
Efficient Utilization of Scratch-Pad Memory in Embedded Processor Applications�

Preeti Ranjan Panda Nikil D. Dutt Alexandru Nicolau

Department of Information and Computer Science
University of California, Irvine, CA 92697-3425, USA

Abstract

Efficient utilizationof on-chip memory space is extremely
important in modern embedded system applications based
on microprocessor cores. In additionto a data cache that in-
terfaces with slower off-chip memory, a fast on-chip SRAM,
called Scratch-Pad memory, is often used in several appli-
cations. We present a technique for efficiently exploiting on-
chip Scratch-Pad memory by partitioning the application’s
scalar and array variables into off-chip DRAM and on-chip
Scratch-Pad SRAM, with the goal of minimizing the total ex-
ecution time of embedded applications. Our experiments on
code kernels from typical applications show that our tech-
nique results in significant performance improvements.

1 Introduction

Complex embedded system applications typically use
heterogeneous chips consisting of microprocessor cores,
along with on-chip memory and co-processors. Flexibil-
ity and short design time considerations drive the use of
CPU cores as instantiable modules in system designs [5].
The integration of processor cores and memory in the same
chip effects a reduction in the chip count, leading to cost-
effective solutions. Examples of commercial microproces-
sor cores commonly used in system design are LSI Logic’s
CW33000 series [3] and the ARM series from Advanced
RISC Machines [10]. Typical examples of optional mod-
ules integrated with the processor on the same chip are: In-
struction Cache, Data Cache, and on-chip SRAM. The in-
struction and data caches are fast local memory serving as
an interface between the processor and the off-chip mem-
ory. The on-chip SRAM, termedScratch-Pad memory, is
a small, high-speed data memory that is mapped into an
address space disjoint from the off-chip memory, but con-
nected to the same address and data buses. Both the cache
and Scratch-Pad SRAM have a single processor cycle ac-

�This work was partially supported by grants from NSF(CDA-
9422095) and ONR(N00014-93-1-1348).

cess latency, whereas an access to the off-chip memory (usu-
ally DRAM) takes several (typically 10–20) processor cy-
cles. The main difference between the Scratch-Pad SRAM
and data cache is that the SRAM guarantees a single-cycle
access time, whereas an access to cache is subject tocom-
pulsory, capacity,andconflict misses.

When an embedded application is compiled, the accessed
data can now be stored either in the Scratch-Pad memory or
in off-chip memory. In the second case, it is accessed by the
processor through the data cache. We present a technique
for minimizing the total execution time of an embedded ap-
plication by a careful partitioning of scalar and array vari-
ables used in the application into off-chip DRAM (accessed
through data cache) and Scratch-Pad SRAM.

Optimization techniques for improving the data cache
performance of programs have been reported [4, 7, 9]. The
analysis in [9] is limited to scalars, and hence, not gener-
ally applicable. Iteration spaceblockingfor improving data
locality is studied in [4]. This technique is also limited to
the type of code that yields naturally to blocking. In [7],
a data layout strategy for avoiding conflict misses is pre-
sented. However, array access patterns in some applica-
tions are too complex to be statically analyzable using this
method. The availability of an on-chip SRAM with guar-
anteed fast access time creates an opportunity for overcom-
ing some of the cache conflict problems (Section 2). The
problem of partitioning data into SRAM and cache with the
objective of maximizing performance, which we address in
this paper, has, to our knowledge, not been attempted be-
fore.

2 Problem Description

Figure 1(a) shows the architectural block diagram of
an application employing a typical embedded core proces-
sor (e.g., the LSI Logic CW33000 RISC Microprocessor
core[3]), where the parts enclosed in the dotted rectangle
are implemented in one chip, and which interfaces with
an off-chip memory, usually realized with DRAM. The ad-
dress and data buses from theCPU coreconnect to theData

ED&TC ’97 on CD-ROM
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for fee or commercial advantage, the copyright notice,the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc.
To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. 1997 ACM/0-89791-849-5/97/0003/$3.50

Cache, Scratch-Pad memory, and theExternal Memory In-
terface(EMI) blocks. On a memory access request from
the CPU, the data cache indicates a cache hit to the EMI
block through theC HIT signal. Similarly, if the SRAM
interface circuitry in the Scratch-Pad memory determines
that the referenced memory address maps into the on-chip
SRAM, it assumes control of the data bus and indicates this
status to the EMI through signalS HIT . If both the cache
and SRAM report misses, the EMI transfers a block of data
of the appropriate size (equal to thecache line size) between
the cache and the DRAM.

(a)

CPU Core

Data Cache

Interface
Memory
External

DRAM

SRAM
I/F

SRAM

Scratch−Pad MemoryAddress Data

C_HIT

S_HIT

(b)

Data
Cache

SRAM
(on−chip)

DRAM
(off−chip)

0

P−1
P

N−1

CPU

1 cycle

1 cycle cycles

Memory
Address

Space

10−20

Figure 1. (a) Block Diagram of Embedded Processor
Configuration (b) Division of Data Address Space be-
tween SRAM and DRAM

The data address space mapping is shown in Figure 1(b),
for a memory of sizeN data words. Memory addresses
0 . . .P � 1 map into the Scratch-Pad memory, and have a
single processor cycle access time. Thus, in Figure 1(a),
S HIT would be asserted whenever the processor attempts
to access any address in the range0 . . .P � 1. Memory ad-
dressesP . . .N � 1 map into the off-chip DRAM, and are
accessed by the CPU through the data cache. A cache hit for
an address in the rangeP . . .N � 1 results in a single-cycle
delay, whereas a cache miss, which leads to a block transfer
between off-chip and cache memory, results in a delay of
10-20 processor cycles.

We illustrate the necessity of including both data cache
as well as Scratch-Pad SRAM in the architecture with the

following example of aHistogram Evaluationcode from a
typical Image Processing application, which builds a his-
togram of 256 brightness levels for the pixels of anN �N

image.

charBrightnessLevel[512][512];
int Hist [256]; /* Elements initialized to 0 */
� � �

for (i = 0; i < N ; i+ +)
for (j = 0;j < N ; j ++)

/* For each pixel(i; j) in image */
level = BrightnessLevel[i][j];
Hist [level] = Hist [level] + 1;

Suppose the above code is executed on a processor con-
figured with a data cache of size 1 KByte. The performance
is degraded by the conflict misses in the cache between el-
ements of the two arraysHist andBrightnessLevel. Data
layout techniques, such as [7] are not effective in eliminat-
ing the above type of conflicts, because the accesses toHist
are data-dependent. Note that this problem occurs in both
direct-mapped as well as set-associative caches. However,
the conflict problem can be solved elegantly if we include
a Scratch-Pad SRAM in the architecture. Since theHist ar-
ray is relatively small, we can store it in the SRAM, so that
it does not conflict withBrightnessLevelin the data cache.
This storage assignment improves the performance of the
Histogram Evaluationcode significantly.

We present a strategy for partitioning scalar and array
variables in an application code into Scratch-Pad memory
and off-chip DRAM accessed through data cache, to maxi-
mize the performance by selectively mapping to the SRAM
those variables that are estimated to cause the maximum
number of conflicts in the data cache.

3 The Partitioning Strategy

The overall approach in partitioning program variables
into Scratch-Pad memory and DRAM is to minimize the
cross-interference between different variables in the data
cache. We first outline the different features of the code
affecting the partitioning.

3.1 Features Affecting Partitioning
3.1.1 Scalar Variables and Constants

In order to prevent interference with arrays in the data
cache, we map all scalar variables and scalar constants to the
Scratch-Pad memory.1 If scalars are mapped to the DRAM,
(and consequently, accessed through the cache), it may be
impossible to avoid cache conflicts with arrays, because ar-
rays are assigned to contiguous blocks of memory, parts of

1We assume that register allocation, the task that assigns frequently ac-
cessed program variables such as loop indices to processor registers, has
already been performed.

which will map into the same cache line as the scalars, caus-
ing conflict misses. The decision to map all scalars to the
SRAM is based on our observation that for most applica-
tions, the memory space attributable to scalars is negligible
compared to that occupied by arrays.

3.1.2 Size of Arrays

We map arrays that are larger than the SRAM into off-chip
memory, so that these arrays are accessed through the data
cache. Mapping large arrays to the cache is the natural
choice, as it simplifies the array addressing. If a part of the
array were to map into the SRAM, the compiler would have
to generate book-keeping code that keeps track of which re-
gion of the array is addressed, thereby making the code in-
efficient. Further, since most loops access array elements
more or less uniformly, there is little or no motivation to
map different parts of the same array to memories with dif-
ferent characteristics.

3.1.3 Life-Times of Array Variables

The life-timeof a variable, defined as the period between its
definitionand last use[1], is an important metric affecting
register allocation. Variables with disjoint lifetimes can be
stored in the same processor register. The same analysis,
when applied to arrays, allows different arrays to share the
same memory space.

The life-time information can also be used to avoid pos-
sible conflicts among arrays. We define a measureInter-
secting Life Times, ILT(u), which indicates the number of
array variables having a non-null intersection of life-times
with u. The ILT value of each array gives an indication of
the number of other arrays that it could possibly interfere
with, in the cache. Consequently, we could map the arrays
with the highestILT values into the SRAM, thereby elimi-
nating a large number of potential conflicts. We refine this
measure in the next section.

3.1.4 Access Frequency of Array Variables

TheILT measure indicates the possibility of cache conflicts,
but does not define the extent of these conflicts. To obtain
a more accurate picture of the extent of conflicts, we have
to consider the frequency of accesses. For example, if the
number of accesses to an arrayd with high ILT is relatively
small, it is worth considering the other arrays first for inclu-
sion in SRAM, becaused does not play a significant part in
cache conflicts in spite of its highILT value. For each array
variableu, we define theVariable Access Count, VAC(u), to
be the number of accesses to elements ofu during its life-
time.

Similarly, the number of accesses tootherarrays during
the lifetime of an array, is an equally important determinant
of cache conflicts. TheILT(u) figure, which gives thenum-
ber of arrays aliveduring the lifetime ofu, has to be suitably

modified to account for thenumber of accesses. For each ar-
rayu, we define theInterference Access Count, IAC(u), to
be the number of accesses to other arrays during the lifetime
of u.

Note that the use ofVAC(u) andIAC(u) separately may
result in a misleading metric for the possible conflicts in-
volving u. Clearly, the conflicts are determined jointly by
the two factors considered together. A good indicator of the
conflicts involving arrayu is the product of the two individ-
ual metrics. We define theInterference Factor, IF,of a vari-
ableu as: IF(u) = VAC(u)� IAC(u). A high IF value for
u indicates thatu is likely to be involved in a large number
of cache conflicts if mapped to DRAM. Hence, we choose
to map array variables with highIF values into the SRAM.

3.1.5 Conflicts in Loops

In the previous section, we assumed different arrays ac-
cessed in the same period (e.g., in the same loop) had an
equal probability of conflicting in the cache. However, it is
possible to make a finer distinction based on the array ac-
cess patterns. Consider a section of a code in which three
arraysa; b; andc are accessed, as shown in Figure 2(a).

a b

c

3N 3N

(b)

for i = 0 to N−1
access a [i]

access b [i]

access c [2 i]

access c [2 i + 1]
end for

(a)

Figure 2. (a) Example Loop (b) Loop Conflict Graph

We note that arraysa andb have an identical access pat-
tern, which is different from that ofc. Data placement tech-
niques [7] can be used to avoid data cache conflicts between
a andb. However, when the access patterns are different,
cache conflicts are unavoidable (e.g., betweena andc). In
such circumstances, conflicts can be minimized by mapping
one of the conflicting arrays to the SRAM. For instance,
conflicts can be eliminated in the example above, by map-
pinga andb to the DRAM/cache, andc to the Scratch-Pad
memory.

To accomplish this, we first build aLoop Conflict Graph,
LCGwith one node for each array, and edge weighte(u; v)
being computed ase(u; v) =

P
p

i=1 ki, where the summa-
tion is over all loops (1 . . .p) in whichu andv are both ac-
cessed, andki is the total number of accesses tou andv

in loop i. In the example above, where we have only one
loop (p = 1), the graph in Figure 2(b) is generated. We
have one access toa and two toc in one iteration of the
loop. The total number of accesses toa andc combined is:
(1+ 2) � N = 3N . Thus, we havee(a; c) = 3N . Simi-
larly, e(b; c) = 3N . We havee(a; b) = 0, since the access

patterns toa andb arecompatible2. Note that if the access
pattern of an array is data-dependent in a loop, as in theHist
array of theHistogram Evaluationexample (Section 2) it is
not compatible with other arrays accessed in the same loop.

We now use the graphLCG to define theLoop Con-
flict Factor, LCF for a variable u as: LCF(u) =P

v2LCG�fug e(u; v), i.e., LCF(u) is the sum of incident
edge weights to nodeu. This gives us a metric to compare
the criticality of loop conflicts for all the arrays. In general,
the higher theLCF number, the more conflicts are likely for
an array, and hence, the more desirable it is to map the array
to the Scratch-Pad memory.

3.2 The Partitioning Algorithm

The algorithm for determining the mapping decision
of each (scalar and array) program variable to SRAM or
DRAM/cache uses the factors mentioned in Section 3.1.
Due to lack of space, we briefly summarize the algorithm
here. The complete algorithm is described in [8].

We first assign the scalar constants and scalar variables to
the SRAM, and the arrays that are larger than the Scratch-
Pad memory, to the DRAM. For the remaining (n) arrays
(all of which are small enough to fit into the SRAM), we
generate the life-time intervals and compute theLCFandIF
values (Section 3.1). We sort the 2n interval end-points thus
generated, and traverse them in increasing order. For each
array (u) encountered, if there is sufficient SRAM space for
u andall arrays with life-times intersecting the life-time in-
terval ofu, with more criticalLCF andIF numbers, we map
u to SRAM; otherwise we map it to DRAM/cache. The al-
gorithm has an overall complexity ofO(n2).

4 Experiments

We present the results of simulation experiments we per-
formed on several benchmark examples that frequently oc-
cur as code kernels in embedded applications, to evaluate
the efficacy of our Scratch-Pad memory/DRAM data parti-
tioning algorithm. We use an example Scratch-Pad SRAM
and adirect-mapped, write-backdata cache size of 1 KByte
each. In order to demonstrate the soundness of our tech-
nique, we assume a total on-chip memory capacity of 2 KB,
and consider different uses of this memory: only Scratch-
Pad SRAM; equal cache and SRAM; and only cache. We
compare the performance (measured in total number of pro-
cessor cycles required to access the data during execution
of the example) of the following architecture and algorithm
configurations: (A) Scratch-Pad memory of size 2K: in this
case, there is no data cache in the architecture, and we use
a simple algorithm that maps all scalars, and as many ar-
rays as will fit into the SRAM, and the rest to the off-chip

2We call two expressionsg andh compatibleif g� h = constant, i.e.,
g � h is independent of the loop indices.

memory; (B) Data cache of size 2K: in this case, there is no
SRAM in the architecture; (C) Random Partitioning: in this
case, we use a 1K SRAM and 1K Data cache, and a random
data partitioning technique (variables are considered in the
order they appear in the code, and mapped into SRAM if
there is sufficient space); and (D) Our Technique: here we
use a 1K SRAM and 1K data cache, and our data partition-
ing algorithm. Thus, in each case, the total on-chip memory
is 2 KBytes. We use a direct-mapped data cache with line
size = 4 words, and an off-chip memory latency given by:
(10 cycles for initialization) + (1 cycle per word in cache
line)� (4 words in cache line) = 14 cycles.

0e+00

2e+05

4e+05

6e+05

8e+05

1e+06

A - SRAM Only (2K)
B - DCache Only (2K)
C - Random (1K SRAM + 1K DCache)
D - Our Technique (1K SRAM + 1K DCache)

SRAM
Accesses

Cache
Hits

DRAM
Accesses

Total
Cycles (x10)

Figure 3. Performance Details forBeamformerExample

Figure 3 shows the details of the memory accesses for
theBeamformerbenchmark example [6]. TheBeamformer,
a DSP application, represents an operation involving tem-
poral alignment and summation of digitized signals from
an N -element antenna array. We note that configuration
A has the largest number ofSRAM Accesses, because the
large SRAM (2K) allows more variables to be mapped into
the Scratch-Pad memory. ConfigurationB has zero SRAM
accesses, since there is no SRAM in that configuration.
Also, our technique (D) results in far more SRAM accesses
than the random partitioning technique, because the random
technique disregards the behavior when it assigns precious
SRAM space. Similarly,Cache Hitsare the highest forB,
and zero forA. Our technique results in fewer cache hits
thanC, because many memory elements accessed through
the cache inC, map into the SRAM in our technique. Con-
figurationA has a highDRAM Accesscount because the
absence of the cache causes every memory access not map-
ping into the SRAM, to result in an expensive DRAM ac-
cess. As a result, we observe that the total number of pro-
cessor cycles required to access all the data is highest for
A. ConfigurationD results in the fastest access time, due to
the judicious mapping of the most frequently accessed, and
conflict-prone elements into Scratch-Pad memory (Figure 3
shows the total number of cycles scaled down by a factor of
10).

Figure 4 presents a comparison of the performance for
the four configurationsA, B, C, andD mentioned earlier,

0

20

40

60

80

100

C

yc
le

s
(N

or
m

al
iz

ed
 to

 1
00

)
A - SRAM Only (2K)
B - DCache Only (2K)
C - Random (1K SRAM + 1 K DCache)
D - Our Technique (1K SRAM + 1K DCache)

Beamformer Dequant FFT IDCT MatrixMult SOR DHRC

Figure4. PerformanceComparison of ConfigurationsA,
B, C, and D

on code kernels extracted from seven benchmark applica-
tions. Dequantis the de-quantization routine in the MPEG
decoder application.IDCT is the Inverse Discrete Cosine
Transform, also used in the MPEG decoder.SORis the
Successive Over-Relaxation algorithm, frequently used in
scientific computing [6].MatrixMult is the matrix multi-
plication operation, optimized for maximizing spatial and
temporal locality by reordering the loops.FFT is the Fast
Fourier Transform application [6].DHRCencodes the Dif-
ferential Heat Release Computation algorithm that models
the heat release within a combustion engine [2].

The number of cycles for each application is normalized
to 100 in Figure 4. In theDequantexample,A slightly
outperformsD, because all the data used in the applica-
tion fits into the 2K SRAM used inA, so that an off-chip
access is never necessary, resulting in the fastest possible
performance. However, the data size is bigger than the 1K
SRAM used inD, where the compulsory cache misses cause
a slight degradation of performance. The results ofFFT
andMatrixMult, both highly computation-intensive appli-
cations, show thatA is an inferior configuration for highly
compute-oriented applications amenable to exploitation of
locality of reference. Cache conflicts degrade performance
of B andC in SORandDHRC, causing worse performance
thanA (where there is no cache), andD (where conflicts
are minimized by our algorithm). Our technique results in
an average improvement of 31.4% overA (only SRAM),
30.0% overB (only cache), and 33.1% overC (equal cache
and SRAM – random partitioning).

In summary, our experiments on code kernels from typ-
ical embedded system applications show the usefulness of
on-chip Scratch-Pad memory in addition to a data cache, as
well the effectiveness of our data partitioning strategy.

5 Conclusions and Future Work

Modern embedded system applications use microproces-
sor cores along with memory and other co-processor hard-
ware on the same chip. Since the CPU now forms only a part

of the die, it is important to make optimal use of on-chip die
area. In order to effectively use on-chip memory, we need
to leverage the advantages of both data cache (simple ad-
dressing) and on-chip Scratch-Pad SRAM (guaranteed low
access time) by including both types of memory structures
in the same chip, with the data memory space being dis-
jointly divided between the two.

We presented a strategy for partitioning scalar and array
variables in embedded code into Scratch-Pad SRAM and
data cache, that attempts to minimize data cache conflicts.
Our experiments on code kernels from typical applications
show a significant improvements in memory latency (30 –
33%) over architectures with comparable on-chip memory
capacity and random partitioning strategies.

Our analysis assumes that the loop bounds and the num-
ber of invocations of sub-routines are statically known. If
they are dynamically determined, we would have to rely on
profiling information. Currently, our analysis is limited to
a single execution thread. We are investigating the assign-
ment of data to SRAM and cache in the context of multiple
execution threads. In the future, we plan to consider the
area and performance trade-offs between the architecture
presented in this paper, and one with multiple data caches
(each mapped to a disjoint memory space), which would
require a data partitioning technique similar to the one we
have presented here. We also plan to develop techniques for
addressing the problem of the relative sizing of SRAM and
data cache.

References

[1] A. V. Aho, R. Sethi and J. D. Ullman, “Compilers – Prin-
ciples, Techniques and Tools,” Addison-Wesley, 1986.

[2] F. Catthoor and L. Svensson, “Application-Driven Archi-
tecture Synthesis,” Kluwer Academic Publishers, 1993.

[3] LSI Logic Corporation, “CW33000 MIPS Embedded Pro-
cessor User’s Manual,” 1992.

[4] M. Lam, et. al., “The cache performance and optimizations
of blocked algorithms,” ProceedingsASPLOS, April 1991.

[5] P. Marwedel and G. Goosens, “Code Generation for Em-
bedded Processors,” Kluwer Academic Publ., 1995.

[6] P. R. Panda and N. D. Dutt, “1995 High Level Synthesis
Design Repository,” Intl. Symp. on System Synth., 1995.

[7] P. R. Panda, N. D. Dutt, and A. Nicolau, “Memory Organi-
zation for Improved Data Cache Performance in Embedded
Processors,” Intl. Symp. on System Synth., 1996.

[8] P. R. Panda, N. D. Dutt, and A. Nicolau, “SRAM vs. Data
Cache: The Memory Data Partitioning Problem in Embed-
ded Systems,” Tech. Rep. #96-42, U.C. Irvine, Sep. 1996.

[9] J. Rawat, “Static analysis of cache performance for real-
time programming,” Masters thesis, Iowa State University,
May 1993.

[10] James L. Turley, “New Processor Families Join Embedded
Fray,” Microprocessor Report, Vol. 8, No. 17, Dec. 1994.

