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Efficient Video Quality Assessment Along Temporal
Trajectories

Anush Krishna Moorthy and Alan Conrad Bovik, Fellow, IEEE

Abstract—We propose a new video quality assessment (VQA)
algorithm—the motion compensated structural similarity index—
that assesses not only spatial quality but also quality along
temporal trajectories. Drawing inspiration from the motion-
compensated approach followed for video compression, we pro-
pose a motion-compensated approach to temporal quality as-
sessment. The proposed algorithm is computationally efficient
as compared to other VQA algorithms that utilize motion
information from extracted optical flow and correlates well with
human perception of quality. In order to exemplify the utility
of the algorithm in a practical setting, we evaluate the quality
of H.264/AVC compressed videos. Efficiency of computation is
enabled by the novel motion-vector re-use concept.

Index Terms—H.264/AVC, motion-compensation, spatio-
temporal quality assessment, structural similarity, video quality
assessment.

I. Introduction

Objective video quality assessment (VQA) refers to eval-
uation of the quality of videos by an algorithm where the
goal is to produce scores which correlate well with human
perception of quality. Perceived quality is generally gauged
by conducting a large scale subjective study where a group
of human observers are asked to rate a set of videos on a
particular scale, and their scores are averaged to form a mean
opinion score (MOS). In this letter, our focus will be on full
reference (FR) objective quality assessment algorithms, where
the algorithm has access to both the reference and distorted
videos.

Distortions in videos can occur spatially and temporally.1

Spatial distortions include blocking, blurring, ringing, mosaic
patterns, and so on, while temporal distortions include motion
compensation mismatches, mosquito effects, ghosting, smear-
ing, and so on. A review of different kinds of distortions that
occur in compressed videos can be found in [1]. Simply listing
the various kinds of distortion in videos suggests that a spatial-
only quality metric will fail to capture many perceptually
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1In general, many of these distortions may be classified as spatio-temporal,

but we do away with such classification here.

relevant temporal distortions [2]–[5]. Here, we develop an
algorithm that assesses both spatial and temporal quality
and demonstrate that such an approach produces noticeable
improvements in terms of correlation with human perception.

Although mean squared error and peak signal-to-noise ratio
(PSNR) have been extensively applied for VQA, many re-
searchers in the past have pointed out that it correlates poorly
with human perception of quality [6], [7]. One approach to
developing VQA algorithms is by attempting to model human
visual system mechanisms [8]–[12] . Although a human visual
system (HVS) based system seems like an ideal route to take,
much work is left to be done in understanding human visual
processing [13]. Until research in vision science allows for
a complete and precise modeling of the HVS, measures of
quality based on the HVS are likely to fall short of accurately
predicting quality of videos.

In [14], the authors proposed a simple idea for VQA,
by extending the image quality assessment measure—single-
scale structural similarity index (SS-SSIM) [14], where SS-
SSIM was applied on a frame-by-frame basis. The authors
also proposed the use of a weighting scheme that took into
account some motion estimated using a block-motion estima-
tion algorithm. In [3], the authors used an alternate weighting
scheme based on human perception of motion information. In
both these cases, spatial quality computed using SS-SSIM was
weighted based on motion information. However, temporal-
based weighting of spatial quality scores does not necessarily
account for temporal distortions [2]. As mentioned before,
temporal distortions can differ significantly from spatial distor-
tions. Further, vision research has hypothesized that the HVS
has (approximately) separate channels for spatial and temporal
processing [15]–[17]. The weighted pooling of spatial scores
does not capture this separability.

Recently, researchers in the area of VQA have started
exploring the space of temporal distortions and its effects on
quality [4], [5], even though they choose not to test their
algorithms on a public dataset. In [4], the authors proposed
multi-stage model that incorporates spatio-temporal “tubes”
over average fixation durations and a host of thresholds and
pooling techniques. The algorithm in [5] again utilizes motion
information in conjunction with attentional modeling, thresh-
olds and varied pooling strategies. The authors also model
frame-rate pauses and skips to estimate video quality. In [2],
the authors utilized properties of the neurons in the visual
cortex including spatial frequency and orientation selectivity to
develop the motion-based video integrity evaluation (MOVIE).
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However, the computational complexity of the algorithm
makes practical implementation difficult as it relies on 3-D
optical flow computation.

In this letter, we propose an algorithm that attempts to
bridge the gap between a model that represents the HVS
processing accurately, and one that performs time-efficient
computation of objective video quality. We describe the algo-
rithm in detail, and evaluate the performance of the proposed
algorithm on a publicly available dataset and demonstrate that
it correlates well with human perception of quality. Further, in
order to demonstrate a practical implementation of the algo-
rithm, we explain how the algorithm can be used for quality
assessment of compressed videos with very low overhead.

II. Motion Compensated SSIM

The strategy we will take toward adapting the SSIM concept
to “true motion” VQA is to utilize SS-SSIM to evaluate
spatial quality and to develop a simple temporal metric which,
coupled with SSIM leads to a VQA algorithm that can be
practically implemented. Temporal quality assessment in our
algorithm is carried out using a combination of a block-based
motion estimation algorithm and SS-SSIM. The reader will
appreciate the fact that both of these operations require low
computational complexity in comparison with an algorithm
that relies on optical flow computation. Further, instead of
using a filter-bank that requires a large temporal support, we
utilize only neighboring frames in the video. Even though
the critical time for temporal vision is thought to be around
200–300 ms, in a real-time scenario, our scheme will help
in assessing instantaneous quality without the need to wait
for enough frames to fill the buffer. This new algorithm
is called the motion-compensated structural similarity index
(MC-SSIM), since it evaluates structural retention between
motion-compensated regions in a frame. The algorithm is
explained in detail in this section.

Consider the reference video R and distorted video D of
dimensions P ×Q with N frames. Spatial quality computation
is undertaken using SS-SSIM on a frame-by-frame basis.
For each frame, the spatial quality map so obtained is of
dimension (P, Q), and the spatial quality scores are denoted
as S(x, y, t), (x = {1 . . . P}, y = {1 . . . Q}, t = {1 . . . N}).

Temporal quality computation proceeds as follows. In order
to estimate motion, we apply a block-based motion estimation
algorithm. The algorithm is applied on a frame-by-frame
basis, where motion vectors are obtained for frame i from its
preceding frame i − 1. We seek to characterize the distortion
in D, and hence motion estimation is performed only on the
reference video. This strategy was previously explored in [2]
and [3]. In our current implementation we use adaptive-rood-
pattern-search (ARPS) [18] for motion estimation. The block
size is set at b × b.

In order to evaluate quality, we proceed as follows.
For a frame i and for block (mR, nR) (mR = {1, 2 . . . P/b},
nR = {1, 2 . . . Q/b}), in video R, we compute the motion-
compensated block (m′

R, n′
R) in frame i − 1 by displacing

the (mR, nR)th block by an amount indicated by the motion
vector. A similar computation is performed for the corre-

sponding (mD, nD)th block in D, thus obtaining the motion-
compensated block (m′

D, n′
D). We then perform a quality

computation between the blocks BR = (m′
R, n′

R) and BD =
(m′

D, n′
D). This quality computation can be performed using

any suitable image quality index. In our implementation we
use SS-SSIM. Hence, for each block we obtain a quality index
corresponding to the perceived quality of that block, and for
each frame we obtain a quality map of dimension (P/b, Q/b).
We denote the temporal quality map thus obtained as
T (x, y, t), (x = {1 . . . P/b}, y = {1 . . . Q/b}, t = {1 . . . N − 1}).

The original SS-SSIM proposed for image quality assess-
ment used the mean of the local quality scores to form a
single score for the image. When applied on a frame-by-
frame basis on a video, the score for the video was defined
as the mean value of the scores obtained from each of the
frames. Alternative pooling techniques for image quality have
been recently explored [19], [20]. It has been argued that the
simple mean does not effectively capture the overall quality
of the image. Our algorithm employs the percentile pooling
strategy proposed in [21] for spatial and temporal quality
to produce S(t) and T (t) for each frame t respectively. We
note that this method is similar to the approach proposed
in [22]. Alternative pooling strategies for temporal pooling
remain relatively unexplored [4]. The frame-level scores are
averaged to produce S and T for the spatial and temporal
quality estimates respectively. The final quality score for the
video is S × T . As mentioned in the introduction, the spatio-
temporal separability of the human visual system is reflected
in the above calculation.

In our original implementation of MC-SSIM, the block size
chosen for motion estimation was set at b = 8. However, we
also tested the performance of MC-SSIM when using various
other block-sizes b = 4, b = 16. The results for each of the
chosen block-sizes are given in the next section. We find that
the quality index is relatively robust to the block size.

In [23], the authors noted that the second-scale of a multi-
scale image representation seems to perform extremely well in
terms of correlation with human perception. The importance
of the second-scale was again noted in [20], where only the
second scale of the multi-scale decomposition was used to
pool scores in implementing the multi-scale SSIM. As in the
original implementation of SS-SSIM for video [24], we use
the second scale for quality computation. Specifically, each
frame is low pass filtered using a rectangular filter and then
subsampled by a factor of two before quality computation.

Temporal quality is assessed not only on the “Y” compo-
nent, but also on the color channels “Cb” and “Cr.” For each
of the channels, motion estimation is performed to extract
corresponding motion vectors and the algorithm as described
in the previous section is applied. Even though the results
reported here utilize motion estimates from color channels, we
have found that using (compensated) motion estimates from
the luma channel does not affect performance. This is further
demonstrated in Section V. The final temporal quality score
for the video is computed as

T final = 0.8 × T Y + 0.1 × T Cb + 0.1 × T Cr
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where T Y , T Cb, and T Cr are the temporal quality scores on
each of the three color channels obtained as described above.
A similar quality computation is undertaken for each of the
three channels to assess spatial quality as well. The final spatial
quality is computed as

Sfinal = 0.8 × SY + 0.1 × SCb + 0.1 × SCr

where SY , SCb, and SCr are the spatial quality scores on each
of the three color channels obtained as described above. The
weights assigned to each of the channels are exactly as in
[24] and are re-used here, though incorporating color in VQA
remains an interesting avenue of research.

The essence of the proposed algorithm is SS-SSIM. It can
easily be shown that the computational complexity of SS-
SSIM is O(PQ). Since we use percentile pooling there is
a need to sort the SSIM scores and this can be performed
with a worst-case complexity of O(PQlog(PQ)). The motion
estimation algorithm that we use is ARPS [18]. The authors
in [18] claimed that the algorithm is highly computationally
efficient. They stated that ARPS performs 1.9 to 3.4 times
faster than the previously proposed diamond search [25].
ARPS does not overly concern us however. It is clear that
any motion-estimation algorithm could have been used for
MC-SSIM. The major bottleneck in MC-SSIM is this motion-
estimation phase. However, as we shall show in Section IV,
we can completely avoid this bottleneck by re-utilizing motion
vectors computed for compressed videos. In this case, the
complexity of MC-SSIM is not much greater than that for SS-
SSIM. Compare this with that of video quality metric (VQM)
[22] – O((PQ)2). Further, as shown in [26], the SSIM index
can be simplified without sacrificing performance. Finally, as
we shall see in the next section, MC-SSIM correlates better
with the human perception of quality than SS-SSIM thus
making MC-SSIM an attractive VQA algorithm.

III. Results

We test MC-SSIM on the video quality experts group
(VQEG) FR-TV Phase I database [27] dataset and the recently
released LIVE VQA database [28]. The VQEG dataset consists
of 20 reference and associated 320 distorted videos with the
differential mean opinion score (DMOS) for each distorted
video. The LIVE VQA dataset consists of 10 reference videos
with 15 distortions each, to give a total of 150 distorted videos
with the associated DMOS. The LIVE VQA dataset contains
a wide range of distortions including compression and packet
loss and was created to overcome the drawbacks associated
with the VQEG set.

In accordance with VQEG recommendations, the evaluation
measures used are the Spearman rank ordered correlation co-
efficient (SROCC), the Pearson (linear) correlation coefficient
(LCC) and outlier ratio (OR). The results are shown in Table I
for the VQEG dataset. The LCC was computed after fitting
the scores produced by the algorithm to the DMOS using the
logistic function prescribed in [27].

Table I also lists performance of various other algorithms.
PSNR is a baseline for performance evaluation of any quality

Fig. 1. Scatter plot of DMOS versus MC-SSIM scores.

TABLE I

MC-SSIM Performance (VQEG): Spearman Rank Ordered

Correlation Coefficient (SROCC), Linear Correlation

Coefficient (LCC), and Outlier Ratio (OR)

Algorithm SROCC LCC OR
PSNR 0.782 0.779 0.678

Proponent P8 (Swisscom) [27] 0.803 0.827 0.578
SS-SSIM (no weighting) [24] 0.788 0.820 0.597

SS-SSIM (weighted) [24] 0.812 0.849 0.578
SW-SSIM (dense Y only) 0.837 0.810 0.622

MOVIE (Y only) [2] 0.833 0.821 0.644
MC-SSIM (8 × 8) 0.848 0.853 0.597
MC-SSIM (4 × 4) 0.846 0.851 0.606

MC-SSIM (16 × 16) 0.833 0.833 0.616

assessment algorithm. Proponent P8 was the best performing
model from the ten algorithms tested by the VQEG. SS-SSIM
refers to application of SS-SSIM on a frame-by-frame basis
[24]. Note that this corresponds to the “no-weighting” case.
We also list the performance of SS-SSIM with weighting,
indicated by SS-SSIM (weighting). Another recently proposed
algorithm [3], which we label speed-weighted SSIM (SW-
SSIM) is listed as well. Finally, we list the performance of
the recent MOVIE [2].

MC-SSIM performs competitively with these popular VQA
algorithms. We also note that MC-SSIM has no “tune-able”
parameters and hence its performance is reflective of its
generalization capabilities.

In Fig. 1, we plot the scatter plot of MC-SSIM scores versus
DMOS. From the plot, one would conjecture that MC-SSIM
performs well for the high-quality case, and seems to present
lowered performance for the low-quality one.

As mentioned in the previous section, we list the perfor-
mance of MC-SSIM for different block sizes −4 × 4 and
16 × 16. The performance does not seem to differ much with
change in block size, suggesting that the performance of MC-
SSIM is robust with respect to block size.

In order to demonstrate that the use of temporal information
does indeed improve the performance of the algorithm, and
that the pooling strategy applied to the spatial scores is
alone not responsible for the improvement, in Table II, we
tabulate the SROCC, LCC and OR values for the entire VQEG
database. The values show the SROCC for the spatial only
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TABLE II

Effect of Temporal Quality Assessment

SROCC LCC OR
SS-SSIM (no weighting) [24] 0.788 0.820 0.597

Spatial only 0.824 0.837 0.609
Spatio-temporal 0.848 0.853 0.597

TABLE III

MC-SSIM Performance on Natural Video

SROCC LCC
MOVIE (Y only) [2] 0.860 0.858

MC-SSIM (8 × 8) 0.869 0.880

case (using percentile pooling) and for the full spatio-temporal
implementation (as described before). Obvious improvements
are seen. We also tabulate SS-SSIM scores from [24]. The
pooling technique does improve the performance of SS-SSIM
however, coupling the spatial score with the temporal score
boosts the performance even higher.

Even though MC-SSIM does not seek to explicitly model
the HVS, it is based on SSIM, and it was shown in [29]
that SSIM relates to the NSS model for quality proposed
in [30]. The statistics of natural scenes differ significantly
from those for artificial scenes. The VQEG dataset consists of
four artificial sequences (src4, src6, src16, src17), including
scrolling text. In these cases, judging quality through an
algorithm which has been developed for VQA may not be
completely fair. In order to demonstrate that elimination of
these artificial scenes affects the performance of MC-SSIM,
in Table III we list the performance of MC-SSIM using
8 × 8 blocks on the entire VQEG dataset with the non-natural
sequences removed from the analysis. For a comparison, we
also include the results from MOVIE (Y component) [2], when
applied to only natural videos. Again, the performance of MC-
SSIM is highly competitive.

Table IV shows the performance of MC-SSIM on the
LIVE VQA dataset with SROCC and LCC as measures of
performance. Also listed are PSNR, SS-SSIM, SW-SSIM,
VQM [22], and MOVIE. Note that MC-SSIM performs much
better than PSNR, SS-SSIM and SW-SSIM and is competitive
with VQM; however, MOVIE performs much better. As we
have mentioned before, the goal was to create an efficient
algorithm rather than one that beats all present-day algorithms.
Having said that, a statistical significance analysis using the F-
statistic on the residuals between the algorithmically predicted
scores (after curve-fitting) and DMOS [31] indicates that the
performance of MC-SSIM is statistically indistinguishable
from that of VQM and SW-SSIM at the 95% confidence level
and MOVIE is statistically better than MC-SSIM. A similar
analysis shows that MC-SSIM performance is statistically
better than PSNR and SS-SSIM.

IV. Application: Quality Assessment of

Compressed Videos

We consider an application of assessing quality of com-
pressed videos. Since MC-SSIM is a full reference algorithm,

TABLE IV

MC-SSIM Performance (LIVE)

Algorithm SROCC LCC
PSNR 0.3684 0.4035

SS-SSIM (no weighting) [24] 0.5257 0.5444
SW-SSIM [3] 0.5849 0.5962

VQM [22] 0.7026 0.7236
MOVIE [2] 0.7861 0.8102

MC-SSIM (8 × 8) 0.6791 0.6976

we assume that we have the pristine reference video for quality
assessment. However, in this case the video available (refer-
ence video) is compressed using a suitable video compression
algorithm. Such a scenario is much more practical as compared
to quality assessment using an uncompressed source since
users are unlikely to have the uncompressed version to test
quality. Further, we assume that this compressed video passes
through the proverbial “black box” and the goal is to assess
the quality of the video at the output (test video) of this black
box. One approach to such quality assessment is to perform a
decompression of both the reference and test videos and then
apply a VQA algorithm. If we choose to apply an algorithm
that utilizes motion information, we would need to perform
optical flow computation after decompression. It is at this
point that using MC-SSIM provides a tremendous benefit in
terms of computational complexity as well as performance. We
note that the demonstration here is for the situation where the
compressed video is transmitted over a channel and motion
vectors from the original reference stream can be used for
quality assessment of the received distorted video.

Most video compression standards utilize a motion-
compensated frame differencing approach to compression
[32], where motion vectors are computed at the encoder for
compression and are extracted from the compressed stream
at the decoder for reconstruction. Since MC-SSIM performs a
computation mimicking the decompression process, the easiest
solution to VQA using MC-SSIM is to re-use the motion
vectors computed by the compression algorithm. Specifically,
the motion vectors that we use for motion-compensated quality
assessment will be the same as those used by the algorithm for
motion compensated decompression. By re-utilizing motion
vectors from the compression process, we have effectively
eliminated a major bottleneck for VQA algorithms—that of
computation of motion. This coupled with the fact that we use
the simple SSIM for quality assessment will reduce overhead,
and will allow for practical deployment of the algorithm. It
is clear that any video compression algorithm that follows a
motion-compensated-frame-differencing structure may be used
for this purpose. In this letter, we choose to use the H.264/AVC
compression standard [33].

In our implementation, we allow only for motion compen-
sation using one previously decoded frame. Using motion es-
timates from multiple reference frames may be accomplished
in a manner similar to that in [4]; and this will be investigated
in the future. We fix the block-size for motion estimates at
16 × 16 and do not allow sub-pixel motion estimates. One
reason for this is to allow for an objective comparison between
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TABLE V

MC-SSIM Performance Using H.264 Motion Vectors on Natural

VQEG Videos

Algorithm SROCC LCC OR
MC-SSIM (16 × 16) 0.867 0.879 0.586

H.264-MC-SSIM 0.872 0.879 0.606

MC-SSIM proposed in the earlier section and MC-SSIM
applied on H.264/AVC compressed videos. Second, this
“coarse” approximation will give us an approximate lower
bound on the performance, since improved motion estimates
and variable block sizes will only strengthen algorithm perfor-
mance. Further, only the first frame is encoded as an I-frame
and all other frames are P-frames. Other group-of-pictures set-
tings remain interesting avenues for future exploration. We set
the quantization parameter to 16, other QP settings remain in-
teresting avenues of interest. The JM reference encoder is used
in order to perform H.264 compression/decompression [34].

At this stage, we are in the situation described at the
beginning of this section. We have with us a set of com-
pressed videos (which we created artificially for the purpose
of evaluation here) and we have a “black-box.” We also
have the (decompressed) videos at the output of this black-
box (distorted videos from the VQEG dataset). So, all that
remains to be done is decompress the compressed originals
and perform quality assessment on corresponding input-output
video pairs. The only addition here, as we described before
is the extraction of motion vectors from the original video.
Specifically, as we decompress the original video prior to
quality computation, we also extract and save corresponding
motion vectors from the decompression algorithm.

After having extracted motion vectors from the H.264
compressed videos, MC-SSIM is applied as described be-
fore on the decompressed reference and test videos. For the
chroma channels, we follow the recommendations of the H.264
standard, where the chroma motion vectors are extracted by
multiplying the luma motion vectors by a factor of 2 [33]. We
use the VQEG database described before [27] as a test-bed
for evaluating performance.

The results of using MC-SSIM using H.264 motion vectors
on the entire VQEG database (natural sequences only) are
shown in Table V, where we also list MC-SSIM using 16×16
blocks for motion estimation for a comparison. The algorithm
performance is evaluated in terms of the above mentioned
measures—SROCC, LCC, and OR.

V. Conclusion

In this letter, we proposed a new video quality assessment
index—MC-SSIM. We explained the motivation behind the
algorithm and demonstrated how the algorithm was imple-
mented. The performance of the algorithm was evaluated on
two publicly available databases and was compared with state-
of-the-art techniques for video quality assessment. MC-SSIM
was shown to perform well in terms of correlation with human
perception. As an application, MC-SSIM was used for the
quality assessment of compressed videos. The simplicity of the

algorithm along with its extremely competitive performance
makes MC-SSIM an attractive choice for practical deployment
in order to perform video quality assessment.
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