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Abstract

We provide an efficient and general route for preparing non-trivial quantum states that

are not adiabatically connected to unentangled product states. Our approach is a hy-

brid quantum-classical variational protocol that incorporates a feedback loop between a

quantum simulator and a classical computer, and is experimentally realizable on near-

term quantum devices of synthetic quantum systems. We find explicit protocols which

prepare with perfect fidelities (i) the Greenberger-Horne-Zeilinger (GHZ) state, (ii) a

quantum critical state, and (iii) a topologically ordered state, with L variational param-

eters and physical runtimes T that scale linearly with the system size L. We furthermore

conjecture and support numerically that our protocol can prepare, with perfect fidelity

and similar operational costs, the ground state of every point in the one dimensional

transverse field Ising model phase diagram. Besides being practically useful, our results

also illustrate the utility of such variational Ansätze as good descriptions of non-trivial

states of matter.
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1 Introduction

Recent experimental advances in designing and controlling well-isolated synthetic quantum

systems of many-particles, such as trapped ions [1, 2], cold atoms [3, 4], superconducting

qubits [5,6], etc., have allowed for the study of a plethora of interesting physical phenomena.

These include topological order [7–9], phase transitions [10,11], thermalization [12,13], and

time crystals [14, 15]. Equally exciting is the potential to use these platforms for perform-

ing quantum simulations and computation [4, 6, 16], or for speed-ups in quantum metrology

precision measurements [17–20]. For such studies and the implementation of quantum in-

formation protocols, the preparation of complex quantum many-body states, i.e. those with

non-trivial patterns of entanglement that are not adiabatically connected to short-ranged en-

tangled states, is vital. For instance, topological states have long-range, non-local patterns

of entanglement, and the Greenberger-Horne-Zeilinger (GHZ) state is an essential resource

in quantum many-body metrology measurement proposals and has an entanglement pattern

that is many-body in nature [17–20]. Furthermore, measurement-based quantum computing

requires highly entangled initial states [21–23]. Therefore, it is important to have generic,

explicit, resource-efficient schemes for preparing non-trivial quantum states.

In this paper, we demonstrate the efficient preparation of certain non-trivial states of inter-

est, using a variational, hybrid quantum-classical simulation, which utilizes the resources of a

quantum simulator and a classical computer in a feedback loop. In short, given Hamiltonians

or gates (quantum resources) realizable in a quantum simulator, a quantum state |ψ(γ,β)〉
is produced, with (γ,β) ≡ (γ1, · · ·γp,β1, · · · ,βp) parameterizing a finite set of 2p variational

angles (or times) that the Hamiltonians or gates are run for. A cost function, usually taken

to be the energy of some target Hamiltonian, is then evaluated within the resulting state and

optimized for in a classical computer, which yields a new set of 2p angles to be implemented to

be fed back into the quantum simulator. The entire process is iterated and the simulation ter-

minates when the cost function has been desirably optimized (see Fig. 1); in this way, a good

approximation to the ground state of the target Hamiltonian according to the cost function is

then produced.

Such variational quantum approaches have been developed and utilized in a number of

contexts, such as in quantum chemistry [24, 25], and also in classical optimization problems

(for example, as the ‘Quantum Approximate Optimization Algorithm’ [26, 27]), with recent

experiments demonstrating its success in platforms like photonic quantum processors [24],

and programmable, analog quantum simulators of trapped ions [28]. There are a number of
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Figure 1: Schematic depiction of the hybrid variational quantum-classical simula-

tion (VQCS) used to target non-trivial quantum states. A quantum simulator of

e.g. trapped ions is used to unitarily prepare a target state |ψ(γ,β)〉p via the pro-

tocol (5) using a set of variational angles (γ,β) of some fixed number of itera-

tions p. A cost function, for e.g. the global energy of some target Hamiltonian

HT , p〈ψ(γ,β)|HT |ψ(γ,β)〉p is then measured (achievable due to single-site resolu-

tion in measurements of quantum simulators). The result is then fed into a classical

computer, which finds the next set of angles that optimizes the cost function. The

simulation terminates when the cost function is desirably optimized; the resulting

quantum state is then the near to the target state.

properties which make the variational quantum simulation (described in brief above, and in

more detail later), appealing [29,30]: it can be run on any quantum device, such as a digital

quantum simulator, i.e. a gate-based universal quantum computer, or a (possibly tuneable)

analog quantum simulator, in which the interactions between qubits are dictated by those in a

given physical platform [30]. Furthermore, the very nature of the protocol makes it well suited

for implementation in current quantum simulators of synthetic quantum systems, leveraging

upon the tunability and single-site resolution of measurements in these platforms. In fact, the

feedback loop of the protocol allows one to mitigate systematic errors that might be present

in the experimental setups.

Employing this variational quantum-classical simulation and with local, uniform Hamil-

tonians, we show here that such protocols can be used to target the GHZ state, the critical

state of the 1d transverse field Ising model (TFIM), and the ground state of the 2d toric code,

all with perfect fidelities, using 2p = L variational parameters, and with minimum runtimes T

that scale linearly with the system size, T ∼ L, where L is the linear dimension of the systems.

We furthermore conjecture, and support with numerical data, that the entire ground state

phase diagram of the TFIM can interestingly be produced with perfect fidelities and similar

operational costs. Lastly, as an additional study, we consider preparing the ground states of

antiferromagnetic (AFM) Heisenberg chains, and find that the protocol is able to achieve them

efficiently and with very good fidelities.

This concretely demonstrates the ability of variational quantum-classical protocols to effi-

ciently and unitarily prepare a variety of quantum states with non-trivial patterns of entangle-

ment, and also illustrates the utility of such ansätze as good descriptions of non-trivial states

of matter. Note that for the Ising model and toric code, explicit circuits for the ground states

are known, for example in terms of a unitary circuit for the 1d XY-model, exploiting its free

fermion nature and fundamentally based on the Fourier transform [31], and in terms of a

tensor network representation for the toric code [32]. However, such circuits involve nonuni-
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form applications of multiple types of gates, and are not very practically realizable, especially

in analog near-term quantum simulators [30]. This is in contrast to our method, which only

requires time evolution between simple, uniform local Hamiltonians, and thus provides phys-

ically realizable roadmaps for quantum state preparation.

2 Non-trivial quantum states

Let us start by expounding upon the non-trivial nature of certain quantum states that we are

interested in. Consider a target state |ψt〉 and an unentangled product state |ψu〉, both defined

on a system with linear dimension L. |ψt〉 is said to be non-trivial if there does not exist a local

unitary circuit U of finite depth (i.e. scaling as O(L0)) that connects the two: |ψt〉 = U |ψu〉
[33]. Instead, the depth of a local unitary circuit connecting the two must be at least O(Lα)

with α > 0. Intuitively, nontrivial states have entanglement patterns fundamentally different

from product states. While this is a statement made at the level of the wavefunction, from the

perspective of local Hamiltonians and gaps, such states are separated from product states by

a gap-closing phase transition in the thermodynamic limit, and thus preparing them with, for

example, the quantum adiabatic algorithm [34,35] is hard.

We now review why the GHZ, critical, and topologically ordered states are nontrivial. Con-

sider first the GHZ state,

|GHZ〉 ≡ 1p
2
(⊗|Z = 1〉+⊗|Z = −1〉), (1)

where X , Z are Pauli operators. Suppose there exists a local, finite-depth unitary U that takes

the completely polarized product state |+〉 ≡ ⊗|X = 1〉 to |GHZ〉. Due to locality, there exists

a Lieb-Robinson bound which limits the spread of information and entanglement under this

evolution, implying that U can only generate a finite correlation length ξ for the final state.

Measuring a long-range spin-spin correlator gives

〈GHZ|Zi Z j |GHZ〉= 1, (2)

while on the other hand the same quantity can be expressed as

〈+|U†ZiUU†Z jU |+〉, (3)

which in the limit |i − j| ≫ ξ decomposes as

〈+|U†ZiU |+〉〈+|U†Z jU |+〉= 〈GHZ|Zi |GHZ〉〈GHZ|Z j |GHZ〉= 0, (4)

a contradiction. Similar arguments apply to critical states which have power-law correlations,

and topologically ordered states which have long-range correlations in loop operators and

non-zero topological entanglement entropy [36–39].

3 Variational Quantum-Classical Simulation (VQCS)

We define below the variational quantum-classical simulation (VQCS), which involves utilizing

the resources of both a quantum simulator and a classical computer in a feedback loop for the

purpose of preparing a non-trivial quantum state of interest. It is motivated by the Quantum

Approximate Optimization Algorithm (QAOA) [26, 27] and variational quantum eigensolver

(VQE) algorithms [25,28].
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The protocol is envisioned to be run on a quantum simulator that can realize certain inter-

actions between qubits and single qubit rotations, which we denote schematically by H1, H2

(these will be specified explicitly in the examples considered). On an analog quantum simu-

lator, the interactions are the ones realizable in a given physical platform; while on a digital

quantum simulator, in principle any interactions can be simulated given access to a universal

gate set G. The aim is to produce a good approximation to the ground state of a target many-

body Hamiltonian HT , which we will assume to be a linear combination of H1 and H2. The

VQCS begins with the ground state of H1, which we denote |ψ1〉, and evolves the state with

the following sequence alternating between H2 and H1:

|ψ(γ,β)〉p=e−iβpH1 e−iγpH2 · · · e−iβ1H1 e−iγ1H2 |ψ1〉. (5)

For a fixed integer p, there are 2p variational angles (or times) (γ,β)≡ (γ1, · · ·γp,β1, · · · ,βp).

Note that for a digital simulator, the unitaries e−iβi H1 , e−iγi H2 would have to be decomposed

using the gates in G. We cannot address this decomposition in full generality, but will do so

for the transverse field Ising example presented shortly. We call such a protocol VQCSp.

A cost function Fp(γ,β), such as the energy expectation value of the target Hamiltonian

Fp(γ,β) = p〈ψ(γ,β)|HT |ψ(γ,β)〉p, (6)

is then evaluated, which possibly involves a rotation into the appropriate basis in order to

measure individual expectation values. A classical computer then performs an optimization to

produce a new set of angles (γ,β), which are then fed back into the quantum simulator and the

process repeated till the cost function is desirably minimized. The state corresponding to these

optimal angles is therefore the optimal state that can be prepared by the protocol given this

cost function. As the VQCS is envisioned to be run on near-term quantum simulators which

are inherently noisy (so called ‘Noisy, Intermediate-Scale Quantum’ (NISQ) technology [30]),

the physical runtimes t =
∑p=L/2

i
(γi+βi) of the VQCS constitute an important measure of the

feasibility of the protocol – in general, shorter runtimes lead to less noise encountered and a

better implementation.

It is clear that the optimal solution from VQCSp+1 is always better than VQCSp ’s. Moreover,

for large p the VQCS can approximate a quantum adiabatic algorithm (QAA) of the form

H(t) = f (t)H1 + (1− f (t))H2 for any smooth function f (t) via Trotterization. Thus, ground

states of target Hamiltonians of the form HT = H1+ gH2 for some parameter g can always be

achieved in VQCS as p→∞, since QAA can produce arbitrary accuracy the target ground state

of HT for any finite-size system if the speed of traversal is vanishingly small. However, for all

practical purposes, the correspondence between the VQCS and QAA at small p is not so clear,

and thus in what follows we explore how well the VQCS can target certain hard-to-prepare

quantum many-body states.

4 Using VQCS to prepare nontrivial quantum states

We demonstrate here that the efficacy and efficiency of VQCS in preparing the following states:

(i) the GHZ state, (ii) a quantum critical ground state, (iii) a topologically ordered state, and

(iv) the ground state of an antiferromagnetic (AFM) Heisenberg chain.
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4.1 GHZ state

The GHZ state is defined in Eq. (1) and can be taken to be the ground state of the following

target Hamiltonian,

HT = −
L
∑

i=1

Zi Zi+1, (7)

in the symmetry sector S =
∏L

i X i = 1. For simplicitly we assume periodic boundary condi-

tions.

We choose in this case H1 = −
∑

i X i with the product ground state |ψ1〉= |+〉=
⊗L

i |+〉i ,
where X i |+〉i = |+〉i . H1 has a straightforward implementation in both the analog and digital

settings. We choose H2 = HT ; on a digital quantum simulator, this can be achieved using

elementary two-site gates Zi Zi+1:

e−iγH2 =

L/2
∏

i=1

e−iγZ2i Z2i+1

L/2
∏

i=1

e−iγZ2i−1Z2i , (8)

such that each unitary e−iγH2 in the VQCS protocol can be considered as a depth-2 quantum

circuit, so that overall the VQCSp can be realized as a quantum circuit with depth at most 3p,

see Fig. 2 and [40] for a related discussion. On an analog simulator, H2 can be approximately

realized, for example as the Ising interactions
∑

i
1
|i− j|α Zi Z j that occur naturally in trapped ion

(α ∈ (0, 3]) or neutral Rydberg atom (α= 6) quantum simulators, for large α.

Figure 2: Quantum circuit realization of the VQCS protocol on a digital quantum sim-

ulator. Shown is the first layer of the protocol (5) using angles (γ1,β1) corresponding

to time evolution by two-site and one-site gates Zi Zi+1 and X i respectively. Subse-

quent layers utilize different angles (γn,βn). For a total of p layers corresponding to

VQCSp, the quantum circuit has a depth of at most 3p.

If we start with the polarized state |+〉 which has S = +1, then since the VQCS pro-

tocol (5) respects this symmetry, optimization of (6) as p → ∞ will yield the GHZ state,

with limp→∞ Fp(γ,β)/L → −1. We implement the VQCS, finding numerically the optimal

angles (γ∗,β∗) that minimize (6) via a search by gradient descent of the parameter space

γi ,βi ∈ [0,π/2) for all i, for system sizes L ≤ L1 = 18, and for p ≤ L1/2. We restrict each an-

gle to be any contiguous interval of length π/2 because e−i π2 H2∝ 1 and e−i π2 H1∝ S; further-

more, in order to give the angles (γ,β) an interpretation of ‘time’, we choose γi ,βi ∈ [0,π/2).
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Figure 3: Preparation of GHZ state. (Left) Optimal cost function (6). One sees that

Fp(γ,β)/L = −1 for p ≥ L/2; in other words, the GHZ state is created with per-

fect fidelity using VQCSp≥L/2. We have also plotted a conjectured analytic expres-

sion −p/(p + 1) (from [26]) for the optimal cost function as the dashed blue line.

(Right) Total minimum time T = min(γ,β)

�

∑p=L/2

i
(γi + βi)
�

required for the VQCS

to produce the GHZ state with perfect fidelity using VQCSp=L/2. The minimization is

performed over all the numerical solutions found. One sees a linear trend T ∼ L.

We note that, for fixed L, assuming a fine mesh of each interval [0,π/2) into M points, a

brute force search of this parameter space takes an exponentially long time t ∼ O(M2p) in

p. Consequently, we have ensured that the total number of runs performed is large enough to

ensure convergence of the search algorithm to the global minimum.

Fig. 3 shows the results. We see that interestingly, the GHZ can be prepared with perfect

fidelity, to machine precision, using the protocol VQCSp∗ , with p∗ = L/2. We note that there

are multiple optimal solutions for (γ,β) that give this perfect fidelity (furthermore, the vector

of angles is symmetric under the reflection γi ↔ βL−i+1; this is due to the Kramers-Wannier

duality of the Ising model which relates the paramagnet (product state) and the ferromagnet

(GHZ)). Since each angle γi ,βi is bounded from above, our numerical results imply that the

time t needed to prepare the GHZ state in a system of size L, using VQCS, is t = O(L). Indeed,

in fig. 3, we see that the minimum amount of time T = min(γ,β)

�

∑p=L/2

i
(γi + βi)
�

amongst

all the solutions that we numerically found at p = L/2, gives an almost perfect linear trend

T ∼ L (see Appendix A for the explicit optimal angles). In the digital setting, the circuit depth

is at most 3p = 3L/2.

We remark that various quantum circuits are known to also exactly prepare the GHZ state

(for example, using a combination of Hadamard and CNOT gates, see also Appendix B). Fur-

thermore, experimentally, GHZ states of various sizes have been prepared with high fidelity

using the Mølmer-Sørensen technique [41,42] in trapped ions. Our VQCS protocol is comple-

mentary in that it provides a uniform circuit that achieves the same result.

4.2 Critical state

Let us also consider the preparation of a critical state, namely the ground state of the critical

1d transverse field Ising model (TFIM) on a ring,

HT := −
L
∑

i=1

Zi Zi+1 −
L
∑

i=1

X i . (9)

Similarly as before, we assume the same operations H1 = −
∑L

i=1 X i , H2 = −
∑L

i=1 Zi Zi+1 as

before, though now we minimize the new cost function (6) using HT above. To benchmark the

7
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Figure 4: Preparation of critical state. (Left) Many-body overlap |〈ψt |ψ〉p|2 of

the prepared state with the target ground state of (9) found by exact diagonal-

ization. Ones sees perfect fidelity for p ≥ L/2. (Right) Total minimum time

T = min(γ,β)

�

∑p=L/2

i
(γi + βi)
�

required for the VQCS to produce the critical state

with perfect fidelity using VQCSp=L/2. One sees a linear trend T ∼ L.

simulation, we compute the many-body overlap |〈ψt |ψ〉p|2 of the prepared state |ψ〉p with the

corresponding target state |ψt〉 (the ground state of (9), obtained by exact diagonalization).

Figs. 4 show the results (see Appendix C for energy optimization plots and explicit optimal

angles). Surprisingly, the critical state |ψt〉 can also be prepared with perfect fidelity to machine

precision using VQCSp∗ , with p∗ = L/2. This implies once again that the time t needed to

prepare a critical state of this system of size L, exactly, goes as t = O(L); we find additionally

numerically that the minimum time T required scales linearly with the system size as T ∼ L.

4.3 Ground states of the TFIM at generic points in the phase diagram

The perfect fidelities achieved for both the GHZ and critical cases using VQCSp∗ for p∗ = L/2

suggest that other points g in the phase diagram of the TFIM HTFIM := −
∑L

i=1 Zi Zi+1−g
∑L

i=1 X i ,

might similarly be targeted. In fact, we conjecture that, for a one-dimensional system of even

L spin-1/2s with periodic boundary conditions, any state produced by VQCSp for arbitrary p

using H2 = −
∑L

i=1 Zi Zi+1 and H1 = −
∑L

i=1 X i , can also be achieved perfectly by VQCSp=L/2.

This would imply that we can indeed achieve the ground state of HTFIM at any point g in the

phase diagram using VQCSp=L/2, which in particular would cover the GHZ and critical cases.

In Appendix D, we provide extra details and numerical evidence to support this conjecture.

We note that the perfect fidelities achieved (to numerical precision) suggest that an analytic

understanding may be possible. However, while the model and unitary gates can be mapped

to free fermions [43], the minimization of the VQCS cost function maps to a nonlinear opti-

mization problem involving an extensive number of variables, which is highly nontrivial.

4.4 Ground state of the Toric code

We next consider the preparation of a topologically ordered state, specifically the ground state

of the Z2 Wen-plaquette model on a square lattice, which is unitarily equivalent to the Kitaev

toric code:

HT = −
L
∑

i=1

L
∑

j=1

σx
i, j+1σ

y

i+1, j+1
σx

i+1, jσ
y

i, j
, (10)
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where we have written the Pauli matrices (X , Y, Z) as (σx ,σ y ,σz) and assumed periodic

boundary conditions with even L. Taking H2 = HT and H1 = −
∑L

i=1 X i in the VQCS, we

find that there exists a protocol of p = L/2 iterations which perfectly prepares the ground

state of (10).

The result can be understood from a map between the original σ spin variables and a dual

set of spin variables τs residing on the centers of plaquettes, which map the Wen plaquette

model to decoupled chains of Ising models living on the diagonals. Concretely, let HS be the

Hilbert space subject to the L constraints
∏L

i=1σ
x
i, j
= 1 for j = 1, ..., L, which is conserved

under time evolution by HI and HX = −
∑

i, j σ
x
i, j

, which has dimHS = 2L2−L . We now define a

new set of Pauli operators τ residing on the centers of plaquettes (see also [44]); τi, j is located

on the center of the plaquette with lower left corner at (i, j). All operators preserving HS can

be rewritten in terms of τ via:

τx
i, j = σ

x
i, j+1σ

y

i+1, j+1
σx

i+1, jσ
y

i, j
,

τz
i, jτ

z
i+1, j+1 = σ

x
i+1, j+1, (11)

subject to the L constraints
∏L

i=1τ
x
i, j
= 1 for j = 1, ..., L.

As the goal is to transform the trivial product state stabilized by H1=−
∑L

i=1

∑L

j=1σ
x
i, j

to

the topologically ordered state stabilized by H2 and the two logical operators L1 =
∏L

i=1σ
x
i,i

and L2 =
∏L

i=1σ
x
i,i+1

, this is equivalent in the dual language to transforming the state stabi-

lized by

¦

−τz
i, jτ

z
i+1, j+1 = −σx

i+1, j+1

©L

i=1
(12)

and
∏L

i=1τ
x
i, j
= 1, into the state stabilized by

¦

−τx
i, j = −σx

i, j+1σ
y

i+1, j+1
σx

i+1, jσ
y

i, j

©L

i=1
, (13)

i.e. converting the GHZ state defined on each diagonal (labeled j) of τ spins, to the trivial

product state
⊗

i |+〉i . Since there exists a unitary protocol corresponding to VQCSp=L/2 that

prepares the GHZ state (shown earlier), the inverse of the protocol can be applied onto each

diagonal of τ spins to achieve this result. In fact, since operators between diagonals commute,

the unitaries on each diagonal can in fact be done in parallel, i.e. a global evolution, and the

ground state of the toric code prepared. Moreover, the logical operator (L1, L2) constraints

are preserved at all steps (see Appendix E for a numerical illustration). The total minimum

runtime T needed to implement this protocol, as found earlier, scales as T ∼ L, which we note

is a lower bound derived in [38].

4.5 Ground state of AFM Heisenberg chain

Lastly, we consider targeting the ground states of the AFM spin-1/2 Heisenberg chains with

open boundary conditions,

HT =

L−1
∑

i=1

Si · Si+1. (14)

We use in this case H1=
∑L/2−1

i=1 S2i · S2i+1 and H2=
∑L/2

i=1 S2i−1 · S2i , whilst evaluating the

expectation value of (14), i.e. the energy, as the cost function. Note that the initial state is now

the product state of Bell pairs
⊗

i
1p
2
(| ↑↓〉− | ↓↑〉)2i−1,2i , and that the angles can be restricted

to γ,β ∈ [0, 2π).
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Figure 5: Fidelities in the preparation of ground states of AFM spin-1/2 Heisenberg

chains of various sizes using VQCS.

Fig. 5 shows the results of the resulting fidelities, for various Ls. We see that in this case,

while the preparation of the ground states is generically not perfect at any finite p, the many-

body fidelities are already very good for very low ps, at least for small system sizes, (e.g.∼ 90%

at L= 12 and p= 1). This illustrates the utility and generality of VQCS in preparing non-trivial

quantum states.

5 Conclusion

We have presented a general, efficient approach for preparing non-trivial quantum states based

on VQCS, and demonstrated numerically its efficacy and efficiency in the preparation of a

number of target states of interest. The main merits of this approach are its practicality for

quantum simulators and its ability to improve based on feedback from the simulator. The only

two requirements–time evolution by simple Hamiltonians– are realizable in synthetic quantum

systems such as trapped ions and superconducting qubits. While in our examples considered

we have chiefly focused on fixed point wavefunctions of certain non-trivial phases of matter

described by integerable systems, we expect that the VQCS can efficiently accommodate tar-

geting more general ground states of interacting Hamiltonians. An important question we

have also addressed in Appendix F is the effect of imperfect sequences on state preparation

(such as noise); we have found that the resulting infidelities in the cases studied are reasonably

small for near-term simulators, and these can be further decreased using feedback.

With the ability to efficiently prepare non-trivial quantum states, various studies are possi-

ble. Their non-trivial entanglement structure could be directly measured by preparing multiple

copies of the states and using recently developed protocols [45, 46]; it would be interesting

to extract the central charge of the critical system or topological entanglement entropy of the

toric code state. Furthermore, truncating the analytic circuit at intermediate depth allows one

to prepare a state with a boundary separating toric code and a trivial paramagnet.

More generally, in addition to providing practical protocols and variational wavefunctions,

the VQCS is a potential tool for addressing questions of complexity of a ground state. In the

examples provided, it furnishes circuits with minimal depth scaling with size and may offer

valuable guidance in determining the circuit complexity [47–49] needed to prepare various

states of matter.
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A Optimal angles for preparing GHZ state at p = L/2

The following are the numerically found optimized set of angles (γ1,β1, · · · ,γp=L/2,βp=L/2)

employed by VQCSp=L/2 which produce the GHZ state with perfect fidelity at various system

sizes and with least amount of time T =
∑p=L/2

i
(γi + βi).

L = 8, T = 4.7867 :

(0.5297,0.5243, 0.7243,0.6151, 0.6151,0.7243, 0.5243,0.5297), (15)

L = 10, T = 6.257:

(0.5814,0.5230, 0.6360,0.7889, 0.5993,0.5993, 0.7889,0.6360, 0.5230,0.5814), (16)

L = 12, T = 7.651:

(0.5466, 0.5452,0.6902, 0.7212,0.5946, 0.7276

0.7276, 0.5946,0.7212, 0.6902,0.5452,0.5466), (17)

L = 14, T = 9.2634:

(0.6513,0.5696, 0.5841,0.6704, 0.7633,0.8270, 0.5660,

0.5660,0.8270, 0.7633,0.6704, 0.5841,0.5696, 0.6513), (18)

L = 16, T = 10.6273:

(0.5846,0.5796, 0.6105,0.7155, , 0.7966, 0.6152,0.6373, 0.7745,

0.7745, 0.6373,0.6152, 0.7966,0.7155, 0.6105,0.5796, 0.5846), (19)

L = 18, T = 12.096:

(0.6064,0.5232, 0.6632,0.7780, 0.6660,0.6302, 0.7773,0.7133, 0.6904,

0.6904,0.7133, 0.7773,0.6302, 0.6660,0.7780, 0.6632,0.5232, 0.6064). (20)

B Explicit nonuniform unitary circuit for preparing the GHZ state

We provide here an analytic example of a unitary circuit that prepares exactly the GHZ state

from the product state |+〉, complementary to the VQCS scheme, which highlights the Kramers-

Wannier duality. This involves a nonuniform application of various 1-site and 2-site unitary

gates. We first rewrite the spin degrees of freedom in therms of Majorana fermions, via the

Jordan-Wigner transformation: γ2 j−1 = Yj

∏ j−1

i=1
X i ,γ2 j = Z j

∏ j−1

i=1
X i for j ranging from 1 to

L. Then X j = −iγ2 j−1γ2 j and Z j Z j+1 = iγ2 jγ2 j+1; the product state and GHZ state thus simply

correspond to the two different dimerization patterns of Majoranas. To transform from the
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state with all iγ2 j−1γ2 j = −1 to the state with all iγ2 jγ2 j+1 = +1, we need to sequentially

exchange Majoranas pairwise (γ1 ↔ γ2,γ2 ↔ γ3, ...). S = e
iπ
4 iγiγ j is the SWAP operator

which accomplishes each exchange: S−1γi, jS = ∓γ j,i . Thus, U is a product of successive

SWAPs, which in the spin language is

U =

�

L−1
∏

i=1

e
iπ
4 X i+1 e

iπ
4 Zi Zi+1

�

e
iπ
4 X1 . (21)

As the last operator (when acting on ⊗|X = 1〉) contributes an overall phase and can be ne-

glected, we have analytically found a depth 2(L − 1) circuit relating GHZ and product states

exactly; this complements the VQCS protocol discussed earlier. We note that such SWAPs were

also used in [50] to transform a product state into the ground state of the Kitaev chain, .

C Energy optimization plot and optimal angles for preparing crit-

ical state at p = L/2

In Fig. 6 we present the optimal cost function given by the energy of the TFIM,

Fp(γ,β) = p〈ψ(γ,β)|HTFIM|ψ(γ,β)〉p, (22)

used in the preparation of the critical state.

1 2 3 4 5 6 7 8 9

-1.29

-1.28

-1.27

-1.26

-1.25

-1.24

-1.23

-1.22

-1.21

-1.2

Figure 6: Preparation of critical state. Optimal cost function (22) with energy as

measured by the TFIM Hamiltonian.

The following are the numerically found optimized set of angles (γ1,β1, · · · ,γp=L/2,βp=L/2)

employed by VQCSp=L/2 which produce the critical state with perfect fidelity at various system

sizes and with least amount of time T =
∑p=L/2

i
(γi + βi).

L = 8, T = 3.9699 :

(0.2496,0.6845, 0.4808,0.6559, 0.5260,0.6048, 0.4503,0.3180), (23)

L = 10, T = 5.250:

(0.2473,0.6977, 0.4888,0.6783, 0.5559,0.6567, 0.5558,0.6029, 0.4598,0.3068), (24)

L = 12, T = 6.7651:

(0.2809,0.6131, 0.6633,0.4537, 0.8653,0.4663,

0.6970, 0.6829,0.4569, 0.7990,0.3565, 0.4304), (25)
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L = 14, T = 8.1604:

(0.3090,0.5710, 0.6923,0.5648, 0.5391,0.9684, 0.3979,

0.6852,0.8235, 0.4474,0.6930, 0.6465,0.4120, 0.4104), (26)

L = 16, T = 9.8198:

(0.3790,0.5622, 0.5638,0.7101, 0.9046,0.3210, 0.6738,0.8377,

0.8616, 0.4004,0.5624,0.9450, 0.5224,0.6466, 0.4119,0.5172), (27)

L = 18, T = 11.1485:

(0.3830,0.4931, 0.7099,0.7010, 0.5330,0.6523, 0.6887,1.0405, 0.3083,

0.6215,0.9607, 0.5977,0.6209, 0.5597,0.7850, 0.5851,0.4132, 0.4948). (28)

D A Conjecture and Numerical Support

Consider a one-dimensional system of an even number L spin-1/2s with periodic boundary

conditions, and consider H ′I = −
∑L

i=1 Zi Zi+1 and HX = −
∑

i X i . Our conjecture is that any

state produced by a VQCSp protocol of arbitrary p can be obtained by VQCSp=L/2. In other

words, for any p and set of angles (γ,β) ≡ (γ1, · · ·γp,β1, · · ·βp), there exists a set of angles

(γ′,β ′)≡ (γ′1, · · ·γ′
L/2

,β ′1, · · ·β ′
L/2
) such that

e
−iβ ′

L/2
HX e
−iγ′

L/2
H ′I · · · e−iβ ′1HX e−iγ′1H ′I |+〉= e−iβpHX e−iγpH ′I · · · e−iβ1HX e−iγ1H ′I |+〉. (29)

It suffices to establish this result for p = L/2 + 1, because one could then contract the

p = (L/2+ 1) VQCS unitary into a p = L/2 VQCS unitary, and iterate this process to achieve

finally a p = L/2 VQCS unitary. We have tested this result for different system sizes by gener-

ating random states |ψ(r)(γ,β)〉L/2+1 produced using the VQCSp=L/2+1 protocol with random

angles (γ1, · · ·γL/2+1,β1, · · · ,βL/2+1), and targeting them using the protocol VQCSp for p up

to L/2. More precisely, given a random state |ψ(r)(γ,β)〉L/2+1, we maximize the fidelity

fp(γ
′,β ′) =
�

�

p〈ψ(γ′,β ′)|ψ(r)(γ,β)〉L/2+1

�

�

2
, (30)

over (γ′,β ′), where |ψ(γ′,β ′)〉p is the state produced by VQCSp.

Figs. 7, 8 show the results. In fig. 7, we plot the typical optimal infidelity 1−Median( fp),

given by the median over all realizations of random states (we have used 5000 random states

and ensured convergence of the algorithm to the global minimum) against p, and for var-

ious Ls. We see that a typical run of VQCSp for p = L/2 is able to target the input state

|ψ(r)(γ,β)〉L/2+1 with perfect fidelity (to machine precision), while not for p < L/2. The rea-

son we do not use the mean value, is because this undesirably overly weights the contributions

of numerical imprecisions in the optimization algorithm. However, to make a statement about

whether VQCSp=L/2 is able to always reach the target random state, we need to analyze the

full distribution of the optimal fidelities. In fig. 8, we plot the distribution of the optimal fi-

delities for one of the system sizes considered and for various ps by plotting the probability

distributions P( f ) of the optimal fidelities f . We find that at p = L/2, the distribution is singu-

larly peaked at f = 1 (to machine precision), indicating that in fact, all realizations of random

states created using VQCSp=L/2+1 can be targeted with VQCSp=L/2, perfectly. This is in con-

trast to the optimal fidelities obtained for p < L/2: there is some spread in the distributions,
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Figure 7: Typical optimal infidelity of VQCSp for 1 ≤ p ≤ L/2 used to target a

random state produced by VQCSp=L/2+1 (given by the median over 5000 realizations

of random states). One sees a clear dip at p = L/2, to a value close to machine

precision (which we take to be ∼ 10−13), indicating that the VQCSp=L/2 is able to

target a random state with perfect fidelity typically.

indicating that there are instances of random states for which VQCSp<L/2 cannot reproduce it.

Thus, our numerics gives support to the conjecture that any state produced using VQCSp≥L/2+1

can be obtained by VQCSp=L/2.

One important consequence of the above conjecture is that the ground state of any point

in the transverse field Ising model (H = H ′I+ gHX for arbitrary g) can be achieved with perfect

fidelity by VQCSp=L/2. This is because as the number of iterations p approaches infinity, VQCS

includes the trotterized adiabatic algorithm as a subset, and the latter can achieve any ground

state in the phase diagram if infinite depth is permitted. Our conjecture then implies that such

a protocol can be contracted to one with p = L/2.

As for proving the conjecture, we note that that leveraging the free fermion representation

of the model, as done in [43], is a promising route. However, such a representation nonetheless

involves a nonlinear (and hence nontrivial) optimization problem which we leave for future

work.

E Numerical verification of preparation of toric code ground state

We show here numerics that verify that we can prepare using VQCSp=L/2 the ground state of

the Wen-plaquette model in the sector (L1, L2) = (+1,+1), using the angles found previously

of a VQCSp=L/2 protocol which prepared the GHZ state. Fig. 9 shows the result for a L × L

Wen-plaquette model, where L = 4 (so that there are only four angles (γ1,γ2,β1,β2) employed

by the VQCS protocol). We see that all plaquette operators and logical operators carry a unit

expectation value in the prepared state, which indicates that we can indeed prepare the ground

state of the Wen-plaquette model in the appropriate logical sector as mentioned in the main

text.

Note that this sequence derived from VQCS is different from the analytic depth-2(L − 1)

circuit (using SWAP operators) that also prepares the Wen-plaquette ground state exactly.
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Figure 8: Probability distribution of optimal fidelities, for system size L = 14. For

p = L/2, the optimal fidelities are singularly peaked at f = 1, indicating that all in-

stances of random states produced by VQCSp=L/2+1 can be targeted using VQCSp=L/2

perfectly; this is in contrast to p < L/2 where there is some spread in the distribution,

indicating that there are instances of random states for which VQCSp<L/2 cannot tar-

get them. Probability distributions for other system sizes is qualitatively similar to

one shown here.

F1 F2 F3 F4

F5 F6 F7 F8

F9 F10 F11 F12

F13 F14 F15 F16

L1 L2

F1

F6

F11

F16

F4

F5

F10

F15

Figure 9: Numerical preparation the of Wen plaquette ground state using VQCSp=L/2.

Here L = 4, and we use the angles found from VQCS2 that produced the GHZ state.

The left plot describes the geometry of the set-up, and illustrate the plaquette op-

erators Fi which make up the Hamiltonian HT = −
∑

i Fi as well as the two logical

operators L1 and L2 which wrap around the torus. The right plot shows the expec-

tation value of the plaquette operators and logical operators in the state prepared by

VQCS. One sees that all expectation values are +1 to machine precision, indicating

a perfect preparation of the ground state.
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Figure 10: Effect of errors of strength ε on the VQCS preparation of GHZ and critical

states for system size L. Plotted is the infidelity averaged over 1000 error realizations

(denoted by the overline).

F Effect of errors on VQCS state preparation

To probe the sensitivity of our state preparation protocol to imperfections, we introduced ran-

dom errors to the optimal angles and calculated the resulting infidelity f = 1− |〈ψt |ψ〉L/2|2
for VQCSp=L/2, averaged over 1000 realizations of errors. Specifically, for each optimal angle

γ∗, we introduce an error γ = γ∗(1+ εR), where R is chosen randomly from the uniform dis-

tribution [−1, 1] and ε parameterizes the strength of error (0.01, 0.02, 0.03, 0.04, or 0.05 in

our study).

Fig. 10 shows the results for both the GHZ and critical states, for various system sizes and

error strengths. Although the infidelity appears to increase exponentially with L, we see that

for experimentally accessible system sizes (on the order of ten qubits), the infidelity is small

(< 0.01 infidelity for ε= 0.01 in L = 18).
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