∥∥ is bounded by some constant Lψ independent of n and k. First

consider times k/n ≤ β + 1 where β is the maximum number of periods before Ω(n)
t

becomes invertible. In this case we can use the universality conditions in showing∥∥∥ψ
(n)
k/n

∥∥∥ ≤ λmax

((
Ω(n)

k/n + Λ−1
)−1

) ∑
τ∈I(k/n)

∥∥∥∥A′ (s�τ�−1
) [

µτ + 1
2

diag
(
K(n)

τ

)]∥∥∥∥(A.13)

≤ 1

λmin
(
Λ−1) L1/2

A,m

∑
τ∈I(k/n)

∥∥∥∥µτ + 1
2

diag
(
K(n)

τ

)∥∥∥∥
≤ L1/2

A,m

λmin
(
Λ−1) (

Lµ +
√

m
2

LK

)
(β + 1) .
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Similarly, if k/n > β + 1 then∥∥∥ψ
(n)
k/n

∥∥∥ ≤ λmax

((
Ω(n)

k/n + Λ−1
)−1

) ∑
τ∈I(k/n)

∥∥∥∥A′ (s�τ�−1
) [

µτ + 1
2

diag
(
K(n)

τ

)]∥∥∥∥(A.14)

≤ 1

λmin

(
Ω(n)

k/n

) L1/2
A,m

∑
τ∈I(k/n)

∥∥∥∥µτ + 1
2

diag
(
K(n)

τ

)∥∥∥∥
≤ L1/2

A,m

L−
Ω (k/n − β)

(
Lµ +

√
m

2
LK

)
(k/n)

≤ L1/2
A,m

L−
Ω

(
Lµ +

√
m

2
LK

)
(β + 1) .

Therefore, for all n and k,
∥∥ψ

(n)
k/n

∥∥ is bounded by Lψ where Lψ is set to the greater of
(A.13) and (A.14).

Now we define the set

�n ≡
{
θ ∈ Rd : ‖θ‖ ≤ C

nε/4

√
mLp L1/2

A,d

}
,

where for the moment C is the same constant as that defined in Lemma 5.1. The bound
on ‖θ‖ in the definition of �n is purposely set so that Lemma 5.1 holds. To see this, note
that, for each n and θ ∈ �n ,∥∥A

(
s�k/n�−1

)
θ
∥∥

1 ≤ √
m

∥∥A
(
s�k/n�−1

)
θ
∥∥

≤ √
mL1/2

A,d ‖θ‖

≤ nε/4

Lp

≤
√

n
Lp (1 + log n)

,

and hence the L1 condition of Lemma 5.1 is satisfied. Also, N as given in the statement is
set sufficiently large to ensure that the bound on ‖θ‖ is larger than Lψ so that ψ

(n)
k/n ∈ �n

for all k and n ≥ N.
At various points in the proof we will need a bound on 1 − ∫

�n
dGk,n(θ)—that is, a

bound on the tails of Gk,n(θ). Regardless of n and k the “fatness” of a tail is limited by the

minimum eigenvalue of its covariance matrix
(
Ω(n)

k/n + Λ−1)−1
which in turn is bounded

by the minimum eigenvalue of “prior” covariance Λ. Thus the density of Gk,n(θ) cannot
get arbitrarily flat with n or k. Also since ‖ψ (n)

k/n‖ < Lψ the “peak” of Gk,n(θ) at mean ψ
(n)
k/n

is restricted to a distance of Lψ from the origin. Because Gk,n(θ) cannot get arbitrarily
flat and because its peak is always within a bounded distance from the origin we can
find another flatter Gaussian distribution Z(θ) centered on the origin with constant
covariance such that

1 −
∫

�n

dGk,n (θ) ≤ 1 −
∫

�n

d Z (θ)
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for all n and k. But from the properties of Gaussian tails we know that 1 − ∫
�n

d Z(θ) is
Ogt(nε/4) where nε/4 is the order at which �n expands. Hence,

1 −
∫

�n

dGk,n (θ) =
∫

�C
n

dGk,n (θ) = Ogt(nε/4).(A.15)

To continue, note that ∥∥∥∥∥
∫

�C
n

θ dGk,n (θ)

∥∥∥∥∥ ≤
∫

�C
n

‖θ‖ dGk,n (θ)
dθ

dθ.(A.16)

Since density dGk,n (θ)
dθ is Ogt(‖θ‖) it follows that ‖θ‖ dGk,n (θ)

dθ is also Ogt(‖θ‖). Upon noting
that ∫

�C
n

Ogt (‖θ‖) = Ogt(nε/4),

we conclude that ∥∥∥∥∥
∫

�C
n

θ dGk,n (θ)

∥∥∥∥∥ ≤
∫

�C
n

‖θ‖ dGk,n (θ)
dθ

dθ(A.17)

=
∫

�C
n

Ogt (‖θ‖)

= Ogt(nε/4).

Now we use bounds (A.15) and (A.17) to compare ψ
(n)
k/n to

ψ
†(n)
k/n ≡

∫
�n

θ dGk,n (θ)∫
�n

dGk,n (θ)
.

and bound the distance ‖ψ (n)
k/n − ψ

†(n)
k/n ‖. Since ψ

(n)
k/n is the mean of Gk,n(θ) we write ψ

(n)
k/n =∫

Rd θdGk,n(θ) and hence,

∥∥∥ψ
(n)
k/n − ψ

†(n)
k/n

∥∥∥ =
∥∥∥∥∥
∫

Rd
θ dGk,n (θ) −

∫
�n

θ dGk,n (θ)∫
�n

dGk,n (θ)

∥∥∥∥∥(A.18)

=
∥∥∥∥∥
∫
�C

n
θ dGk,n (θ)∫

�n
dGk,n (θ)

−
∫
�C

n
dGk,n (θ)∫

�n
dGk,n (θ)

∫
Rd

θ dGk,n (θ)

∥∥∥∥∥
≤

∥∥∥∥∥
∫
�C

n
θ dGk,n (θ)∫

�n
dGk,n (θ)

∥∥∥∥∥ +
∥∥∥∥∥
∫
�C

n
dGk,n (θ)∫

�n
dGk,n (θ)

∥∥∥∥∥ Lψ

= Ogt(nε/4) + Ogt(nε/4)

= Ogt(nε/4)

(by (A.15) and (A.17)).
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Now let xk/n denote the vector of wealth relatives at time k/n,

xk/n = (xk/n,0, x̃k/n) = (xk/n,0, xk/n,1, . . . , xk/n,m)

=
(

1,
pk/n,1

p(k−1)/n,1
, . . . ,

pk/n,m

p(k−1)/n,m

)
.

Recall that xk/n,0, the wealth relative of cash, is always 1. Here, x̃k/n = (xk/n,1, . . . , xk/n,m)
is just xk/n with the first coordinate truncated (i.e., the wealth relative vector of the m
stocks, cash excluded). Given these wealth relatives, the wealth achieved by b̂

(n)
k/n by time

T is given by

Ŵ(n)
T = W0

Tn∏
k=1

b̂(n)′
(k−1)/nxk/n(A.19)

= W0

Tn∏
k=1

(
1 + (̃xk/n − 1)′A

(
s�(k−1)/n�

)
ψ

(n)
(k−1)/n

)
(by (5.2)),

where 1 denotes the m-dimensional vector (1, . . . , 1). Now we add and subtract ψ
†(n)
k/n to

get

Ŵ(n)
T = W0

Tn∏
k=1

(
1 + (̃xk/n − 1)′A

(
s�(k−1)/n�

) (
ψ

(n)
(k−1)/n − ψ

†(n)
(k−1)/n

)
+(̃xk/n − 1)′A

(
s�(k−1)/n�

)
ψ

†(n)
(k−1)/n

)
.

But note that from universality conditions 1 and 5 and equation (A.18),∥∥∥(̃xk/n − 1)′A
(
s�(k−1)/n�

) (
ψ

(n)
(k−1)/n − ψ

†(n)
(k−1)/n

)∥∥∥
≤ √

mLp L1/2
A,d

∥∥∥ψ
(n)
(k−1)/n − ψ

†(n)
(k−1)/n

∥∥∥
= Ogt(nε/4).

Thus,

Ŵ(n)
T ≥ W0

Tn∏
k=1

(
1 − Ogt(nε/4) + (̃xk/n − 1)′A

(
s�(k−1)/n�

) × ψ
†(n)
(k−1)/n

)
(A.20)

= W0

Tn∏
k=1

(
1 + (̃

xk/n − 1
)′ A

(
s�(k−1)/n�

)
ψ

†(n)
(k−1)/n

)

×
Tn∏

k=1

(
1 − Ogt(nε/4)

(
1 + (̃xk/n − 1)′A

(
s�(k−1)/n�

)
ψ

†(n)
(k−1)/n

)−1
)

.

We work with the two products in (A.20) separately. First note that for sufficiently large
N,

∥∥(̃xk/n − 1)′A
(
s�(k−1)/n�+1

)
ψ

†(n)
(k−1)/n

∥∥ will be bounded by some constant less than 1 for
all n > N, and hence,
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Tn∏
k=1

(
1 − Ogt(nε/4)(1 +

(̃
xk/n − 1)′A

(
s�(k−1)/n�

)
ψ

†(n)
(k−1)/n

)−1
)

(A.21)

=
Tn∏

k=1

(
1 − Ogt(nε/4)

)
= (

1 − Ogt(nε/4)
)Tn

= exp
{−TnOgt(nε/4)

}
.

As for the other product, note that

W0

Tn∏
k=1

(
1 + (̃xk/n − 1)′A

(
s�(k−1)/n�

)
ψ

†(n)
(k−1)/n

)

= W0

Tn∏
k=1

(
1 + (̃xk/n − 1)′A

(
s�(k−1)/n�

) ∫
�n

θ dGk−1,n (θ)∫
�n

dGk−1,n (θ)

)

= W0

Tn∏
k=1

(
1 + (̃xk/n − 1)′A

(
s�(k−1)/n�

) ∫
�n

θ exp
{
q(k−1)/n (θ)

}
dπ (θ)∫

�n
exp

{
q(k−1)/n (θ)

}
dπ (θ)

)

= W0

Tn∏
k=1

[(∫
�n

(
1 + (̃xk/n − 1)′A

(
s�(k−1)/n�

)
θ
) × exp

{
q(k−1)/n (θ)

}
dπ (θ)

)
/∫

�n

exp
{
q(k−1)/n (θ)

}
dπ (θ)

]
.

But by Lemma 5.1 and the definition of qk,n(θ) recall that W(n)
k/n(θ) = exp{qk,n(θ) +

εk/n(θ)}. Hence,

= W0

Tn∏
k=1

[(∫
�n

(
1 + (̃xk/n − 1)′A

(
s�(k−1)/n�

)
θ
)

×W(n)
(k−1)/n (θ) exp

{−ε(k−1)/n (θ)
}

dπ (θ)
)

/∫
�n

W (n)
(k−1)/n (θ) exp

{−ε(k−1)/n (θ)
}

dπ (θ)
]

= W0

Tn∏
k=1

( ∫
�n

W (n)
k/n (θ) exp

{−ε(k−1)/n (θ)
}

dπ (θ)∫
�n

W (n)
(k−1)/n (θ) exp

{−ε(k−1)/n (θ)
}

dπ (θ)

)

= W0

Tn∏
k=1

[(∫
�n

W(n)
k/n (θ) exp{−εk/n (θ)}

× exp
{
εk/n (θ) − ε(k−1)/n (θ)

}
dπ (θ)

)
/∫

�n

W(n)
(k−1)/n (θ) exp

{−ε(k−1)/n (θ)
}

dπ (θ)
]

.

We know from Lemma 5.1 that |εk/n(θ) − ε(k−1)/n(θ)| is O(B3(1 + log n)3/n3/2). Here B,
the bound on ‖A(s�(k−1)/n�)θ‖1, grows at the same rate as �n (i.e., O(nε/4)). Thus the
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absolute difference in error terms is O
(
(1 + log n)3/n3/2−3ε/4

)
. However this is in turn

O(n−3/2+ε). Hence |εk/n(θ) − ε(k−1)/n(θ)| = O(n−3/2+ε) and

≥ W0

Tn∏
k=1

exp{−O(n−3/2+ε)}

×
( ∫

�n
W(n)

k/n (θ) exp{−εk/n (θ)} dπ (θ)∫
�n

W(n)
(k−1)/n (θ) exp{−ε(k−1)/n (θ)} dπ (θ)

)

= W0 exp{−O(Tn−1/2+ε)}

×
Tn∏

k=1

( ∫
�n

W (n)
k/n (θ) exp{−εk/n (θ)} dπ (θ)∫

�n
W(n)

(k−1)/n (θ) exp{−ε(k−1)/n (θ)} dπ (θ)

)

= W0 exp{−O(Tn−1/2+ε)}

×
∫
�n

W (n)
T (θ) exp {−εT (θ)} dπ (θ)∫

�n
W0dπ (θ)

.

Again by Lemma 5.1 and the reasoning above, |εT(θ)| is O(Tn−1/2+ε). Also,∫
�n

W0 dπ (θ) = W0π (�n) < W0/C for some constant C, so the above is lower bounded
by

≥ C exp{−O(Tn−1/2+ε)}
∫

�n

W (n)
T (θ) dπ (θ).(A.22)

We now substitute the bounds (A.21) and (A.22) back into (A.20) to get a lower bound
on Ŵ(n)

T . However we should note that the exp{−TnOgt(nε/4)} bound of (A.21) is itself
bounded by something of order exp{−O(Tn−1/2+ε)} and thus the factor corresponding
to (A.21) can be absorbed into the exp{−O(Tn−1/2+ε)} factor of (A.22) and we conclude
that

Ŵ(n)
T ≥ C exp{−O(Tn−1/2+ε)}

∫
�n

W(n)
T (θ) dπ (θ) .(A.23)

The next step in the proof is showing that
∫
�n

W (n)
T (θ) dπ (θ) is close to ŴT, the wealth

achieved by the continuously traded universal portfolio b̂t of equation (4.9). Recall by
Lemma 4.1 that ŴT = ∫

Rd WT(θ) dπ (θ). Since W (n)
T (θ) converges to WT(θ) as the number

of rebalances increases and since �n increases to all of Rd it makes intuitive sense that∫
�n

W (n)
T (θ) dπ (θ) converges to ŴT and we now show that this order of convergence is

exp{−O(Tn−1/2+ε)}.
First examine the wealth ratio WT(θ)/W (n)

T (θ). From the expressions of WT(θ) and
W (n)

T (θ) in Theorem 4.1 and Lemma 5.1, we deduce that

WT (θ)

W(n)
T (θ)

= exp

{
1
2

T∑
τ=1

(
diag

(
Kτ − K(n)

τ

))′
A

(
s�τ�−1

)
θ

−
T∑

τ=1

1
2
θA′ (s�τ�−1

) (
K†

τ − K†(n)
τ

)
A

(
s�τ�−1

)
θ + εT(θ)

}
.
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Bounding the absolute value of the exponent, note by the universality conditions that∣∣∣∣∣1
2

T∑
τ=1

(
diag

(
Kτ − K(n)

τ

))′
A

(
s�τ�−1

)
θ

−
T∑

τ=1

1
2
θA′ (s�τ�−1

) (
K†

τ − K†(n)
τ

)
A

(
s�τ�−1

)
θ + εk/n(θ)

∣∣∣∣∣
≤ 1

2

T∑
τ=1

∥∥diag
(
Kτ − K(n)

τ

)∥∥ ∥∥A
(
s�τ�−1

)
θ
∥∥

+ 1
2

T∑
τ=1

|λ|max

(
K†

τ, j, j − K†(n)
τ, j, j

) ∥∥A
(
s�τ�−1

)
θ
∥∥2

≤ 1
2

L1/2
A,d ‖θ‖

T∑
τ=1

√
m |λ|max

(
K†

τ, j, j − K†(n)
τ, j, j

)

+ 1
2

LA,d ‖θ‖2
T∑

τ=1

|λ|max

(
K†

τ, j, j − K†(n)
τ, j, j

)
≤

√
m

2
L1/2

A,d
L′

k√
n

T ‖θ‖ + 1
2

LA,d
L′

k√
n

T ‖θ‖2 .

But since maxθ∈�n ‖θ‖ is O(nε/4), it follows that the above is O(Tn−1/2+ε/2), which is
in turn boundable by something O(Tn−1/2+ε), so

WT(θ)

W(n)
T (θ)

≤ exp{O(Tn−1/2+ε)}.

Using this bound we note that∫
�n

W(n)
T (θ) dπ (θ) ≥ exp {−O(Tn−1/2+ε)}

∫
�n

WT (θ) dπ (θ) ,

and seeing that ŴT = ∫
Rd WT(θ) dπ (θ) we write∫

�n

W (n)
T (θ) dπ (θ) ≥ exp {−O(Tn−1/2+ε)}(A.24)

×
(∫

�n

WT (θ) dπ (θ)∫
Rd WT (θ) dπ (θ)

)
ŴT.

Now define the measure

dGT ≡ WT (θ) dπ (θ)∫
Rd WT (θ) dπ (θ)

.

Using the same arguments used with dGk,n(θ) of (A.12) we argue that GT is Gaussian

with mean ψT and covariance
(
Ω−1

T + Λ−1)−1
. Increasing values of T only make the

density more peaked and ψT is always within a bounded distance of the origin regardless
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of T. This along with the fact that �n is getting larger with n is sufficient to argue that
there exists a constant C independent of T and n such that∫

�n

WT (θ) dπ (θ)∫
Rd WT (θ) dπ (θ)

=
∫

�n

dGT > C.

Thus it follows from (A.24) that∫
�n

W(n)
T (θ) dπ (θ) ≥ C exp {−O(Tn−1/2+ε)}ŴT.

Substituting this bound into (A.23) we can increase C and merge the exp{−O(Tn−1/2+ε)}
terms in both the above inequality and (A.23), changing constants as necessary to deduce
that

Ŵ(n)
T ≥ C exp {−O(Tn−1/2+ε)}ŴT.

To complete the proof, recall from Theorem 4.2 that W∗
T/ŴT is O(Td/2). Taking this and

inverting the above inequality (and redefining C to be 1/C), write

W∗
T

Ŵ(n)
T

≤ C exp {O(Tn−1/2+ε)} W∗
T

ŴT

= CO(Td/2) exp{O(Tn−1/2+ε)}.
Redefining C as necessary to incorporate the constant associated with the O(Td/2) term
and defining α to be the constant associated with the O(Tn−1/2+ε) term, we conclude that

W∗
T

Ŵ(n)
T

≤ CTd/2 exp {αT/n1/2−ε}. �
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