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ABSTRACT

We present an efficient document representation learning framework, Document
Vector through Corruption (Doc2VecC). Doc2VecC represents each document as
a simple average of word embeddings. It ensures a representation generated as
such captures the semantic meanings of the document during learning. A cor-
ruption model is included, which introduces a data-dependent regularization that
favors informative or rare words while forcing the embeddings of common and
non-discriminative ones to be close to zero. Doc2VecC produces significantly
better word embeddings than Word2Vec. We compare Doc2VecC with several
state-of-the-art document representation learning algorithms. The simple model
architecture introduced by Doc2VecC matches or out-performs the state-of-the-art
in generating high-quality document representations for sentiment analysis, doc-
ument classification as well as semantic relatedness tasks. The simplicity of the
model enables training on billions of words per hour on a single machine. At
the same time, the model is very efficient in generating representations of unseen
documents at test time.

1 INTRODUCTION

Text understanding starts with the challenge of finding machine-understandable representation that
captures the semantics of texts. Bag-of-words (BoW) and its N-gram extensions are arguably the
most commonly used document representations. Despite its simplicity, BoW works surprisingly
well for many tasks (Wang & Manning, 2012). However, by treating words and phrases as unique
and discrete symbols, BoW often fails to capture the similarity between words or phrases and also
suffers from sparsity and high dimensionality.

Recent works on using neural networks to learn distributed vector representations of words have
gained great popularity. The well celebrated Word2Vec (Mikolov et al., 2013a), by learning to
predict the target word using its neighboring words, maps words of similar meanings to nearby
points in the continuous vector space. The surprisingly simple model has succeeded in generating
high-quality word embeddings for tasks such as language modeling, text understanding and machine
translation. Word2Vec naturally scales to large datasets thanks to its simple model architecture. It
can be trained on billions of words per hour on a single machine.

Paragraph Vectors (Le & Mikolov, 2014) generalize the idea to learn vector representation for docu-
ments. A target word is predicted by the word embeddings of its neighbors in together with a unique
document vector learned for each document. It outperforms established document representations,
such as BoW and Latent Dirichlet Allocation (Blei et al., 2003), on various text understanding
tasks (Dai et al., 2015). However, two caveats come with this approach: 1) the number of parame-
ters grows with the size of the training corpus, which can easily go to billions; and 2) it is expensive
to generate vector representations for unseen documents at test time.

We propose an efficient model architecture, referred to as Document Vector through Corruption
(Doc2VecC), to learn vector representations for documents. It is motivated by the observation that
linear operations on the word embeddings learned by Word2Vec can sustain substantial amount
of syntactic and semantic meanings of a phrase or a sentence (Mikolov et al., 2013b). For ex-
ample, vec(“Russia”) + vec(“river”) is close to vec(“Volga River”) (Mikolov & Dean, 2013), and
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vec(“king”) - vec(“man”) + vec(“women”) is close to vec(“queen”) (Mikolov et al., 2013b). In
Doc2VecC, we represent each document as a simple average of the word embeddings of all the
words in the document. In contrast to existing approaches which post-process learned word em-
beddings to form document representation (Socher et al., 2013; Mesnil et al., 2014), Doc2VecC
enforces a meaningful document representation can be formed by averaging the word embeddings
during learning. Furthermore, we include a corruption model that randomly remove words from a
document during learning, a mechanism that is critical to the performance and learning speed of our
algorithm.

Doc2VecC has several desirable properties: 1. The model complexity of Doc2VecC is decoupled
from the size of the training corpus, depending only on the size of the vocabulary; 2. The model
architecture of Doc2VecC resembles that of Word2Vec, and can be trained very efficiently; 3. The
new framework implicitly introduces a data-dependent regularization, which favors rare or informa-
tive words and suppresses words that are common but not discriminative; 4. Vector representation
of a document can be generated by simply averaging the learned word embeddings of all the words
in the document, which significantly boost test efficiency; 5. The vector representation generated by
Doc2VecC matches or beats the state-of-the-art for sentiment analysis, document classification as
well as semantic relatedness tasks.

2 RELATED WORKS AND NOTATIONS

Text representation learning has been extensively studied. Popular representations range from the
simplest BoW and its term-frequency based variants (Salton & Buckley, 1988), language model
based methods (Croft & Lafferty, 2013; Mikolov et al., 2010; Kim et al., 2015), topic models (Deer-
wester et al., 1990; Blei et al., 2003), Denoising Autoencoders and its variants (Vincent et al., 2008;
Chen et al., 2012), and distributed vector representations (Mesnil et al., 2014; Le & Mikolov, 2014;
Kiros et al., 2015). Another prominent line of work includes learning task-specific document rep-
resentation with deep neural networks, such as CNN (Zhang & LeCun, 2015) or LSTM based ap-
proaches (Tai et al., 2015; Dai & Le, 2015).

In this section, we briefly introduce Word2Vec and Paragraph Vectors, the two approaches that are
most similar to ours. There are two well-know model architectures used for both methods, referred
to as Continuous Bag-of-Words (CBoW) and Skipgram models (Mikolov et al., 2013a). In this
work, we focus on CBoW. Extending to Skipgram is straightforward. Here are the notations we are
going to use throughout the paper:

D = {D1, · · · , Dn}: a training corpus of size n, in which each document Di contains a variable-

length sequence of words w1
i , · · · , w

Ti

i ;

V : the vocabulary used in the training corpus, of sizes v;

x ∈ Rv×1: BoW of a document, where xj = 1 iff word j does appear in the document.

c
t ∈ Rv×1: BoW of the local context wt−k, · · · , wt−1, wt+1, · · · , wt+k at the target position t.

ctj = 1 iff word j appears within the sliding window of the target;

U ∈ Rh×v: the projection matrix from the input space to a hidden space of size h. We use uw to
denote the column in U for word w, i.e., the “input“ vector of word w;

V
⊤ ∈ Rv×h: the projection matrix from the hidden space to output. Similarly, we use vw to

denote the column in V for word w, i.e., the “output“ vector of word w.

Word2Vec. Word2Vec proposed a neural network architecture of an input layer, a projection layer
parameterized by the matrix U and an output layer by V

⊤. It defines the probability of observing
the target word wt in a document D given its local context ct as

P (wt|ct) =
exp(v⊤

wtUc
t)

∑

w′∈V exp(v⊤
w′Uct)

The word vectors are then learned to maximize the log likelihood of observing the target word at
each position of the document. Various techniques (Mitchell & Lapata, 2010; Zanzotto et al., 2010;
Yessenalina & Cardie, 2011; Grefenstette et al., 2013; Socher et al., 2013; Kusner et al., 2015)
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have been studied to generate vector representations of documents from word embeddings, among
which the simplest approach is to use weighted average of word embeddings. Similarly, our method
forms document representation by averaging word embeddings of all the words in the document.
Differently, as our model encodes the compositionality of words in the learned word embeddings,
heuristic weighting at test time is not required.

Paragraph Vectors. Paragraph Vectors, on the other hands, explicitly learns a document vector
with the word embeddings. It introduces another projection matrix D ∈ Rh×n. Each column of D
acts as a memory of the global topic of the corresponding document. It then defines the probability
of observing the target word wt in a document D given its local context ct as

P (wt|ct,d) =
exp(v⊤

wt(Uc
t + d))

∑

w′∈V exp(v⊤
w′(Uct + d))

where d ∈ D is the vector representation of the document. As we can see from this formula, the
complexity of Paragraph Vectors grows with not only the size of the vocabulary, but also the size of
the training corpus. While we can reasonably limit the size of a vocabulary to be within a million
for most datasets, the size of a training corpus can easily go to billions. What is more concerning is
that, in order to come up with the vector representations of unseen documents, we need to perform
an expensive inference by appending more columns to D and gradient descent on D while fixing
other parameters of the learned model.

3 METHOD

Several works (Mikolov & Dean, 2013; Mikolov et al., 2013b) showcased that syntactic and seman-
tic regularities of phrases and sentences are reasonably well preserved by adding or subtracting word
embeddings learned through Word2Vec. It prompts us to explore the option of simply representing
a document as an average of word embeddings. Figure 1 illustrates the new model architecture.

wt#1 Wt+1 Wt+2 wp wq wr

wt

opening for the performance praised brazil

ceremony

word<vectors

document<vector

Average/Concatenate

Figure 1: A new framework for learning document vectors.

Similar to Word2Vec or Paragraph Vectors, Doc2VecC consists of an input layer, a projection layer
as well as an output layer to predict the target word, “ceremony” in this example. The embeddings of
neighboring words (“opening”, “for”, “the”) provide local context while the vector representation of
the entire document (shown in grey) serves as the global context. In contrast to Paragraph Vectors,
which directly learns a unique vector for each document, Doc2VecC represents each document as
an average of the embeddings of words randomly sampled from the document (“performance” at
position p, “praised” at position q, and “brazil” at position r).

Huang et al. (2012) also proposed the idea of using average of word embeddings to represent the
global context of a document. Different from their work, we choose to corrupt the original document
by randomly removing significant portion of words, and represent the document using only the
embeddings of the words remained. This corruption mechanism offers us great speedup during
training as it significantly reduces the number of parameters to update in back propagation. At the
same time, as we are going to detail in the next section, it introduces a special form of regularization,
which brings great performance improvement.
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Here we describe the stochastic process we used to generate a global context at each update. The
global context, which we denote as x̃, is generated through a unbiased mask-out/drop-out corruption,
in which we randomly overwrites each dimension of the original document x with probability q. To
make the corruption unbiased, we set the uncorrupted dimensions to 1/(1 − q) times its original
value. Formally,

x̃d =

{

0, with probability q
xd

1−q
, otherwise

(1)

Doc2VecC then defines the probability of observing a target word wt given its local context ct as
well as the global context x̃ as

P (wt|ct, x̃) =
exp(v⊤

wt(

local context
︷︸︸︷

Uc
t +

global context
︷ ︸︸ ︷

1

T
Ux̃ ))

∑

w′∈V exp(v⊤
w′

(
Uct + 1

T
Ux̃)

) (2)

Here T is the length of the document. Exactly computing the probability is impractical, instead we
approximate it with negative sampling (Mikolov et al., 2013a).

f(w, c, x̃) ≡ logP (wt|ct, x̃)

≈ log σ

(

v
⊤
w(Uc+

1

T
Ux̃)

)

+
∑

w′∼Pv

log σ

(

−v
⊤
w′(Uc+

1

T
Ux̃)

)

(3)

here Pv stands for a uniform distribution over the terms in the vocabulary. The two projection
matrices U and V are then learned to minimize the loss:

ℓ = −

n∑

i=1

Ti∑

t=1

f(wt
i , c

t
i, x̃

t
i) (4)

Given the learned projection matrix U, we then represent each document simply as an average of
the embeddings of the words in the document,

d =
1

T

∑

w∈D

uw. (5)

We are going to elaborate next why we choose to corrupt the original document with the corruption
model in eq.(1) during learning, and how it enables us to simply use the average word embeddings
as the vector representation for documents at test time.

3.1 CORRUPTION AS DATA-DEPENDENT REGULARIZATION

We approximate the log likelihood for each instance f(w, c, x̃) in eq.(4) with its Taylor expansion
with respect to x̃ up to the second-order (Van Der Maaten et al., 2013; Wager et al., 2013; Chen
et al., 2014). Concretely, we choose to expand at the mean of the corruption µx = Ep(x̃|x)[x̃]:

f(w, c, x̃) ≈ f(w, c, µx) + (x̃− µx)
⊤∇x̃f +

1

2
(x̃− µx)

⊤∇2
x̃
f(x̃− µx)

where ∇x̃f and ∇2
x̃
f are the first-order (i.e., gradient) and second-order (i.e., Hessian) of the log

likelihood with respect to x̃. Expansion at the mean µx is crucial as shown in the following steps.
Let us assume that for each instance, we are going to sample the global context x̃ infinitely many
times, and thus compute the expected log likelihood with respect to the corrupted x̃.

Ep(x̃|x)[f(w, c, x̃)] ≈ f(w, c, µx) +
1

2
tr
(
E[(x̃− x)(x̃− x)⊤]∇2

x̃
f
)

The linear term disappears as Ep(x̃|x)[x̃ − µx] = 0. We substitute in x for the mean µx of the

corrupting distribution (unbiased corruption) and the matrix Σx = E[(x̃ − µx)(x̃ − µx)
⊤] for the

variance, and obtain

Ep(x̃|x)[f(w, c, x̃)] ≈ f(w, c,x) +
1

2
tr
(
Σx∇

2
x̃
f
)

(6)
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As each word in a document is corrupted independently of others, the variance matrix Σx is simpli-
fied to a diagonal matrix with jth element equals q

1−q
x2
j . As a result, we only need to compute the

diagonal terms of the Hessian matrix ∇2
x̃
f .

The jth dimension of the Hessian’s diagonal evaluated at the mean x is given by

∂2f

∂x2
j

= −σw,c,x(1− σw,c,x)(
1

T
v
⊤
wuj)

2 −
∑

w′∼Pv

σw′,c,x(1− σw′,c,x)(
1

T
v
⊤
w′uj)

2

Plug the Hessian matrix and the variance matrix back into eq.(6), and then back to the loss defined
in eq.(4), we can see that Doc2VecC intrinsically minimizes

ℓ = −

n∑

i=1

Ti∑

t=1

f(wt
i , c

t
i,xi) +

q

1− q

v∑

j=1

R(uj) (7)

Each f(wt
i , c

t
i,xi) in the first term measures the log likelihood of observing the target word wt

i

given its local context cti and the document vector di =
1
T
Uxi. As such, Doc2VecC enforces that a

document vector generated by averaging word embeddings can capture the global semantics of the
document, and fill in information missed in the local context.

The second term here is a data-dependent regularization. The regularization on the embedding uj

of each word j takes the following form,

R(uj) ∝

n∑

i=1

Ti∑

t=1

x2
ij

[

σwt

i
,ct

i
,xi

(1− σwt

i
,ct

i
,xi

)(
1

T
v
⊤
wt

i

uj)
2 +

∑

w′∼Pv

σw′,ct

i
,xi

(1− σw′,ct

i
,xi

)(
1

T
v
⊤
w′uj)

2

]

where σw,c,x = σ(v⊤
w(Uc+ 1

T
Ux)) prescribes the confidence of predicting the target word w given

its neighboring context c as well as the document vector d = 1
T
Ux.

Closely examining R(uj) leads to several interesting findings: 1. the regularizer penalizes more
on the embeddings of common words. A word j that frequently appears across the training corpus,
i.e, xij = 1 often, will have a bigger regularization than a rare word; 2. on the other hand, the
regularization is modulated by σw,c,x(1 − σw,c,x), which is small if σw,c,x → 1 or 0. In other
words, if uj is critical to a confident prediction σw,c,x when it is active, then the regularization is
diminished. Similar effect was observed for dropout training for logistic regression model (Wager
et al., 2013) and denoising autoencoders (Chen et al., 2014).

4 EXPERIMENTS

We evaluate Doc2VecC on a sentiment analysis task, a document classification task and a semantic
relatedness task, along with several document representation learning algorithms. All experiments
can be reproduced using the code available at https://github.com/mchen24/iclr2017

4.1 BASELINES

We compare against the following document representation baselines: bag-of-words (BoW); De-
noising Autoencoders (DEA) (Vincent et al., 2008), a representation learned from reconstructing
original document x using corrupted one x̃. SDAs have been shown to be the state-of-the-art for sen-
timent analysis tasks (Glorot et al., 2011). We used Kullback-Liebler divergence as the reconstruc-
tion error and an affine encoder. To scale up the algorithm to large vocabulary, we only take into ac-
count the non-zero elements of x in the reconstruction error and employed negative sampling for the
remainings; Word2Vec (Mikolov et al., 2013a)+IDF, a representation generated through weighted
average of word vectors learned using Word2Vec; Doc2Vec (Le & Mikolov, 2014); Skip-thought
Vectors(Kiros et al., 2015), a generic, distributed sentence encoder that extends the Word2Vec skip-
gram model to sentence level. It has been shown to produce highly generic sentence representations
that apply to various natural language processing tasks. We also include RNNLM (Mikolov et al.,
2010), a recurrent neural network based language model in the comparison. In the semantic related-
ness task, we further compare to LSTM-based methods (Tai et al., 2015) that have been reported
on this dataset.
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Table 1: Classification error of a linear classifier trained on various document representations on the
Imdb dataset.

Model Error rate % (include test) Error rate % (exclude test)

Bag-of-Words (BOW) 12.53 12.59

RNN-LM 13.59 13.59

Denoising Autoencoders (DEA) 11.58 12.54

Word2Vec + AVG 12.11 12.69
Word2Vec + IDF 11.28 11.92

Paragraph Vectors 10.81 12.10

Skip-thought Vectors - 17.42

Doc2VecC 10.48 11.70

4.2 SENTIMENT ANALYSIS

For sentiment analysis, we use the IMDB movie review dataset. It contains 100,000 movies reviews
categorized as either positive or negative. It comes with predefined train/test split (Maas et al.,
2011): 25,000 reviews are used for training, 25,000 for testing, and the rest as unlabeled data. The
two classes are balanced in the training and testing sets. We remove words that appear less than 10
times in the training set, resulting in a vocabulary of 43,375 distinct words and symbols.

Setup. We test the various representation learning algorithms under two settings: one follows the
same protocol proposed in (Mesnil et al., 2014), where representation is learned using all the avail-
able data, including the test set; another one where the representation is learned using training and
unlabeled set only. For both settings, a linear support vector machine (SVM) (Fan et al., 2008)
is trained afterwards on the learned representation for classification. For Skip-thought Vectors, we
used the generic model1 trained on a much bigger book corpus to encode the documents. A vector of
4800 dimensions, first 2400 from the uni-skip model, and the last 2400 from the bi-skip model, are
generated for each document. In comparison, all the other algorithms produce a vector representa-
tion of size 100. The supervised RNN-LM is learned on the training set only. The hyper-parameters
are tuned on a validation set subsampled from the training set.

Accuracy. Comparing the two columns in Table 1, we can see that all the representation learn-
ing algorithms benefits from including the testing data during the representation learning phrase.
Doc2VecC achieved similar or even better performance than Paragraph Vectors. Both methods
outperforms the other baselines, beating the BOW representation by 15%. In comparison with
Word2Vec+IDF, which applies post-processing on learned word embeddings to form document rep-
resentation, Doc2VecC naturally enforces document semantics to be captured by averaged word
embeddings during training. This leads to better performance. Doc2VecC reduces to Denoising Au-
toencoders (DEA) if the local context words are removed from the paradigm shown in Figure 1. By
including the context words, Doc2VecC allows the document vector to focus more on capturing the
global context. Skip-thought vectors perform surprisingly poor on this dataset comparing to other
methods. We hypothesized that it is due to the length of paragraphs in this dataset. The average
length of paragraphs in the IMDB movie review dataset is 296.5, much longer than the ones used
for training and testing in the original paper, which is in the order of 10. As noted in (Tai et al.,
2015), the performance of LSTM based method (similarly, the gated RNN used in Skip-thought
vectors) drops significantly with increasing paragraph length, as it is hard to preserve state over long
sequences of words.

Time. Table 2 summarizes the time required by these algorithms to learn and generate the document
representation. Word2Vec is the fastest one to train. Denoising Autoencoders and Doc2VecC second
that. The number of parameters that needs to be back-propagated in each update was increased by
the number of surviving words in x̃. We found that both models are not sensitive to the corruption
rate q in the noise model. Since the learning time decreases with higher corruption rate, we used
q = 0.9 throughout the experiments. Paragraph Vectors takes longer time to train as there are
more parameters (linear to the number of document in the learning set) to learn. At test time,
Word2Vec+IDF, DEA and Doc2VecC all use (weighted) averaging of word embeddings as document

1available at https://github.com/ryankiros/skip-thoughts
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Table 2: Learning time and representation generation time required by different representation learn-
ing algorithms.

Model Learning time Generation time

Denoising Autoencoders 3m 23s 7s
Word2Vec + IDF 2m 33s 7s
Paragraph Vectors 4m 54s 4m 17s

Skip-thought 2h 2h
Doc2VecC 4m 30s 7s

Table 3: Words with embeddings closest to 0 learned by different algorithms.

Word2Vec harp(118) distasteful(115) switzerland(101) shabby(103) fireworks(101) heav-
ens(100) thornton(108) endeavor(100) dense(108) circumstance(119) debacle(103)

ParaVectors harp(118) dense(108) reels(115) fireworks(101) its’(103) unnoticed(112) pony(102)
fulfilled(107) heavens(100) bliss(110) canned(114) shabby(103) debacle(103)

Doc2VecC ,(1099319) .(1306691) the(1340408) of(581667) and(651119) up(49871) to(537570)
that(275240) time(48205) endeavor(100) here(21118) way(31302) own(13456)

representation. Paragraph Vectors, on the other hand, requires another round of inference to produce
the vector representation of unseen test documents. It takes Paragraph Vectors 4 minutes and 17
seconds to infer the vector representations for the 25,000 test documents, in comparison to 7 seconds
for the other methods. As we did not re-train the Skip-thought vector models on this dataset, the
training time2 reported in the table is the time it takes to generate the embeddings for the 25,000
training documents. Due to repeated high-dimensional matrix operations required for encoding long
paragraphs, it takes fairly long time to generate the representations for these documents. Similarly
for testing. The experiments were conducted on a desktop with Intel i7 2.2Ghz cpu.

Data dependent regularization. As explained in Section 3.1, the corruption introduced in
Doc2VecC acts as a data-dependent regularization that suppresses the embeddings of frequent but
uninformative words. Here we conduct an experiment to exam the effect. We used a cutoff of 100
in this experiment. Table 3 lists the words having the smallest l2 norm of embeddings found by
different algorithms. The number inside the parenthesis after each word is the number of times this
word appears in the learning set. In word2Vec or Paragraph Vectors, the least frequent words have
embeddings that are close to zero, despite some of them being indicative of sentiment such as deba-
cle, bliss and shabby. In contrast, Doc2VecC manages to clamp down the representation of words
frequently appear in the training set, but are uninformative, such as symbols and stop words.

Subsampling frequent words. Note that for all the numbers reported, we applied the trick of
subsampling of frequent words introduced in (Mikolov & Dean, 2013) to counter the imbalance
between frequent and rare words. It is critical to the performance of simple Word2Vec+AVG as the
sole remedy to diminish the contribution of common words in the final document representation. If
we were to remove this step, the error rate of Word2Vec+AVG will increases from 12.1% to 13.2%.
Doc2VecC on the other hand naturally exerts a stronger regularization toward embeddings of words
that are frequent but uninformative, therefore does not rely on this trick.

4.3 WORD ANALOGY

In table 3, we demonstrated that the corruption model introduced in Doc2VecC dampens the embed-
dings of words which are common and non-discriminative (stop words). In this experiment, we are
going to quantatively compare the word embeddings generated by Doc2VecC to the ones generated
by Word2Vec, or Paragraph Vectors on the word analogy task introduced by Mikolov et al. (2013a).
The dataset contains five types of semantic questions, and nine types of syntactic questions, with a
total of 8,869 semantic and 10,675 syntactic questions. The questions are answered through simple
linear algebraic operations on the word embeddings generated by different methods. Please refer to
the original paper for more details on the evaluation protocol.

2As reported in the original paper, training of the skip-thought vector model on the book corpus dataset
takes around 2 weeks on GPU.
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Figure 2: Accuracy on subset of the Semantic-Syntactic Word Relationship test set. Only questions
containing words from the most frequent 30k words are included in the test.

Semantic questions Word2Vec Doc2VecC Syntactic questions Word2Vec Doc2VecC

capital-common-countries 73.59 81.82 gram1-adjective-to-adverb 19.25 20.32
capital-world 67.94 77.96 gram2-opposite 14.07 25.54

currency 17.14 12.86 gram3-comparative 60.21 74.47
city-in-state 34.49 42.86 gram4-superlative 52.87 55.40

family 68.71 64.62 gram5-present-participle 56.34 65.81
gram6-nationality-adjective 88.71 91.03

gram7-past-tense 47.05 51.86
gram8-plural 50.28 61.27

gram9-plural-verbs 25.38 39.69

Table 4: Top 1 accuracy on the 5 type of semantics and 9 types of syntactic questions.

We trained the word embeddings of different methods using the English news dataset released under
the ACL workshop on statistical machine translation. The training set includes close to 15M para-
graphs with 355M tokens. We compare the performance of word embeddings trained by different
methods with increasing embedding dimensionality as well as increasing training data.

We observe similar trends as in Mikolov et al. (2013a). Increasing embedding dimensionality as
well as training data size improves performance of the word embeddings on this task. However, the
improvement is diminishing. Doc2VecC produces word embeddings which performs significantly
better than the ones generated by Word2Vec. We observe close to 20% uplift when we train on the
full training corpus. Paragraph vectors on the other hand performs surprisingly bad on this dataset.
Our hypothesis is that due to the large capacity of the model architecture, Paragraph Vectors relies
mostly on the unique document vectors to capture the information in a text document instead of
learning the word semantic or syntactic similarities. This also explains why the PV-DBOW Le &
Mikolov (2014) model architecture proposed in the original work, which completely removes word
embedding layers, performs comparable to the distributed memory version.

In table 5, we list a detailed comparison of the performance of word embeddings generated by
Word2Vec and Doc2VecC on the 14 subtasks, when trained on the full dataset with embedding of
size 100. We can see that Doc2VecC significantly outperforms the word embeddings produced by
Word2Vec across almost all the subtasks.

4.4 DOCUMENT CLASSIFICATION

For the document classification task, we use a subset of the wikipedia dump, which contains over
300,000 wikipedia pages in 100 categories. The 100 categories includes categories under sports,

8



Published as a conference paper at ICLR 2017

Table 5: Classification error (%) of a linear classifier trained on various document representations
on the Wikipedia dataset.

Model BOW DEA Word2Vec + AVG Word2Vec + IDF ParagraphVectors Doc2VecC

h = 100 36.03 32.30 33.2 33.16 35.78 31.92
h = 200 36.03 31.36 32.46 32.48 34.92 30.84
h = 500 36.03 31.10 32.02 32.13 33.93 30.43
h = 1000 36.03 31.13 31.78 32.06 33.02 30.24

(a) Doc2Vec (b) Doc2VecC

Figure 3: Visualization of document vectors on Wikipedia dataset using t-SNE.

entertainment, literature, and politics etc. Examples of categories include American drama films,
Directorial debut films, Major League Baseball pitchers and Sydney Swans players. Body texts
(the second paragraph) were extracted for each page as a document. For each category, we select
1,000 documents with unique category label, and 100 documents were used for training and 900
documents for testing. The remaining documents are used as unlabeled data. The 100 classes
are balanced in the training and testing sets. For this data set, we learn the word embedding and
document representation for all the algorithms using all the available data. We apply a cutoff of 10,
resulting in a vocabulary of size 107, 691.

Table 5 summarizes the classification error of a linear SVM trained on representations of different
sizes. We can see that most of the algorithms are not sensitive to the size of the vector represen-
tation. Doc2Vec benefits most from increasing representation size. Across all sizes of representa-
tions, Doc2VecC outperform the existing algorithms by a significant margin. In fact, Doc2VecC can
achieve same or better performance with a much smaller representation vector.

Figure 4: Visualization of Wikipedia Doc2VecC
vectors using t-SNE.

Figure 3 visualizes the document representa-
tions learned by Doc2Vec (left) and Doc2VecC
(right) using t-SNE (Maaten & Hinton, 2008).
We can see that documents from the same cat-
egory are nicely clustered using the representa-
tion generated by Doc2VecC. Doc2Vec, on the
other hand, does not produce a clear separation
between different categories, which explains its
worse performance reported in Table 5.

Figure 4 visualizes the vector representation
generated by Doc2VecC w.r.t. coarser catego-
rization. we manually grouped the 100 cate-
gories into 7 coarse categories, television, al-
bums, writers, musicians, athletes, species and
actors. Categories that do no belong to any of
these 7 groups are not included in the figure.

9
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We can see that documents belonging to a coarser category are grouped together. This subset in-
cludes is a wide range of sports descriptions, ranging from football, crickets, baseball, and cycling
etc., which explains why the athletes category are less concentrated. In the projection, we can see
documents belonging to the musician category are closer to those belonging to albums category than
those of athletes or species.

4.5 SEMANTIC RELATEDNESS

We test Doc2VecC on the SemEval 2014 Task 1: semantic relatedness SICK dataset (Marelli et al.,
2014). Given two sentences, the task is to determine how closely they are semantically related. The
set contains 9,927 pairs of sentences with human annotated relatedness score, ranging from 1 to 5.
A score of 1 indicates that the two sentences are not related, while 5 indicates high relatedness. The
set is splitted into a training set of 4,500 instances, a validation set of 500, and a test set of 4,927.

We compare Doc2VecC with several winning solutions of the competition as well as several more
recent techniques reported on this dataset, including bi-directional LSTM and Tree-LSTM3 trained
from scratch on this dataset, Skip-thought vectors learned a large book corpus 4 (Zhu et al., 2015)
and produced sentence embeddings of 4,800 dimensions on this dataset. We follow the same proto-
col as in skip-thought vectors, and train Doc2VecC on the larger book corpus dataset. Contrary to
the vocabulary expansion technique used in (Kiros et al., 2015) to handle out-of-vocabulary words,
we extend the vocabulary of the learned model directly on the target dataset in the following way:
we use the pre-trained word embedding as an initialization, and fine-tune the word and sentence
representation on the SICK dataset. Notice that the fine-tuning is done for sentence representation
learning only, and we did not use the relatedness score in the learning. This step brings small im-
provement to the performance of our algorithm. Given the sentence embeddings, we used the exact
same training and testing protocol as in (Kiros et al., 2015) to score each pair of sentences: with
two sentence embedding u1 and u2, we concatenate their component-wise product, u1 ·u2 and their
absolute difference, |u1 − u2| as the feature representation.

Table 6 summarizes the performance of various algorithms on this dataset. Despite its simplicity,
Doc2VecC significantly out-performs the winning solutions of the competition, which are heavily
feature engineered toward this dataset and several baseline methods, noticeably the dependency-tree
RNNs introduced in (Socher et al., 2014), which relies on expensive dependency parsers to compose
sentence vectors from word embeddings. The performance of Doc2VecC is slightly worse than the
LSTM based methods or skip-thought vectors on this dataset, while it significantly outperforms
skip-thought vectors on the IMDB movie review dataset (11.70% error rate vs 17.42%). As we
hypothesized in previous section, while Doc2VecC is better at handling longer paragraphs, LSTM-
based methods are superior for relatively short sentences (of length in the order of 10s). We would
like to point out that Doc2VecC is much faster to train and test comparing to skip-thought vectors. It
takes less than 2 hours to learn the embeddings on the large book corpus for Doc2VecC on a desktop
with Intel i7 2.2Ghz cpu, in comparison to the 2 weeks on GPU required by skip-thought vectors.

5 CONCLUSION

We introduce a new model architecture Doc2VecC for document representation learning. It is very
efficient to train and test thanks to its simple model architecture. Doc2VecC intrinsically makes sure
document representation generated by averaging word embeddings capture semantics of document
during learning. It also introduces a data-dependent regularization which favors informative or rare
words while dampening the embeddings of common and non-discriminative words. As such, each
document can be efficiently represented as a simple average of the learned word embeddings. In
comparison to several existing document representation learning algorithms, Doc2VecC outperforms
not only in testing efficiency, but also in the expressiveness of the generated representations.

3The word representation was initialized using publicly available 300-dimensional Glove vectors trained on
840 billion tokens of Common Crawl data

4The dataset contains 11,038 books with over one billion words
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Table 6: Test set results on the SICK semantic relatedness task. The first group of results are from the
submission to the 2014 SemEval competition; the second group includes several baseline methods
reported in (Tai et al., 2015); the third group are methods based on LSTM reported in (Tai et al.,
2015) as well as the skip-thought vectors (Kiros et al., 2015).

Method Pearson’s γ Spearman’s ρ MSE

Illinois-LH 0.7993 0.7538 0.3692
UNAL-NLP 0.8070 0.7489 0.3550

Meaning Factory 0.8268 0.7721 0.3224
ECNU 0.8279 0.7689 0.3250

Mean vectors (Word2Vec + avg) 0.7577 0.6738 0.4557
DT-RNN (Socher et al., 2014) 0.7923 0.7319 0.3822

SDT-RNN (Socher et al., 2014) 0.7900 0.7304 0.3848

LSTM (Tai et al., 2015) 0.8528 0.7911 0.2831
Bidirectional LSTM (Tai et al., 2015) 0.8567 0.7966 0.2736

Dependency Tree-LSTM (Tai et al., 2015) 0.8676 0.8083 0.2532
combine-skip (Kiros et al., 2015) 0.8584 0.7916 0.2687

Doc2VecC 0.8381 0.7621 0.3053
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