
Efficient verifiable delay functions

Benjamin Wesolowski

École Polytechnique Fédérale de Lausanne
EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland

Abstract. We construct a verifiable delay function (VDF). A VDF is a
function whose evaluation requires running a given number of sequential
steps, yet the result can be efficiently verified. They have applications
in decentralised systems, such as the generation of trustworthy public
randomness in a trustless environment, or resource-efficient blockchains.
To construct our VDF, we actually build a trapdoor VDF. A trapdoor
VDF is essentially a VDF which can be evaluated efficiently by parties
who know a secret (the trapdoor). By setting up this scheme in a way
that the trapdoor is unknown (not even by the party running the setup,
so that there is no need for a trusted setup environment), we obtain
a simple VDF. Our construction is based on groups of unknown order
such as an RSA group, or the class group of an imaginary quadratic field.
The output of our construction is very short (the result and the proof of
correctness are each a single element of the group), and the verification
of correctness is very efficient.

1 Introduction

We describe a function that is slow to compute and easy to verify: a verifiable
delay function (henceforth, VDF) in the sense of [4]1. These functions should be
computable in a prescribed amount of time ∆, but not faster (the time measures
an amount of sequential work, that is work that cannot be performed faster by
running on a large number of parallel cores), and the result should be easy to
verify (i.e., for a cost polylog(∆)). These special functions are used in [15] (under
the name of slow-timed hash functions) to construct a trustworthy randomness
beacon: a service producing publicly verifiable random numbers, which are guar-
anteed to be unbiased and unpredictable. These randomness beacons, introduced
by Rabin in [17], are a valuable tool in a public, decentralised setting, as it is not
trivial for someone to flip a coin and convince their peers that the outcome was
not rigged. A number of interesting applications of VDFs have recently emerged
— see [4] for an overview. Most notably, they can be used to design resource-
efficient blockchains, eliminating the need for massively power-consuming mining
farms. VDFs play a key role in the Chia blockchain design (chia.net), and the
Ethereum Foundation (ethereum.org) and Protocol Labs (protocol.ai) are

1 The paper [4] was developed independently of the present work, yet we adopt their
terminology for verifiable delay functions, for the sake of uniformity.

teaming up to investigate the technology of VDFs which promise to play a key
role in their respective platforms.

There is thereby a well-motivated need for an efficient construction. This
problem was left open in [4], and we address it here with a new, simple, and
efficient VDF.

1.1 Contribution

An efficient construction. The starting point of our construction is the time-
lock puzzle of Rivest, Shamir and Wagner [18]: given as input an RSA group
(Z/NZ)×, where N is a product of two large, secret primes, a random element

x ∈ (Z/NZ)×, and a timing parameter t, compute x2t . Without the factorisation
of N , this task requires t sequential squarings in the group. More generally, one
could work with any group G of unknown order. This construction is only a
time-lock puzzle and not a VDF, because given an output y, there is no efficient
way to verify that y = x2t .

The new VDF construction consists in solving an instance of the time-lock
puzzle of [18], and computing a proof of correctness, which allows anyone to
efficiently verify the result. Fix a timing parameter ∆, a security level k (say,
128, 192, or 256), and a group G. Our construction has the following properties:

1. It is ∆-sequential (meaning that it requires ∆ sequential steps to evaluate)
assuming the classic time-lock assumption of [18] in the group G.

2. It is sound (meaning that one cannot produce a valid proof for an incorrect
output) under some group theoretic assumptions on G, believed to be true
for RSA groups and class groups of quadratic imaginary number fields.

3. The output and the proof of correctness are each a single element of the group
G (also, the output can be recovered from the proof and a 2k-bit integer; so
it is possible to transmit a single group element and a small integer instead
of 2 group elements).

4. The verification of correctness requires essentially two exponentiations in the
group G, with exponents of bit-length 2k.

5. The proof can be produced in O(∆/ log(∆)) group operations.

For applications where a lot of these proofs need to be stored, widely dis-
tributed, and repeatedly verified, having very short and efficiently verifiable
proofs is invaluable.

Following discussions about the present work at the August 2018 workshop
at Stanford hosted by the Ethereum Foundation and the Stanford Center for
Blockchain Research, we note that our construction features two other useful
properties: the proofs can be aggregated and watermarked. Aggregating consists
in producing a single short proof that simultaneously proves the correctness of
several VDF evaluations. Watermarking consists in tying a proof to the evalua-
tor’s identity; in a blockchain setting, this allows to give credit (and a reward) to
the party who spent time and resources evaluating the VDF. These properties

2

are discussed in Section 7.

Note that the method we describe to compute the proof requires an amount
O(∆/ log(∆)) group operations. Hence, there is an interval between the guaran-
teed sequential work ∆ and the total work (1 + ε)∆, where ε = O(1/ log(∆)).
For practical parameters, this ε is in the order of 0.05, and this small part of
the computation is easily parallelizable, so that the total evaluation time with
s cores is around (1 + 1/(20s))∆. This gap should be of no importance since
anyways, computational models do not capture well small constant factors with
respect to real-world running time. Precise timing is unlikely to be achievable
without resorting to trusted hardware, thus applications of VDFs are designed
not to be too sensitive to these small factors.

If despite these facts it is still problematic in some application to know the
output of the VDF slightly before having the proof, it is possible to eliminate
this gap by artificially considering the proof as part of the output (the output is
now a pair of group elements, and the proof is empty). The resulting protocol is
still ∆-sequential (trivially), and as noted in Remark 5, it is also sound. We also
propose a second method in Section 4.3 which allows to exponentially reduce
the overhead of the proof computation at the cost of lengthening the resulting
proof by a few group elements.

Trapdoor verifiable delay function. The construction proposed is actually a trap-
door VDF, from which we can derive an actual VDF. A party, Alice, holds a
secret key sk (the trapdoor), and an associated public key pk. Given a piece of
data x, a trapdoor VDF allows to compute an output y from x such that anyone
can easily verify that either y has been computed by Alice (i.e., she used her
secret trapdoor), or the computation of y required an amount of time at least
∆ (where, again, time is measured as an amount of sequential work). The veri-
fication that y is the correct output of the VDF for input x should be efficient,
with a cost polylog(∆).

Deriving a verifiable delay function. Suppose that a public key pk for a trapdoor
VDF is given without any known associated secret key. This results in a simple
VDF, where the evaluation requires a prescribed amount of time ∆ for everyone
(because there is no known trapdoor).

Now, how to publicly generate a public key without any known associated pri-
vate key? In the construction we propose, this amounts to the public generation
of a group of unknown order. A standard choice for such groups are RSA groups,
but it is hard to generate an RSA number (a product of two large primes) with a
strong guarantee that nobody knows the factorisation. It is possible to generate
a random number large enough that with high probability it is divisible by two
large primes (as done in [19]), but this approach severely damages the efficiency
of the construction, and leaves more room for parallel optimisation of the arith-
metic modulo a large integer, or for specialised hardware acceleration. It is also
possible to generate a modulus by a secure multiparty execution of the RSA key

3

generation procedure among independent parties, each contributing some secret
random seeds (as done in [6]). However, in this scenario, a third party would
have to assume that the parties involved in this computation did not collude to
retrieve the secret. We propose to use the class group of an imaginary quadratic
order. One can easily generate an imaginary quadratic order by choosing a ran-
dom discriminant, and when the discriminant is large enough, the order of the
class group cannot be computed. These class groups were introduced in cryptog-
raphy by Buchmann and Williams in [9], exploiting the difficulty of computing
their orders (and the fact that this order problem is closely related to the discrete
logarithm and the root problems in this group). To this day, the best known al-
gorithms for computing the order of the class group of an imaginary quadratic
field of discriminant d are still of complexity L|d|(1/2) under the generalised Rie-

mann hypothesis, for the usual function Lt(s) = exp
(
O
(
log(t)s log log(t)1−s

))
,

as shown in [14] and [20].

Circumventing classic impossibility results. Finally, we further motivate the no-
tion of trapdoor VDF by showing that it constitutes an original tool to circum-
vent classic impossibility results. We illustrate this in Section 8 with a simple
and efficient identification protocol with surprising zero-knowledge and deniabil-
ity properties.

1.2 Time-sensitive cryptography and related work

Rivest, Shamir and Wagner [18] introduced in 1996 the use of time-locks for
encrypting data that can be decrypted only in a predetermined time in the future.
This was the first time-sensitive cryptographic primitive taking into account the
parallel power of possible attackers. Other timed primitives appeared in different
contexts: Bellare and Goldwasser [1, 2] suggested time capsules for key escrowing
in order to counter the problem of early recovery. Boneh and Naor [7] introduced
timed commitments: a hiding and binding commitment scheme, which can be
forced open by a procedure of determined running time. More recently, and as
already mentioned, the notion of slow-timed hash function was introduced in
[15] as a tool to provide trust to the generation of public random numbers.

Verifiable delay functions. These slow-timed hash functions were recently revis-
ited and formalised by Boneh et al. in [4] under the name of verifiable delay
functions. The function proposed in [15], sloth, is not asymptotically efficiently
verifiable: the verification procedure (given x and y, verify that sloth(x) = y)
is faster than the evaluation procedure (given x, compute the value sloth(x))
only by a constant factor. The authors of [4] proposed practical constructions
that achieve an exponential gap between evaluation and verification, but do not
strictly achieve the requirements of a VDF. For one of them, the evaluation
requires an amount polylog(∆) of parallelism to run in parallel time ∆. The
other one is insecure against an adversary that can run a large (but feasible)
pre-computation, so the setup must be regularly updated. The new construction
we propose does not suffer these disadvantages.

4

Pietrzak’s verifiable delay function. Independently from the present work, an-
other efficient VDF was proposed in [16]. The author describes an elegant con-
struction, provably secure under the classic time-lock assumption of [18] when
implemented over an RSA group (Z/NZ)× where N is a product of two safe
primes. The philosophy of [16] is close to our construction: it consists in solving
the puzzle of [18] (for a timing parameter ∆), and computing a proof of correct-
ness. Their proofs can be computed with O(

√
∆ log(∆)) group multiplications.

However, the proofs obtained are much longer (they consist of O(log(∆)) group
elements, versus a single group element in our construction), and the verification
procedure is less efficient (it requires O(log(∆)) group exponentiations, versus
essentially two group exponentiations in our construction — for exponents of
bit-length the security level k in both cases).

In the example given in [18], the group G is an RSA group for a 2048 bit
modulus, and the time ∆ is set to 240 sequential squarings in the group, so
the proofs are 10KB long. In comparison, in the same setting, our proofs are
0.25KB long.

1.3 Notation

Throughout this paper, the integer k denotes a security level (typically 128, 192,
or 256), and the map H : {0, 1}∗ → {0, 1}2k denotes a secure cryptographic hash
function. For simplicity of exposition, the function H is regarded as a map from
A∗ to {0, 1}2k, where A∗ is the set of strings over some alphabet A such that
{0, 1} ⊂ A. The alphabet A contains at least all nine digits and twenty-six
letters, and a special character ⋆. Given two strings s1, s2 ∈ A∗, denote by
s1||s2 their concatenation, and by s1|||s2 their concatenation separated by ⋆.
The function int : {0, 1}∗ → Z≥0 maps x ∈ {0, 1}∗ in the canonical manner
to the non-negative integer with binary representation x. The function bin :
Z≥0 → {0, 1}∗ maps any non-zero integer to its binary representation with no
leading 0-characters, and bin(0) = 0.

2 Trapdoor verifiable delay functions

Let ∆ : Z>0 → R>0 be a function of the (implicit) security parameter k. This
∆ is meant to represent a time duration, and what is precisely meant by time is
explained in Section 3 (essentially, it measures an amount of sequential work).
A party, Alice, has a public key pk and a secret key sk. Let x be a piece of data.
Alice, thanks to her secret key sk, is able to quickly evaluate a function trapdoorsk
on x. On the other hand, other parties knowing only pk can compute evalpk(x) in
time ∆, but not faster (and important parallel computing power does not give a
substantial advantage in going faster; remember that ∆ measures the sequential
work), such that the resulting value evalpk(x) is the same as trapdoorsk(x).

More formally, a trapdoor VDF consists of the following components (very
close to the classic VDF defined in [4]):

5

keygen→ (pk, sk) is a key generation procedure, which outputs Alice’s public key
pk and secret key sk. As usual, the public key should be publicly available,
and the secret key is meant to be kept secret.

trapdoorsk(x,∆)→ (y, π) takes as input the data x ∈ X (for some input space
X), and uses the secret key sk to produce the output y from x, and a (possibly
empty) proof π. The parameter ∆ is the amount of sequential work required
to compute the same output y without knowledge of the secret key.

evalpk(x,∆)→ (y, π) is a procedure to evaluate the function on x using only the
public key pk, for a targeted amount of sequential work ∆. It produces the
output y from x, and a (possibly empty) proof π. This procedure is meant
to be infeasible in time less than ∆ (this will be expressed precisely in the
security requirements).

verifypk(x, y, π,∆)→ true or false is a procedure to check if y is indeed the cor-
rect output for x, associated to the public key pk and the evaluation time ∆,
possibly with the help of the proof π.

Note that the security parameter k is implicitly an input to each of these
procedures. Given any key pair (pk, sk) generated by the keygen procedure, the
functionality of the scheme is the following. Given any input x and time param-
eter ∆, let (y, π) ← evalpk(x,∆) and (y′, π′) ← trapdoorsk(x,∆). Then, y = y′

and the procedures verifypk(x, y, π,∆) and verifypk(x, y
′, π′, ∆) both output true.

We also require the protocol to be sound, as in [4]. Intuitively, we want that
if y′ is not the correct output of evalpk(x,∆) then verifypk(x, y

′, ∆) outputs false.
We however allow the holder of the trapdoor to generate misleading values y′.

Definition 1 (Soundness). A trapdoor VDF is sound if any polynomially
bounded algorithm solves the following soundness-breaking game with negligible
probability (in k): given as input the public key pk, output a message x, a value
y′ and a proof π′ such that y′ 6= evalpk(x,∆), and verifypk(x, y

′, π′, ∆) = true.

The second security property is that the correct output cannot be produced
in time less than ∆ without knowledge of the secret key sk. This is formalised in
the next section via the ∆-evaluation race game. A trapdoor VDF is ∆-sequential
if any polynomially bounded adversary wins the ∆-evaluation race game with
negligible probability.

3 Wall-clock time and computational assumptions

Primitives such as verifiable delay functions or time-lock puzzles wish to deal
with the delicate notion of real-world time. This section discusses how to formally
handle this concept, and how it translates in practice.

3.1 Theoretical model

A precise notion of wall-clock time is difficult to capture formally. However, we
can get a first approximation by choosing a model of computation, and defining

6

time as an amount of sequential work in this model. A model of computation is
a set of allowable operations, together with their respective costs. For instance,
working with circuits with gates ∨, ∧ and ¬ which each have cost 1, the notion of
time complexity of a circuit C can be captured by its depth d(C), i.e., the length
of the longest path in C. The time-complexity of a boolean function f is then
the minimal depth of a circuit implementing f , but this does not reflect the time
it might take to actually compute f in the real world where one is not bound
to using circuits. A random access machine might perform better, or maybe a
quantum circuit.

A good model of computation for analysing the actual time it takes to solve
a problem should contain all the operations that one could use in practice (in
particular the adversary). From now on, we suppose the adversary works in a
model of computation M. We do not define exactly M, but only assume that
it allows all operations a potential adversary could perform, and that it comes
with a cost function c and a time-cost function t. For any algorithm A and input
x, the cost C(A, x) measures the overall cost of computing A(x) (i.e., the sum of
the costs of all the elementary operations that are executed), while the time-cost
T (A, x) abstracts the notion of time it takes to run A(x) in the model M. For
the model of circuits, one could define the cost as the size of the circuit and the
time-cost as its depth. For concreteness, one can think of the model M as the
model of parallel random-access machines.

All forthcoming security claims are (implicitly) made with respect to the
model M. The time-lock assumption of Rivest, Shamir and Wagner [18] can be
expressed as Assumption 1 below.

Definition 2 ((δ, t)-time-lock game). Let k ∈ Z>0 be a difficulty parameter,
and A be an algorithm playing the game. The parameter t is a positive integer,
and δ : Z>0 → R>0 is a function. The (δ, t)-time-lock game goes as follows:

1. An RSA modulus N is generated at random by an RSA key-generation pro-
cedure, for the security parameter k;

2. A(N) outputs an algorithm B;
3. An element g ∈ Z/NZ is generated uniformly at random;
4. B(g) outputs h ∈ Z/NZ.

Then, A wins the game if h = g2
t

mod N and T (B, g) < tδ(k).

Assumption 1 (Time-lock assumption) There is a cost function δ : Z>0 →
R>0 such that the following two statements hold:

1. There is an algorithm S such that for any modulus N generated by an RSA
key-generation procedure with security parameter k, and any element g ∈
Z/NZ, the output of S(N, g) is the square of g, and T (S, (N, g)) < δ(k);

2. For any t ∈ Z>0, no algorithm A of polynomial cost2 wins the (δ, t)-time-lock
game with non-negligible probability (with respect to the difficulty parame-
ter k).

2 i.e., C(A, g) = O(f(len(g))) for a polynomial f , with len(g) the binary length of g.

7

The function δ encodes the time-cost of computing a single modular squaring,
and Assumption 1 expresses that without knowledge of the factorisation of N ,
there is no faster way to compute g2

t

mod N than performing t sequential
squarings.

With this formalism, we can finally express the security notion of a trapdoor
VDF.

Definition 3 (∆-evaluation race game). Let A be a party playing the game.
The parameter ∆ : Z>0 → R>0 is a function of the (implicit) security parameter
k. The ∆-evaluation race game goes as follows:

1. The random procedure keygen is run and it outputs a public key pk;
2. A(pk) outputs an algorithm B;
3. Some data x ∈ X is generated according to some random distribution of

min-entropy at least k;
4. BO(x) outputs a value y, where O is an oracle that outputs the evaluation

trapdoorsk(x
′, ∆) on any input x′ 6= x.

Then, A wins the game if T (B, x) < ∆ and evalpk(x,∆) outputs y.

Definition 4 (∆-sequential). A trapdoor VDF is ∆-sequential if any polyno-
mially bounded player (with respect to the implicit security parameter) wins the
above ∆-evaluation race game with negligible probability.

Observe that it is useless to allow A to adaptively ask for oracle evalua-
tions of the VDF during the execution of A(pk): for any data x′, the procedure
evalpk(x

′, ∆) produces the same output as trapdoorsk(x
′, ∆), so any such request

can be computed by the adversary in time O(∆).

Remark 1. Suppose that the input x is hashed as H(x) (by a secure crypto-
graphic hash function) before being evaluated (as is the case in the construction
we present in the next section), i.e.

trapdoorsk(x,∆) = tsk(H(x), ∆),

for some procedure t, and similarly for eval and verify. Then, it becomes unnec-
essary to give to B access to the oracle O. We give a proof in Appendix A when
H is modeled as a random oracle.

Remark 2. At the third step of the game, the bound on the min-entropy is fixed
to k. The exact value of this bound is arbitrary, but forbidding low entropy is
important: if x has a good chance of falling in a small subset of X , the adversary
can simply precompute the VDF for all the elements of this subset.

3.2 Timing assumptions in the real world

Given an algorithm, or even an implementation of this algorithm, its actual run-
ning time will depend on the hardware on which it is run. If the algorithm is

8

executed independently on several single-core general purpose CPUs, the vari-
ations in running time between them will be reasonably small as overclocking
records on clock-speeds barely achieve 9GHz (cf. [10]), only a small factor higher
than a common personal computer. Assuming the computation is not parallelis-
able, using multiple CPUs would not allow to go faster. However, specialized
hardware could be built to perform a certain computation much more efficiently
than on any general purpose hardware.

For these reasons, the theoretical model developed in Section 3.1 has a lim-
ited accuracy. To resolve this issue, and evaluate precisely the security of a
timing assumption like Assumption 1, one must estimate the speed at which
the current state of technology allows to perform a certain task, given a possi-
bly astronomical budget. To this end, the Ethereum Foundation and Protocol
Labs [13] are currently investigating extremely fast hardware implementations
of RSA multiplication, and hope to construct a piece of hardware close enough
to today’s technological limits, with the goal of using the present construction
in their future platforms. Similarly, the Chia Network has opened a competition
in the near future for very fast multiplication in the class group of a quadratic
imaginary field.

4 Construction of the verifiable delay function

Let x ∈ A∗ be the input at which the VDF is to be evaluated. Alice’s secret
key sk is the order of a finite group G, and her public key is a description of
G allowing to compute the group multiplication efficiently. We also assume that
any element g of G can efficiently be represented in a canonical way as binary
strings bin(g). Also part of Alice’s public key is a hash function HG : A∗ → G.

Example 1 (RSA setup). A natural choice of setup is the following: the group G
is (Z/NZ)× where N = pq for a pair of distinct prime numbers p and q, where
the secret key is (p − 1)(q − 1) and the public key is N , and the hash function
HG(x) = int(H(“residue”||x)) mod N (where H is a secure cryptographic
hash function). For a technical reason explained later in Remark 4, we actually
need to work in (Z/NZ)×/{±1}, and we call this the RSA setup.

Example 2 (Class group setup). For a public setup where we do not want the
private key to be known by anyone, one could choose G to be the class group
of an imaginary quadratic field. The construction is simple. Choose a random,
negative, square-free integer d, of large absolute value, and such that d ≡ 1
mod 4. Then, let G = Cl(d) be the class group of the imaginary quadratic field
Q(
√
d). Just as we wish, there is no known algorithm to efficiently compute the

order of this group. The multiplication can be performed efficiently, and each
class can be represented canonically by its reduced ideal. Note that the even
part of |Cl(d)| can be computed if the factorisation of d is known. Therefore one
should choose d to be a negative prime, which ensures that |Cl(d)| is odd. See [8]
for a review of the arithmetic in class groups of imaginary quadratic orders, and
a discussion on the choice of cryptographic parameters.

9

Consider a targeted evaluation time given by ∆ = tδ for a timing parame-
ter t, where δ is the time-cost (i.e., the amount of sequential work) of computing
a single squaring in the group G (as done in Assumption 1 for the RSA setup).

To evaluate the VDF on input x, first let g = HG(x). The basic idea (which
finds its origins in [18]) is that for any t ∈ Z>0, Alice can efficiently compute

g2
t

with two exponentiations, by first computing e = 2t mod |G|, followed by
ge. The running time is logarithmic in t. Any other party who does not know
|G| can also compute g2

t

by performing t sequential squarings, with a running

time tδ. Therefore anyone can compute y = g2
t

but only Alice can do it fast,
and any other party has to spend a time linear in t. However, verifying that
the published value y is indeed g2

t

is long: there is no shortcut to the obvious
strategy consisting in recomputing g2

t

and checking if it matches. To solve this
issue, we propose the following public-coin succinct argument, for proving that
y = g2

t

. The input of the interaction is (G, g, y, t). Let Primes(2k) denote the
set containing the 22k first prime numbers.

1. The verifier samples a prime ℓ uniformly at random from Primes(2k).

2. The prover computes π = g⌊2
t/ℓ⌋ and sends it to the verifier.

3. The verifier computes r = 2t mod ℓ, (the least positive residue of 2t modulo
ℓ), and accepts if g, y, π ∈ G and πℓgr = y.

Now, it might not be clear how Alice or a third party should compute π =
g⌊2

t/ℓ⌋. For Alice, it is simple: she can compute r = 2t mod ℓ. Then we have
⌊2t/ℓ⌋ = (2t − r)/ℓ, and since she knows the order of the group, she can compute
q = (2t − r)/ℓ mod |G| and π = gq. We explain in Section 4.1 how anyone
else can compute π without knowing |G|, with a total of O(t/ log(t)) group
multiplications.

This protocol is made non-interactive using the Fiat-Shamir transformation,
by letting ℓ = Hprime(bin(g)|||bin(y)), where Hprime is a hash function which
sends any string s to an element of Primes(2k). We assume in the security
analysis below that this function is a uniformly distributed random oracle. The
procedures trapdoor, verify and eval are fully described in Algorithms 1, 2 and 3
respectively.

Remark 3. Instead of hashing the input x into the group G as g = HG(x), one

could simply consider x ∈ G. However, the function x 7→ x2t being a group
homomorphism, bypassing the hashing step has undesirable consequences. For
instance, given x2t , one can compute (xα)2

t

for any integer α at the cost of only
an exponentiation by α.

Verification. It is straightforward to check that the verification condition πℓgr =
y holds if the evaluator is honest. Now, what can a dishonest evaluator do? That
question is answered formally in Section 6, but the intuitive idea is easy to
understand. We will show that given x, finding a pair (y, π) different from the
honest one amounts to solve a root-finding problem in the underlying group G

10

Data: a public key pk = (G,HG) and a secret key sk = |G|, some input
x ∈ A∗, a targeted evaluation time ∆ = tδ.

Result: the output y, and the proof π.
g ← HG(x) ∈ G;
e← 2t mod |G|;
y ← ge;
ℓ← Hprime(bin(g)|||bin(y));
r ← least residue of 2t modulo ℓ;
q ← (2t − r)ℓ−1 mod |G|;
π ← gq;
return (y, π);

Algorithm 1: trapdoorsk(x, t)→ (y, π)

(supposedly hard for anyone who does not know the secret order of the group).
As a result, only Alice can produce misleading proofs.

Consider the above interactive succinct argument, and suppose that the ver-
ifier accepts, i.e., πℓgr = y, where r is the least residue of 2t modulo ℓ. Since
r = 2t − ℓ⌊2t/ℓ⌋, the verification condition is equivalent to

yg−2t =
(
πg−⌊2t/ℓ⌋

)ℓ
.

Before the generation of ℓ, the left-hand side α = yg−2t is already determined.
Once ℓ is revealed, the evaluator is able to compute β = πg−⌊2t/ℓ⌋, which is an
ℓ-th root of α. For a prover to succeed with good probability, he must be able
to extract ℓ-th roots of α for arbitrary values of ℓ. This is hard in our groups of
interest, unless α = β = 1G, in which case (y, π) is the honest output.

Remark 4. Observe that in the RSA setup, this task is easy if α = ±1, i.e.
y = ±g2t . It is however a difficult problem, given an RSA modulus N , to find an
element α mod N other than ±1 from which ℓ-th roots can be extracted for any
ℓ. This explains why we need to work in the group G = (Z/NZ)×/{±1} instead
of (Z/NZ)× in the RSA setup. This problem is formalized (and generalised to
other groups) in Definition 6.

4.1 Computing the proof π in O(t/ log(t)) group operations

In this section, we describe how to compute the proof π = g⌊2
t/ℓ⌋ with a total

of O(t/ log(t)) group multiplications. First, we mention a very simple algorithm
to compute π, which simply computes the long division ⌊2t/ℓ⌋ on the fly, as
pointed out by Boneh, Bünz and Fisch [5], but requires between t and 2t group
operations. It is given in Algorithm 4.

We now describe how to perform the same computation with only O(t/ log(t))
group operations. Fix a parameter κ. The idea is to express ⌊2t/ℓ⌋ in base 2κ as

⌊2t/ℓ⌋ =
∑

i

bi2
κi =

2κ−1∑

b=0

b

(
∑

i such that bi=b

2κi

)
.

11

Data: a public key pk = (G,HG), some input x ∈ A∗, a targeted evaluation
time ∆ = tδ, a VDF output y and a proof π.

Result: true if y is the correct evaluation of the VDF at x, false otherwise.
g ← HG(x);
ℓ← Hprime(bin(g)|||bin(y));
r ← least residue of 2t modulo ℓ;
if πℓgr = y then

return true;
else

return false;
end

Algorithm 2: verifypk(x, y, π, t)→ true or false

Data: a public key pk = (G,HG), some input x ∈ A∗, a targeted evaluation
time ∆ = tδ.

Result: the output value y and a proof π.
g ← HG(x) ∈ G;

y ← g2
t

; // via t sequential squarings

ℓ← Hprime(bin(g)|||bin(y));

π ← g⌊2
t/ℓ⌋ ; // following the simple Algorithm 4, or the faster

Algorithm 5

return (y, π);
Algorithm 3: evalpk(x, t)→ (y, π)

Similarly to Algorithm 4, each coefficient bi can be computed as

bi =

⌊
2κ(2t−κ(i+1) mod ℓ)

ℓ

⌋
,

where 2t−κ(i+1) mod ℓ denotes the least residue of 2t−κ(i+1) modulo ℓ. For each
κ-bits integer b ∈ {0, . . . , 2κ − 1}, let Ib = {i | bi = b}. We get

g⌊2
t/ℓ⌋ =

2κ−1∏

b=0

(
∏

i∈Ib

g2
κi

)b

. (1)

Suppose first that all the values g2
κi

have been memorised (from the sequen-

tial computation of the value y = g2
t

). Then, each product
∏

i∈Ib
g2

κi

can be
computed in |Ib| group multiplications (for a total of

∑
b |Ib| = t/κ multiplica-

tions), and the full product (1) can be deduced with about κ2κ additional group
operations. In total, this strategy requires about t/κ + κ2κ group operations.
Choosing, for instance, κ = log(t)/2, we get about t · 2/ log(t) group operations.
Of course, this would require the storage of t/κ group elements.

We now show that the memory requirement can easily be reduced to, for
instance, O(

√
t) group elements, for essentially the same speedup. Instead of

memorising each κ element of the sequence g2
i

, only memorise every κγ element

12

Data: an element g in a group G (with identity 1G), a prime number ℓ and a
positive integer t.

Result: g⌊2
t/ℓ⌋.

x← 1G ∈ G;
r ← 1 ∈ Z;
for i← 0 to T − 1 do

b← ⌊2r/ℓ⌋ ∈ {0, 1} ∈ Z;
r ← least residue of 2r modulo ℓ;
x← x2gb;

end

return x;

Algorithm 4: Simple algorithm to compute g⌊2
t/ℓ⌋, with an on-the-fly long

division [5].

(i.e., the elements g2
0

, g2
κγ

, g2
2κγ

, . . .), for some parameter γ (we will show that
γ = O(

√
t) is sufficient). For each integer j, let Ib,j = {i ∈ Ib | i ≡ j mod γ}.

Now,

g⌊2
t/ℓ⌋ =

2κ−1∏

b=0




γ−1∏

j=0

∏

i∈Ib,j

g2
κi




b

=

γ−1∏

j=0




2κ−1∏

b=0



∏

i∈Ib,j

g2
κ(i−j)




b



2κj

.

In each factor of the final product, i − j is divisible by γ, so g2
κ(i−j)

is one
of the memorised values. A straightforward approach allows to compute this
product with a total amount of group operations about t/κ + γκ2κ, yet one

can still do better. Write yb,j =
∏

i∈Ib,j
g2

κ(i−j)

, and split κ into two halves, as

κ1 = ⌊κ/2⌋ and κ0 = κ− κ1. Now, observe that for each index j,

2κ−1∏

b=0

ybb,j =
2κ1−1∏

b1=0

(
2κ0−1∏

b0=0

yb12κ0+b0,j

)b12
κ0

·
2κ0−1∏

b0=0

(
2κ1−1∏

b1=0

yb12κ0+b0,j

)b0

The right-hand side provides a way to compute the product with a total of about
2(2κ+κ2κ/2) (instead of κ2κ as in the more obvious strategy). The full method is
summarised in Algorithm 5 (on page 29), and requires about t/κ+ γ2κ+1 group
multiplications.

The algorithm requires the storage of about t/(κγ) + 2κ group elements.
Choosing, for instance, κ = log(t)/3 and γ =

√
t, we get about t · 3/ log(t) group

operations, with the storage of about
√
t group elements. This algorithm can

also be parallelised.

4.2 A practical bandwidth and storage improvement

Typically, an evaluator would compute the output y and the proof π, and send
the pair (y, π) to the verifiers. Each verifier would compute the Fiat-Shamir

13

challenge

ℓ← Hprime(bin(g)|||bin(y)),

then check y = πℓg2
t mod ℓ. Instead, it is possible for the evaluator to transmit

(ℓ, π), which has almost half the size (typically, ℓ is in the order of hundreds of
bits while group elements are in the order of thousands of bits). The verifiers
would recover

y ← πℓg2
t mod ℓ,

and then verify that ℓ = Hprime(bin(g)|||bin(y)). The two strategies are equiva-
lent, but the second divides almost by 2 the bandwidth and storage footprint.

4.3 A trade-off between proof shortness and prover efficiency

The evaluation of the VDF, i.e., the computation of y = g2
t

, takes time T = δt,
where δ is the time of one squaring in the underlying group. As demonstrated
in Section 4.1, the proof π can be computed in O(t/ log(t)) group operations.
Say that the total time of computing the proof is a fraction T/ω; considering
Algorithm 5, one can think of ω = 20, a reasonable value for practical parameters.
One potential issue with the proposed VDF is that the computation of π can
only start after the evaluation of the VDF output g2

t

is completed. So after the
completion of the VDF evaluation, there still remains a total amount T/ω of
work to compute the proof. We call overhead these computations that must be
done after the evaluation of y = g2

t

. Even though this part of the computation
can be parallelised, it might be advantageous for some applications to reduce
the overhead to a negligible amount of work.

We show in the following that using only two parallel threads, the overhead
can be reduces to a total cost of about T/ωn, at the cost of lengthening the proofs
to n group elements (instead of a single one), and n − 1 small prime numbers.
Note that the value of ω varies with T , yet for simplicity of exposition, we
assume that it is constant in the following analysis (a reasonable approximation
for practical purposes).

The idea is to start proving some intermediate results before the full evalua-
tion is over. For instance, consider t1 = t ω

ω+1 . Run the evaluator, and when the

intermediate value g1 = g2
t1

is reached, store it (but keep the evaluator running

in parallel), and compute the proof π1 for the statement g1 = g2
t1

. The computa-
tion of this proof takes time about δt1/ω = T/(ω+1), which is the time it takes

to finish the full evaluation (i.e., going from g1 to y = g2
t

= g2
t/(ω+1)

1). Therefore,
the evaluation of y and the first proof π1 finish at the same time. It only remains

to produce a proof π2 for the statement y = g2
t/(ω+1)

1 , which can be done in total
time δt

ω(ω+1) ≤ T/ω2. Therefore the overhead is at most T/ω2. At first glance, it

seems the verification requires the triple (g1, π1, π2), but in fact, the value g1 can
be recovered from π1 and the prime number ℓ1 = Hprime(bin(g)|||bin(g1)) via
g1 = πℓ

1g
t1 mod ℓ, as done is Section 4.2. Therefore, the proof can be compressed

to (ℓ1, π1, π2).

14

More generally, one could split the computation into n segments of length
ti = tωn−i ω−1

ωn−1 , for i = 1, . . . , n. We have that t =
∑n

i=1 ti, and ti = ti−1/ω, so
during the evaluation of each segment (apart from the first), one can compute
the proof corresponding to the previous segment. The overhead is only the proof
of the last segment, which takes time T ω−1

ω(ωn−1) ≤ T/ωn. The proof consists of

the n intermediate proofs and the n− 1 intermediate prime challenges.

5 Analysis of the sequentiality

In this section, the proposed construction is proven to be (tδ)-sequential, mean-
ing that no polynomially bounded player can win the associated (tδ)-evaluation
race game with non-negligible probability (in other words, the VDF cannot be
evaluated in time less than tδ). For the RSA setup, it is proved under the classic
time-lock assumption of Rivest, Shamir and Wagner [18] (formalised in Assump-
tion 1), and more generally, it is secure for groups where a generalisation of this
assumption holds (Assumption 2).

5.1 Generalised time-lock assumptions

The following game generalises the classic time-lock assumption to arbitrary
families of groups of unknown orders.

Definition 5 (Generalised (δ, t)-time-lock game). Consider a sequence (Gk)k∈Z>0
,

where each Gk is a set of finite groups (supposedly of unknown orders), associ-
ated to a “difficulty parameter” k. Let keygen be a procedure to generate a random
group from Gk, according to the difficulty k.

Fix the difficulty parameter k ∈ Z>0, and let A be an algorithm playing the
game. The parameter t is a positive integer, and δ : Z>0 → R>0 is a function.
The (δ, t)-time-lock game goes as follows:

1. A group G is generated by keygen;
2. A(G) outputs an algorithm B;
3. An element g ∈ G is generated uniformly at random;
4. B(g) outputs h ∈ G.

Then, A wins the game if h = g2
t

and T (B, g) < tδ(k).

Assumption 2 (Generalised time-lock assumption) The generalised time-
lock assumption for a given family of groups (Gk)k∈Z>0

is the following. There
is a cost function δ : Z>0 → R>0 such that the following two statements hold:

1. There is an algorithm S such that for any group G ∈ Gk (for the difficulty
parameter k), and any element g ∈ G, the output of S(G, g) is the square of
g, and T (S, (G, g)) < δ(k);

2. For any t ∈ Z>0, no algorithm A of polynomial cost wins the (δ, t)-time-lock
game with non-negligible probability (with respect to the difficulty parame-
ter k).

15

The function δ encodes the time-cost of computing a single squaring in a group
of Gk, and Assumption 2 expresses that without more specific knowledge about
these groups (such as their orders), there is no faster way to compute g2

t

than
performing t sequential squarings.

5.2 Sequentiality in the random oracle model

Proposition 1 (tδ-sequentiality of the trapdoor VDF in the random or-
acle model). Let A be a player winning with probability pwin the (tδ)-evaluation
race game associated to the proposed construction, assuming HG and Hprime

are random oracles and A is limited to q oracle queries3. Then, there is a
player C for the (generalised) (δ, t)-time-lock game, with winning probability
p ≥ (1 − q/2k)pwin, and with same running time as A (up to a constant fac-
tor4).

Proof. Build C as follows. Upon receiving the group G, C starts running A on
input G. The random oracles HG and Hprime are simulated in a straightforward
manner, maintaining a table of values, and generating a random outcome for any
new request (with distribution uniform in G and in Primes(2k) respectively).
When A(G) outputs an algorithm B, C generates a random x ∈ X (according to
the same distribution as the (tδ)-evaluation race game). If x has been queried by
the oracle already, C aborts; this happens with probability at most q/2k, since
the min-entropy of the distribution of messages in the (tδ)-evaluation race game
is at least k. Otherwise, C outputs the following algorithm B′. When receiving
as input the challenge g, B′ adds g to the table of oracle HG, for the input x
(i.e., HG(x) = g). As discussed in Remark 1, we can assume that the algorithm
B does not call the oracle trapdoorsk(−, y,∆). Then B′ can invoke B on input x
while simulating the oracles HG and Hprime. Whenever B outputs y, B′ outputs y,

which equals g2
t

whenever y is the correct evaluation of the VDF at x. We assume
that simulating the oracle has a negligible cost, so B′(g) has essentially the
same time-cost as B(x). Then, C wins the (δ, t)-time-lock game with probability
p ≥ pwin(1− q/2k). ⊓⊔

6 Analysis of the soundness

In this section, the proposed construction is proven to be sound, meaning that
no polynomially bounded player can produce a misleading proof for an invalid
output of the VDF. For the RSA setup, it is proved under a new number theoretic
assumption expressing that it is hard to find an integer u 6= 0,±1 for which ℓ-th

3 In this game, the output of A is another algorithm B. When we say that A is limited
to q queries, we limit the total number of queries by A and B combined. In other
words, if A did x ≤ q queries, then its output B is limited to q − x queries.

4 Note that this constant factor does not affect the chances of C to win the (δ, t)-
time-lock game, since it concerns only the running time of C itself and not of the
algorithm output by C(G)

16

roots modulo an RSA modulus N can be extracted for arbitrary ℓ-values sampled
uniformly at random from Primes(2k), when the factorisation of N is unknown.
More generally, the construction is sound if a generalisation of this assumptions
holds in the group of interest.

6.1 The root finding problem

The following game formalises the root finding problem.

Definition 6 (The root finding game Groot). Let A be a party playing the
game. The root finding game Groot(A) goes as follows: first, the keygen procedure
is run, resulting in a group G which is given to A (G is supposedly of unknown
order). The player A then outputs an element u of G. An integer ℓ is sampled
uniformly from Primes(2k) and given to A. The player A outputs an integer v
and wins the game if vℓ = u 6= 1G.

In the RSA setup, the group G is the quotient (Z/NZ)×/{±1}, where N is a
product of two random large prime numbers. It is not known if this problem can
easily be reduced to a standard assumption such as the difficulty of factoring
N or the RSA problem, for which the best known algorithms have complexity
LN (1/3).

Similarly, in the class group setting, this problem is not known to reduce to a
standard assumption, but it is closely related to the order problem and the root
problem (which are tightly related to each other, see [3, Theorem 3]), for which
the best known algorithms have complexity L|d|(1/2) where d is the discriminant.

We now prove that to win this game Groot, it is sufficient to win the following
game GrootX , which is more convenient for our analysis.

Definition 7 (The oracle root finding game GrootX). Let A be a party playing
the game. Let X be a function that takes as input a group G and a string s
in A∗, and outputs an element X(G, s) ∈ G. Let O : A∗ → Primes(2k) be
a random oracle with the uniform distribution. The player has access to the
random oracle O. The oracle root finding game GrootX (A,O) goes as follows:
first, the keygen procedure is run and the resulting group G is given to A. The
player A then outputs a string s ∈ A∗, and an element v of G. The game is won
if vO(s) = X(G, s) 6= 1G.

Lemma 1. If there is a function X and an algorithm A limited to q queries
to the oracle O winning the game GrootX (A,O) with probability pwin, there is an
algorithm B winning the game Groot(B) with probability at least pwin/(q+1), and
same running time, up to a small constant factor.

Proof. Let A be an algorithm limited to q oracle queries, and winning the game
with probability pwin. Build an algorithm A′ which does exactly the same thing
as A, but with possibly additional oracle queries at the end to make sure the
output string s′ is always queried to the oracle, and the algorithm always does
exactly q + 1 (distinct) oracle queries.

17

Build an algorithm B playing the game Groot, using A′ as follows. Upon
receiving pk = G, B starts running A′ on input pk. The oracle O is simulated
as follows. First, an integer i ∈ {1, 2, ..., q + 1} is chosen uniformly at random.
For the first i − 1 (distinct) queries from A′ to O, the oracle value is chosen
uniformly at random from Primes(2k). When the ith string s ∈ A∗ is queried
to the oracle, the algorithm B outputs u = X(G, s), concluding the first round
of the game Groot. The game continues as the integer ℓ is received (uniform in
Primes(2k)). This ℓ is then used as the value for the ith oracle query O(s),
and the algorithm A′ can continue running. The subsequent oracle queries are
handled like the first i − 1 queries, by picking random primes in Primes(2k).
Finally, A′ outputs a string s′ ∈ A∗ and an element v of G. To conclude the
game Groot(B), B returns v.

Since O simulates a random oracle with uniform outputs in Primes(2k), A′

outputs with probability pwin a pair (s′, v) such that vO(s′) = X(G, s′) 6= 1G;
denote this event winA′ . If s = s′, this condition is exactly vℓ = u 6= 1G, where
u = X(G, s) is the output for the first round of Groot, and O(s) = ℓ is the input
for the second round. If these conditions are met, the game Groot(B) is won.
Therefore

Pr[B wins Groot] ≥ pwin · Pr [s = s′|winA′] .

Let Q = {s1, s2, ..., sq+1} be the q + 1 (distinct) strings queried to O by A′,
indexed in chronological order. By construction, we have s = si. Let j be such
that s′ = sj (recall that A′ makes sure that s′ ∈ Q). Then,

Pr [s = s′|winA′] = Pr [i = j|winA′]

The integer i is chosen uniformly at random in {1, 2, ..., q + 1}, and the values
given to A′ are independent from i (the oracle values are all independent random
variables). So Pr [i = j|winA′] = 1/(q+1). Therefore Pr[B wins Groot] ≥ pwin/(q+
1). Since B mostly consists in running A and simulating the random oracle, it is
clear than both have the same running time, up to a small constant factor. ⊓⊔

6.2 Soundness in the random oracle model

Proposition 2 (Soundness of the trapdoor VDF in the random oracle
model). Let A be a player winning with probability pwin the soundness-breaking
game associated to the proposed scheme, assuming HG and Hprime are random
oracles and A is limited to q oracle queries5. Then, there is a player D for the
root finding game Groot with winning probability p ≥ pwin/(q+1), and with same
running time as A (up to a constant factor).

Proof. Instead of directly building D, we build an algorithm D′ playing the game
GrootX (D′,O), and invoke Lemma 1. Define the function X as follows. Recall that

5 In this game, the output of A is another algorithm B. When we say that A is limited
to q queries, we limit the total number of queries by A and B combined. In other
words, if A did x ≤ q queries, then its output B is limited to q − x queries.

18

for any group G that we consider in the construction, each element g ∈ G admits
a canonical binary representation bin(g). For any such group G, any elements
g, h ∈ G, let

X(G, bin(g)|||bin(h)) = h/g2
t

,

and let X(G, s) = 1G for any other string s. When receiving pk, D′ starts run-
ning A with input pk. The oracle HG is simulated by generating random values
in the straightforward way, and Hprime is set to be exactly the oracle O. The
algorithm A outputs a message x, and pair (y, π) ∈ G×G (if it is not of this

form, abort). Output s = bin(HG(x))|||bin(y) and v = π/HG(x)
⌊2t/O(s)⌋. If A

won the simulated soundness-breaking game, the procedure did not abort, and
vO(s) = X(G, s) 6= 1G, so D′ wins the game. Hence D′ has winning probabil-
ity pwin. Since A was limited to q oracle queries, D′ also does not do more than q
queries. Applying Lemma 1, there is an algorithm D winning the game Groot(B)
with probability p ≥ pwin(1− ε)/(q + 1). ⊓⊔

Remark 5. The construction remains sound if instead of considering the output y
and the proof π, we consider the output to be the pair (y, π), with an empty proof.
The winning probability of D in Proposition 2 becomes p ≥ pwin(1− ε)/(q + 1),

where ε = negl
(

k
log log(|G|) log(q)

)
, by accounting for the unlikely event that the

large random prime O(s) is a divisor of |G|.

7 Aggregating and watermarking proofs

In this section, we present two useful properties of the VDF: the proofs can be ag-
gregated, and watermarked. The methods of this section follow from discussions
at the August 2018 workshop at Stanford hosted by the Ethereum Foundation
and the Stanford Center for Blockchain Research. The author wishes to thank
the participants for their contribution.

7.1 Aggregation

If the VDF is evaluated at multiple inputs, it is possible to produce a single proof
π̃ ∈ G that simultaneously proves the validity of all the outputs. Suppose that
n inputs are given, x1, . . . , xn. For each index i, let gi = HG(xi). The following
public-coin interactive succinct argument allows to prove that a given list (yi)

n
i=1

satisfies yi = g2
t

i :

1. The verifier samples a prime ℓ uniformly at random from Primes(2k), and n
uniformly random integers (αi)

n
i=1 of k bits.

2. The prover computes

π̃ =

(
n∏

i=1

gαi
i

)⌊2t/ℓ⌋

and sends it to the verifier.

19

3. The verifier computes r = 2t mod ℓ, (the least positive residue of 2t modulo
ℓ), and accepts if

π̃ℓ

(
n∏

i=1

gαi
i

)r

=

n∏

i=1

yαi
i .

The single group element π̃ serves as proof for the whole list of n statements
yi = g2

t

i : it is an aggregated proof. The protocol can be made non-interactive by
a Fiat-Shamir transformation: let

s = bin(g1)|||bin(g2)||| . . . |||bin(gn)|||bin(y1)|||bin(y2)||| . . . |||bin(yn),

and let ℓ = Hprime(s), and for each index i, let αi = int(H(bin(i)|||s)) (where H
is a secure cryptographic hash function). For simplicity, we prove the soundness
in the interactive setup (the non-interactive soundness then follows from the
Fiat-Shamir heuristic).

Remark 6. One could harmlessly fix α1 = 1, leaving only αi to be chosen at
random for i > 1. We present the protocol as above for simplicity, to avoid
dealing with i = 1 as a special case in the proof below.

Theorem 1. If there is a malicious prover P breaking the soundness of the
above interactive succinct argument with probability p, then there is a player B
winning the root finding game Groot with probability at least (p2 − 2−k)/3, with
essentially the same running time as P.

Proof. Let I = {0, 1, . . . , 2k − 1}, and let Z = In−1 × Primes(2k). Let Z =
(α2, . . . , αn, ℓ) be a uniformly distributed random variable in Z, and let α1 and
α′
1 be two independent, uniformly distributed random variables in I. Let win

and win′ be the events that P breaks soundness when given (α1, α2, . . . , αn, ℓ)
and (α′

1, α2, . . . , αn, ℓ) respectively. We wish to estimate the probability of the
event double_win = win∧win′∧(α1 6= α′

1). Observe that conditioning over Z = z
for an arbitrary, fixed z ∈ Z, the events win and win′ are independent and have
same probability, so

Pr[win ∧ win′] =
1

|Z|
∑

z∈Z

Pr[win ∧ win′ | Z = z] =
1

|Z|
∑

z∈Z

Pr[win | Z = z]2.

From the Cauchy-Schwarz inequality, we get

1

|Z|
∑

z∈Z

Pr[win | Z = z]2 ≥
(

1

|Z|
∑

z∈Z

Pr[win | Z = z]

)2

= Pr[win]2 = p2.

We conclude that Pr[win∧win′] ≥ p2, and therefore, Pr[double_win] ≥ p2− 2−k.

With these probabilities at hand, we can now construct the player B for the
root finding game Groot. Run P, which outputs values gi and yi. If yi = g2

t

i

20

for all i, abort. Up to some reindexing, we can now assume y1 6= g2
t

1 . Draw
α1, α

′
1, α2, . . . , αn uniformly at random from I. Define

x0 = y1/g
2t

1 , x1 =
n∏

i=1

(yαi
i /g2

t

i)αi , x2 = (y1/g
2t

1)α
′

1

n∏

i=2

(yαi
i /g2

t

i)αi .

Let b be a uniformly random element of {0, 1, 2}. The algorithm B outputs xb. We
get back a challenge ℓ. Run the prover P twice, independently, for the challenges
(α1, α2, . . . , αn, ℓ) and (α′

1, α2, . . . , αn, ℓ), and suppose that both responses break
soundness, and α1 6= α′

1 (i.e., the event double_win occurs). If x1 6= 1G or
x2 6= 1G, the winning responses from P allow to extract an ℓ-th root of either x1

or x2 respectively. Otherwise, we have x1 = x2, which implies that x
α1−α′

1
0 = 1G,

so x0 is an element of order dividing α1−α′
1, and one can easily extract any ℓ-th

root of x0. In conclusion, under the event double_win, one can always extract
an ℓ-th root of either x0, x1 or x2, so the total winning probability of algorithm
B is at least (p2 − 2−k)/3. ⊓⊔

7.2 Watermarking

When using a VDF to build a decentralised randomness beacon (e.g., as a back-
bone for an energy-efficient blockchain design), people who spent time and energy
evaluating the VDF should be rewarded for their effort. Since the output of the
VDF is supposed to be unique, it is hard to reliably identify the person who
computed it. A naive attempt of the evaluator to sign the output would not
prevent theft: since the output is public, a dishonest party could as easily sign
it and claim it their own.

Let the evaluator’s identity be given as a string id. One proposed method
(see [12]) essentially consists in computing the VDF twice: once on the actual
input, and once on a combination of the input with the evaluator’s identity id.
Implemented carefully, this method could allow to reliably reward the evaluators
for their work, but it also doubles the required effort. In the following, we sketch
two cost-effective solutions to this problem.

The first cost-effective approach consists in having the evaluator prove that
he knows some hard-to-recover intermediate value of the computation of the
VDF. Since the evaluation of our proposed construction requires computing in
sequence the elements gi = g2

i

for i = 1, . . . , t, and only the final value y = gt
of the sequence is supposed to be revealed, one can prove that they performed
the computation by proving that they know gt−1 (it is a square root of y, hence
the fastest way for someone else to recover it would be to recompute the full
sequence). A simple way to do so would be for the evaluator to reveal the value
cid = gpid

t−1 (a certificate), where pid = Hprime(id). The validity of the certificate
can be checked via the equation ypid = c2id. The security claim is the following:
given the input x, the output y, the proof π, and the certificate cid, the cost for
an adversary with identifier id′ (distinct from id) to produce a valid certificate

21

cid′ is as large as actually recomputing the output of the VDF by themself.

The above method is cost-effective as it does not require the evaluator to
perform much more work than evaluating the VDF. However, it makes the out-
put longer by adding an extra group element: the certificate. Another approach
consists in producing a single group element that plays simultaneously the role
of the proof and the certificate. This element is a watermarked proof, tied to
the evaluator’s identity. This can be done easily with our construction. In the
evaluation procedure (Algorithm 3), replace the definition of the prime ℓ by
Hprime(id|||bin(g)|||bin(y)) (and the corresponding change must be made in the
verification procedure). The resulting proof πid is now inextricably tied to id. In-
formally, the security claim is the following: given the input x, the output y, and
the watermarked proof πid, the cost for an adversary with identifier id′ (distinct
from id) to produce a valid proof πid′ is about as large as reevaluating the VDF
altogether. Indeed, a honest prover, after having computed the output y, can
compute πid at a reduced cost thanks to some precomputed intermediate values.
But an adversary does not have these intermediate values, so they would have
to compute πid′ from scratch. This is an exponentiation in G, with exponent of
bit-length close to t; without any intermediate values, it requires in the order of
t sequential group operations, which is the cost of evaluating the VDF.

8 Circumventing impossibility results with timing

assumptions

In addition to the applications mentioned in the introduction, we conclude this
paper by showing that a trapdoor VDF also constitutes a new tool for circum-
venting classic impossibility results. We illustrate this through a simple identifi-
cation protocol constructed from a trapdoor VDF, where a party, Alice, wishes
to identify herself to Bob by proving that she knows the trapdoor. Thanks to
the VDF timing properties, this protocol features surprising zero-knowledge and
deniability properties challenging known impossibility results.

As this discussion slightly deviates from the crux of the article (the construc-
tion of a trapdoor VDF), most of the details are deferred to Appendices B and C,
and this section only introduces the main ideas. As in the rest of the paper, the
parameter k is the security level. The identification protocol goes as follows:

1. Bob chooses a challenge c ∈ {0, 1}k uniformly at random. He sends it to
Alice, along with a time limit ∆, and starts a timer.

2. Alice responds by sending the evaluation of the VDF on input c (with time
parameter ∆), together with the proof. She can respond fast using her trap-
door.

3. Upon receiving the response, Bob stops the timer. He accepts if the verifi-
cation of the VDF succeeds and the elapsed time is smaller than ∆.

Remark 7. We present here only an identification protocol, but it is easy to
turn it into an authentication protocol for a message m by having Alice use the
concatenation c||m as input to the VDF.

22

Since only Alice can respond immediately thanks to her secret, Bob is convinced
of her identity. Since anyone else can compute the response to the challenge in
time ∆, the exchange is perfectly simulatable, hence perfectly zero-knowledge.
It is well-known (and in fact clear from the definition) that a classic interactive
zero-knowledge proof cannot have only one round (this would be a challenge-
response exchange, and the simulator would allow to respond to the challenge
in polynomial time, violating soundness). The above protocol avoids this im-
possibility thanks to a modified notion of soundness, ensuring that only Alice
can respond fast enough. This is made formal in Appendix B, via the notion of
zero-knowledge timed challenge-response protocol.

Remark 8. Note that this very simple protocol is also efficient: the “time-lock”
evaluation of the VDF does not impact any of the honest participants, it is
only meant to be used by the simulator. Only the trapdoor evaluation and the
verification are actually executed.

Finally, this protocol has strong deniability properties. Indeed, since anyone
can produce in time ∆ a response to any challenge, any transcript of a conversa-
tion that is older than time ∆ could have been generated by anyone. In fact the
protocol is on-line deniable against any judge that suffers a communication delay
larger than ∆/2. Choosing ∆ to be as short as possible (while retaining sound-
ness) yields a strongly deniable protocol. Full on-line deniability is known to be
impossible in a PKI (see [11]), and this delay assumption provides a new way to
circumvent this impossibility. This is discussed in more detail in Appendix C.

Acknowledgements

The author wishes to thank a number of people with whom interesting discus-
sions helped improve the present work, in alphabetical order, Dan Boneh, Justin
Drake, Alexandre Gélin, Novak Kaluđerović, Arjen K. Lenstra and Serge Vau-
denay. Finalisation of this work has been partially funded by the ERC Advanced
Grant 740972 (ALGSTRONGCRYPTO).

References

1. M. Bellare and S. Goldwasser. Encapsulated key escrow. Technical report, 1996.
2. M. Bellare and S. Goldwasser. Verifiable partial key escrow. In Proceedings of the

4th ACM Conference on Computer and Communications Security, CCS ’97, pages
78–91, New York, NY, USA, 1997. ACM.

3. I. Biehl, J. Buchmann, S. Hamdy, and A. Meyer. A signature scheme based on the
intractability of computing roots. Designs, Codes and Cryptography, 25(3):223–
236, 2002.

4. D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable delay functions. In E. F.
Brickell, editor, Advances in Cryptology – CRYPTO 2018, pages 757–788. Springer,
2018.

5. D. Boneh, B. Bünz, and B. Fisch. A survey of two verifiable delay functions. Cryp-
tology ePrint Archive, Report 2018/712, 2018. https://eprint.iacr.org/2018/712.

23

6. D. Boneh and M. Franklin. Efficient generation of shared rsa keys. In Annual
International Cryptology Conference, pages 425–439. Springer, 1997.

7. D. Boneh and M. Naor. Timed commitments. In M. Bellare, editor, Advances in
Cryptology – CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science,
pages 236–254. Springer Berlin Heidelberg, 2000.

8. J. Buchmann and S. Hamdy. A survey on iq cryptography. In In Proceedings of
Public Key Cryptography and Computational Number Theory, pages 1–15, 2001.

9. J. Buchmann and H. C. Williams. A key-exchange system based on imaginary
quadratic fields. Journal of Cryptology, 1(2):107–118, 1988.

10. CPU-Z OC world records. http://valid.canardpc.com/records.php, 2018.
11. Y. Dodis, J. Katz, A. Smith, and S. Walfish. Composability and On-Line Deniability

of Authentication, pages 146–162. Springer Berlin Heidelberg, Berlin, Heidelberg,
2009.

12. J. Drake. Ethereum 2.0 randomness. August 2018 workshop at Stanford hosted by
the Ethereum Foundation and the Stanford Center for Blockchain Research, 2018.
https://docs.google.com/presentation/d/13OAGL42yzOvQUKvJJ0EBsAAne25yA7sv9RC8FfPhtyo.

13. J. Drake. Minimal VDF randomness beacon. Ethereum Research post, 2018.
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566.

14. J. L. Hafner and K. S. McCurley. A rigorous subexponential algorithm for compu-
tation of class groups. Journal of the American mathematical society, 2(4):837–850,
1989.

15. A. K. Lenstra and B. Wesolowski. Trustworthy public randomness with sloth,
unicorn and trx. International Journal of Applied Cryptology, 2016.

16. K. Pietrzak. Simple verifiable delay functions. Cryptology ePrint Archive, Report
2018/627, Version 20180626:145529, 2018. https://eprint.iacr.org/2018/627.

17. M. O. Rabin. Transaction protection by beacons. Journal of Computer and System
Sciences, 27(2):256 – 267, 1983.

18. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. 1996.

19. T. Sander. Efficient accumulators without trapdoor extended abstract. In Interna-
tional Conference on Information and Communications Security, pages 252–262.
Springer, 1999.

20. U. Vollmer. Asymptotically fast discrete logarithms in quadratic number fields.
In International Algorithmic Number Theory Symposium (ANTS), pages 581–594.
Springer, 2000.

A Proof of Remark 1

Model H as a random oracle. Suppose that

trapdoorHsk(x,∆) = tsk(H(x), ∆),

evalHpk(x,∆) = epk(H(x), ∆), and

verifypk(x, y,∆) = vpk(H(x), y,∆),

for procedures t, e and v that do not have access to H.
Let A be a player of the ∆-evaluation race game. Assume that the output

B of A is limited to a number q of queries to O and H. We are going to build

24

an algorithm A′ that wins with same probability as A when its output B′ is not
given access to O.

Let (Yi)
q
i=1 be a sequence of random hash values (i.e., uniformly distributed

random values in {0, 1}2k). First observe thatA wins the ∆-evaluation race game
with the same probability if the last step runs the algorithm BO′,H′

instead of
BO,H , where

1. H ′ is the following procedure: for any new requested input x, if x has pre-
viously been requested by A to H then output H ′(x) = H(x); otherwise set
H ′(x) to be the next unassigned value in the sequence (Yi);

2. O′ is an oracle that on input x outputs tsk(H
′(x), ∆).

With this observation in mind, we build A′ as follows. On input pk, A′

first runs AH which outputs AH(pk) = B. Let X be the set of inputs of the
requests that A made to H. For any x ∈ X, A′ computes and stores the pair
(H(x), evalpk(x,∆)) in a list L. In addition, it computes and stores (Yi, epk(Yi, ∆))
for each i = 1, . . . , q, and adds them to L.

Consider the following procedure O′: on input x, look for the pair of the
form (H ′(x), σ) in the list L, and output σ. The output of A′ is the algorithm
B′ = BO′,H′

. It does not require access to the oracle O anymore: all the potential
requests are available in the list of precomputed values. Each call to O is replaced
by a lookup in the list L, so B′ has essentially the same running time as B.
Therefore A′ wins the ∆-evaluation race game with same probability as A even
when its output B′ is not given access to a evaluation oracle.

B Timed challenge-response identification protocols

A timed challenge-response identification protocol has four procedures:

keygen→ (pk, sk) is a key generation procedure, which outputs a prover’s public
key pk and secret key sk.

challenge→ c which outputs a random challenge.
respondsk(c,∆)→ r is a procedure that uses the prover’s secret key to respond

to the challenge c, for the time parameter ∆.
verifypk(c, r,∆)→ true or false is a procedure to check if r is a valid response to

c, for the public key pk and the time parameter ∆.

The security level k is implicitly an input to each of these procedures. The
keygen procedure is used the generate Alice’s public and secret keys, then the
identification protocol is as follows:

1. Bob generates a random c with the procedure challenge. He sends it to Alice,
along with a time limit ∆, and starts a timer.

2. Alice responds r = respondsk(c,∆).
3. Bob stops the timer. He accepts if verifypk(c, r,∆) = true and the elapsed

time is smaller than ∆.

25

Given a time parameter ∆, a ∆-response race game and an associated notion
of ∆-soundness can be defined in a straightforward manner as follows.

Definition 8 (∆-response race game). Let A be a party playing the game.
The parameter ∆ : Z>0 → R>0 is a function of the (implicit) security parameter
k. The ∆-response race game goes as follows:

1. The random procedure keygen is run and it outputs a public key pk;

2. A(pk) outputs an algorithm B;
3. A random challenge c is generated according to the procedure challenge;

4. BO(c) outputs a value r, where O is an oracle that outputs the evaluation
respondsk(c

′, ∆) on any input c′ 6= c.

Then, A wins the game if T (B, c) < ∆ and verifypk(c, r,∆) = true.

Definition 9 (∆-soundness). A timed challenge-response identification pro-
tocol is ∆-sound if any polynomially bounded player (with respect to the implicit
security parameter) wins the above ∆-response race game with negligible proba-
bility.

It is as immediate to verify that a sound and ∆-sequential VDF gives rise to
a ∆-sound identification protocol (via the construction of Section 8). Similarly,
the completeness of the identification protocol (that a honest run of the proto-
col terminates with a successful verification) is straightforward to derive from
the fact that the verification of a valid VDF output always outputs true. There
simply is one additional requirement: if the procedure respondsk(c,∆) requires
computation time at least ǫ1, and the channel of communication has a transmis-
sion delay at least ǫ2, we must have ǫ1 + 2ǫ2 < ∆. Finally the zero-knowledge
property is defined as follows.

Definition 10 (Zero-knowledge). A timed challenge-response identification
protocol is (perfectly, computationally, or statistically) zero-knowledge if there
is an algorithm S that on input k, ∆, pk and a random challenge(k,∆) pro-
duces an output (perfectly, computationally, or statistically) indistinguishable
from respondsk(c, k,∆), and the running time of S is polynomial in k.

In a classical cryptographic line of though, this zero-knowledge property is
too strong to provide any soundness, since an adversary can respond to the
challenge with a running time polynomial in the security parameter of Alice’s
secret key. This notion starts making sense when the complexity of the algorithm
S is governed by another parameter, here ∆, independent from Alice’s secret.

For the protocol derived from a VDF, the zero-knowledge property is ensured
by the fact that anyone can compute Alice’s response to the challenge in time
polynomial in k, with the procedure eval.

26

C Local identification

The challenge-response identification protocol derived from a VDF in Section 8
is totally deniable against a judge, Judy, observing the communication from a
long distance. The precise definition of on-line deniability is discussed in [11]. We
refer the reader there for the details, but the high level idea is as follows. Alice
is presumably trying to authenticate her identity to Bob. Judy will rule whether
or not the identification was attempted. Judy interacts with an informant who is
witnessing the identification and who wants to convince Judy that it happened.
This informant could also be a misinformant, who is not witnessing any iden-
tification, but tries to deceive Judy into believing it happened. The protocol is
on-line deniable if no efficient judge can distinguish whether she is talking to an
informant or a misinformant. The (mis)informant is allowed to corrupt Alice or
Bob, at which point he learns their secret keys and controls their future actions.
When some party is corrupted, Judy learns about it.

It is shown in [11] that this strong deniability property is impossible to achieve
in a PKI. To mitigate this issue, they propose a secure protocol in a relaxed
setting, allowing incriminating aborts. We propose an alternative relaxation of
the setting, where Judy is assumed to be far away from Alice and Bob (more
precisely: the travel time of a message between Alice and Bob is shorter than
between Alice (or Bob) and Judy6). For example, consider a building whose
access is restricted to authorised card holders. Suppose the card holders do not
want anyone other than the card reader to get convincing evidence that they are
accessing the building (even if the card reader is corrupted, it cannot convince
anyone else). Furthermore, Alice herself cannot convince anyone that the card
reader ever acknowledged her identification attempt. In this context, the card
and the card reader benefit from very efficient communications, while a judge
farther away would communicate with an additional delay. An identification
protocol can exploit this delay to become deniable, and this is achieved by the
timed challenge-response identification protocol derived from a VDF.

The idea is the following. Suppose that the distance between Alice and Judy
is long enough to ensure that the travel time of a message from Alice to Judy is
larger than ∆/2. Then, Judy cannot distinguish a legitimate response of Alice
that took some time to reach her from a response forged by a misinformant that
is physically close to Judy.

More precisely, considering an informant I who established a strategy with
Judy, we can show that there is a misinformant M that Judy cannot distinguish
from I. First of all, Bob cannot be incriminated since he is not using a secret
key. It all boils down to tracking the messages that depend on Alice’s secret key.

6 A message does not travel directly from Alice (or Bob) to Judy, since Judy is only
communicating with the (mis)informant. What is measured here is the sum of the de-
lay between Alice and the (mis)informant and the delay between the (mis)informant
and Judy. There is no constraint on the location of the (mis)informant, but we as-
sume a triangular inequality: he could be close to Alice and Bob, in which case his
communications with Judy suffer a delay, or he could be close to Judy, in which case
his interactions with Alice and Bob are delayed.

27

Consider a run of the protocol with the informant I. Let t0 be the point in time
where Alice computed s = trapdoorsk(c,∆). The delay implies two things:

1. The challenge c is independent of anything Judy sent after point in time
t0 −∆/2.

2. The first message Judy receives that can depend on s (and therefore the first
message that depends on Alice’s secret) arrives after t0 +∆/2.

From Point 1, at time t0 − ∆/2, the misinformant (who is close to Judy) can
already generate c (following whichever procedure I and Judy agreed on), and
start evaluating evalpk(c,∆). The output is ready at time t0 + ∆/2, so from
Point 2, the misinformant is on time to send to Judy messages that should
depend on the signature s.

In practice. The protocol is deniable against a judge at a certain distance away
from Alice and Bob, and the minimal value of this distance depends on ∆. An
accurate estimation of this distance would require in the first place an equally
accurate estimation of the real time ∆ (in seconds) a near-optimal adversary
would need to forge the response. This non-trivial task relates to the discussion
of Section 3.2.

Assuming reasonable bounds for ∆ have been established, one can relate the
distance and the communication delay in a very conservative way through the
speed of light. We want Judy to stand at a sufficient distance to ensure that
any message takes at least ∆/2 s to travel between them, so Judy should be
at least c∆/2 m away, where c ≈ 3.00 × 108 m/s is the speed of light. For
security against a judge standing 100 m away, one would require ∆ ≈ 0.66 µs.
Alice should be able to respond to Bob’s challenge in less time than that. At
this point, it seems unreasonable to assume that such levels of precision can be
achieved (although in principle, distance bounding protocols do deal with such
constraints), yet it remains interesting that such a simple and efficient protocol
provides full deniability against a judge that suffers more serious communication
delays.

28

Data: an element g in a group G (with identity 1G), a prime number ℓ, a
positive integer t, two parameters κ, γ > 0, and a table of precomputed
values Ci = g2

iκγ

, for i = 0, . . . , ⌈t/(κγ)⌉.

Result: g⌊2
t/ℓ⌋.

// define a function get_block such that ⌊2t/ℓ⌋ =
∑

i get_block(i)2
κi

get_block← the function that on input i returns ⌊2κ(2t−κ(i+1) mod ℓ)/ℓ⌋;
// split κ into to halves

κ1 ← ⌊κ/2⌋;
κ0 ← κ− κ1;
x← 1G ∈ G;
for j ← γ − 1 to 0 (descending order) do

x← x2κ ;
for b ∈ {0, . . . , 2κ − 1} do

yb ← 1G ∈ G;
end

for i← 0, . . . , ⌈t/(κγ)⌉ − 1 do

b← get_block(iγ + j); // this could easily be optimised by

computing the blocks iteratively as in Algorithm 4 (but

computing blocks of κ bits and taking steps of κγ bits),

instead of computing them one by one.

yb ← yb · Ci;
end

for b1 ∈ {0, . . . , 2
κ1 − 1} do

z ← 1G ∈ G;
for b0 ∈ {0, . . . , 2

κ0 − 1} do

z ← z · yb12κ0+b0 ;
end

x← x · zb12
κ0 ;

end

for b0 ∈ {0, . . . , 2
κ0 − 1} do

z ← 1G ∈ G;
for b1 ∈ {0, . . . , 2

κ1 − 1} do

z ← z · yb12κ0+b0 ;
end

x← x · zb0 ;
end

end

return x;

Algorithm 5: Faster algorithm to compute g⌊2
t/ℓ⌋, given some precomputa-

tions.

29

