
Efficient Veri f icat ion o f Paral le l R e a l - T i m e S y s t e m s

Tomohiro Yoneda 1 , Atsufumi Shibayama 1,
Bernd-Holger Schlingloff a, Edmund M. Clarke 3

1 Tokyo Institute of Technology ({yoneda,sibayama}@cs.titech.ac.jp)
2 Technische Universitgt Miinchen (schlingl@informatik.tu-muenchen.de)

s Carnegie Mellon University (emc@cs.cmu.edu)

Abstract . This paper presents an efficient model checking algorithm
for one-safe time Petri nets and a timed temporal logic. The approach is
based on the idea of (1) using only differences of timing variables to be
able to construct a finite representation of the set of all reachable states
and (2) further reducing the size of this representation by exploiting the
concurrency in the net, i.e. only one of several equivalent interleavings
being generated for the evaluation of the given formula. This reduction of
the state space is possible, because the considered linear-time temporal
logic is stuttering invariant. In this paper the concrete model checking
algorithm is developed and some experimental results which demonstrate
the efficiency of the method are given.

1 Introduction

Model checking has proved to be useful for the automatic verification of finite
state systems; see, e.g. [CES86] and others. Unfortunately, the verification of
large parallel systems suffers from the so called state e~plosion problem: the
number of states to be checked is exponential in the size of the system. An ap-
proach to confine this problem is to use partial orders and thus to avoid the
construction of equivalent states reachable by different interleaving of atomic
events. Several methods [Val90, God90] based on this approach have been pro-
posed for teachability analysis and various other properties of Petri nets.

Those untimed verification techniques are suitable to check qualitative timing
properties. Recently , the demand for correctness proofs of real-time systems
increases rapidly. In real-time systems, the system correctness depends not only
on the functional results of the system but also on the time at which these results
are produced.

Such systems are often represented by finite automata, whose transitions are
labeled by time intervals [AH89, and others], or which have a finite number of
clocks [ACD90]. However, concurrency can not be modeled directly by such timed
state graphs. On the other hand, time Petri nets were considered in [MF76]. Time
Petri nets are an adequate model of timed concurrent systems, which generalizes
other models in a natural way. Using time Petri nets, it is very easy to model,
for example, logic gates with bounded delays or network protocols.

In order to specify and verify real-time systems, languages for reasoning
about quantitative timing properties are necessary. Many timed temporal logics

322

have been proposed to express such properties [AH89, ACD90, and others]. But
again, for practical applications, state explosion is a big problem. There are
only a few reports on the avoidance of state explosion in the case of real-time
systems. Reachability analysis techniques for time Petri nets using partial orders
have been reported in [YTK91].

In this paper, we develop an efficient model checking algorithm for the ver-
ification of real-time systems based on the partial order approach. The given
real-time system is modeled by a time Petri net. For the specification of proper-
ties and time constraints of the time Petri nets we use a suitably extended linear
temporal logic. The language is designed such that it fits to the partial order
analysis. Automatic verification is achieved by generating a reduced state space
of the net, which is big enough to evaluate the,given formula, and by traversing
the reduced state space with the given formula.

The rest of this paper is organized as follows. In the next section, several
definitions concerning time Petri nets are given. In Sect. 3, we introduce our
logic. Both the basic model checking algorithm and its partial order improvement
are developed in the following two sections. In Sect. 6, some experimental results
are presented which demonstrate the efficiency of the proposed method. Finally,
we summarize our discussion.

2 T i m e P e t r i N e t s

Time Petri nets were first defined in [MF76], and used for timing verification in
[BD91, RB86].

Let Q be the set of rational numbers, and Q§ the set of nonnegative rational
numbers. A time Petri net N is six-tuple, N - (t9, T, F, Eft, Lft, /to), where

- P = {Pl,P2, . . . ,Pra} is a finite set of places;
- T = { t l , t 2 , . . . , tn} is a finite set of transitions (P n T = O);
- F c_ (P • T) U (T • P) is the flow relation;
- Eft, Lft : T ~ Q+ are functions for the earliest and latest firing times of

transitions, satisfying Eft(t) < Lft(t) for all t E T;
- /to C P is the initial marking of the net.

For any transition t, . t = {p E P I (P,t) E F} and t . = {p E P I (t,p) E F}
denote the preset and the postset oft, respectively. To simplify the presentation,
we require that . t O t* = 0 for every transition t; however, this requirement' is
not essential for our results.

A marking It of N is any subset of P. A transition is enabled in a marking
p i f - t C p (all its input places have tokens in p); otherwise, it is disabled. Let
enabled(p) be the set of transitions enabled in p.

A state ~r of a time Petri net is a pair (p, clock), where p is a marking and clock
is a function T ~ Q+. The initial state ~o is (p0, clocko), where clocko(t) = 0
for all t E T.

The states of time Petri nets change, if time passes or if a transition fires. In
state (r = (p, clock), time 7- E Q+ can pass, if for all t E enabled(p), clock(t)+r <
Lft(t). In this case, state ~' = (p~, clock') is obtained by passing 7- from #, if

323

1. # = # l , and

2. for all t e T, clock'(t) = clock(t) + r .

In state a = (#, clock), transition t ~ T can fire, if t E enabled(p), and
clock(t) >_ EZ(t). In this case, state = (p', lock') is obtained by firing t from
a, if

1. pl = (# _ �9 U t �9 and

2. for all ~ E T, clock'(~ = { Oclock(t~) elseif t E. enabled(#'),i q~ enabled(p)
?

Intuitively, this can be interpreted as follows : Firing a transition t consumes
no time, but updates # and clock such that the clocks associated with newly
enabled transitions (i.e. transitions which are enabled in #~ but not in #) are
reset to 0. Clock values of other transitions (i.e. transitions not affected by t)
are left unchanged.

A run p = (~0, ~1, ~2, . . -) of N is a finite or infinite sequence of states such
that ~0 is the initial state, and ~i+1 is obtained from ~i by passing time ~- and
then firing transition t. We write hi(p) for the i - th state of p, and similarly
#i(P) and clocki(p), and omit the argument (p) whenever appropriate. A run is
maximal, if it is infinite or in its last state there is no enabled transition. The
behavior B(N) of N is the set of all maximal runs of N.

Given any run p and i > 0, we define timei(p) to be the sum of all times
r passed between ao(p) and ~i(P); that is, timeo(p) = 0 and timei+l(p) =
timei(p) + clock~+z(t) - clocki(t) for some t which is not newly enabled in #i+1.

A state ~r is reachable if there exists a finite run whose last state is a. A
t ime Petri net is one-safe, if for every state a = (#, clock) obtained by passing
time from any reachable state cr ~, and for every transition t which can fire in a,
t �9 N # = 0. The restriction to one-safe nets simplifies both the analysis of time
Petri nets and the reduced state space generation.

Further, for the proof of the finiteness of the graphs introduced in Sect. 4,
we need the following progress condition [AH89]: The sum of earliest firing
times of transitions forming any loop in N is positive. More precisely, for ev-
ery set { t l , t 2 , . . . , t n } of transitions such that t l � 9 1 4 9 5s 0, t2 � 9 1 4 9 5s 0,
. . . , t , �9 N �9 t l r 0 it holds that Eft(t1) + Eft(t2) + . . . + Efl(tn) > 0. This
guarantees that in any infinite run time is increasing beyond any bound.

In the sequel, a net will always be a one-safe time Petri net satisfying the
progress condition.

Fig. 1 shows an example net N~. Pairs of numbers after transition names
represent earliest and latest firing times, respectively. Since, for example, t2 can
fire at any time between 1 and 3 after being enabled, the behavior B(N~) contains
an infinite number of runs. Furthermore, since Eft(to) > Lfl(tl), to can never
fire, and thus every run of Nz is infinite.

324

po to[l_, a]

[,..t~.1 Lu' uJ
I-I-- . - " "

I __~2[1, 3] ~

I -
Fig. 1. An example of a time Petri

P~ t~ [1, 9] p3

 I1,7] p0

i,
-,,_,, 7 % - 0 / -

net : N,

3 TNL, a Timed Temporal Logic for Nets

In this section, we propose a temporal logic for the specification of net properties.
On one hand, every such logic should be expressive enough to be capable of
formalizing "interesting" properties including quantitative time requirements,
and on the other hand there should exist an efficient model checking algorithm
for the logic avoiding the state explosion problem. Since with branching time
logics such as CTL[CES86] it is by now not possible to use the parallelism in
the net to reduce the average time complexity of the model checking problem,
we focus on linear time temporal logic.

Given a net N and formula ~o, we want to find whether there exists a run p of
N satisfying ~o (written p ~ ~o). In general there are infinitely many runs of N,
therefore we group these into a finite number of equivalence classes [Pl], [P2], . . . ,
[Pc], such that the existence of a satisfying run p implies that every element of
the equivalence class [p] satisfies ~o. Thus we only have to check a finite number
of equivalence classes, and a coarser partition yields a better algorithm.

Consider a set of atomic propositions {Pl , . - . ,Pk} of a logic, such that the
notion of validity ((p, i) ~ pj) of an atomic proposition pj in a state ~i of
a run p is defined. Two runs p and ff are strongly equivalent with respect to
{Pl,... ,Pk}, if (p, i) ~ pj iff (p', i) ~ Pi for all i > 0 and all atomic propositions

Pj ~ {Pl,...,Pk}.
A state cri+l in a run p is stuttering with respect to {pl , . - - ,pk}, if(p, i) ~ pj

iff (p,i + 1) ~ pj for all p j e {Pl , . . . ,Pk}. Two runs p and p~ are stuttering
equivalent w.r.t. {Pl,...,Pk}, if the two sequences obtained by eliminating all
stuttering states from p and p~ are Strongly equivalent w.r.t. {p l , . . . , Pk}. Define
a formula ~o to be stuttering invariant, if for any two runs p and p~ which are
stuttering equivalent with respect to the atomic propositions in ~o it holds that

Stuttering invariance allows to group all stuttering equivalent runs into the
same equivalence class, thereby reducing the average complexity of the model
checking. In particular, all runs which differ only in the interleaving of indepen-
dent transitions are stuttering equivalent with respect to places not connected
to these transitions.

325

Unfortunately, most formulas of existing real-time logics are not stuttering
invariant. Firstly, uncautious use of a "next-state" operator inhibits stuttering
invariance. Moreover, if the logic allows to directly refer to the time associated
with a state in a run, then a similar effect as with a "next-state" operator can re-
sult. In other words, classical real-time logics are inappropriate for our purpose.
Therefore, our logic only refers to differences of firing times of transitions.

Our logic, which we call T N L , is formally defined as follows. Given any net
N = (P , T , F , Eft, L f t , # o) , l e t 3 0 = {p* [p e P}U{p ~ [p E P} be the set of
time variables. The set of propositional variables is P. The formulas of T N L are
defined inductively:

If z, y E P and c E Q, then x - y < c is a formula.
- Every propositional variable is a formula.
- false is a formula.
- If ~1 and ~2 are formulas, then (~1 --+ qa2) and (~1 H ~2) are formulas.

false, propositional variables, and z - y < c for z, y E P and c E Q are called
atomic propositions. Additional boolean connectives true, -~, A, V, --% and tem-
porM connectives [3, r can be defined as usual. Also formulas z - y ,~ c, where
,-~ is any relation from {<, =, >, >}, can be defined in an obvious way.

In order to define the semantics of T N L , the value of time variables in a
state of a run has to be defined. Intuitively, p* and pOE V represent the time
when the place p got or lost the latest token, respectively.

Let p be a run of N, i > 0, and let x E P.

0 i f i = 0
timei(p) i f z = p ~ p E / l i , P ~ # i - 1

eval~(z) = timei(p) if x = pO, p ~ #i, P E #~-1
evali_ i (z) otherwise

Validity of a T N L formula ~ in a run p at point i > 0, denoted by (p, i) ~ ~,
is now defined by induction on ~ as usual:

1. (p, i) ~ x - y < e iff evali(x) - evali(y) < c
2. (p,i) ~ p i f f p E # i f o r p E P
3. (p,i) ~= false
4. (p, i) ~ (~1 --~ 92) iff (p, i) ~ ~1 implies (p, i) ~ 92
5. (p, i) ~ (~1/ /~2) iff there exists j _> i such that (p, j) ~ ~ , and for all k

such that i _< k < j , (p, k) ~ ~1

p satisfies ~, denoted by p ~ ~, if (p, 0) ~ ~. ~ is satisfiable in N if there
exists a (maximal) run p E B (N) such that p ~ ~.

Consider our example net from Fig. 1. Then the formula ~Pl0 is satisfiable
if the place pl0 is reachable, which is the case, and <>(plo A P~o - P~0 < 8) is
satisfiable if it can be reached within 8 time units, which is not the case (Note
that evali(p[o) = 0 for all i). riO(p[- p ~ > 2) means that t2 may infinitely
often need more than 2 time units to fire.

326

4 M o d e l C h e c k i n g f o r N e t s a n d T N L

In general, there exist infinitely many runs of a given net N. In this section,
we will construct a finite graph G such that the paths through G represent
exactly the runs of N, and that every node in G determines the truth value of
all atomic propositions appearing in the given T N L formula. Thus, the T N L
model checking problem is reduced to the LTL model checking problem, for
which an algorithm can be found in [LP85].

Basically, we use a set of inequalities to represent a number of different clock
functions. By an inequality we mean any string of the form "x - y ,,~ c", where
x and y are from a designated set of variables, e E Q and ~ is a relation symbol
from {~, <, - , >, >}. If I is a set of inequalities, then var(I) denotes the set of
variables that I contains; we say that I is a set of inequalities over var(I).

Let I be a set of inequalities over {xl, z 2 , . . . , zn}. A feasible vector for I is
a tuple (el, c2 , . . . , en) of constants ci E Q, such that every inequality obtained
by' replacing every zi by ei (1 < i < n) in any inequality from I holds in the
theory of rational numbers. The solution set of I is the set of feasible vectors for
I. A set of inequalities is consistent if its solution set is nonempty. Two sets of
inequalities are isomorphic, if they have the same solution set.

The closure of a TNL-fo rmula ~, denoted by Cl(~), is the smallest set
of inequalities such that for every inequality "z - y _~ e" appearing in ~, both
"z - y < e"E CI(~) and "z - y > c"E CI(~). A mazimal consistent set of ~ is
a maximal set F C_ Cl(~) of inequalities which is consistent. Given any set I of
inequalities, a complete extension i of I and ~ is any consistent set] = I U I ~, such
that 1 ~ is a maximal consistent set of ~. CE(I, ~) denotes the set of all complete
extensions of I and ~. Note that for consistent I, CE(I, ~) is nonempty and
finite.

In the previous section, time variables representing times when the corre-
sponding places got or lost its latest token were introduced. In order to grasp
the future behavior of the net, we introduce another sort of time variables, called
transition variables, representing the next firing time of (enabled) transitions.
Since there is no confusion, we use the set T to denote transition variables as
well as transitions; all inequalities in this section will therefore use variables from
V = P IJ 7". P~ denotes the set of time variables appearing in ~.

An atom is a pair o~ = (#, I), where p is a marking and I is a set of inequalities.

The initial atom is ~0 = (/~0, I0), where P0 is the initial marking of the net, and
I0 is the unique complete extension of the following set Io of inequalities:

Zo = { " z - y = 0" I z, y E P } U
{"t - z > Eft(t)" [t e enabled(po), z e P} U
{'2 - z < Lft(t)" I t e enabled(po), z E 7 ~}

The first line defines the initial values of all time variables to be equal. The
second and third line give the timing constraints on the next firing of transitions
enabled in the initial marking.

We are now going to describe how the set of successor atoms a ~ of an atom
can be computed. To this end we need the notion of deletion of a set U of

327

variables from a set I of inequalities. For every such I and U there exists an (up to
isomorphism) unique set I ' = delete(I, U) of inequalities over var(I) - U, such
that the solution set of I ~ is equal to the solution set of I, projected on var (I) -U .
For example, i f / = {"9 - z >_ 2", "9 - z _< 7", "Y - z < 3", "z - Y <_ 11"}, then
delete(I, {y}) = {"z - z < 1", "z - z _< 18"}. As shown in [JM87], I ' can be
computed by a graph-based algorithm in time O([var(I)[3).

If s = (p , I) is an atom, then firable(s) = {tj [t I E enabled(p),I U
{'~t - t ! > 0" [t E enabled(p)} is consistent} is the set of transitions that can
fire earlier than all other transitions in the given marking and timing properties.
Let t f be a transition in flrable(s), p' = (p - . t f) U t] . , and Uf : {pO I P E
or f } U {p" [p E t f*} . We define the following sets of inequalities:

- gl = I U {"t - t f > 0" [t E enabled(p)}
- J2 - delete(J1, UI)
- J 3 = J 2 U { " z - t f = O " l z E U / }
- J4 = delete(J3, { t I t ~ e .abled(p')})
- J5 = J4 U {"t - �9 > Eft(t)" i t e enabled(#), t r enabled(p), ~ e Vj}

u {'4 - = < Lf~(t)" It e enabled(p'), t r enabled(p), x e V j }
- Js -- delete(Jb, P - P~)

Intuitively, this can be read as follows: J1 describes that t j fires first, i.e. earlier
than other enabled transitions. J2 is obtained from J1 by eliminating all t ime
variables U I which have to be updated. This updating is then done in J3 by
fixing the value of these variables to be equal to the firing time of t I . In J4 the
transition variables of disabled transitions are deleted. J5 relates the transition
variables of newly enabled transitions to the updated time variables. Finally, all
irrelevant t ime variables are removed. Note that our definition of the Ji 's contains
some redundancies; e.g. J6 can be computed by using the operation delete(I, U)
only once. For any s and t] , Js is uniquely determined (up to isomorphism);
we say J6 is obtained by firing t I from s . s I = (pl, i I) is a successor atom of s ,
if I ~ E CE(Js, ~o) for some J6 obtained by firing an enabled transition t I from
s . An atom sequence ~ is a finite or infinite sequence ~ = (s0, sz, a2 , . . .) , such
that s0 is the initial a tom and si+z is a successor a tom of s i for any i >__ 0. The
atom graph Ga(N, ~) consists of all atoms reachable by a finite a tom sequence.

Given any a tom sequence e, satisfaction of ~ in e (~]~-~) is defined in an
obvious way. Moreover, it can be, proved that for any run p there exists an atom
sequence ~ such that p ~ ~ iff el ~ and vice versa. Thus the question of whether
there exists a run of N satisfying ~ can be reduced to the question of whether
there exists a satisfying atom sequence.

If ~ contains no time variables, then G~(N, ~) is finite as shown in [BD91].
Otherwise, however, an infinite number of different atoms may be reachable
from the initial atom, because the difference z - y between some time variables
may become arbitrarily large, e.g. s l = (p, I U {"z - y > 5"}), s~ = (p, I U
{"z - y > 17"}), a3 = (p, I U { " z - y > 99"}), and so on. In this case, however,
every atomic proposition z - y < c and y - x <_ c will eventually become
constantly false and true, respectively, and thus all s i in which z - y surpasses
a certain threshold value can be considered to be equivalent.

328

Let max_const be the absolute value of the maximal constant appearing in
any subformula of tP, and let I be a set of inequalities. A time variable z E :P~
is called saturated in I, if there is no transition variable t ~ vat (I) such that the
set I U {"t - x <_ max_coast"} is consistent. For any two atoms sa = (it,/1) and
a2 = (#, I2), let D = {x I x is saturated in /1 and I2}. s l and s2 are equivalent,
denoted by s l - s2, if h f7 Cl(~o) --- I2 N Cl(~o) and delele(I1, D) -~ delete(I2, D),
that is, if the same maximal consistent set of io is a subset of both /1 and I2
and the timing relations of /1 and 12 with respect to unsaturated variables are
isomorphic.

From these definitions we can prove, using similar techniques as in [ACD90]:

T h e o r e m 1. 1. "~ is a bisimulation; that is, for any s l and s2 such that
Ol I "~ S 2 , and for any s] which is a successor of s l there exists a succes-
s o ~ s'2 of s2 such that s l ~- s'2.

2. "~ is an equivalence relation of finite index.

Therefore, there exists a finite set G of representative atoms such that for any
atom s reachable from the initial atom there is an equivalent atom s ' E G, and
for any atom sequence P1 = (s0, s l , s 2 , . . .) there is a corresponding sequence
#2 - - - - - (S~, Sl , S~, . . .) in G such that ai --- s~ (i > 0) and thus #i[[--9 iff #2[~-~- G
is constructed by depth-first-search from the initial atom, where the equivalence
of atoms can be checked efficiently using hash-tables. Note, however, that in
general the size of G is exponential in the size of the net.

Now, model checking can be performed by building the product of G with
the set of all sets 7 of subformulas of 9, eliminating from this product all pairs
(s , 7) inconsistent with to, and decomposing the resulting graph into maximal
strongly connected components. ~ is satisfiable by N iff there is a self-fulfilling
strong component, i.e. one which contains with any pair (Sl, 71) and any formula
(tol/4 !o2) E 71 also an pair (s2,72) such that !o2 e 72-

5 Efficiency Improvement by Partial Orders

In this section we show how to reduce the size of the atom graph of a given
net and formula without affecting the correctness of the model checking pro-
cedure. The reduced state space is obtained by considering a coarser equiva-
lence on atoms than the one defined in the previous section. It satisfies the
requirement that for any atom sequence in G there exists a stuttering equivalent
(w.r.t. atomic propositions in 9) atom sequence in the reduced state space, and
vice versa.

Given any atom a0 and transitions t, t ' enabled in a0, we say that t is
independent from t' with respect to s and ~, if for any atom sequence #' = (s0,
s t , s~ , . . .) such that s~ is obtained by firing t ' from s0 there exists a stuttering
equivalent (w.r.t. atomic propositions in 9) atom sequence # = (s0, s l , s2 , . . .)
such that s l is obtained by firing t from s0. Otherwise, t is called dependent on
t ' (w.r.t. s , 9). Note that this relation is not symmetric!

329

If t is independent from t p we do not have to consider the firing of t p when
generating the successors of a in the depth-first-search; there will be a stuttering
equivMent sequence constructed by the firing of t.

However, the above definition is not effective; there is no efficient way to
compute the set of independent transitions for a given t and a. Therefore, sub-
sequently we give an algorithm to compute an approximation, that is a set
dependent(t, a, ~), or dependent(t, a) in short, such that t is independent from
all transitions not in this set. This idea is similar to the stubborn set theory of
[Val90] and the interleaving set temporal logic of [KP90]

Of course, dependent (t, ~) should be as small as possible. For example, if the
net N consists of two unconnected subnets N1 and N2, and ~ mentions only
places from N1, then certainly all transition in N1 are independent from any
transition in N2. E.g, we don't have to consider the different interleavings of t2
with t3, t4 and t7 in our example net Nz (shown in Fig. 1) for the formulas given
at the end of Sect. 3.

On the other hand, if for some t, t ' which are in conflict (i.e. et N or' ~ 0),
both t and t ~ are firable in a, then the firing o f t ~ inhibits that of t ; thus t is not
independent from t I, and t ~ should be in t~,e dependent set of t. So, in iV=, for
every firing of t4 also the alternative of firing t7 should be considered.

Furthermore, disabled conflicting transitions t ' can inhibit the firing of t if
they can become enabled by the firing of other (enabled) transitions, and the
firing of t I can overlap with that of t. In the example, although t6 (in conflict
with t3) is disabled, it may inhibit the firing of t3, since it can become enabled by
the firing of t4 and th. However, t6 will not inhibit the firing of t3 if t6 becomes
enabled too late. Thus, the dependency relation has to respect the timing in the
net. This can be checked by examining the minimal time difference between the
next firing times of t4 and t3. It takes at least Eft(th) + Eft(t6) (= 7) time units
to fire t6 after the firing of t4. Thus, t4 can only inhibit the firing of t3, if t4
can fire 7 time units earlier than t3. Hence, we include t4 in the dependent set
of t3 only if I U {"t3 - t4 >_ diff(t4, ts)"} is consistent, where diff(t, t') is the
minimal value of sums of earliest firing times in the paths from t to t' (Eft(t) is
not included).

Given any atom a = (#, I), firable transition ty and disabled transition t,
we therefore have to find a set of firable transitions such that the firing of any
transition in this set could make t fire before t] fires, and that the firing of t is
preceded by the firing of at least one transition in this set. A set T of transitions
is necessary for t, i f T = {t' I P E t ' , } for some p E *t - p. necessary*(t,a) is
any set of transitions containing t which is transitively closed under necessity,
that is, for any t ~ E necessary*(t, a) such that t ~ is disabled in # there exists
a set T of transitions necessary for t ~ with T C_ necessary*(t, a). For example,
necessary*(t6, ao) = {t6,th, t4} in Fig. 1.

A transition th in necessary*(t, a) is harmful for t l , if it is firable, and I U
{'21 - t h > diff(th, t)"} is consistent. If t is in conflict with t l , then all harmful
transitions for ty in necessary* (t, a) have to be fired as alternatives to the firing
of t 1. The only transition which is harmful for t3 in our above example is t4 .

330

There is still another class of dependent transitions. We want to obtain stut-
tering equivalence with respect to the atomic propositions of ~. Usually, ~ con-
tains only a few propositional and time variables. A transition t is visible for

if ot U t . contains any place p such that p or p0 or p0 appears in ~. If t is
visible, the firing order with other visible transitions is important. For example,
both t2 and t3 are visible for the formula (Pl Ups) in the example net, thus
the firing order between t2 and t3 is relevant for the evaluation of (plUps),
and t2 should be in the dependent set of t3, and vice versa. A visible tran-
sition can be regarded as being in conflict with all other visible transitions.
Let conflict+ (t) be the set {t' [*t' Net ~ 0} U {t}, if t is not visible, else
conflict+(t) is {t' l . t ' N . t ~ 0} U {t' l t' is visible }. Then dependent(ty,a)
is'any set of transitions such that for every t E conflict+(ty) there exists a set
necessary*(t, a) such that all harmful transitions for ty in necessary*(t, a) are
contained in depen dent (t y , a).

Finally, the set of transitions which are fired should be transitively closed
under dependency; e.g., in our example, since t4 is in the dependent set of t3
and tr is in the dependent set of t4, we have to fire tr as an alternative when-
ever we fire t3 (pl0 is only reachable by first firing tr and then t4). Thus, let
ready(a) be a smallest set of firable transitions, such that for any t] E ready(a),
dependent(ty, a) C_ ready(a).

Now, we can prove:

T h e o r e m 2. For any atom sequence ~ E G there exists a stuttering equivalent
atom sequence #t = (ao, al, as, . . .) such that for any i > O, ai+l is obtained by
firing some transition in ready(ai).

Therefore, during the construction of the set of successor atoms of an atom
we can neglect all firable transitions which are not ready. This results in a consid-
erable average case reduction: For example, in Fig. 1, firable(ao) = {t2, ts, t4, tT),
whereas ready(ao) = {t2}.

The formal description for constructing the reduced atom graph is shown
in the Appendix. Though the worst case complexity of the construction of the
set ready(a) is O([P[- [T]2), usually this takes only O(]T]) steps with a small
constant of about two or three.

6 E x p e r i m e n t a l R e s u l t s

In this section, the performance of the basic model checking algorithm and its
partial order improvement is demonstrated. We have implemented both the basic
model checking algorithm and its partial order improvement on a 17 MIPS UNIX
workstation in C++. In this section, the performance of both algorithms with
an example from [RB86] is demonstrated.

The verified system called PROWAY is a local area network linking stations
by a shared hardware bus. The bus allocation procedure is based on a token
bus access technique. As example property, we verify if the next activity will
always occur within some constant time units, say max, after a station finishes

331

sending its message. This property holds in the system if the T N L formula
-~D[flnish--. (--~activity)ll (activity" - finish" < max)] is not satisfiable.

The following Figure shows the CPU times for both implemented algorithms
with this example. The size of the net is linear in the number n of stations;
thus the basic algorithm is exponential in n. Since all stations operate more or
less independently, parallelism also increases with n; therefore, the partial order
method succeeds in reducing the complexity. This result is typical for a number
of similar examples.

2500

2000

1500
CPU time(s)

1000

5OO

0~
4

I I I
Basic El

*artial -o. -

5 6 7
Number of Stations

7 Conclusion

In this paper, we have proposed a timed temporal logic for time Petri nets
which is expressive enough to formalize quantitative timing properties and yet
it is stuttering invariant, so that the parallelism in the nets can be used to avoid
the state explosion problem during verification.

Then, we have developed a model checking algorithm for our logic. We con-
structed for the infinite state space of the net a finite representation, the atom
graph, such that every atom sequence represents a set of runs, and satisfies the
formula iff the corresponding runs satisfy the formula.

Since the complexity of the consequent model checking algorithm depends on
the number of atoms, we have shown how to reduce this number by elimination of
redundant interleavings. In our method, for every firable transition all dependent
sets, i.e. sets of firable transitions whose firings are relevant for the evaluation
of the given formula, are computed. From the smallest set of firable transiti(~ns
which is closed under dependency the reduced atom graph is generated. Since this
set is usually much smaller than the set of all firable transitions, a considerable
reduction of the state space is achieved.

Although the worst case complexity of the problem is exponential, experimen-
tal results from several examples show that the proposed algorithm successfully
reduces the average complexity of the model checking.

In the future we intend to combine our method with symbolic model checking
techniques (which represent state spaces as binary decision diagrams), and to
find similar efficient model checking algorithms for other kinds of temporal logics
such as branching time temporal logics and timed #-calculi.

332

A c k n o w l e d g m e n t : We would like to thank K.McMillan for many helpful discussions.

Appendix
Let a = (it, I) be an atom, t ! a transition in firable(#), i t ' = (i t - . t j) U t l . , and
U / = {p~]p E *tf} U {p" I P E t f .} . We define the following sets:

- J1 = I u {"t - t j > 0" I t ~ read~(~)}
- J2 = delete(J1, Uf)
- J z = J 2 u { " x - t ~ = O " l x E U f }
- J~ = d e l e t e (J 3 , { t i t r enabled(it')})
- F o r t E T a n d x E : P ,

Tl(t, x) = {"t - x > Eft(t)", "t - x < Li t (t) '} O {"y* < x" I Y E i t}
- p E P is called a candidate of true parents of a transition tc in it and I, i fp E itf3otc

and for some enabled transition t in it, I U {"p~ > t + diff(t, tc) - Eft(t,)"} is
consistent.

- T2 = l'Itqe,abled(tt,),t~e,abtett(~){T~ (t,p*)] p is a candidate of true parents of t in it'
and J~}, where l-I represents the Cartesian product.

- Js = { i I i = J4 U al tJ a2 U . . . U a~, (al, a2,--- , ai) E T2, i is consistent}
- Js = { delete(i, P - P~ - D) I i q Js }, where D = {p' I P is a candidate of true

parents of some disabled transition in it' and i}

4 ' - (it', I ') is a successor atom of a, if I ' q ~ CE(i , ~) -- UteJ6 . The finite reduced atom
graph G is constructed in the same way as Shown in the end of Sect. 4.

References
[ACD90] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems.

Proc. 5th IEEE LICS, 1990.
[AH89] R. Alur, T. Henzinger. A really temporal logic. Proc. 30th FOCS, 1989.
[BD91] B. Berthomieu, M. Diaz. Modeling and verification of time dependent sys-

tems using time Petri nets. IEEE Trans. on Soft. Eng., 17(3):259-273, 1991.
[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of

finite-state concurrent systems using temporal logic specifications. ACM
Trans. on Programming Languages and Systems, 8(2):244-263, 1986.

[God90] P. Godefroid. Using partial orders to improve automatic verification methods.
Proc. 1st CAV, 1990.

[3M87] F. Jahanian and A. K. Mok. A graph-theoretic approach for timing analysis
and its implementation. IEEE Trans. Comput., C-36(8):961-975, 1987.

[KP90] S. Katz and D. Peled. Defining conditional independence using collapses.
Semantics for concurrency, BCS-FACS Workshop, Springer, 1990.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent pro-
grams satisfy their linear specification. Proc. 1Pth POPL, 1985.

[MF76] P. Merlin and D. J. Faber. Recoverability of communication protocols. IEEE
Trans. on Communication, COM-24(9), 1976.

[RB86] J-L. Roux and B. Berthomieu. Verification of a local area network protocol
with Tins, a software package for time Petri nets. 7th European Workshop
on Application and Theory of Petri Nets, pages 183-205, 1986.

[Val90] A. Valmari. A stubborn attack on state explosion. Proc. 1st CAV, 1990.
[YTK91] T. Yoneda, Y. Tohma, Y. Kondo. Acceleration of timing verification method

based on time Petri nets. Syst. and Computers in Japan, 22(12):37-52, 1991.

