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Abstract

The recent availability of detailed geographic data permits terrain applications

to process large areas at high resolution. However the required massive data pro-

cessing presents significant challenges, demanding algorithms optimized for both

data movement and computation. One such application is viewshed computation,

that is, to determine all the points visible from a given point p. In this paper, we

present an efficient algorithm to compute viewsheds on terrain stored in external

memory. In the usual case where the observer’s radius of interest is smaller than

the terrain size, the algorithm complexity is θ(scan(n2)) where n2 is the number of

points in an n × n DEM and scan(n2) is the minimum number of I/O operations
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required to read n2 contiguous items from external memory. This is much faster

than existing published algorithms.

1 Introduction

Terrain modeling is an important application in Geographic Information Science (GIS).

One aspect is the computation of all points that can be viewed from a given point (the

observer). The region composed of the visible points is called the viewshed [15, 19]. This

problem has many applications, such as determining the minimum number of cellular

phone towers required to cover a region [5, 9, 11], optimizing the number and position

of guards to cover a region [14, 20], analyzing influences on property prices in an urban

environment [25], and optimizing path planning on a DEM [26].

The recent technological advances in data collection (such as LIDAR and IFSAR) have

produced a huge volume of data about the Earth’s surface [31]. For example, modeling

a 100 km × 100 km terrain at 1m resolution requires 1010 points. Since most computers

cannot store or process this huge volume of data internally, an external memory algorithm

is required. Since the time required to access and transfer data to and from external

memory is generally much larger than the internal processing time, the algorithm must

try to minimize the external memory I/O [4, 21]. More specifically, such external memory

algorithms should be optimized under a computational model whose cost is the number of

data transfer operations instead of CPU time. One such model was proposed by Aggarwal

and Vitter [1].

In this work, we present an efficient algorithm to compute the viewshed of a point

on a terrain stored in external memory. The algorithm is an adaptation of Franklin and
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Ray’s method [18, 19] to allow efficient manipulation of huge terrains (6GB or more). The

large number of disk accesses is optimized using the STXXL library [13]. Our algorithm

is more than six times faster and much easier to implement than the excellent algorithm

proposed by Haverkort et al. [22].

This paper is organized as follows. Section 2 gives a brief description of viewshed

computation and I/O-efficient algorithms for general problems as well as for viewshed

computation. Section 3 formally presents the viewshed concepts. Section 4 briefly de-

scribes the I/O-efficient computational model. Section 5 describes the algorithm in detail.

Section 6 analyzes its complexity. Section 7 gives the tests results, and Section 8 presents

the conclusions.

2 Related Work

2.1 Terrain representation

Terrain is generally represented either by a Triangulated Irregular Network (TIN) or a

Raster Digital Elevation Model (DEM) [16, 27]. A TIN, first implemented in GIS by

Franklin [17], is a partition of the surface into planar triangles, i.e., a piecewise linear

triangular spline. The elevation of any point p is a bilinear interpolation of the elevations

of the three vertices of the triangle whose projection onto the xy plane contains the

projection of p.

A DEM is simply a matrix of the elevations at regularly spaced positions or posts.

The spacing may be either a constant number of meters or a constant angle in latitude

and longitude.

Both representations are seen because neither is clearly better than the other [16, 24].
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A DEM uses a simpler data structure, is easier to analyze and has higher accuracy at

high resolution, but requires more memory space than a TIN. In this paper, we use the,

simpler, DEM data structure.

2.2 Terrain visibility

Terrain visibility has been widely studied. Stewart [30] shows how the viewshed can be

efficiently computed for each point of a DEM. His interest is positioning radio transmission

towers. Kreveld [32] proposes a sweep-line approach to compute the viewshed in θ(n log n)

time1 on a
√

n×
√

n grid. In [18, 19], Franklin and Ray describe experimental studies for

fast implementation of visibility computation and present several programs that explore

trade-offs between speed and accuracy. Young-Hoon, Rana and Wise in [33] analyze two

strategies to use the viewshed for optimization problems. Ben-Moshe et al. [6, 7, 8] have

worked on visibility for terrain simplification and for facility positioning. For surveys on

visibility algorithms, see [15, 28].

2.3 External memory processing

Aggarwal and Vitter [1] discuss some problems, and propose a computational model to

evaluate algorithm complexity based on the number of input/output (I/O) operations.

Goodrich et al. [21] present some variants for the sweep plane paradigm considering ex-

ternal processing, while Arge et al. [4] describe a solution for externally processing line

segments in GIS. This technique was also used to solve hydrology problems, such as

computing water flow and watershed [3] on huge terrain.

1θ(f(n)) grows proportionally to f(n) as n → ∞. Formally, g(n) = θ(f(n)) ⇒ ∃n0 > 0, c1 > c2 > 0
such that n > n0 ⇒ c1f(n) > g(n) > c2f(n). Hein [23, page 334].
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Recently, Haverkort et al. [22] adapted van Kreveld’s method to compute viewsheds

on terrain stored in external memory; its I/O complexity is θ(sort(n)), where n is the

number of points on the terrain and θ(sort(n)) is the minimum number of I/O operations

required to sort n contiguous items stored in external memory.

The EMVS (external memory viewshed) algorithm, which we present here, also has a

worst-case I/O complexity of θ(sort(n)), but its execution time is lower because of a more

efficient strategy - it uses very simple data structures and is based on sorting process.

Also, it is much easier to implement than the Haverkorth et al. method.

3 The Viewshed Problem

Visibility problems can be classified into two major categories: visibility queries and the

visibility structure computation. Visibility queries consist of checking whether a given

point P , the target, is visible from another point O, the observer or source. Both O and P

are usually slightly above the terrain. For example, consider a radio tower communicating

with a cellphone user. P is visible from O iff a straight line, the line of sight, from O to

P is always strictly above the terrain. See Figure 1.

The visibility structure computation consists of determining some features such as the

horizon and viewshed. Formally, the viewshed of a point p on a terrain T can be defined

as:

viewshed(p) = {q ∈ T | q is visible from p}

When computing the viewshed, it is common to consider only points within a given
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Figure 1: Point Visibility: p1 and p4 are visible from p0; p2 and p3 are not visible from p0.

distance r, the radius of interest, of p. In this case,

viewshed(p, r) = {q ∈ T | distance(p, q) ≤ r and q is visible from p}

We will generally assume r and simplify the notation of viewshed(p, r) to viewshed(p).

Since we are working with raster DEMs, we represent a viewshed by a square 2r × 2r

matrix of bits.

4 I/O efficient Algorithms

As mentioned before, for large datasets, I/O is the bottleneck. However, many GIS

algorithms are designed to optimize internal processing, and so do not scale up. A more

appropriate computational model is needed. One common model, proposed by Aggarwal

and Vitter [1], defines an I/O operation as the transfer of one disk block of size B between

external and internal memory. The measure of performance is the number of such I/O

operations. The internal computation time is assumed to be comparatively insignificant.

An algorithm’s complexity is related to the number of I/O operations performed by
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fundamental operations such as scanning or sorting N contiguous elements stored in

external memory. Those are

scan(N) = Θ
(

N

B

)

sort(N) = Θ
(

N

B
log(M

B )

(

N

B

))

where M is the internal memory size. Because B ) 1, usually scan(N) < sort(N) * N ,

and it is important to organize the data in external memory to decrease the number of

I/O operations.

5 External Memory Viewshed Computation (EMVS)

Our algorithm, External Memory Viewshed (EMVS), is based on the method proposed

by Franklin and Ray [19] that computes the viewshed of a point on a terrain represented

as an internal memory matrix. That is summarized below.

5.1 Franklin and Ray’s Method

Given a terrain T represented by an n× n elevation matrix M, a point p on T , a radius

of interest r, and a height h above the local terrain for the observer and target, this

algorithm computes the viewshed of p within a distance r of p, as follows:

1. Let p’s coordinates be (xp, yp, zp). Then the observer O will be at (xp, yp, zp + h).

2. Imagine a square in the plane z = 0 of side 2r × 2r centered on (xp, yp, 0).
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3. Iterate through the cells c of the square’s perimeter. Each c has coordinates

(xc, yc, 0), where the corresponding point on the terrain is (xc, yc, zc).

(a) For each c, run a straight line in M from (xp, yp, 0) to (xc, yc, 0).

(b) Find the points on that line, perhaps using Bresenham’s algorithm. In order

from p to c, let them be q1 = p, q2, · · · qk−1, qk = c. A potential target Di at qi

will have coordinates (xi, yi, zi + h).

(c) Let mi be the slope of the line from O to Di, that is,

mi =
zk − zi + p

√

(xi − xp)2 + (yi − yp)2

.

(d) Let µ be the greatest slope seen so far along this line. Initialize µ = −∞.

(e) Iterate along the line from p to c.

i. For each point qi, compute mi.

ii. If mi < µ, then mark qi as hidden from O, that is, as not in the viewshed

(which is simply a 2r × 2r bitmap).

iii. Otherwise, mark qi as being in the viewshed, and update µ = mi.

The total execution time is linear in N , the number of points in the terrain. In contrast,

earlier algorithms that ran a separate line of sight to each potential target had an execution

time of θ(N3/2).

This algorithm can be used to compute the viewshed on terrain in external memory.

However, since the cells are accessed in a sequence defined by the radial sweep, that would

require random access to the file, and the execution time would be unacceptably long.

This random access order can be avoided using the adaptation described below.
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5.2 The EMVS algorithm

The basic idea is to generate a list with the terrain points sorted by the processing order,

that is, the points will appear in the list in the sequence given by the radial sweep and

by the processing order along each line of sight. Thus, during the viewshed computation,

the algorithm follows the list, avoiding accessing the file randomly.

This list stored in external memory is managed by STXXL (the Standard Template

Library for Extra Large Data Sets) [13], which implements containers and algorithms to

process huge volumes of data. This library allows an efficient manipulation of external

data and, as stated by the authors, “it can save more than half the number of I/Os

performed by many applications”.

Specifically, the algorithm creates a list L of pairs (c, i) where c is a terrain position

and i is an index indicating the order in which c should be processed.

To compute the cell indices, the lines of sight (originating at the observer p) are

numbered in counterclockwise order starting at the positive x-axis, which is number 0 —

see Figure 2. Thus, the cells are numbered increasingly along each line of sight; when a

line of sight ends, the enumeration proceeds from the observer (again numbered) following

the next line of sight. Of course, a same cell (point) can receive multiple indices since it

can be intercepted by many lines of sight, especially if it is close to the observer. This

means that a same point can appear in multiple pairs in the list L, but each pair will

have a different index. Also, if the observer is near to the terrain border, that is, if the

distance between the observer and the terrain border is smaller than the radius of interest

r, some cells in a line of sight can be outside the terrain. In this case, those cells still will

be numbered but they will be ignored (i.e. they will not be inserted in the list L). This is

done to simplify the indices computation by avoiding many additional conditional tests.
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Figure 2: Line of sight enumeration

Even when computing the cell indices as described above, the file still would be ran-

domly accessed, as in the original algorithm. So, to build the list L, the algorithm reads

the terrain cells sequentially from the external file and for each cell c, it determines (the

number of) all lines of sight that intercept that cell.

Since the cells have a finite size (they are not points), we can determine the cells

intercepted by a line of sight using a process similar to line rasterization [10]. That is, let

s be the side of each (square) cell and suppose the cell is referenced by its center. Also,

let a be a line of sight whose slope is α : 0 < α ≤ 45◦ 2. So, given a cell c = (cx, cy),

see Figure 3, the line of sight a “intersects” the cell c if and only if the intersection point

between a and the vertical line cx is a point in the segment (cx, cy−0.5s) and (cx, cy+0.5s);

more precisely, given (qx, qy) = a∩cx, a intersects c if and only if cy−0.5s ≤ qy < cy +0.5s.

In this case, a line of sight as the dashed line in the Figure 3 is assumed to intersect the

cell above c.
2For 45◦ < α ≤ 90◦, interchange x and y and use a similar idea.
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Figure 3: Lines of sight intersecting a cell

Then, all lines of sight intersecting the cell c are those between the two lines connecting

the observer to the points (cx, cy − 0.5s) and (cx, cy + 0.5s) — Figure 3. Let k1 and k2

be the numbers of these two lines respectively. Considering the line of sight definition

(a segment connecting the observer and the center of cells on the square border) and

the line enumeration, we have that the number of the lines intersecting the cell c can be

determined by the cells in the border whose center are between k1 and k2 - see Figure 4.

For example, in this Figure, cell c is intersected by the lines 3 and 4.

Now, given a cell c, let κ be the number of a line of sight intercepting c. Then, the

index i of the cell c associated with κ is given by the formula i = κ ∗n+ d, where n is the

number of cells in each ray (this number is constant for all rays) and d is the (horizontal

or vertical) distance between points c and p — see Figure 5. Note that the distance d is

defined as the maximum between the number of rows and columns from p to c.

Next, the list L is sorted by the elements’ index, and then the cells are processed in

the sequence given by the sorted list. When a cell c is processed, all the “previous” cells
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Figure 4: Number of the lines of sight intersecting a cell.

Figure 5: The index cell computation.

that could block the visibility of c have already been processed. So, the visibility of c

can be computed, as described before, just by checking the height of the cells along the

line of sight. When a cell located on the square border is processed, it means that the

line of sight processing has finished. The next cell in the list will be the observer’s cell,

indicating that the processing of a new line of sight will start.

To improve the algorithm’s efficiency, another list L′ (also stored externally and man-

aged by STXXL) is used to keep only the visible cells. When the algorithm determines

that a cell c is visible, this cell is inserted in L′. The size of L′ is much smaller than
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L since L′ does not keep the indices, and usually many points are not visible. To avoid

random access, before storing the viewshed, the list L′ is sorted lexicographically by x

and y. Then the viewshed is stored in an external file where a visible position (a point in

L′) is indicated by 1 and not visible point by 0.

Additionally, a piece of the terrain matrix is stored in the internal memory. The idea

is to store the cells around the observer since these cells are processed more times than

the farther ones. All cells inside a square centered at the observer position are stored

internally, and are not inserted in the lists L and L′. When a cell needs to be processed,

the algorithm checks if it is in the internal memory. If so, the cell is processed normally;

otherwise, it is read from list L.

6 Algorithm complexity

Let T be some terrain represented by an n × n elevation matrix. Let p be the observer’s

position, and r be the radius of interest. As described in Section 5.2, the algorithm

considers the cells that are inside the 2r × 2r square centered at p. Assuming that each

cell’s side is s, there are, at most3, 8r/s cells on the square’s perimeter (each square side

has 2r/s cells). Let K = r/s. Thus, the algorithm shoots 8K lines of sight and since each

line of sight has K cells, the list L has, in the worst case, θ(K2) elements.

In the first step, the algorithm does n2

B I/O operations to read the cells and build the

list L. Next, the list with θ(K2) elements is sorted and then it is swept to compute the

3If the observer is close to the terrain border, the square might not be completely contained in the
terrain.
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cell’s visibility. Thus, the total number of I/O operations is:

θ

(

n2

B

)

+ θ

(

K2

B
log(M

B )

(

K2

B

))

+ θ

(

K2

B

)

Since, in general, r * n, then K < n which implies that the number of I/O operations

is θ(n2

B ) = θ(scan(n2)). In the rare worst case when r is big enough to cover almost the

whole terrain, the number of I/O operations is

θ

(

K2

B
log(M

B )

(

K2

B

))

= θ(sort(K2))

.

The algorithm also uses an additional external list L′ to keep the visible cells and this

list needs to be sorted. Since the list size is much smaller than the size of L, the number

of I/O operations executed in this step does not change the algorithm complexity.

7 Experimental results

EMVS was implemented in C++, in g++ 4.1.1 under Mandriva Linux, on a 2.8 GHZ

Pentium PC with 1 GB of RAM and an 80 GB 7200 RPM serial ATA hard drive. To

better evaluate the I/O operation cost, we considered two configurations. The first used

the whole 1 GB of RAM and allowed our program to use 800 MB for data. The second

used only 256 MB and allowed 200 MB for data. Although 256 MB main memory is quite

small for modern PCs, we used it for two reasons: to illustrate the behaviour and trends

of the algorithm as the difference between dataset and memory size increases, and to give

an idea of the algorithm performance on portable devices with big hard drives but little
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RAM.

The tests used the data sets (from NASA STRM home page [29]) of the regions 1,

2 and 3 shown in Figure 6 sampled with a resolution of 1 arc of second (approximately

30m). From this terrain, we selected pieces of different sizes and each piece was obtained

by defining the observer position and the radius of interest4. Since these datasets contain

a very small percentage (less than 1.5%) of no-data (i.e., points for which the elevation is

unknown or invalid), our results are not influenced by no-data points.

Figure 6: Regions 1, 2 and 3 of the USA used in the tests.

Tables 1 and 2 show the EMVS execution time with either 1G or 256 MB of RAM.

We always considered the worst case radius of interest, i.e., big enough to cover the

whole terrain. External processing time (I/O, external sorting, file access, etc) is shown

separately (column Ext.) from the total running time (column Tot). To evaluate the

4To compare the efficiency of our algorithm and the Haverkort et al. algorithm, we used terrain of
size similar to those used by them.
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influence of the number of visible points (the column # Vis. Pts.) on the time, the

observer was positioned at different heights (1, 50, 100, 1000 and 10000 meters) above the

terrain. 1000 and 10000 meters are presented to demonstrate the algorithm’s scalability.

Running time with 1GB RAM

Region 1 Region 2 Region 3

Terrain Obs. # Vis. Time (sec.) # Vis. Time (sec.) # Vis. Time (sec.)
Size Hgt Pts Ext. Tot. Pts Ext. Tot. Pts Ext. Tot.

1 1.2 × 106 17 43 4.5 × 104 19 48 2.1 × 105 20 47
90292 50 6.7 × 106 17 45 3.6 × 107 17 50 6.3 × 107 18 55

311 MB 102 1.1 × 107 17 46 6.3 × 107 18 56 6.4 × 107 18 57
103 5.6 × 107 18 54 6.3 × 107 19 59 6.4 × 107 18 57
104 6.3 × 107 19 56 6.3 × 107 19 59 6.4 × 107 20 59

1 4.2 × 105 67 209 1.3 × 105 70 208 1.1 × 105 69 209
171502 50 2.6 × 106 67 208 1.5 × 108 66 219 1.6 × 108 69 241

1122 MB 102 9.5 × 106 68 210 2.1 × 108 66 243 2.1 × 108 67 247
103 1.5 × 108 67 237 2.2 × 108 66 246 2.2 × 108 67 238
104 2.2 × 108 69 249 2.2 × 108 67 244 2.2 × 108 67 248

1 1.2 × 106 1716 2598 4.3 × 103 1766 2652 1.1 × 103 1756 2630
334332 50 7.3 × 106 1759 2624 1.1 × 107 1756 2654 2.2 × 108 1763 2709

4264 MB 102 1.5 × 107 1769 2648 1.9 × 108 1776 2728 6.6 × 108 1777 2799
103 6.4 × 108 1716 2716 8.5 × 108 1764 2821 8.6 × 108 1776 2851
104 8.7 × 108 1750 2797 8.6 × 108 1766 2840 8.6 × 108 1758 2811

1 3.5 × 105 3117 4546 3.9 × 106 3981 5434 2.1 × 106 3109 4599
400002 50 2.9 × 106 3108 4555 7.6 × 107 3960 5530 1.7 × 108 4290 5906

6103 MB 102 1.2 × 107 4241 5697 1.9 × 108 4401 6046 6.4 × 108 4603 6739
103 7.7 × 108 4410 6244 9.7 × 108 4492 6322 1.0 × 109 4484 6370
104 1.2 × 109 5064 6962 1.2 × 109 4852 6808 1.0 × 109 4544 6431

Table 1: EMVS running time (in seconds) at 1 GB RAM on pieces of terrain with different
sizes from Regions 1, 2 and 3 and varying the observer height above the terrain (generating
viewshed with different number of visible points - shown in the column # Vis. Pts). In
all cases, the radius of interest cover the whole terrain.

Figure 7 summarizes the internal and external processing time on Region 1 terrain,
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Running time with 256MB RAM

Region 1 Region 2 Region 3

Terrain Obs. # Vis. Time (sec.) # Vis. Time (sec.) # Vis. Time (sec.)
Size Hgt Pts Ext. Tot. Pts Ext. Tot. Pts Ext. Tot.

1 1.2 × 106 21 48 4.5 × 104 21 49 2.1 × 105 22 51
90292 50 6.7 × 106 21 51 3.6 × 107 23 58 6.3 × 107 21 59

311 MB 102 1.1 × 107 21 50 6.3 × 107 21 60 6.4 × 107 22 63
103 5.6 × 107 21 59 6.3 × 107 22 61 6.4 × 107 22 61
104 6.3 × 107 21 59 6.3 × 107 22 62 6.4 × 107 21 61

1 4.2 × 105 524 712 1.3 × 105 521 705 1.1 × 105 525 709
171502 50 2.6 × 106 524 714 1.5 × 108 529 747 1.6 × 108 528 750

1122 MB 102 9.5 × 106 527 718 2.1 × 108 523 750 2.1 × 108 533 763
103 1.5 × 108 526 745 2.2 × 108 523 753 2.2 × 108 527 759
104 2.2 × 108 530 750 2.2 × 108 510 737 2.2 × 108 521 751

1 1.2 × 106 4666 5621 4.3 × 103 3876 4834 1.1 × 103 3886 4842
334332 50 7.3 × 106 4842 5798 1.1 × 107 4281 5247 2.2 × 108 4817 5863

4264 MB 102 1.5 × 107 4957 5930 1.9 × 108 4945 5979 6.6 × 108 5301 6462
103 6.4 × 108 5361 6514 8.5 × 108 5275 6498 8.6 × 108 5309 6528
104 8.7 × 108 5570 6789 8.6 × 108 5326 6554 8.6 × 108 5308 6535

1 3.5 × 105 6861 8244 3.9 × 106 6707 8102 2.1 × 106 6689 8084
400002 50 2.9 × 106 7020 8408 7.6 × 107 6838 8281 1.7 × 108 7077 8565

6103 MB 102 1.2 × 107 7030 8421 1.9 × 108 7712 9199 6.4 × 108 7726 9369
103 7.7 × 108 7759 9431 9.7 × 108 7958 9714 1.0 × 109 8095 9870
104 1.2 × 109 8343 10185 1.2 × 109 8427 10284 1.0 × 109 7956 9728

Table 2: EMVS running time (in seconds) at 256 MB RAM on pieces of terrain with
different sizes from Regions 1, 2 and 3 and varying the observer height above the terrain
(generating viewshed with different number of visible points - shown in the column # Vis.
Pts). In all cases, the radius of interest cover the whole terrain.

using 256 MB and 1 GB of RAM (the results for Regions 2 and 3 are quite similar). As

expected, the external processing time is much larger than the internal processing time

on terrain that is much bigger than the internal memory size. See charts (c), (d) and

mainly (b) where the external processing time is longer (resp. shorter) than the internal
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processing time when using 256 MB (resp. 1 GB). The difference in (b) occurs because the

1122 MB terrain can be processed almost completely in 1 GB internal memory, requiring

few I/O operations. However, with only 256 MB, many I/O operations are necessary.

(a) (b)

(c) (d)

Figure 7: The internal and external processing time using 256MB and 1GB of RAM on
pieces of terrain from Region 1 with different sizes.

As the terrain size increases, the total processing time is essentially determined by the

external processing time. That seems to converge to about 80% and 70% of the total time

when using 256 MB and 1 GB of RAM respectively.
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We also compared EMVS to the IO VS algorithm of Haverkort et al. That is an

adaptation for external processing of a method proposed by Van Kreveld [32] to compute

the viewshed using a radial sweep of a terrain. Basically, Van Kreveld’s algorithm uses

a plane sweep technique. Starting with a grid and a viewpoint p, it rotates a sweep line

around p, computing the visibility of each cell in the terrain when the sweep-line passes

over its center. It implements this with an active-structure data structure to contain the

cells currently intersected by the sweep-line (the active cells). When a cell is intersected

by the sweep-line, it is inserted in the active structure; when a cell stops being intersected

by the sweep-line, it is deleted from the active structure. When the center of a cell is

intersected by the sweep line, the active structure is queried to find out if that cell is

visible. Thus, each cell in the grid has three associated events: when it is first intersected

by the sweep-line and entered in the data structure, when the sweep-line passes over

its center, and when it is last intersected by the sweep-line and removed from the data

structure.

Haverkort et al. extended that into an algorithm to compute the viewshed on terrain

stored in external memory, where the cells are sorted based on when they will be processed

by the radial sweep.

Table 3 compares EMVS to the results reported for IO VS in [22], with the observer 1

meter above the terrain. The EMVS values were averaged from the three corresponding

values for Regions 1, 2 and 3 listed in Tables 1 and 2. From Table 3, we see that EMVS is

more than 6 times faster than IO VS. Further, IO VS was tested by its author on a Power

Macintosh G5 dual 2.5 GHz, 1GB RAM and 80 GB 7200 RPM, which is significantly faster

than the machine we used. Therefore, EMVS’s relative advantage is probably even greater.

Finally, EMVS is much simpler to implement.
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Why? EMVS uses a simple data structure — a sorted list. After the external sort, no

list updates (insert or delete) are required. On the other hand, IO VS uses more complex

data structures, manipulated using recursive searching and updating.

1GB
Terrain Size EMVS IO VS

119 MB 18 353
311 MB 46 865

1122 MB 209 3546
4264 MB 2627 16895

256MB
Terrain Size EMVS IO VS

119 MB 22 364
311 MB 49 916

1122 MB 709 4831
4264 MB 5099 40734

Table 3: Execution time (seconds) comparison between EMVS and IO VS for 1GB and
256 MB of RAM

8 Conclusions

We have presented EMVS, a very efficient algorithm to compute the viewshed of a point in

a huge raster DEM terrain stored in external memory. EMVS is more than 6 times faster

than the algorithm of Haverkort et al [22] and also, it can process very large datasets; we

used it on a 6.1GB terrain. Finally, EMVS algorithm is quite simple to understand and

to implement. It is available at Andrade [2] as an open source code distributed under

Creative Common GNU GPL license [12].
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