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Abstract

Video object segmentation targets segmenting a specific

object throughout a video sequence when given only an an-

notated first frame. Recent deep learning based approaches

find it effective to fine-tune a general-purpose segmenta-

tion model on the annotated frame using hundreds of it-

erations of gradient descent. Despite the high accuracy

that these methods achieve, the fine-tuning process is in-

efficient and fails to meet the requirements of real world

applications. We propose a novel approach that uses a

single forward pass to adapt the segmentation model to

the appearance of a specific object. Specifically, a second

meta neural network named modulator is trained to manip-

ulate the intermediate layers of the segmentation network

given limited visual and spatial information of the target

object. The experiments show that our approach is 70×
faster than fine-tuning approaches and achieves similar ac-

curacy. Our model and code have been released at https:

//github.com/linjieyangsc/video_seg.

1. Introduction

Semantic segmentation plays an important role in under-

standing the visual content of an image as it assigns pre-

defined objects or scene labels to each pixel and thus trans-

lates the image into a segmentation map. When dealing with

video content, a human can easily segment an object in the

whole video without knowing its semantic meaning, which

inspired a research topic named semi-supervised video seg-

mentation. In a typical scenario of semi-supervised video

segmentation, one is given the first frame of a video along

with an annotated object mask, and the task is to accurately

locate the object in all following frames [24, 20]. The ability

of performing accurate pixel-level video segmentation with

minimum supervision (e.g., one annotated frame) can lead

to a large amount of applications, such as accurate object

tracking for video understanding, interactive video editing,

augmented reality, and video-based advertisements. When
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Figure 1. An overview of our approach. Our model is consisted of

a modulator and a segmentation network. The modulator can adapt

the segmentation model instantly to segment an arbitrary object

through a video sequence.

the supervision is limited to only one annotated frame, re-

searchers refer to this scenario as one-shot learning. In re-

cent years, we have witnessed a rising amount of interest in

developing one-shot learning techniques for video segmen-

tation [2, 23, 35, 22, 32, 4]. Most of these works share a

similar two-stage paradigm: first, train a general-purpose

Fully Convolutional Network (FCN) [31] to segment the

foreground object; second, fine-tune this network based on

the first frame of the video for several hundred forward-

backward iterations to adapt the model to the specific video

sequence. Despite the high accuracies achieved by these

approaches, the fine-tuning process is arguably time con-

suming, which hinders real-time applications. Some of

these approaches [4] [23] also utilize optical flow infor-

mation, which is computationally heavy for state-of-the-art

algorithms[29] [15].

In order to reduce the computational cost of semi-

supervised segmentation, we propose a novel approach to

adapt the generic segmentation network to the appearance

of a specific object instance in one single feed-forward pass.
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We propose to employ another meta neural network called

modulator to learn to adjust the intermediate layers of the

generic segmentation network given an arbitrary target ob-

ject instance. Fig. 1 shows an illustration of our approach.

By extracting information from the image of the annotated

object and the spatial prior of the object, the modulator pro-

duces a list of parameters, which are injected into the seg-

mentation model for layer-wise feature manipulation. With-

out one-shot fine-tuning, our model is able to change the

behavior of the segmentation network with minimum ex-

tracted information from the target object. We name this

process network modulation.

Our proposed model is efficient, requiring only one for-

ward pass from the modulator to produce all parameters

needed for the segmentation model to adapt to the specific

object instance. Network modulation guided by the spatial

prior facilitates the model to track the object even with the

presence of multiple similar instances. The whole pipeline

is differentiable and can be learned end-to-end using the

standard stochastic gradient descent. The experiments show

that our approach outperforms previous approaches without

one-shot fine-tuning by a large margin, and achieves com-

parable performance with these approaches after one-shot

fine-tuning with a 70× speed up.

2. Related Work

Semi-supervised video segmentation. Semi-supervised

video object segmentation aims at tracking an object mask

from the first annotated frame throughout the rest of video.

Many approaches have been proposed in recent litera-

ture, including those propagating superpixels [17] [35],

patches [9], object proposals [25], or in bilateral space [22],

and graphical model based optimization is usually per-

formed to consider multiple frames simultaneously. With

the success of FCN on static image segmentation [12],

deep learning based methods [23, 2, 32, 34, 18, 4] have

been recently proposed for video segmentation and promis-

ing results have been achieved. To model the temporal

motion information, some works heavily rely on optical

flow [34] [4], and use CNNs to learn mask refinement of

an object from current frame to the next one [23], or com-

bine the training of CNN with bilateral filtering between

adjacent frames [18]. Chen et al. [4] use a CNN to jointly

estimate the optical flow and provide the learned motion

representation to generate motion consistent segmentation

across time. Different from these approaches, Caelles et

al. [2] combine offline and online training process on static

images without using temporal information. While it saves

the computation of optical flow and/or conditional random

fields (CRF) [19] involved in some previous methods, on-

line fine-tuning still requires many iterations of optimiza-

tion, which poses a challenge for real-world applications

that need rapid inference.

Meta-learning for low-shot learning. Current success

of deep learning relies on the ability to learn from large-

scale labeled datasets through gradient descent optimiza-

tion. However, it is not optimal for the model to learn

each task for each setting from scratch if we aim for the

learning of many tasks adapted to many environments. In-

stead, we want our deep learning system to be able to

learn new tasks very fast and from very limited quantities

of data. In the extreme of “one-shot learning”, the algo-

rithm needs to learn the new task with a single observa-

tion. One potential strategy for learning a versatile model

is the notion of meta-learning, or learning to learn, which

dates back to the late 1980s. Recently, meta-learning has

become a hot research topic with publications on neural net-

work optimization [3], finding good network architectures,

fast reinforcement learning, and few-shot image recognition

[36, 28, 13, 10, 30]. Ravi and Larochelle [28] proposed

a LSTM meta-learner to learn the updating rules for few

shot learning. The meta optimization over a large number

of tasks in [10] targets learning a model that can quickly

adapt to the new task with a limited number of updates.

Hariharan and Girschick [13] trained a learner that gener-

ated new samples and used new samples for training new

tasks. Our approach is similar to meta-learning because it

learns to update the segmentation model rapidly with an-

other meta learner, i.e. the modulator.

Network manipulation Several previous works try to in-

corporate modules to manipulate the behavior of a deep

neural network, either to manipulate spatial arrangement of

data [16] or connections of filter weights [5]. Our method

is also heavily motivated by conditional batch normaliza-

tion [8, 11, 14, 26], where the behavior of the deep model

is manipulated by batch normalization parameters condi-

tioned on a guidance input, e.g. a style image for image

stylization or a language sentence for visual question an-

swering.

3. Video Object Segmentation with Network

Modulation

In our proposed framework, we utilize modulators to in-

stantly adapt the segmentation network to a specific object,

rather than performing hundreds of iterations of gradient

descent. We can achieve similar accuracy by adjusting a

limited number of parameters in the segmentation network,

compared with the updating the whole network in one-shot

learning approaches [23, 2]. There are two important cues

for video object segmentation: visual appearance and con-

tinuous motion in space. To use information from both vi-

sual and spatial domains, we incorporate two network mod-

ulators, namely visual modulator and spatial modulator, to

learn to adjust intermediate layers in the main segmentation
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Figure 2. An illustration of our model with three components: a segmentation network, a visual modulator, and a spatial modulator. The

two modulators produce a set of parameters that manipulates the intermediate feature maps of the segmentation network and adapts it to

segment the specific object.

network, based on the annotated first frame and spatial lo-

cation of the object, respectively.

3.1. Conditional batch normalization

Our approach is inspired by recent works using Condi-

tional Batch Normalization (CBN) [6, 14, 26], where the

scale and bias parameters of each batch-normalization layer

are produced by a second controller network. These param-

eters are used to control the behavior of the main network

for tasks such as image stylization and question answering.

Mathematically, each CBN layer can be formulated as fol-

lows:

yc = γcxc + βc, (1)

where xc and yc are the input and output feature maps in the

cth channel, and γc and βc are the scale and bias parameters

produced by the controller network, respectively. The mean

and variance parameters are omitted for clarity.

3.2. Visual and spatial modulation

The CBN layer is a special case of the more general

scale-and-shift operation on feature maps. Following each

convolution layer, we define a new modulation layer with

parameters generated by both visual and spatial modula-

tors that are jointly trained. We design the two modula-

tors such that the visual modulator produces channel-wise

scale parameters to adjust the weights of different channels

in the feature maps, while the spatial modulator generates

element-wise bias parameters to inject spatial prior to the

modulated features. Specifically, our modulation layer can

be formulated as follows:

yc = γcxc + βc, (2)

where γc and βc are modulation parameters from the vi-

sual and spatial modulators, respectively. γc is a scalar for

channel-wise weighting, while βc is a two-dimensional ma-

trix to apply point-wise bias values.

Fig. 2 shows an illustration of the proposed approach,

which consists of three networks: a fully-convolutional

main segmentation network, a visual modulator network,

and a spatial modulator network. The visual modulator net-

work is a CNN that takes the annotated visual object image

as input and produces a vector of scale parameters for all

modulation layers, while the spatial modulator network is a

very efficient network that produces bias parameters based

on the spatial prior input. We will discuss the two modula-

tors in more detail in the following sections.

3.3. Visual modulator

The visual modulator is used to adapt the segmentation

network to focus on a specific object instance, which is the

annotated object in the first frame. The annotated object is

referred to as visual guide hereafter for convenience. The

visual modulator extracts semantic information such as cat-

egory, color, shape, and texture from the visual guide and

generates corresponding channel-wise weights in order to

re-target the segmentation network to segment the object.

We use VGG16 [33] neural network as the model for the
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visual modulator. We modify its last layer trained for Im-

ageNet classification to match the number of parameters in

the modulation layers for the segmentation network.

The visual modulator implicitly learns an embedding of

different types of objects. It should produce similar param-

eters to adjust the segmentation network for similar objects

and different parameters for different objects. It is demon-

strated in Sec. 4.2 that the embedding of the modulator out-

puts closely correlates with object appearance. One signif-

icant advantage of using such a visual modulator is that we

can potentially transfer the knowledge learned with a large

number of object classes, e.g., ImageNet, in order to learn a

good embedding.

3.4. Spatial modulator

Our spatial modulator takes a prior location of the object

in the image as input. Since objects move continuously in a

video, we set the prior as the predicted location of the ob-

ject mask in the previous frame. Specifically, we encode the

location information as a heatmap with a two-dimensional

Gaussian distribution on the image plane. The center and

standard deviations of the Gaussian distribution are com-

puted from the predicted mask of the previous frame. This

heatmap is referred to as a spatial guide hereafter for con-

venience. The spatial modulator downsamples the spatial

guide into different scales, to match the resolution of dif-

ferent feature maps in the segmentation network, and then

applies a scale-and-shift operation on each downsampled

heatmap to generate the bias parameters of the correspond-

ing modulation layer. Mathematically,

βc = γ̃cm+ β̃c (3)

where m is a down-sampled Gaussian heat map for the cor-

responding modulation layer, γ̃c and β̃c are the scale-and-

shift parameters for the c-th channel, respectively. This is

implemented with a computationally efficient 1× 1 convo-

lution. At the bottom of Fig. 2, we illustrate the structure of

the spatial modulator.

Our method shares some similarities with the previous

work MaskTrack [23] in utilizing information from the pre-

vious mask. Compared to their approach that uses the ex-

act foreground mask of the previous frame, we use only a

very coarse location prior. At first, it may seem that our

method discards more information from the previous frame.

However, we argue that the rough position and size in the

previous frame possess enough information to infer the ob-

ject mask with the RGB image. This prevents the model

from relying too much on the mask and as a result the er-

ror propagation, which can be catastrophic when the object

has large movements in the video. One drawback of such

over-utilization of the mask is that MaskTrack has to ap-

ply plenty of well-engineered data augmentation to prevent

over-fitting, while we only apply simple shift and scaling.

3.5. Implementation details

Our FCN structure follows the one used by [2], which

is a VGG16 [33] model with a hyper-column structure [12].

Intuitively, we should add modulation layers after each con-

volution layer in the FCN. However, we found that adding

modulation layers in-between the early convolution layers

actually worsens the model’s performance. One possible

reason is that early layers extract low-level features that are

very sensitive to the scale-and-shift operations introduced

by the modulator. In our implementation, we add modula-

tion operations to all convolution layers in VGG16 except

the first four layers, which results in nine modulation layers.

Similar to MaskTrack [23], we also utilize static im-

ages for training our model. Ideally, the visual modula-

tor should learn a mapping from any object to modulation

weights of different layers in a FCN, which requires the

model to see all possible different objects. However, most

video semantic segmentation datasets only contain a very

limited number of categories. We tackle this challenge by

using the largest public semantic segmentation dataset MS-

COCO [21], which has 80 object categories. We select ob-

jects that are larger than 3% of the image size for training,

resulting in a total number of 217, 516 objects. For prepro-

cessing the input for the visual modulator, we first crop the

object using the annotated mask, then set the background

pixels to mean image values, and then resize the cropped

image to a constant resolution of 224 × 224. The object

is also augmented with up to 10% random scaling and 10◦

random rotation. For preprocessing the spatial guide as in-

put to the spatial modulator, we first compute the mean and

standard deviation of the mask, and then augment the mask

with up to 20% random shift and 40% random scaling. For

the whole image fed into the FCN, we use a random size

from 320, 400, and 480 with a square shape.

The visual modulator and segmentation network are

both initialized with VGG16 model pretrained on the Im-

ageNet [7] classification task. The modulation parameters

{γc} are initialized to ones by setting the weights and biases

of the last fully-connected layer of the visual modulator to

zeros and ones, respectively. The weights of spatial modu-

lator are initialized randomly. We used the same balanced

cross-entropy loss as in [2]. A mini-batch size of 8 is used.

We use Adam optimizer with default momentum 0.9 and

0.999 for β1 and β2, respectively. The model is first trained

for 10 epochs with learning rate 10−5 and then trained for

another 5 epochs with learning rate 10−6.

Further, in order to model appearance variations of mov-

ing objects in videos, the model can be finetuned on video

segmentation dataset such as DAVIS 2017 [27]. To be more

robust to appearance variations, we randomly pick a fore-

ground object from the whole video sequence as the visual

guide for each frame. The spatial guide is obtained from

the ground truth mask of the object in the previous frame.
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The same data augmentations are applied as training on MS-

COCO. The model is fine-tuned for 20 epochs with learning

rate 10−6.

4. Experiments

In this section, we will introduce three parts of experi-

ment: the comparison of our approach to previous methods,

the visualization of modulation parameters, and an ablation

study. Our model is tested on several popular video segmen-

tation datasets, including DAVIS [24] [27] and YoutubeOb-

jects [17].

4.1. Semisupervised Video Segmentation

In this section, we compare with traditional approaches

including OFL [35], BVS[22], and deep learning-based

approaches including PLM [32], MaskTrack [23], OS-

VOS [2], VPN [18], SFL [4], and ConvGRU [34].

4.1.1 DAVIS 2016 & YoutubeObjects

First, we compare our approach to previous approaches

on DAVIS 2016 and YoutubeObjects. Some approaches

(MaskTrack[23], SFL [4] and OSVOS[2]) reported results

both with and without model fine-tuning on the target se-

quences. We include both of them and denote the variants

without fine-tuning as MaskTrack-B, SFL-B, and OSVOS-

B, respectively. Our model has two variants,with the first

only trained on static images (Stage 1) and the second fine-

tuned on DAVIS 2017 (Stage 1&2). Since there are several

popular add-ons for this line of research, such as optical

flow and CRF [19], which both have a lot of variants and

make a fair comparison hard, we only include the perfor-

mances without optical flow and CRF if possible, and mark

those with add-ons in Table 1.

In Table 1, by comparing our method with OFL [35],

an expensive graphical model based approach, we achieve

better accuracy on both DAVIS 2016 and YoutubeOb-

jects. Compared to deep learning approaches without

model fine-tuning, and therefore, similar speed as ours, our

method achieves the best accuracy on both DAVIS 2016

and YoutubeObjects. Compared to the four approaches us-

ing model fine-tuning on target videos (PLM, MaskTrack,

SFL, and OSVOS), our approach achieves better perfor-

mance than PLM and MaskTrack, and is on-par with SFL.

OSVOS achieves higher accuracy but also utilizes a bound-

ary snapping approach which contributes 2.4% in mean

IU. Our method is 70× faster than MaskTrack and OS-

VOS, 50× faster than SFL. We measure the running time

of MaskTrack-B, OSVOS-B, and our method on a NVIDIA

Quadro M6000 GPU using Tensorflow [1]. The speed of

other methods is derived from the corresponding papers 1.

1Speed of ConvGRU is estimated with the expensive optical flow they

use, speed of PLM is derived through communication with the authors.

In our method, one forward pass for the visual modula-

tor allows the segmentation model to adapt, which is more

efficient than existing approaches with model fine-tuning

on target videos. The visual modulator only needs to be

computed once for the whole video. Meanwhile, the spa-

tial modulator needs to be computed for every frame but the

overhead is negligible, i.e., the average speed of our model

on a video sequence is about the same as FCN itself. Our

method is the second fastest of all compared methods, with

only MaskTrack-B and OSVOS-B achieving similar speed

but with lesser accuracies.

4.1.2 DAVIS 2017

To further investigate the capability of our model, we con-

duct more experiments on DAVIS 2017 [27], which is the

largest video segmentation dataset to date. DAVIS 2017 is

more challenging than DAVIS 2016 and YoutubeObjects in

that it has multiple objects for each video sequence and

some of the objects are very similar. We compare our

method with two most related approaches, MaskTrack [23]

and OSVOS [2]. For fair comparison, we only use their

single network and adds-on free versions. We directly use

open source code of OSVOS and adapt MaskTrack model

to Tensorflow [1]. For each video sequence, OSVOS and

MaskTrack are fine-tuned with 1000 iterations. To show

that the network modulation is capable of adapting differ-

ent model structures to specific object instances, we also ex-

periment with modified OSVOS and MaskTrack models by

adding a visual modulator to each of them, which are named

OSVOS-M and MaskTrack-M respectively. For these two

models, we only update the weights of the visual modula-

tors and keep the weights of the segmentation model fixed

in training.

Table 2 shows the results of different approaches on

DAVIS 2017. We utilize the official evaluation metrics of

DAVIS dataset: mean, recall, and decay of region simi-

larity J and contour accuracy F , respectively. Note J
mean is equivalent to mean IU we used above. Again,

our model outperforms OSVOS-B and MaskTrack-B by

a large margin, while obtaining comparable performance

with the two methods with model fine-tuning. OSVOS-M

and MaskTrack-M are both better than their baseline im-

plementations with a 18% and 9.3% gain in J mean, re-

spectively. Since the weights of the segmentation model

are fixed, the accuracy gain comes solely from the modu-

lator, which proves that the visual modulator is capable of

improving different model structures by manipulating the

scales of the intermediate feature maps. Noticeably, our

method obtains a much lower decay rate for both region

similarity and contour accuracy compared to OSVOS and

MaskTrack. The accuracy changes of the different meth-

ods over time are illustrated in Fig. 4. In the beginning
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Table 1. Performance comparison of our approach with recent approaches on DAVIS 2016 and YoutubeObjects. Performance measured in

mean IU.
Method DAVIS 16 YoutubeObjs with FT OptFlow CRF Speed (s)

OFL [35] 68.0 67.5 - ✓ ✓ 42.2

BVS [22] 60.0 58.4 - ✗ ✗ 0.37

ConvGRU[34] 70.1 - ✗ ✓ ✗ 20

VPN[18] 70.2 - ✗ ✗ ✗ 0.63

MaskTrack-B [23] 63.2 66.5 ✗ ✗ ✗ 0.24

SFL-B [4] 67.4 - ✗ ✓ ✗ 0.30

OSVOS-B [2] 52.5 44.7 ✗ ✗ ✗ 0.14

Ours (Stage 1) 72.2 66.4 ✗ ✗ ✗ 0.14

Ours (Stage 1&2) 74.0 69.0 ✗ ✗ ✗ 0.14

PLM [32] 70.0 - ✓ ✗ ✗ 0.50

MaskTrack [23] 69.8 71.7 ✓ ✗ ✗ 12

SFL [4] 74.8 - ✓ ✓ ✗ 7.9

OSVOS [2] 79.8 74.1 ✓ ✗ ✗ 10

Figure 3. Some qualitative results of our approach compared with two recent state-of-the-art approaches on DAVIS 2017.

of the video, our method lags behind OSVOS and Mask-

Track. However, when it proceeds to around 40% of the

video, our method is on par with OSVOS and outperforms

MaskTrack towards the end of the video. With one-shot

fine-tuning, OSVOS and MaskTrack fit to the first frame

very well. They are able to obtain high accuracy in the be-

ginning of the video since these frames are all similar to

the first one. But as time goes on and the object assumes

different poses and appearances, it becomes harder for the

fine-tuned model to generalize to new object appearances.

Our model is more robust to the appearance changes since

it learns a feature embedding (see Section 4.2) for the anno-

tated object which is more tolerant to pose and appearance

changes compared to one-shot fine-tuning.

Some qualitative results of our methods compared with

the two previous approaches are shown in Fig. 3. Com-

pared with MaskTrack, our method generally obtains more

accurate boundaries, partially due to that the coarse spatial

prior forces the model to explore more cues on the image

rather than the mask in the previous frame. Compared with

OSVOS, our method shows better results when there are

multiple similar objects in the image, thanks to the tracking

capability provided by the spatial modulator. On the other

hand, our method is also shown to work well on unseen ob-

ject categories in training data. In Fig. 3, the camel and the

pigs are unseen object categories in MS-COCO dataset.

4.2. Visualization of the modulation parameters

Our model implicitly learns an embedding with the mod-

ulation parameters from the visual modulator for the anno-
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Table 2. Comparisons of our approach and two state-of-the-art algorithm on DAVIS 2017 validation set.

Method with FT J mean↑ J recall↑ J decay↓ F mean↑ F recall↑ F decay↓
OSVOS-B [2] ✗ 18.5 15.9 -0.8 30.0 20.0 0.1

MaskTrack-B [23] ✗ 35.3 37.8 39.3 36.4 36.0 42.0

OSVOS-M ✗ 36.4 34.8 14.8 39.5 35.3 9.1

MaskTrack-M ✗ 44.6 48.7 27.1 47.6 49.3 27.9

OSVOS [2] ✓ 55.1 60.2 28.2 62.1 71.3 29.3

MaskTrack [23] ✓ 51.2 59.7 28.3 57.3 65.5 29.1

Ours ✗ 52.5 60.9 21.5 57.1 66.1 24.3

Figure 4. The J mean performance of different methods over time

on DAVIS 2017. Best viewed in color.

Figure 5. Visualization of learned modulation parameters for 100

objects from 10 categories: bicycle, motorcycle, car, bus, truck,

dog, cat, horse, cow, person. Zoom in to see details.

tated objects. Intuitively, similar objects should have similar

modulation parameters, while different objects should have

dramatically different modulation parameters. To visual-

ize this embedding, we extract modulation parameters from

100 object instances in 10 object classes in MS-COCO, and

visualize the parameters in a two-dimensional embedding

Figure 6. Histograms of standard deviations of γc from the visual

modulator in different modulation layers. The annotated names

are the corresponding convolution layers in VGG16.

Figure 7. Histograms of magnitude of γ̃c from the spatial modu-

lator in different modulation layers. The annotated names are the

corresponding convolution layers in VGG16.

space using multi-dimensional scaling in Fig. 5. We can see

that objects in the same category are mostly clustered to-

gether, and similar categories are closer to each other than

dissimilar categories. For example, cats and dogs, cars and

buses are mixed up due to their similar appearance, while
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Table 3. Ablation study of our method on DAVIS 2017.

Variants mIU ∆ mIU

Add-on
Ours + Online finetuning 60.8 +8.3

Ours + CRF 54.4 +1.9

Ours 52.5

Model
no visual modulator 33.0 -19.5

no spatial modulator 40.1 -12.4

Data

- random crop 50.6 -1.9

- visual guide augmentation 49.5 -1.1

- spatial guide augmentation 35.6 -13.9

bicycles and dogs, buses and horses are far from each other

due to the big visual difference. Mammal classes (cats,

dogs, cows, horses, human) are generally clustered together,

and man-made objects (cars, buses, bicycles, motorcycles,

trucks) are clustered together.

We also investigate the magnitude of the modulation pa-

rameters in different layers. The modulation parameters

{γc} change according to the visual guide. Therefore, we

compute the standard deviations of modulation parameters

{γc} in each modulation layer for images in MS-COCO val-

idation set and illustrate them in Fig. 6. An interesting ob-

servation is that towards deeper level of the network, the

variations of modulation parameters get larger. This shows

that the manipulation of feature maps is more dramatic in

the last few layers than in early layers of the network. The

last few layers of a deep neural network usually learn high-

level semantic meanings [37], which could be used to ad-

just the segmentation model to a specific object more effec-

tively.

We also look into the spatial modulator by extracting the

scale parameters {γ̃c} in each layer of the spatial modula-

tor and visualize them in Fig. 7. The magnitudes of {γ̃c}
are the relative scales of the spatial guide added to the fea-

ture maps in the FCN. The scale of {γ̃c} is proportional to

the impact of spatial prior on the intermediate feature maps.

Interestingly, we observe sparsity in the values of {γ̃c}. Ex-

cept the last convolution layer conv5 3, around 60% of

the parameters have zero values, which means only 40% of

the feature maps are affected by the spatial prior in these

layers. In the layer conv5 3, around 70% of the feature

maps interact with the spatial guide and most of them are

added with a similar scale (note the peak around 0.4) of the

spatial guide. This shows that the spatial prior is fused into

the feature maps gradually, rather than being effective at the

beginning of the network. After all feature extractions are

done, the spatial modulator makes a large adjustment to the

feature maps, which provides a strong prior of the location

of the target object.

4.3. Ablation Study

We study the impact of different ingredients in our

method. We conduct experiments on DAVIS 2017 and mea-

sure the performance using mean IU. For variants of model

structures, we experiment with only using spatial or visual

modulators. For data augmentation methods, we experi-

ment with no random crop augmentation for the FCN in-

put, and no affine transformation for the visual guide and

the spatial guide. We experiment with CRF as a post-

processing step. To investigate the effect of one-shot fine-

tuning on our model, we also experiment with standard one-

shot fine-tuning using a small number of iterations. Results

are shown in Table 3.

By adding a CRF post-processing, our method achieves

mIU (mean IU) of 54.4. By one-shot fine-tuning with only

100 iterations for each sequence, our method achieves mIU

of 60.8, which is 5.7 better than OSVOS with 1000 itera-

tions. With fine-tuning, our method is still relatively effi-

cient with average running time around 1 s/frame. Without

a visual modulator, our model deteriorates to 33.0, while

without spatial modulator, our model obtains mIU of 40.1,

which shows that the visual guide is more important than the

spatial guide. For data augmentation, without random crop,

the accuracy drops by 1.9. Without affine data augmenta-

tion on the visual guide, the accuracy further decreases by

1.1. Without augmentation on the spatial guide, our model

only obtains mIU of 35.6, which is a dramatic drop from

49.5. The results indicate that the spatial guide augmen-

tation contributes most significantly to the performance.

Without perturbation, the model might rely on the location

of the spatial prior too much and therefore cannot deal with

moving objects in real video sequences.

5. Conclusions

In this work, we propose a novel framework to process

one-shot video segmentation efficiently. To alleviate the

slow speed of one-shot fine-tuning developed by previous

FCN-based methods, we propose to use a network modula-

tion approach that mimics the fine-tuning process with one

forward pass of the modulator network. We show in experi-

ments that by injecting a limited number of parameters com-

puted by the modulators, the segmentation model can be re-

purposed to segment an arbitrary object. The proposed net-

work modulation method is a general learning method for

few-shot learning problems, which could be applied to other

tasks such as visual tracking and image stylization. Our

approach falls into the general category of meta-learning,

and it would also be worthwhile to investigate other meta-

learning approaches for video segmentation. Another piece

of future work would be to learn a recurrent representation

of the modulation parameters to manipulate the FCN based

on temporal information.
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