
DOI: 10.2298/CSIS121104028W

Efficient Verifiable Fuzzy Keyword Search over
Encrypted Data in Cloud Computing

Jianfeng Wang1, Hua Ma1, Qiang Tang2, Jin Li3,
Hui Zhu4,5, Siqi Ma6, and Xiaofeng Chen4⋆

1 Department of Mathematics, Xidian University, China
wjf01@163.com,ma−hua@126.com

2 APSIA group, SnT, University of Luxembourg
6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

qiang.tang@uni.lu
3 School of Computer Science, Guangzhou University, China

jinli71@gmail.com
4 State Key Laboratory of Integrated Service Networks,

Xidian University, China
xfchen@xidian.edu.cn

5 Network and Data Security Key Laboratory of Sichuan
Provincezhuhui@xidian.edu.cn

6 School of Computer Science and Technology,
Xidian University, China
xdmasiqi@hotmail.com

Abstract. As cloud computing becomes prevalent, more and more sensi-
tive data is being centralized into the cloud by users. To maintain the confi-
dentiality of sensitive user data against untrusted servers, the data should
be encrypted before they are uploaded. However, this raises a new chal-
lenge for performing search over the encrypted data efficiently. Although
the existing searchable encryption schemes allow a user to search the
encrypted data with confidentiality, these solutions cannot support the
verifiability of searching result. We argue that a cloud server may be
selfish in order to save its computation ability or bandwidth. For exam-
ple, it may execute only a fraction of the search and returns part of the
searching result. In this paper, we propose a new verifiable fuzzy key-
word search scheme based on the symbol-tree which not only supports
the fuzzy keyword search, but also enjoys the verifiability of the search-
ing result. Through rigorous security and efficiency analysis, we show that
our proposed scheme is secure under the proposed model, while correctly
and efficiently realizing the verifiable fuzzy keyword search. The extensive
experimental results demonstrate the efficiency of the proposed scheme.

Keywords: searchable encryption, verifiable fuzzy search, cloud comput-
ing.

⋆ The corresponding author: Xiaofeng Chen, xfchen@xidian.edu.cn

Jianfeng Wang et al.

1. Introduction

As cloud computing becomes prevalent, storage outsourcing is widely used to
reduce operational costs or private backups. By outsourcing their data in the
cloud, data owners can obtain high quality data storage services, while reducing
the burden of data storage and maintenance. To securely store the outsourced
data on an untrusted cloud server, sensitive data should be encrypted before
outsourcing [16], [18]. However, it is intractable for data owners to search the
encrypted data in the server efficiently. The trivial solution of downloading the
whole database and decrypting locally is clearly impractical, due to the huge
amount of communication and computation cost [20]. Moreover, data owners
may share their outsourced data with a large number of users. The individual
users might want to only retrieve certain specific data files they interested in
during a given session [15]. It is desirable to support the searching functionality
on the server side, without decrypting the data and loss of data confidentiality.
A popular method is searchable encryption, which can offer the user to selec-
tively retrieve files through keyword-based search. In addition, the keyword pri-
vacy should be protected effectively since keyword usually contains important
information of the data files.

Although various searchable encryption schemes have been proposed to
perform search securely and effectively without decrypting the data files, it is
assumed that the server is “honest-but-curious”. Specifically, the cloud server
will follow our proposed protocol, but try to find out as much secret information
as possible based on their possessions. However, we noticed that the cloud
server may be selfish in order to save its computation ability or bandwidth, which
is significantly beyond the conventional “honest-but-curious” server model. We
consider a stronger adversary called “semi-honest-but-curious” server [9]. That
is, the server may execute only a fraction of the search and returns part of
the searching result honestly. Chai et al. firstly addressed this problem and
proposed a verifiable keyword search scheme (VSSE) in [9]. In their solution,
when the search behavior is completed, the server needs to prove to the user
that the search result is correct and complete, which is named as verifiable
searchability. However, the solution only supports the exact keyword search.
In 2010, Li et al. [15] proposed a fuzzy keyword search scheme over encrypted
data in cloud computing. However, they have not considered the issue of verifi-
able keyword search.

In this paper, we propose a new efficient verifiable fuzzy keyword search
scheme, which not only supports verifiable fuzzy keyword search, but also re-
duces the verifying computation cost to O(1). Specifically, our contribution can
be summarized as follows:

– To the best of our knowledge, we propose the first verifiable fuzzy keyword
search (VFKS) scheme, which not only enables fuzzy keyword search over
encrypted data, but also maintains keyword privacy and the verifiability of
the searching result.

– Through rigorous security analysis, our solution is secure and privacy pre-
serving, while supporting the verifiability of the searching result.

668 ComSIS Vol. 10, No. 2, Special Issue, April 2013

Verifiable Fuzzy Keyword Search

– Our solution is highly efficient. For each query, the verifying computation
cost is a constant complexity. Compared with the solution in [9], we reduce
theverifying computation cost from O(L) to O(1), where L is the length of
the searched keyword.

The organization of this paper is as follows. The related works are analyzed in
Section 2 . Some preliminaries are given in Section 3.The proposed verifiable
fuzzy keyword search scheme is given in Section 4. The extension scheme in
hybrid cloud is given in Section 5. The security and performance analysis is
given in Section 6 and 7. Finally, conclusion will be made in Section 8.

2. Related Work

Recently, plaintext fuzzy keyword search solutions have been proposed [4], [14],
[13]. These solutions are based on approximate string matching techniques,
which allow user to search without using try-and-see approach for finding rel-
evant information. At a first glance, it seems possible for one to directly apply
these string matching algorithms to the context of searchable encryption by
computing the trapdoors on a character base within an alphabet. However, this
trivial construction suffers from the dictionary and statistics attacks and fails to
achieve the search privacy.

Searchable encryption is a broad concept that deals with searches in en-
crypted data. The goal is to outsource encrypted data and be able to condition-
ally retrieve or query data without having to decrypt all the data [2]. Traditional
searchable encryption schemes (SSE) [3], [5], [6], [7], [10], [11], [12], [19] have
been proposed in recent years. Among those works, most are focused on ef-
ficiency improvements and security definition formalizations. The first practical
Searchable encryption scheme in the symmetric setting was proposed by Song
et al. [19] in 2000. In their solution, each word of a document is encrypted in-
dependently with a special two-layered encryption construct. Unfortunately, the
scheme is not secure against statistical analysis across multiple queries and
can leak the positions of the queried keywords in a document. The searching
overhead is linear to the whole file collection length. To achieve more efficient
search, Goh [12] proposed to use Bloom filters to construct the index for each
file. The index makes the search scheme independent of the file encryption.
Moreover, the complexity of each search request is roughly proportional to the
number of files in the collection. Chang et al. [10] developed a similar per-file in-
dex scheme. Curtmola et al. [11] presented the formal security notion of search-
able encryption. Furthermore, they proposed similar “index” approaches, where
a single encrypted hash table index is built for the entire file collection. In the in-
dex table, each entry consisting of the trapdoor of a keyword and an encrypted
set of related file identifiers. Bao et al. [3] proposed a searchable encryption
scheme in multi-user setting, where a group of users share data in a way that
can contribute searchable contents and can search an encrypted file collection
without sharing their secrets.

ComSIS Vol. 10, No. 2, Special Issue, April 2013 669

Jianfeng Wang et al.

Searchable encryption has also been studied in the asymmetric setting. The
first public-key based searchable encryption scheme is presented by Boneh et
al. [6] in 2004, where anyone with the public key can encrypt data but only au-
thorized users with the private key are able to search. Subsequently, Abdalla et
al. [1] proposed a novel public-key encryption with temporary keyword search.
Compared to symmetric searchable encryption, public key solutions are usually
very computationally expensive.

All existing secure index based schemes support only exact keyword search.
Hence, such schemes are not suitable for cloud computing. Li et al. [15] pro-
posed the first fuzzy keyword search over encrypted data in cloud computing,
which utilized the multi-way tree to enhance the search efficiency. However,
note that the semi-honest-but-curious cloud server may be selfish in order to
save its computation ability or bandwidth. It may execute only a fraction of the
search and returns part of the searching result honestly. To solve this problem,
Chai et al. [9] proposed a verifiable SSE (VSSE) scheme, which ensures that
the user can verify the correctness and completeness of the search result.

3. Preliminaries

3.1. Notions

C = (F1, F2, . . . , Fn): a set of n encryption files;
W = {w1, w2, . . . , wp}: the set of distinct keywords of C;
ID{Fi}: the identifier of document Fi;
IDwi

: the identifiers of documents containing the keyword wi;
FK,·: a pseudo-random function; defined as {0, 1}⋆ ×K → {0, 1}l;
{Tw′}: the trapdoor set of all fuzzy keywords of w

′ ∈ Sw,d;
△ = {αi}: the predefined symbol set, where |△| = 2n, and αi ∈ △ can be
denoted by n bits;
GW : a tree covering all fuzzy keywords of w ∈W is built up based on symbols
in |△|;
Tw[i]: the i-th symbol of the symbol sequence of trapdoor Tw;
ord(Tw[i]): the alphabetic order of the character Tw[i] in △;

3.2. Definitions

A verifiable fuzzy keyword search scheme (VFKS) consists of the polynomial-
time algorithms (Keygen, Buildindex, Trapdoor, Search), which are similar
to those of standard symmetric searchable encryption scheme (SSE), as well
as a new algorithm Verify. These algorithms are defined as follows:

– Keygen(λ): This algorithm is run by the data owner to setup the scheme. It
takes a security parameter λ as input, and outputs the trapdoor generation
key sk and secret key k.

670 ComSIS Vol. 10, No. 2, Special Issue, April 2013

Verifiable Fuzzy Keyword Search

– Buildindex(sk,W): This algorithm is run by the data owner to create the
index. It takes a secret sk and the distinct keyword set W of the document
collection C as inputs, and outputs a symbol-tree GW .

– Trapdoor(sk, Sw,d): This algorithm is run by the user to generate trap-
doors for all fuzzy keywords of the user input keyword w. It takes a secret
key sk and a fuzzy keyword set Sw,d as inputs, and outputs a trapdoor set
{Tw′}w′∈Sw,d

.

– Search(GW , {Tw′}): This algorithm is run by the server in order to search
for the files in C that contain keyword w. It takes the symbol-tree GW of the
file collection C and a trapdoor set {Tw′} of the fuzzy keyword set Sw,d as
inputs, and if search is successful outputs IDw and the proof , otherwise
outputs the proof .

– Verify(k, proof): This algorithm is run by the user to test whether the server
is honest. It takes a secret k and proof as inputs, and outputs True if pass,
otherwise outputs False.

Edit Distance Edit distance is a measure of similarity between two strings.
The edit distance ed(w1, w2) between two words w1 and w2 is the minimum
number of operations required to transform one to the other. There are three
primitive operations. (1) Substitution:changing one character to another in a
word; (2) Deletion: deleting one character from a word; (3) Insertion: inserting
a single character into a word. Given a keyword w, we let Sw,d denote the set
of keywords w

′
satisfying ed(w,w

′
) < d for a certain integer d.

Trapdoors of Keywords Trapdoors of the keywords are realized by applying a
hash function f as follows: Given a keyword w, we compute the trapdoor of w
as Tw = f(sk, w), where the sk is the user’s index generation key.

Verifiable of Keyword Search The server executes search for the user when
receiving the search request, and returns the search result and the proof . If
the server executes all operations honestly, the probability that the search re-
sult is incorrect should be negligible; but if the server just returns a fraction
of the search result honestly, the user can detect the cheating behavior with
overwhelming probability through the verify algorithm.

3.3. System Model

In this paper, we consider a cloud data-outsourcing system, which consists of
three different entities: the data owner, the user and the cloud server. The data
owner has a collection of n encrypted data files C = (F1, F2, · · · , Fn) to be
stored in the cloud server. A predefined set of distinct keywords in C is denoted
as W = (w1, w2, · · · , wp). The cloud server performs fuzzy search for the autho-
rized users over the encrypted data. We assume the authorization between the

ComSIS Vol. 10, No. 2, Special Issue, April 2013 671

Jianfeng Wang et al.

data owner and users is appropriately done. In the initialization phase, the data
owner shares the trapdoor generation key sk with authorized users, and builds
an index GW for the encrypted file collection C together with the encrypted files
outsourcing to the cloud server. To search the file collection for any keyword
w, an authorized user generates the trapdoor of w, and sends it to the cloud
server. Upon receiving the search request by the user, the server performs the
search over the index GW and returns all the encrypted files containing the
specific keyword w. For the fuzzy keyword search, the server returns the clos-
est possible results based on pre-specified similarity metrics. An architecture of
verifiable fuzzy keyword search is shown in Fig. 1.

encrypted files & index search requestfile retrieval
Fig. 1. Architecture of verifiable fuzzy keyword search

3.4. Security Model

In this work, we consider a “semi-honest-but-curious” cloud server, which is
different with most previous searchable encryption schemes. We assume the
cloud server acts in an “semi-honest” fashion, that is to say, it may not correctly
follow our proposed protocol but forge part of search result or execute only a
fraction of searching operations honestly. In addition, the cloud server tries to
analyze the message flow received during the protocol in order to learn ad-
ditional information. When designing verifiable fuzzy keyword search scheme,
we follow the security definition deployed in the traditional searchable encryp-
tion [11]. Namely, it is required that noting should be leaked from the remotely
stored files and index beyond the outcome and the pattern of search queries.

3.5. Design Goals

To support verifiable fuzzy keyword search over encrypted data using the above
system and security models, our system design should achieve the following
design goals: 1) to construct storage-efficient fuzzy keyword set and design
efficient and effective fuzzy keyword search scheme; 2) to prevent the server

672 ComSIS Vol. 10, No. 2, Special Issue, April 2013

Verifiable Fuzzy Keyword Search

from learning either the data files or the searched keywords beyond the search
pattern and the access pattern; 3) to design efficient verifiable fuzzy keyword
search scheme and enable user to verify the correctness and completeness of
search result.

4. A New Verifiable Fuzzy Keyword Search Scheme

4.1. Construction of the VFKS scheme

In this section, we present the proposed scheme in detail. We assume the data
files are separately encrypted by a symmetric cipher in a conventional man-
ner before the user build the index. Our scheme consists of five algorithms
(KeyGen,Buildindex,Trapdoor,Search,Verify).

• Keygen
In this process, the data owner generates the index generation key sk and a
secret key k. The Keygen is a randomized key generation algorithm, which
generate the key in this way : sk, k R← {0, 1}k.

Algorithm 1 Generate Fuzzy Set (wi, d)
Input: Keyword wi and Edit distance d
Output: Fuzzy keyword set Swi,d

1: if d >= 1 then
2: Generate Fuzzy Set (wi, d− 1);
3: end if
4: if d = 0 then
5: Set Swi,d = {wi};
6: else
7: for k ← 1 to |Swi,d| do
8: for j ← 1 to 2× |Swi,d[k]|+ 1 do
9: if j is odd then

10: Set Temp = |Swi,d[k]|;
11: Insert ⋆ at position j + 1/2;
12: else
13: Set Temp = |Swi,d[k]|;
14: Replace j/2-th character with ⋆;
15: end if
16: if Temp is not in Swi,d−1 then
17: Set Swi,d = Swi,d ∪ {Temp};
18: end if
19: end for
20: end for
21: end if
22: return Swi,d

ComSIS Vol. 10, No. 2, Special Issue, April 2013 673

Jianfeng Wang et al.

• Buildindex
In this process, we utilize a symbol-based trie-traverse search scheme,
where a multi-way tree is constructed for storing the fuzzy keyword set
{Swi,d}wi∈W over a finite symbol set. The key idea behind this construction
is that all trapdoors sharing a common prefix may have common nodes.
The root is associated with an empty set and the symbols in a trapdoor can
be recovered in a search from the root to the leaf that ends the trapdoor.
All fuzzy keywords in the trie can be found by a depth-first search. Assume
∆ = {αi} is a predefined symbol set, where the number of different symbols
is |∆| = 2n and each symbol αi ∈ ∆ can be denoted by n bits.

1. Initialization
- The data owner scans the C and builds W , the set of distinct key-

words of D.
- The data owner outsources the encryption file collection D to the

server and receives the identifiers of each file (denote as ID{Fi}
). For all files of containing the keyword wi, denote the identifier set
as IDwi = ID{F1}∥ID{F2} . . . , ∥ID{Fi}.

2. Build Fuzzy Keyword Set
To build a storage-efficient fuzzy keyword set, we utilize the wildcard
technique proposed in [15]. The idea is to consider the positions of
the three primitive edit operations. Namely, we use a wildcard “ ⋆ ”
to denote all edit operations at the same position. The wildcard-based
fuzzy keyword set of wi with edit distance d is denoted as Swi,d =

{S′

wi,0, · · · , S
′

wi,d
}, where S

′

wi,d
denotes the set of keywords w

′

i with d
wildcards. For example, for the keyword cat with the pre-set edit dis-
tance 1, its wildcard-based fuzzy keyword set can be constructed as
Scat,1 = {cat, ⋆cat, ⋆at, c⋆at, c⋆t, ca⋆t, ca⋆, cat⋆}. The procedure for the
wildcard fuzzy keyword set construction is shown in Algorithm 1.

3. Build Symbol-based Index Tree
- The data owner computes Tw

′
i
= f(sk, w

′

i) for each w
′

i ∈ Swi,d(1 ≤
i ≤ p) with the index generation key sk. Then he divides the hash
value into a sequence of symbols as αi1 , αi2 , · · · , αil/n , where l is
the output length of one-way function f(x).

- The data owner builds up a trie GW covering all the fuzzy keywords
wi ∈ W . each node in GW has a two-tuples (r0, r1), r0 stores the
symbol; r1 stores a globally unique value path||mem||Fk(path||mem),
where Fk(·) is a pseudo random function. The path contains a se-
quence of symbols from root to the current node and the mem is a
bitstream of length 2n, which represents the set of children of the
current node. For example, if the current node is a child of root
and has only one child whose r0 is the i-th symbol in ∆, the i-th
bit of the bitstream of length 2n is set to ”1” while other bit positions
are set to zero. That is, path = αi, mem = 0 · · · 1 · · · 0. The r1 of
leaf nodes is different to the other nodes, the r1 can be denote as
r1 = path||IDwi

||FK(path||IDwi
)

674 ComSIS Vol. 10, No. 2, Special Issue, April 2013

Verifiable Fuzzy Keyword Search

- The data owner attaches {IDwi |gk(IDwi)}1≤i≤p to GW and out-
sources GW with encrypted files to the cloud server.

• Trapdoor
- For search input w, the user generates the fuzzy keyword set Sw,d using

the Algorithm 1;
- For each w

′ ∈ Sw,d, the user computes Tw′ = f(sk, w
′
) and sends

{Tw′}w′∈Sw,d
to the cloud server. Meanwhile, the user needs to tempo-

rary storage the {Tw′}w′∈Sw,d
, which is used during the verify process.

Algorithm 2 Searching Tree (GW , {Tw′})
Input: A trapdoor set {Tw

′ } and The index tree GW

Output: The set of proof ProofSet and The set of files ID IDSet;
1: for i← 1 to |{Tw

′ }| do
2: Set currentnode as root of (GW ;
3: for j ← 1 to l/n do
4: Set α as αij in the i-th Tw

′ ;
5: if no child of currentnode contains α then
6: Append currentnode.proof to ProofSet;
7: break;
8: end if
9: Set currentnode as child containing α;

10: end for
11: if currentnode is leafnode then
12: Append currentnode.proof to ProofSet;
13: Append currentnode.ID to IDSet;
14: if i = 1 then
15: return ProofSet and IDSet;
16: end if
17: end if
18: end for
19: return ProofSet and IDSet;

• Search
Upon receiving the search request, the server divides each Tw′ into a se-
quence of symbols, then performs the search over GW using Algorithm 2
and returns the file identifiers IDwi and proof to the user. According to the
IDwi , the user can retrieve the files of his interest. Note that the proof is
the r1 of each node, which is a globally unique value.
• Verify

In this process, we introduce the method of verifying the searching result.
The idea is that each node in GW has a globally unique value, called proof .
Due to the construction of GW , the path of each node is unique, without
the secret key k, the attacker can not forge a valid proof . The data owner
shares the k with all authorized users. The authorized user can verify the
correctness of the search result by reconstructing the proof .

ComSIS Vol. 10, No. 2, Special Issue, April 2013 675

Jianfeng Wang et al.

- When the search is successful, firstly, the user utilizes the IDSet to test
the completeness of search result. Specifically, he computes gk(ˆIDw)
and tests whether gk(ˆIDw) is equal to the received gk(IDw), where ˆIDw

is the concatenation of identifiers received by the user. If pass, then he
utilizes the ProofSet to test the correctness of search result. Similarly,
the user computes Fk(ˆpath||mem) and test whether Fk(ˆpath||mem) is
equal to the received Fk(path||mem), where ˆpath||mem is the former
part of r1 of the current node returned by the server. If Fk(ˆpath||mem)
is not equal to the received Fk(path||mem), the user can defect that the
server is not honest.

- When the search is not successful, the user directly tests the correct-
ness of searching result. The process contains two steps:
∗ The user tests whether Fk(ˆpath||mem) = Fk(path||mem), if not

equal, the user can defect that the server is not honest.
∗ If step 1 pass, he tests whether mem[ord(Tw[i + 1])] = 1, where

the Tw[i+ 1] is the next character of the current node in the symbol
sequence of the trapdoor. If not equal, the user can defect that the
server is not honest.

4.2. Performance Comparison

We compare the proposed algorithm with Li’s scheme [15] and Chai’s scheme [9].
To make the comparison easier, we assume that N is the total number of key-
words and M is the maximum size of the fuzzy keyword set Swi,d. Table 1
presents the comparison of the search efficiency and the verifiability among the
above schemes.

Table 1. Comparison of the three scheme

Li’s scheme [15] Chai’s scheme [9] Our scheme
Storage cost O(MN) O(N) O(MN)

Search cost O(1) O(L) O(1)

Verifiable searchability No Yes Yes
Fuzzy searchability Yes No Yes

Verify cost - O(L) O(1)

Compared with Li’s scheme, our scheme achieve verifiable of search result.
The verify cost shows the computation of verifying per trapdoor in each query. In
Chai’s scheme, it requires L times decryption operations while in our scheme
the computation is only one hash operation, where the L is the length of the
searched keyword. Note that our scheme can reduce the computation from
O(L) to O(1), due to the query is performed frequently, we can reduce a large
amount of computation at the user.

676 ComSIS Vol. 10, No. 2, Special Issue, April 2013

Verifiable Fuzzy Keyword Search

Though our scheme need more space to store the fuzzy keyword(O(MN)),
it achieves the the fuzzy searchability. All in all, our scheme not only supports
the fuzzy search but also achieves the verifiable searchability more efficiently.

5. Verifiable Fuzzy Keyword Search in Hybrid Cloud

5.1. System and Security Model

Recently, Bugiel et al. [8] provided an architecture consisting of two clouds for
secure outsourcing of data and arbitrary computations to an untrusted com-
modity cloud. Their approach consists of a private cloud and a public cloud.
The private cloud performs the security-critical operations, whereas the public
cloud performs the performance-critical ones. This allows maximum utilization
of the expensive resources of the private Cloud, while high loads of queries can
be processed on-demand by the public Cloud. Based on their two clouds archi-
tecture, we consider to address the privacy-preserving fuzzy keyword search
problem simultaneously supporting verifiability of search result in hybrid cloud
model.

In this section, we consider a extension from single cloud model to hybrid
cloud model. There are four entities defined in the hybrid cloud model, that
is, the data owner, the user, the private cloud and the public cloud. The data
owner outsources the encrypted files to the public cloud and shares them with
the authorized users. The user performs fuzzy keyword search and decrypts
the encrypted files retrieved from the public cloud. The private cloud is addition-
ally introduced to facilitate user’s secure usage of cloud service. Specifically,
since the computing resources at user side are restricted and the public cloud
is not fully trusted in practice, the private cloud is able to provide users with
an execution environment and infrastructure working as an interface between
user and the public cloud. The interface offered by the private cloud allows user
to securely submit files and queries to be securely stored and computed re-
spectively. An architecture of verifiable fuzzy keyword search is shown in Fig.2.

In this model, we assume that the public cloud is “semi-honest-but-curious”,
which may not correctly follow our proposed protocol but forge part of search
result or execute only a fraction of searching operations honestly. As for the
private cloud, we assume that it is “honest-but-curious”, which will follow our
proposed protocol, but try to find out as much secret information as possible
based on their possessions. In addition, the user’s input keywords are allowed
to be known by the private cloud. Actually, approximately relaxing security de-
mands by allowing keywords leakage to private cloud is innocuous because the
private cloud in practice is located in the premises of the organization [17].

5.2. Scheme Description

In single cloud model, data owner/user has to compute trapdoors for all the
relevant fuzzy keywords for both index generation and search requesting, which

ComSIS Vol. 10, No. 2, Special Issue, April 2013 677

Jianfeng Wang et al.

exact keyword input keywordidentifier encrypted files index query file retrieval
Fig. 2. Architecture of verifiable fuzzy keyword search

leads to a large amount of overhead at user side. In addition when receiving the
search result retrieved from the public cloud, the user has to compute Pseudo-
random function values for all the search results.

To fill the gap, we will show how to achieve efficient verifiable fuzzy keyword
search under hybrid cloud model. The key idea is to outsource the expensive
operation (i.e. trapdoor generation and search result verification) to the private
cloud and only left the light-weight computation (file encryption and decryption)
at user side.

Consider that the Keygen operate identically to that in Section 4.1, we just
provide the other four algorithms as follows.

– Buildindex When outsourcing a file F , the data owner performs an en-
cryption on F by himself but outsources the task of generating the fuzzy
keyword set {Sw,d}w∈W and building the index to the private cloud.

– Trapdoor and Verify When retrieving the interest files, the private cloud
works as a proxy of the user. Firstly, it translates user’s query into a set of
trapdoors and sends to the public cloud. Later, upon receiving the search
results returned by public cloud, the private cloud is to perform verification
on them to test whether the public cloud is honest.

– Search Upon receiving the search request from the private cloud, the public
cloud divides each trapdoor into a sequence of symbols, then performs the
search and returns the search result to the private cloud.

Note that in hybrid cloud model, verifiable fuzzy keyword search can be
presented soundly and efficiently. For soundness, since the private cloud pos-
sesses all the data owner/ user’s resources except for the file encryption key sk,

678 ComSIS Vol. 10, No. 2, Special Issue, April 2013

Verifiable Fuzzy Keyword Search

it can perform the operations of index generation and search result verification.
Moreover, due to the private cloud performs all the overhead operations for the
data owner/user, the whole process can be processed more efficiently.

6. Security Analysis

In this section, we prove the correctness and security of the proposed verifiable
fuzzy keyword search scheme.

Theorem 1. The intersection of the fuzzy sets Sw,d and Swi,d for keyword w
and wi is not empty if and only if ed(w,wi) ≤ d.

Proof. First, we prove that Sw,d

∩
Swi,d is not empty if ed(w,wi) ≤ d. To prove

this, it is enough to find out an element in Sw,d

∩
Swi,d. According to the defini-

tion of edit distance, we can transform w to wi after ed(w,wi) edit operations.
From w, we get an element w⋆ by marking the positions of those ed(w,wi) oper-
ations on w as ⋆. From w⋆, we can perform the ed(w,wi) edit operations on the
same positions containing ⋆ at w⋆ and transform w⋆ to wi. Since ed(w,wi) ≤ d,
w⋆ is an element in both Sw,d and Swi,d.

Next, we prove that ed(w,wi) ≤ d if Sw,d

∩
Swi,d is not empty. We use w⋆ to

denote the common element in Sw,d

∩
Swi,d. Assume the number of ⋆ in w⋆ is

k, there are two cases should be considered: If k = 0, it means that we do not
need any edit operation to transform w to wi. That is, w = wi = w⋆. Obviously,
ed(w,wi) = 0 ≤ d. If k > 0, for any ⋆ in w⋆, we can perform edit operation on
the position of the ⋆ and transform it to the corresponding character in w and
wi. We use w⋆

1 and w⋆
i1

to denote the result variants, respectively. Due to the
two variants only have at most one position is different, we can transform w⋆

1 to
w⋆

i1
by at most one edit operation. That is, ed(w⋆

1 , w
⋆
i1
) ≤ 1. After all the k ⋆ be

performed in w⋆, we get w and wi, respectively. Due to w⋆ ∈ Sw,d

∩
Swi,d, the

number of ⋆ in w⋆ is not greater than d. we get that ed(w,wi) = k ≤ d.

Theorem 2. The verifiable fuzzy keyword search scheme is secure regarding
the search privacy.

Proof. Similar to [15], suppose the proposed scheme is not achieve the index
privacy against the indistinguishability under the chosen keyword attack (IND-
CPA), which means there exists an algorithm A who can get the underlying
information of keyword from the index. Then, we build an algorithm A′

that uti-
lizes A to determine whether some function f

′
(·) is a pseudo-random function

such that f
′
(·) is equal to f(sk, ·) or a random function. A′

has an access to
an oracle Of ′(·) that takes as input secret value x and return f

′
(x). Upon re-

ceiving any request of the index computation, A′
answers it with request to the

oracle Of ′(·). After making these trapdoor queries, the adversary outputs two
keywords w∗

0 and w∗
1 with the same length and edit distance, which can be re-

laxed by adding some redundant trapdoors. A′
picks one random b ∈ {0, 1}

ComSIS Vol. 10, No. 2, Special Issue, April 2013 679

Jianfeng Wang et al.

and sends w∗
b to the challenger. Then, A′

is given a challenge value y, which
is either computed from a pseudo-random function f(sk, ·) or a random func-
tion. A′

sends y back to A, who answers with b
′ ∈ {0, 1}. Suppose A guesses

b correctly with nonnegligible probability, which indicates that the value is not
randomly computed. Then, A′

makes a decision that f
′
(·) is a pseudo-random

function. As a result, based on the assumption of the indistinguishability of the
pseudo-random function from some real random function, A at best guesses b
correctly with approximate probability 1/2. Thus, the search privacy is obtained.

Theorem 3. The verifiable fuzzy keyword search scheme is secure based on
the verifiable fuzzy search.

Proof. To prove the verifiability, we need to prove that the attacker can not forge
a valid proof . To tamper the search result, the attacker need to forge the proof .
There are three ways: (1) generate a r1 with different parameter path||mem; (2)
randomly generate a r1 to replace the original one; (3) return the r1 of another
node back to the user.

– For method (1) and (2), due to the collision resistance properties of hash
function, each node in GW has a unique r1, the attacker can successful
cheat with a negligible probability without the secret key k. That is, the at-
tacker can not return part of the search result or some fault one.

– For method (3), According to the construction of GW , there has a unique
path from root to the current node. In other words, the path of any node can
be called signature of the node. The r1 with the different path will be reject
by the algorithm verify.

Baesd on the above analysis, without the secret key k, the attacker can not
construct a valid prooof . That is, our proposed scheme is secure based on the
assumption of collision resistance of hash function.

7. Performance Analysis

In this section, we analyze the efficiency of the proposed scheme based on
simulation. Since the process of file encryption is independent to the process
of index construction, we focus on the symbol-tree based search algorithm.
Our experiment is simulated on a LINUX machine with Intel Pentium Dual Core
E5800 3.2GHz and 2G memory.

Performance of Generating Fuzzy Keyword Set In our experiment, we focus
on the wildcard-based fuzzy set construction for all the keywords extracted from
the file collection. Fig. 3 shows the fuzzy keyword set construction time with
edit distance d=1 and 2. We can see that in both cases, the construction time
increases linearly with the number of keywords. The cost constructing fuzzy
keyword set under d=1 is much less than the case of d=2 due to the smaller set
of possible wildcard- based words.

680 ComSIS Vol. 10, No. 2, Special Issue, April 2013

Verifiable Fuzzy Keyword Search

500 1000 1500 2000 2500 3000 3500
5

10

15

20

25

30

35

40

45

50

Number of distinct keywords

F
uz

zy
 s

et
 c

on
st

ru
ct

io
n

tim
e

(m
s)

(a)

500 1000 1500 2000 2500 3000 3500
500

1000

1500

2000

2500

3000

3500

Number of distinct keywords

F
uz

zy
 s

et
 c

on
st

ru
ct

io
n

tim
e

(m
s)

(b)

Fig. 3. Fuzzy keyword set construction time using wild-based approach:(a) d=1,
(b) d=2.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of distinct keywords

tr
ee

 c
on

st
ru

ct
io

n
tim

e
(m

s)

threshold=1
threshold=2

(a)

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
1

2

3

4

5

6

7

8

9

10

11

Number of distinct keywords

ke
yw

or
d

qu
er

in
g

tim
e

(s
)

(b)

Fig. 4. The evaluation of symbol-based index tree :(a) construction time (b)
searching time

ComSIS Vol. 10, No. 2, Special Issue, April 2013 681

Jianfeng Wang et al.

Performance of Building Symbol-based Index Given the fuzzy keyword set
constructed using wildcard-based approach, we measure the time cost of symbol-
based Index construction. Fig. 4(a) shows the time cost of building the symbol-
based index tree in the case edit distance d=1 and 2. Although the time cost is
not very low,the index construction process can be conducted off-line, it will not
affect the searching efficiency. Fig. 4(b) shows the time cost of a single keyword
query.

8. Conclusion

In this paper, we investigated the fuzzy keyword search problem in the sce-
nario of a semi-honest-but-curious server, which may execute only a fraction
of the search and return part of the searching result honestly. We proposed a
new efficient verifiable fuzzy keyword search scheme, which not only supports
fuzzy keyword search over encrypted data, but also enjoys the verifiability of the
searching result. Though rigorous security and efficiency analysis, we showed
that our method is secure and privacy-preserving, while correctly realizing the
verifiable fuzzy keyword search.

Acknowledgments. This work is supported by the National Natural Science Foundation
of China (No. 61272455 and 61100224), major national science and technology projects
(No. 2012ZX03002003), the Project Supported by Natural Science Basic Research Plan
in Shaanxi Province of China (No. 2011JQ8042) and the Fundamental Research Funds
for the Central Universities (Nos. JY10000901034 and K50510010030).

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J.,
Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consistency prop-
erties, relation to anonymous ibe, and extensions. In: Proceedings of Advances in
Cryptology - CRYPTO 2005. pp. 205–222 (2005)

2. Agudo, I., Nuñez, D., Giammatteo, G., Rizomiliotis, P., Lambrinoudakis, C.: Cryp-
tography goes to the cloud. In: Lee, C., Seigneur, J.M., Park, J., Wagner, R. (eds.)
Secure and Trust Computing, Data Management, and Applications, Communica-
tions in Computer and Information Science, vol. 187, pp. 190–197. Springer (2011)

3. Bao, F., Deng, R.H., Ding, X., Yang, Y.: Private query on encrypted data in multi-
user settings. In: Proceedings of the 8th International Conference on Information
Security Practice and Experience. pp. 71–85. Springer, Sydney, Australia (2008)

4. Behm, A., Ji, S., Li, C., Lu, J.: Space-constrained gram-based indexing for efficient
approximate string search. In: Proceedings of the 25th IEEE International Confer-
ence on Data Engineering. pp. 604–615. IEEE, Shanghai, China (2009)

5. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable en-
cryption. In: Proceedings of Advances in Cryptology - CRYPTO 2007. pp. 535–552.
Springer, Santa Barbara, CA, USA (2007)

6. Boneh, D., Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with
keyword search. In: Proceedings of Advances in Cryptology - EUROCRYPT 2004.
pp. 506–522. Springer, Interlaken, Switzerland (2004)

682 ComSIS Vol. 10, No. 2, Special Issue, April 2013

Verifiable Fuzzy Keyword Search

7. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Proceedings of the 4th Theory of Cryptography Conference. vol. 4392, pp. 535–
554. Springer, Amsterdam, The Netherlands (2007)

8. Bugiel, S., Nurnberger, S., Sadeghi, A.R., Schneide, T.: Twin clouds: An architecture
for secure cloud computing. In: Proceedings of the Workshop on Cryptography and
Security in Clouds(WCSC’11). Zurich, Switzerland (2011)

9. Chai, Q., Gong, G.: Verifiable symmetric searchable encryption for semi-honest-
but-curious cloud servers. CACR, University of Waterloo (2011), [Online]. Avail-
able: http://www.cacr.math.uwaterloo.ca/techreports/2011/cacr2011-22.pdf (current
December 2012)

10. Chang, Y., Mitzenmacher, M.: Privacy preserving keyword searches on remote en-
cypted data. In: Proceedings of the 3rd Applied Cryptography and Network Security.
pp. 391–421. New York, NY, USA (2005)

11. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definition and efficient constrcutions. In: Proceedings of the 13th ACM
Conference on Computer and Communications Security. pp. 79–88. ACM, Alexan-
dria, Virginia, USA (2006)

12. Goh, E.: Secure indexes. Report 2003/216, Cryptology ePrint Archive (2003),
http://eprint.iacr.org/2003/216

13. Ji, S., Li, G., Li, C., Feng, J.: Efficient interactive fuzzy keyword search. In: Pro-
ceedings of 18th International World Wide Web Conference. ACM, Madrid, Spain
(2009)

14. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for approximate string
searches. In: Proceedings of the 24th IEEE International Conference on Data Engi-
neering. pp. 257–266. IEEE, Cancun, Mexico (2008)

15. Li, J., Wang, Q., Wang, C., Cao, N., Ren, K.and Lou, W.: Fuzzy keyword search over
encrypted data in cloud computing. In: Proceedings of the 29th IEEE International
Conference on Computer Communications(INFOCOM’10). pp. 441–445. IEEE, San
Diego, CA, USA (2010)

16. Lu, Y., Tsudik, G.: Privacy-preserving cloud database querying. Journal of Internet
Services and Information Security 1(4), 5–25 (2011)

17. Poisel, R., Tjoa, S.: Discussion on the challenges and opportunities of cloud foren-
sics. In: Proceedings of the International Cross-Domain Conference and Work-
shop on Availability, Reliability, and Security(CD-ARES’12). pp. 593–608. Springer,
Prague, Czech Republic (2012)

18. Shiraishi, Y., Mohri, M., Fukuta, Y.: A server-aided computation protocol revisited
for con-fidentiality of cloud servic. Journal of Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications 2(2), 83–94 (2011)

19. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of the 2000 IEEE Symposium on Security and Privacy. pp.
44–55. IEEE, Berkeley, California, USA (2000)

20. Wang, C., Ren, K., Yu, S., Mahendra, K.: Achieving usable and privacy-assured
similarity search over out-sourced cloud data. In: Proceedings of the 31th IEEE
International Conference on Computer Communications(INFOCOM’12). pp. 451–
459. IEEE, Orlando, USA (2012)

Jianfeng Wang is a graduate student at the Faculty of Science, in Xidian Uni-
versity. His research interests include public key cryptography, cloud computing
security and searchable encryption.

ComSIS Vol. 10, No. 2, Special Issue, April 2013 683

Jianfeng Wang et al.

Hua Ma received her Masters degree in Applied Mathematics from the Xid-
ian University in 1990. She is currently a Professor at the Faculty of Science,
Xidian University. Her research interests include public key cryptography, net-
work security, and electronic commerce.

Qiang Tang is a postdoc researcher in the Interdisciplinary Centre for Secu-
rity, Reliability and Trust at University of Luxembourg. Before this, he was a
postdoc researcher at the Distributed and Embedded Security Research Group
in the Computer Science department at University of Twente, the Netherlands.
He received his MSc degree from Peking University , China in 2002 and ob-
tained his PhD degree from Royal Holloway, University of London , UK in 2007.

Jin Li He received his B.S. (2002) and M.S. (2004) from Southwest Univer-
sity and Sun Yat-sen University, both in Mathematics. He got his Ph.D degree
in information security from Sun Yat-sen University at 2007. Currently, he works
at Guangzhou University. His research interests include Applied Cryptography
and Security in Cloud Computing (secure outsourcing computation and cloud
storage). He served as a senior research associate at Korea Advanced Institute
of Technology (Korea) and Illinois Institute of Technology (U.S.A.) from 2008 to
2010, respectively. He has published more than 40 papers in international con-
ferences and journals, including IEEE INFOCOM, IEEE Transaction on Parallel
and Distributed Computation, IEEE Transaction on Information Forensics and
Security, ESORICS etc. He also served as TPC committee for many interna-
tional conferences on security. He received a National Science Foundation of
China (NSFC) Grant for his research on secure outsourcing computation in
cloud computing. He was selected as one of science and technology new stars
in Guangdong province.

Hui Zhu associate professor, born in 1981, received the Ph.D. degree in infor-
mation security from Xidian University in 2009. His current research interests
include network security and security authentication protocol.

Siqi Ma is a student at the School of Computer Science and Technology, in
Xidian University. Her research interests include cloud computing security and
network Security.

Xiaofeng Chen received his Ph.D. in cryptography from the Xidian University in
2003. He is currently a Professor at the School of Telecommunications Engin-
nering, Xidian University. His research interests include public key cryptography,
financial cryptography, and cloud computing security.

Received: November 4, 2012; Accepted: April 1, 2013.

684 ComSIS Vol. 10, No. 2, Special Issue, April 2013

	Jianfeng Wang cl@@auth, Hua Ma cl@@auth, Qiang Tang cl@@auth, Jin Licl@@auth, Hui Zhu cl@@auth, Siqi Ma cl@@auth, Xiaofeng Chen

