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Abstract:   Visual recognition is currently one of the most important and active research areas in computer vision, pattern recognition,
and even the general field of artificial intelligence. It has great fundamental importance and strong industrial needs, particularly the
modern deep neural networks (DNNs) and some brain-inspired methodologies, have largely boosted the recognition performance on
many concrete tasks, with the help of large amounts of training data and new powerful computation resources. Although recognition ac-
curacy is usually the first concern for new progresses, efficiency is actually rather important and sometimes critical for both academic re-
search and industrial applications. Moreover, insightful views on the opportunities and challenges of efficiency are also highly required
for the entire community. While general surveys on the efficiency issue have been done from various perspectives, as far as we are aware,
scarcely any of them focused on visual recognition systematically, and thus it is unclear which progresses are applicable to it and what
else should be concerned. In this survey, we present the review of recent advances with our suggestions on the new possible directions to-
wards improving the efficiency of DNN-related and brain-inspired visual recognition approaches, including efficient network compres-
sion and dynamic brain-inspired networks. We investigate not only from the model but also from the data point of view (which is not the
case in existing surveys) and focus on four typical data types (images, video, points, and events). This survey attempts to provide a sys-
tematic summary via a comprehensive survey that can serve as a valuable reference and inspire both researchers and practitioners work-
ing on visual recognition problems.
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 1   Introduction

Deep  neural  networks  (DNNs)  have  achieved  great

success  in  many  visual  recognition  tasks.  They  have

largely improved  the  performance  of  long-lasting  prob-

lems such as handwritten digit recognition[1], face recogni-

tion[2],  image  categorization[3], etc.  They  are  also  en-

abling the exploration of new boundaries, including stud-

ies on image and video captioning[4–6], body pose estima-

tion[7], and many others. However, such successes are gen-

erally conditioned on huge amounts of high-quality hand

labelled  training  data  and  the  recently  greatly  advanced

computational resources. Obviously, these two conditions

are usually too expensive to be satisfied in most cost-sens-

itive  applications.  Even  when  people  do  have  enough

high-quality  training  data,  due  to  the  massive  efforts  of

many annotators, it is usually a great challenge to figure

out how  to  train  an  effective  model  with  limited  re-

sources  and  within  an  acceptable  time.  Assuming  that

somehow  the  model  can  be  properly  trained  (no  matter

how much effort it takes), it is still not easy to have the
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model properly deployed for real applications on the end

users′ side, as the run-time inference has to fit the avail-

able or affordable resources, and the running speed has to

meet the actual needs that can be real-time or even more

than  that.  Therefore,  besides  accuracy,  which  is  usually

the biggest concern in academia, efficiency is another im-

portant issue  and,  in  most  cases,  an  indispensable  de-

mand for real applications.

Though most of the research on using DNNs for visu-

al  recognition  tasks  focuses  on  accuracy,  there  are  still

many encouraging progresses on the efficiency side, espe-

cially in the recent few years.  For example, some survey

papers have been published on efficiency issues for DNNs,

as detailed in the following Section 1.1. However, none of

them pays a major  attention to visual  recognition tasks,

especially lacking coverage of special efforts to efficiently

deal  with visual  data,  which has its  own properties,  and

the  so-called  third  generation  of  efficient  neural  network

models, which are inspired by human brains, i.e., spiking

neural networks (SNNs)[8], are also lacking in discussions.

In practice,  efficient  visual  recognition  has  to  be  a  sys-

tematic solution  that  takes  into  account  not  only  com-

pact/compressed  networks,  efficient  dynamic  inference,

and  hardware  acceleration,  but  also  proper  handling  of

visual data,  which may be of  various types (such as im-

ages, videos, points, and brain-inspired events) with quite

different  properties.  That  might  be  an  important  reason

for the lack of a survey on this topic. Therefore, as far as

we know,  this  survey  provides  the  first  survey  on  effi-

cient visual  recognition  algorithms  with  DNNs,  particu-

larly  brain-inspired  methodologies,  including  event  data

and SNNs. It targets a systematic overview of recent ad-

vances and trends from various aspects, based on our ex-

pertise  and  experiences  with  major  types  of  visual  data,

their various recognition models, network compression al-

gorithms, and efficient inference.

 1.1   Related surveys

There are some related surveys published recently, but

their  scopes  and contents  are  significantly  different  from

ours.

Task-specific DNN models. A few surveys focus on

the progresses  of  specific  tasks,  such  as  3D  data  repres-

entation[9], texture representation[10], generic object detec-

tion[11], brain-inspired event-based vision[12]. Though they

have  conducted  comprehensive  reviews  on  the  existing

models for such specific tasks, which is very valuable for

understanding  the  progresses  on  the  model  development

side,  the  efficiency  issue  is  unfortunately  not  their  focus

and thus lacks sufficient coverage and in-depth analysis.

General  introduction  of  DNNs  and  efficiency

strategies  for  model  compression. Zhang  et  al.[13]

have  a  much  narrower  coverage  which  can  be  good  for

the  detailed  directions  it  focuses  on,  but  its  distinctive

categorization  may  confuse  a  certain  audience.  Deng  et

al.[14] are  comprehensive  and  professional  in  both  DNN

compression  and  hardware  design.  In  contrast  to  the

above surveys, another line of model compression focuses

on only the algorithmic part. For example, Cheng et al.[15]

cover all  major  aspects  of  efficient  DNNs  but  lacks  ad-

vanced  content,  Lebedev  and  Lempitsky[16] focus  mainly

on  convolutional  neural  network  (CNN)-based  models,

and Elsken et al.[17] focus on the specific area of automat-

ic network architecture search (NAS).

Efficient  inference. An  emerging  research  topic  of

dynamic inference has received extensive attention, which

is  dedicated to  obtaining efficient  inference  by executing

data-dependent adaptively dynamic computational graphs

and parameters at the inference stage. Han et al.[18] focus

on the  dynamic  neural  network  comprehensively  in  ana-

log-activated  DNNs  with  three  main  categories:  sample-

wise, spatial-wise,  and  temporal-wise.  However,  this  sur-

vey  lacks  the  analysis  of  brain-inspired  spike-activated

DNNs,  such  as  SNNs[8], which  are  natural  users  of  effi-

cient  dynamic  computational  graphs  and  parameters  at

the inference stage.

 1.2   Contributions and organization

Compared with  other  surveys,  this  survey  mainly  fo-

cuses on the global efficiency of the production line from

the raw visual data to the final recognition results, and it

is expected to help the readers who are interested in the

modern visual recognition tasks and their efficient DNN-

based and  brain-inspired  solutions.  This  survey  contrib-

utes  in  to  following  aspects,  which  are  also  novelties,  to

the best of our knowledge.

1) A systematic  survey  of  existing  advances  on  effi-

cient  visual  recognition  approaches  with  modern  DNNs

and brain-inspired SNNs, which is the first of its kind, as

far as we are aware.

2) The first  summary  of  data-related  issues  for  effi-

cient visual recognition, including data compression, data

selection, and data representation.

3) A new  investigation  of  network  compression  mod-

els  from  the  perspective  of  benefiting  visual  recognition

tasks.

4) A review of acceleration approaches for run-time in-

ference in the scope of efficient visual recognition, partic-

ularly dynamic networks.

5) Insightful  discussions  on  challenges,  opportunities,

and new directions in efficient visual recognition.

For  clarity,  the  pipeline  of  this  survey  is  shown  in

Fig. 1 as the blueprint of the structure of this paper. Spe-

cifically,  in  Section  2,  we  introduce  the  four  main  data

types commonly  concerned  with  visual  recognition  prob-

lems  and  discuss  their  properties  and  their  challenges.

Section  3  reviews  the  efforts  on  three  aspects  before  the

actual recognition part: data compression, data selection,

and data representation. Section 4 briefly introduces and

analyzes the  widely  studied  directions  for  network  com-

pression within the scope of visual recognition. Section 5
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provides a summary of recent progress in efficient model

inference in the testing phase, which is very important for

the  real  deployment  of  DNN-based  and  brain-inspired

visual recognition systems. Finally,  Section 6 outlines all

efforts to generate a clear overall  mapping and discusses

some important uncovered aspects and new research dir-

ections.

 2   Visual recognition: Data types, cha-
llenges, and preliminaries

Visual  recognition  covers  several  data  types  and  a

large number  of  detailed  tasks.  Meanwhile,  the  recogni-

tion  methods  also  include  variant-specific  approaches.

This  section  first  introduces  four  commonly  concerned

visual  data types,  i.e.,  image,  video,  point,  and brain-in-

spired event,  with  their  properties  and  recognition  chal-

lenges. Then the related efforts before and on the recogni-

tion discussed in the paper are also listed as brief prelim-

inaries for the readers.

 2.1   Data types

Images are the most studied visual data, probably due

to their wide existence and relative simplicity of acquisi-

tion,  storage,  transmission,  and  processing.  In  many

cases, they are both efficient and sufficient for sharing in-

formation  visually.  In  contrast,  as  both  the  capturing

devices  and other  related infrastructures  and devices  are

greatly advanced and popularized, videos seem to be the

most informative  media.  They  have  increased  dramatic-

ally and will  probably be even able to replace images in

most scenarios  soon.  Videos  appear  very  natural  to  hu-

mans, so they generally contain huge redundant informa-

tion  in  the  spatio-temporal  domain.  Points  are  usually

sparse compared with images, but one dimension of them

is  higher  and  may  have  very  large  ranges.  There  are

mainly  two  types  of  visual  point  data:  point  clouds  and

2D/3D skeletons. The most valuable advantage of points

is that they contain geometry information, so the shape is

the  main  information  for  recognition  tasks.  Events  or

event  streams  are  relatively  special  since  brain-inspired

dynamic vision sensor (DVS) cameras appeared late[19, 20].

To record  only  valid  vision  information  and  avoid  mo-

tion blur, DVS encodes the time, location, and polarity of

the  brightness  changes  for  each  pixel  at  an  extremely

high event rate (1 M to 1 G events per second), just as in

the  biological  neural  system.  The  spatial  sparseness  and

high  temporal  resolution  of  event  streams  have  unique

advantages in low latency and efficiency.

 2.2   Challenges

It  is  clear  that  different  data  types  have  different

characteristics,  e.g.,  images:  spatial  information;  videos:

abundant  informative  and  spatio-temporal  information;

points: spatial sparse, high dimension, and shape informa-

tion; event streams: spatial sparse and spatio-temporal in-

formation.  Thus,  the  challenges  they  must  deal  with  in

recognition tasks should also be discussed.
 2.2.1   Images: Larger scale and deeper understanding

There are two clear trends in image-based recognition

with DNNs. The first is that the scale of processed data

increases quickly. As shown in Fig. 2, there is a clear his-

tory and  trend  that  the  benchmark  dataset  for  develop-

ing  new  models  has  been  shifting  to  larger  scales  and

wilder  contents  (from  MNIST[1] to  CIFAR-10/CIFAR-

100[21],  and  ImageNet[22]).  With  larger  and  more  diverse

training data, the trained DNN models can do more chal-

lenging recognition tasks, but it also brings greater chal-

lenges in efficient computation. The second is that the re-

cognition is going toward deeper understanding and rich-

er results. Traditionally, classification or categorization is

most  commonly  concerned,  but  recently  a  lot  of  efforts

and  progresses  have  gone  far  beyond  that,  spreading  to

many tasks including detection, attribute extraction, key-

point/pose estimation, semantic segmentation, image cap-

tioning, visual question answering, and even to the visual

genome  extraction,  as  shown  in Fig. 3.  Such  a  trend

greatly extends the research area and has attracted wider

and stronger interests from both academia and industry.

While  new  performance  records  are  made  on  different

tasks  in  a  much  shorter  time,  the  demand  for  exploring

proper  acceleration  approaches  has  become  greater  than

ever, especially from the industry side, which is eager to

apply the latest models to various real scenarios.
 2.2.2   Videos: Redundant spatio-temporal informa-

tion

Information  redundant  is  the  natural  challenge  of

videos compared to images. In contrast, some of the visu-

al  challenges  for  images,  such  as  occlusions  and  static

background  clutters,  may  get  alleviated  in  videos  when

the motion information in the videos is properly treated.

However,  videos  have  their  own particular  challenges.  A

 

Fig. 1     Pipeline of this survey
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major one is that the desired information is unevenly dis-

tributed  in  both  spatial  and  temporal  dimensions,  as

shown in Fig. 4.  How to  extract  such  sparse  information

from a large amount of data without getting confused is a

great  challenge.  Meanwhile,  the  bigger  data  size  (com-

pared  to  images)  and,  in  many  cases,  the  need  for  real-

time or even faster processing have made the efficiency is-

sue even more important. Note that most of the new re-

cognition tasks for images also exist for videos, which re-

quire extra effort for specific strategies on acceleration.

 2.2.3   Points: Geometry and high dimension

Though  not  as  popular  as  images  and  videos,  point

data  also  play  an  important  role  in  visual  recognition.

Except for the point clouds obtained from radar or depth

cameras  (depth  images  can  be  easily  turned  into  point

clouds) for 3D object recognition[23, 24], and 2D/3D skelet-

 

Fig. 2     Scale of images for recognition has increased greatly.
 

 

Fig. 3     Expected image recognition results are becoming deeper and richer, going far beyond simple classification.
 

 

Fig. 4     Video recognition tasks usually target extracting few high-level semantics (e.g., category) from a large number of video frames,
which are likely to have much redundant/irrelevant information.
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ons  used  for  action  recognition[25–29],  3D  CAD  models

have  also  been  used  for  visual  recognition,  such  as  the

ShapeNet dataset[30]. In a general sense, they can also be

regarded as point data, as the CAD polygonal models can

be  turned  into  voxels  and  point  clouds  when  needed.

Therefore,  they are also included in the data samples  as

shown in Fig. 5. Since the geometry information in points

is  usually  very  informative  for  recognition,  maintaining

such 3D  geometry  information  while  improving  the  effi-

ciency of models is critical and is not easy, as the dimen-

sional range might be very large.
 2.2.4   Event streams: Spatial sparse and very high-

rate temporal information

Although  DVS  cameras  have  become  commercially

available only since 2008, they pose a new paradigm shift

by using sparse  and asynchronous events  (events  can be

seen  as  binary  signals  with  position)  to  represent  visual

information[12]. Unlike  conventional  cameras,  which  pro-

duce  fixed  low-rate  synchronized  frames,  DVS  cameras

exhibit  advantages  mainly  in  three  aspects[31].  Firstly,

DVS  cameras  require  fewer  resources,  as  the  events  are

sparse  and  only  triggered  when  the  intensity  changes.

Secondly, the  μs  temporal  resolution  of  DVS  can  avoid

motion blur by producing high-rate events. Thirdly, DVS

cameras have a high dynamic range (140 dB versus 60 dB

of conventional cameras) for various challenging illumina-

tion  conditions.  These  characteristics  bring  advantages

over conventional cameras when orienting to visual tasks

that  require  low  latency,  low  power  consumption,  and

stability for variant illumination, which have been used in

high-speed object tracking[31], autonomous driving[32], sim-

ultaneous  localization  and  mapping  (SLAM)[33],  low-

latency  interaction[34],  etc.  Event  streams  only  have

event-based  data  (0  or  1),  so  they  are  similar  to  the

points data at the level of each sampling point, as shown

in Fig. 6.  The  most  critical  trait  of  events  is  that  their

high  temporal  resolution  acts  as  the  main  role,  which  is

nonexistent  in  traditional  points  and  other  data  types.

Therefore, how  to  effectively  and  efficiently  extract  in-

formation  from sparse,  non-uniform,  and high-rate  event

streams is a great challenge.

 2.3   Preliminaries

In view of  the  variety  of  methods  that  will  be  intro-

duced and discussed in the following content of this sur-

vey,  it  is  necessary  to  make  brief  preliminaries  to  show

most of the representative methods with their character-

istics.  Hence, Table  1 is  designed  to  give  a  clear  view

from  data  processing  (Section  3)  to  real  deployment

(Section 5), and the location of each method is also given.

Please note  that  some  trivial  practices  cannot  be  exhib-

ited here due to space limitations.

 3   Before recognition: Efforts on the
data

Visual  data  have  their  own  properties,  which  can  be

made use  of  when  efficient  recognition  models  are  de-

signed.  Many  efforts  can  be  made  to  change/map  the

 

Fig. 5     Examples of point data, in its general sense
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Table 1    Preliminaries of the efficient methods mentioned in this survey

Task Method Characteristic Location

Efforts on
data

Data
compression

Images Scale-invariant feature transform
(SIFT)[35], discrete cosine transform
(DCT) domain[36], Wavelet transform[37]

Greatly optimized and easy to be used
directly

Section 3.1.1

Encoder-decoder networks[38–41] Ensure both the relevant information and
speed

Section 3.1.1

Videos H.265[42] and H.264[43] Can not be optimized end-to-end Section 3.1.2

Coding by CNN[44], Kalman filtering
network[45], frames reconstructed by
CNN+long short term memory (LSTM)[46]

Must restore the compressed data to a raw
video format and bring lots of extra cost

Section 3.1.2

Deep feature flow[47], direct training[48] End-to-end and real-time process Section 3.1.2

Points Auto-encoder-based geometry codec[49–51] Aiming at geometric characteristics Section 3.1.3

Events Transforming the events as groups with
multiple styles[52–54]

Necessary to yield signal-to-noise ratio Section 3.1.4

Data
selection

Images Subsampling by active learning[55, 56],
gradient method[57], or clustering[58]

Noises and redundant samples can be
reduced to prevent overfitting

Section 3.2.1

Videos Random keyframes selection[59–62] Minimum computation cost but missing
information

Section 3.2.2

Keyframes prediction by reinforcement
learning[63–66], adaptive pooling[67],
memory-augmented LSTM (MALSTM)[68]

Select high-quality keyframes and avoid
to process redundant frames

Section 3.2.2

Points Sampling with modeling attention[69–71] Superiority over traditional or neural
methods

Section 3.2.3

Events Event stream denoising[72–74] Mostly denoised when generated Section 3.2.4

Dynamically selection with attention[52] Scarce and promising Section 3.2.4

Data
representa-
tion

Images Pre-trained model on other datasets[75–78] Make the entire training process efficient Section 3.3.1

Videos I3D[60], 2DCNN + 1D temporal
convolution[79]

Frames representation and temporal
correlations

Section 3.3.2

Dynamic image[80, 81] Turn a whole video into one single
informative image

Section 3.3.2

Points Align the coordinates dimension[82, 83] One dimension is reduced Section 3.3.3

Events Frame-based[34, 52], graph-based[53], point-
based[54]

There are alternative representations Section 3.3.4

 

Fig. 6     An example of DVS-captured dataset named DVS gesture: (a) Spike pattern recorded by DVS; (b) Slices of spike events at
different timesteps. The blue and red colors denote the On and Off channels, respectively.
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data to a more compact form before applying the recogni-

tion models. These efforts may be grouped into three cat-

egories  based  on  their  functionalities:  data  compression

(reducing redundancy and irrelevance), data selection (re-

ducing  irrelevance),  and  data  representation  (increasing

compactness). In  this  section,  we overview and summar-

ize existing advances in all three aspects and organize the

contents for each of them according to their related data

types. In doing so, their motivations and strategies can be

easily understood and searched for.

 3.1   Data compression

As datasets and networks grow in size, large memory

consumption  and  high  computational  complexity  have

made  the  training  of  deep  neural  networks  a  challenge

and hindered  the  popularity  of  AI.  Specifically,  for  deep

learning,  there  are  four  types  of  consumption  (as  shown

in Fig. 7) due to large data sets: 1) Storage consumption,

most of the commonly used datasets are now hundreds of

gigabytes in size, the situation of which puts a lot of pres-

sure  on storage  hardware;  2)  Transmission consumption,

the  transmission  of  large  amounts  of  image/video  data

can  be  a  challenge  to  network  bandwidth;  3)  Memory

consumption, when training a network, usually the larger

the batch size (the amount of data fed into the network

each  time)  is,  the  better  the  performance  is,  and thus  a

larger memory is always desired; 4) Computing consump-

tion,  DNNs  usually  need  to  rely  on  powerful  computing

resources  (e.g.,  a  GPU),  especially  when  large  datasets

have  to  be  handled,  and  such  a  demand  has  a  rising

trend. Increasing data size may lead to better recognition

performance, but it can also increase all four types of con-

sumption.
 3.1.1   Image compression

Image  compression  and  image  recognition  can  be

linked together to save the consumption on image decom-

pression, which has been shown to be more efficient and,

in  many  cases,  can  be  made  more  effective.  A  general

framework  for  decompression-free  joint  compression  and

recognition is  shown in Fig. 8,  which illustrates  both the

training and test/inference phases. While the recognition

module  in  the  framework  is  generally  DNN-based  in  the

scope  of  this  survey,  the  compression  module  can  be

either hand-crafted  or  learning-based.  Though  many  re-

searchers  may  expect  a  purely  learning-based  (DNN-

based) framework, the current reality is that the sophist-

icated  hand-crafted  image  compression  models  are  still

Table 1 (continued) Preliminaries of the efficient methods mentioned in this survey

Task Method Characteristic Location

Network
compression

Compact
networks

CNNs Light receptive field[84, 85], topology[86, 87],
or block[88, 89]

Some compact designs become standard
neural structure such as bottleneck and
depthwise convolution

Section 4.1.1

RNNs Simpler units[90, 91] or architectures[92, 93] Hard to implement, limited compression
ratio

Section 4.1.2

NAS Reinforcement learning[94], evolutionary
algorithm[95], Bayesian optimization[96],
gradient-based[97]

Can surpass human designs in both
accuracy and efficiency, promising but
still needs further studies

Section 4.1.3

Tensor
decomposi-
tion

Tucker CP-CNN[98], Tucker-CNN[99], BTD-
LSTM[100]

Curse of dimensionality and complex
computation

Section 4-B1

Tensor
network

TT-CNN[101–103], TT-RNN[104, 105], TC-
RNN[106], HT-RNN[107, 108]

High compression ratio, in situ training,
hard to avoid accuracy loss

Section 4.2.2

Data
quantization

Projection WAGE[109], full 8-bit training[110] Project floats to distributed integers,
mainstream way

Section 4.3.1

Optimization XNOR-NET[111], AutoQ[112] More attention to the whole network Section 4.3.1

Pruning Search Low-precision estimation[113, 114], negative
activation prediction[115]

Vast computing time, extra indices of
pruned weights or neurons

Section 4.4.1

Optimization Structured sparsity[116], ThiNet[117],
SSR[118]

Adaptive to large DNNs, structured
pruning

Section 4.4.1

Joint compression Decompose + quantize[119, 120], quantize +
prune[121, 122]

Extremely high compression ratio,
maintaining accuracy is critical

Section 4.5.2

Efficient
inference

Fast
inference

Data-aware Recurrent residual module[123], efficient
inference engine[124], scale-time lattice[125]

Efforts on reducing the computation on
the redundant data are important for
inference

Section 5.5.1

Network-
centric

Prune whole blocks[126], dynamic
compression ratio[127], integrate resource
and input[128]

General network-centric compression for
fast inference should be evaluated by the
proposed key property indicator (KPI)

Section 5.1.2

Dynamic
inference

Analog-basedDynamic structure[129–131], dynamic
parameters[132–135]

Dynamic networks adapt their structures
or parameters to different inputs

Section 5.2.1

Brain-
inspired

Spiking neural networks[18, 52, 136] Has the spatial-wise, temporal-wise and
sample-wise dynamic

Section 5.2.2
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more popular. It is not easy to invent a new DNN-based

compression model  that  outperforms  the  greatly  optim-

ized  hand-crafted  models.  Researchers  who  know  much

more about recognition than compression usually tend to

keep the compression module as is and put more effort on

how to  make their  recognition modules  better  to  receive

the compressed data.

1.77×

Hand-crafted  lossy  compression. Although  sever-

al more complicated compression standards have been de-

veloped, including  JPEG,  WebP,  and  BPG,  JPEG  re-

mains the most widely used for lossy image compression.

Recently,  many  of  interesting  works  [35–37, 137–139]

have been developed to learn the feature distribution dir-

ectly  from  compressed  data.  Wu  et  al.[35] formulate  the

popular  SIFT  feature  extraction  in  JPEG′s discrete  co-

sine transform  (DCT)  domain,  which  indicates  that  ef-

fective visual features can be directly extracted from the

compressed data. Ehrlich and Davis[137] introduce a gener-

al method to learn a residual network in the JPEG trans-

form domain.  Liu et  al.[138] combine compression and re-

cognition based on JPEG transformation, and it has been

proved  by  experiments  that  it  could  achieve  3.5  com-

pression rate improvement, while its consumption is only

30% of  the conventional  JPEG without classification ac-

curacy degradation. In [36],  it  is  proposed to learn DNN

parameters  directly  from  the  DCT  coefficient  of  JPEG

compression, which is  faster than ResNet-50 at the

same accuracy. Javed et al.[139] propose a method for re-

viewing  document  images,  which  is  directly  based  on

compressed  document  data.  In  [37],  the  Haar  wavelet

transform  is  utilized  to  compress  and  decompress  high-

resolution iris  images,  enabling  fast  and accurate  iris  re-

cognition.

x

x̂

Learning based lossy compression. Although tradi-

tional  compression  algorithms  are  carefully  constructed,

there is  still  room  for  improvement  in  compression  effi-

ciency. For  example,  the  conversions  are  fixed  and  can-

not  be  adaptive  to  fit  different  inputs.  In  addition,  pre-

defined  quantization  implementations  can  result  in  data

redundancy. Moreover, limited by manual design, the al-

gorithms  are  usually  hard  to  be  optimized  for  a  specific

metric, even  if  the  metric  is  a  perfect  assessment  of  im-

age reconstruction quality. Therefore, more attention has

been paid  to  learning  based  compression  methods  in  re-

cent years. Different from traditional methods, in a learn-

ing-based approach,  the  parameters  of  the  neural  net-

work  are  automatically  learned  from  a  large  amount  of

data by definite optimization objectives to deal with spe-

cific situations.  A  general  pipeline  is  that  the  input  im-

age is  firstly  processed  by  the  analysis  network  (en-

coder)  to  generate  compressed  feature-maps,  which  are

then converted into  a  set  of  bit-streams by quantization

and lossless  arithmetic  coding.  After  that,  they  are  used

to  generate  a  recovered  image  by a  re-factoring  net-

 

Fig. 7     Major types of consumption in deep learning
 

 

Fig. 8     A general framework for joint image compression and recognition. The upper row in black shows the inference (test) phase,
while the whole figure (including the blue parts) describes the training phase. Note that the compression module has to be optimized to
minimize both the reconstruction loss and the classification loss, different from the recognition module, which is only optimized for the
latter one.
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work (decoder), and the entire network is trained end-to-

end until convergence. On the basis of this pipeline, many

excellent image compression methods[38–41] have been pro-

posed.

Joint  compression  and  recognition.  Stimulated

by the tremendous memory reduction caused by compres-

sion  algorithms,  some  methods[140–143] combine compres-

sion with  recognition  to  improve  effectiveness  and  effi-

ciency.  Specifically,  in  order  to  save  the  decompression

consumption,  a  well-learned  analysis  network  could  be

directly cascaded with a downstream recognition network,

as  shown  in Fig. 9.  Such  a  joint  optimization  not  only

tries to retain as much classification-relevant information

as  possible  during  compression,  but  also  accelerates  the

speed  of  inference  and  optimizes  the  consumption  of

training compared  to  models  directly  trained  on  the  in-

put images. Detailed models can be found in [140–143].
 3.1.2   Video compression

70

As the most common media, videos were said to take

more  than  of  all  Internet  traffic,  according  to  the

white paper of “Cisco Visual Networking Index: Forecast

and Methodology, 2016–2021”, and now the percentage is

probably even greater.  In  the  past  few years,  many rep-

resentative  advances[144–148] have  been  made  in  video-

based  recognition.  These  methods,  however,  all  focus  on

designing  a  special  neural  network  for  analyzing  frames,

ignoring the fact that videos are in a compressed format

during  transmission  and  storage.  Therefore,  extra  time

and storage are needed for decompression before analysis.

In  order  to  improve  the  effectiveness  and  efficiency  of

video recognition,  it  is  necessary  to  apply  efficient  com-

pression,  and  decompression  beforehand  or  directly  use

compressed data for recognition.

Compression  algorithms.  As  the  most  popular

video compression algorithms, some highly efficient com-

pression  standards  such  as  HEVC(H.265)[42] and

AVC(H.264)[43] have  been  used  for  a  long  time.  Taking

the H.264 algorithm as an example, three kinds of frames

are  defined  in  the  encoding  protocol.  The  fully  encoded

frame is called I-frame (keyframe), and the frame contain-

ing only the difference partial encoding generated by the

I-frame  is  called  P-frame.  The  highly  compressed  frame

obtained using both previous and forward frames for data

reference is  called  B-frame.  There  are  two  core  al-

gorithms used by H.264: intra-frame and inter-frame com-

pression. Among them, intra-frame compression is an al-

gorithm for generating I-frames, and inter-frame compres-

sion  can  generate  highly  compressed  B-frames  and  P-

frames.

To  achieve  inter-frame  compression,  H.264  relies  on

many hand-crafted modules,  such as the DCT transform

module, block-based motion estimation module,  and mo-

tion  compensation  module.  Although  these  modules  are

well designed, they are not optimized end-to-end.

Recently, several DNN-based video compression meth-

ods  have  been  proposed  for  intra  prediction  &  residual

coding[44],  post-processing  for  predicted  frames[45],  inter-

frame interpolation[46], and full network-based video com-

pression[149, 150]. Chen et al.[44] designed two convolutional

neural networks to encode predicted images and residual

images, respectively,  and  the  reliable  experimental  res-

ults  prove  that  deep  neural  networks  can  achieve  better

results than hand-crafted modules. Lu et al.[45] model the

video artifact  reduction  task  as  a  Kalman  filtering  pro-

cedure and  restore  decoded  frames  through  a  deep  Kal-

man filtering network. By constructing a recursive filter-

ing  scheme  based  on  the  Kalman  model,  more  accurate

time information can be used to obtain better reconstruc-

tion  quality.  Wu  et  al.[46] regard  the  video  compression

challenge  as  a  repeated  image  interpolation  challenge  so

that the remaining frames can be reconstructed from the

keyframes through  an  interpolation  reconstruction  net-

work. In addition to this, their algorithm provides a com-

pressible  code  to  disambiguate  different  interpolations

and encode keyframes as faithfully as  possible.  However,

although the  interpolation  network  is  end-to-end  optim-

ized, motion information still  requires additional  calcula-

tions, which depend in part on other algorithms. In [149],

an end-to-end video compression deep model that jointly

optimizes  all  the  components  for  video  compression  has

been  proposed.  Specifically,  the  optical  flow  estimation

network  is  used  to  obtain  motion  information,  and  the

compressed network is used to compress both motion in-

formation and residuals. These two different networks are

jointly learned  through  end-to-end  optimization.  Habibi-

an  et  al.[150] present  a  depth  generation  model  for  lossy

video  compression,  which consists  of  a  three-dimensional

automatic  encoder  with  discrete  potential  space  and  an

autoregressive  prior  for  entropy  coding.  The  self-encoder

and  the  transcendental  encoder  are  trained  jointly  to

 

Fig. 9     The input image is represented as a series of compressed feature maps, and the subsequent recognition network learns
classification information from these feature maps.
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achieve the best rate-distortion curve. This method is su-

perior  to  the  latest  learning  video  compression  network

based on motion compensation or interpolation.  In addi-

tion,  three  extension  directions  are  proposed:  semantic,

adaptive,  and  multimodal  compression.  These  directions

mentioned  above  will  undoubtedly  lead  to  new  video

compression  applications,  which  may  be  realized  by

DNNs but not classical codecs.

Utilizing  compressed  data. Due  to  the  time  re-

dundancy and the enormous size of data streams, there is

a large amount of redundant or irrelevant information in

the video data, which makes learning neural networks dif-

ficult and  slow.  Therefore,  most  video  recognition  al-

gorithms  use  a  video  compression  algorithm  such  as

H.264 as pre-processing, which can reduce superfluous in-

formation by two orders of magnitude. In recognition, the

mainstream method is to restore the compressed data to

a  raw  video  format  and  then  handle  each  frame  as  an

RGB image.  Considering that  neural  networks  can learn

features  from  data,  the  process  of  decoding  compressed

data may be skipped.

Zhu et al.[47] present a fast and accurate video recogni-

tion  framework,  namely  deep  feature  flow.  It  extracts

depth features on keyframes (I-frames) through a convo-

lutional network and maps them to other frames for aux-

iliary  prediction  through  the  flow  field.  In  this  process,

significant  efficiency  gains  can  be  achieved  by  reducing

the  amount  of  computation.  In  [48],  a  network  trained

directly  on  compressed  videos  is  proposed,  as  shown  in

Fig. 10. The benefits of this design are three-fold. Firstly,

the  compressed  video  representation  removes  large

amounts  of  redundant  information  and  preserves  useful

motion vectors.  Secondly,  compressed  video  representa-

tions are more convenient for exploring video correlation

than individual images. Finally, such an approach is more

efficient  because  only  informative  signals  are  processed

rather than near-duplicates, and the efficiency can also be

improved by skipping the steps of decoding the video as

the video is stored in a compressed version.

 
 

 
Fig. 10     A recently proposed video recognition network, which
was directly trained on compressed videos[48]

In  general,  video  compression  technology  has  already

played a significant role in video-based recognition tasks,

no matter  whether  it  is  about  a  traditional  video  com-

pression standard or a network-based learning algorithm.

In most user-oriented application scenarios, such as pub-

lic  security  monitoring  and  real-time  scene  replacement,

real-time processing is usually a must, and stability of the

algorithm  is  a  desire.  In  these  cases,  video  compression

has been  shown  to  have  great  importance  and  applica-

tion potential.
 3.1.3   Point cloud compression

Different from image/video data, point cloud contains

more  complex  structures,  which  makes  the  compression

much more difficult. The most efficient way of compress-

ing the point cloud is to utilize its geometric characterist-

ics.  Quach  et  al.[151] present a  novel  data-driven  geo-

metry  compression  method  for  static  point  clouds  based

on learned convolutional transforms and uniform quantiz-

ation. The  first  auto-encoder-based  geometry  compres-

sion  codec  is  proposed  in  [49],  where  the  point  cloud  is

treated as input rather than voxel grids or collections of

images. Inspired by the great success of variational auto-

encoders (VAE) in image/video compression, Wang et al.[50]

present  a  DNN  based  end-to-end  point  cloud  geometry

compression framework,  in  which  the  point  cloud  geo-

metry is first voxelized, scaled, and partitioned into non-

overlapped 3D cubes which is then fed into a 3D convolu-

tional  networks  for  generating  the  latent  representation.

Furthermore, Yang et al.[51] present a novel and interest-

ing end-to-end deep auto-encoder to achieve the state-of-

the-art performance for supervised learning tasks on point

clouds. In this work, a graph-based enhancement is firstly

enforced (in the encoder) to promote local structures and

form a low dimensional  codeword,  which can be used to

deform/fold a canonical 2D grid and then reconstruct the

3D  object  surface  of  the  input  point  cloud.  The  learned

encoder  can  be  treated  as  a  compression  module,  which

has been proved to have great generalization abilities: ex-

periments  on  major  datasets  show  that  the  folding  can

achieve higher classification accuracy than other unsuper-

vised  methods  with  significantly  fewer  parameters  (7%

parameters of a decoder with fully-connected neural net-

works). The  research  on  learning  point  cloud  compres-

sion has just started and was tested on recognition tasks,

and this  new  topic  remains  largely  unexplored.  Encour-

aged by the successes of these pioneering works, more and

bigger advances  can  be  expected  in  the  coming  near  fu-

ture.
 3.1.4   Event stream compression

Data  compression  is  an  optional  operation  for  the

above  three  kinds  of  data,  while  it  is  necessary  for  the

event  stream.  Unlike  image/video/point  data,  the  event

stream contains very abundant temporal information be-

cause of the μs level temporal resolution, which makes the

execution of data compression work on the temporal axis.

The number  of  events  processed  simultaneously  determ-
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ines  the  latency  of  task  output,  and  plays  an  essential

role  in  the  way  events  are  processed[12].  One  method  is

handled  event-by-event,  and  the  other  method  operates

on groups of events where several events are processed to-

gether. To yield sufficient signal-to-noise ratios (SNR) for

the task accuracy, compressing the events at the tempor-

al axis as groups is the most common method. In the field

of  event-based  vision,  data  compression  is  equivalent  to

transforming the event streams into alternative represent-

ations,  such  as  frame-based  representation  with  CNN[34]

or  spiking  neural  network  (SNN)[52], graph-based  repres-

entation  with  graph-based  convolutional  network

(GCN)[53],  point-based  representation  with  PointNet[54],

etc. We will describe the specific compression (representa-

tion) method in Section 3.3.4.

 3.2   Data selection

Selecting only relevant and informative parts from the

raw data for recognition can significantly reduce the com-

putational cost and may also lead to a better recognition

accuracy  (as  disturbance  by  irrelevant  information/noise

is reduced). Due to the great differences between the data

types in terms of data structure and information charac-

teristics,  the research focus and the methods applied are

also quite different. For image data, sample selection for

training  is  the  main  concern.  In  the  case  of  video  data,

frame  selection  inside  each  video  (for  both  training  and

testing) matters  most,  as  continuous  video  frames  con-

tain a lot of redundant information. Similarly, point data

also  have  much  redundancy,  and  subset  sampling  is  the

main-stream. By contrast, the selection of events focuses

on denoising because of the unique way of visual informa-

tion  acquisition.  Details  on  the  motivations,  strategies,

and methods for them are given below.
 3.2.1   Image data

Currently,  DNNs  are  generally  data-hungry,  namely,

the  more  labeled  training  data,  the  better  performance

they  can  achieve.  However,  more  data  also  means  more

costs, including  the  effort  for  data  acquisition  and  la-

beling  and  all  the  consumption  (storage,  transmission,

memory,  and  computation)  for  learning.  Given  a  fixed

amount of training data, directly scaling up the computa-

tion (by increasing the number of parameters and/or do-

ing  more  iterations)  usually  has  a  performance  upper

bound, and  more  computation  after  that  goes  more  to-

wards  overfitting.  Such  overfitting  is  believed  to  be  the

result of the inherent noise (or certain redundant samples

in a softer tone) in the training data[55]. Therefore, redu-

cing such noise or redundant samples not only saves con-

sumption for model learning, but also has the potential to

even boost the model′s performance.

Subsampling the training data has recently been stud-

ied  under  such  motivation,  and  it  has  already  shown

quite promising results in the past couple of years. So far,

such research has only been concerned with image recog-

nition, and  subsampling  can  be  regarded  as  data  selec-

tion;  we  introduce  them  here.  In  a  more  general  sense,

these approaches shall also be applicable or at least have

the potential to be made applicable for other data types.

Since DNNs prefer large data, naive random subsampling

likely ends up with inferior performance. Therefore, some

efforts  have  focused  on  how  to  get  subsets  better  than

randomly  sampled  ones  or  revealing  the  inequality  of

training samples.  Core-set  selection[56] and representative

subset  finding[57] are  good  examples  in  this  direction.

However, doing better than random subsampling does not

guarantee  any  drop  in  performance.  More  recent  works

improve these  by  identifying  redundant  samples  for  re-

moving them without sacrificing the recognition perform-

ance. Clustering in the DNN feature space[58] shows a suc-

cessful  removal  of  10%  semantically  redundant  samples

from CIFAR-10  and  ImageNet  datasets,  while  a  slightly

later work on “select  via  proxy” is  able  to  push this  re-

duction  to  40%  on  CIFAR-10  with  no  performance  loss

with the  help  of  three  uncertainty metrics.  The very re-

cent  work  on  active  dataset  subsampling  (ADS)[55]

presents even more encouraging results: Removing 50% of

CIFAR-10 training  samples  yet  performing  slightly  bet-

ter than training on the full dataset. Similarly, on the Im-

ageNet dataset, they are able to outperform training with

all data by using only 80% of it. As shown in [55], the ad-

vantages  of  subsampling are  not  limited to  its  ability  to

maintain or even improve recognition performance whilst

saving all  learning consumption. It may be applicable to

many tasks and various data size settings. An important

and highly valuable problem is how to do that with noisy

or weak labels, as collecting high-quality labels is usually

a great challenge.
 3.2.2   Video data

Since  the  huge  redundant  information  in  the  spatio-

temporal domain is prime for videos, instead of perform-

ing expensive processing on every frame to approach tar-

get tasks, such as object detection and action recognition,

selecting keyframes and performing the major  processing

sparsely is a more efficient choice (see Fig. 11 for the mo-

tivation). However,  how  to  efficiently  select  proper  key-

frames remains an open issue. Since relevant and discrim-

inative  video  information  could  be  unequally  located  in

its temporal  domain,  obtaining  a  few  high-quality  key-

frames without losing that information could cost signific-

ant  extra  computation.  How  to  do  that  efficiently  is  an

important issue for video-based recognition tasks.

Generally,  existing  approaches  to  selecting  keyframes

could be divided into two types. The first is to randomly

pick up  keyframes  at  predefined  intervals.  It  is  com-

monly applied in video recognition tasks, which may also

include  temporal  boundary  detection[59–62].  Although this

method takes the minimum computation cost, picking up

frames by a large interval may miss critical  information,

while  using  a  small  interval  could  increase  the  post  hoc

computation costs.  Alternatively,  in  another  type  of  ap-
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proach,  the  information  from  processed  frames  can  be

used  to  predict  the  possible  keyframes  in  the  future,

which could avoid processing many redundant frames and

select  high-quality  keyframes[63–65, 67, 68].  The  sampling

and early stopping can be learned by an end-to-end deep

reinforcement learning model, as studied in [66].
 3.2.3   Point data

Generally,  directly  working on all  the  point  data can

be heavy and expensive for all  the types of consumption

mentioned earlier. On the contrary, the shape or skeleton

is the main object for recognition tasks. Usually, the same

shape  may  still  be  recognizable  with  only  a  subset  of

points  collected  from the  sensors.  In  many  cases,  only  a

small  portion  of  the  data  is  relevant  for  the  recognition

task.  Therefore,  recently  quite  a  few  researchers  have

tried  to  embed  data  selection  components/concepts  in

their DNN models for handling point data to achieve bet-

ter performance in terms of effectiveness and efficiency.

The  selection  of  point  data  is  usually  made  by

sampling  or  modeling  attention.  A  simple  strategy  for

sampling  is  called  furthest  point  sampling  (FPS),  which

can be done efficiently[152].  However,  FPS has significant

weaknesses  of  being  task-dependent,  low-level  (can  not

handle semantically high-level representations),  permuta-

tion-variant,  and  sensitive  to  outliers.  Recently,  quite  a

few works  have  explored  new sampling  models  for  point

clouds  with  the  help  of  DNNs.  Within  them,  the  work

“Learning  to  Sample”[153] introduces  a  neural  network

termed S-NET, which takes a point cloud and produces a

smaller  one  that  is  optimized  for  a  particular  task.  The

simplified point cloud is not guaranteed to be a subset of

the original point cloud, but a post-processing step is ad-

opted to match it to a subset of the original point set. S-

NET has a space consumption linearly proportional to its

output point set size and offers a trade-off between space

and inference time. As an example mentioned in the pa-

per, cascading S-NET that samples a point cloud of 1 024

to 16 points with PointNet[154] reduces the inference time

by over 90% compared to running PointNet on the com-

plete  point  cloud,  with  only  a  5% increase  in  space  and

4%  decrease  in  recognition  accuracy  (much  better  than

FPS and random sampling). There are also several other

works  on  attention  modeling,  such  as  the  attentional

PointNet[70] for 3D-object  detection and the point  atten-

tion  network[71] for  gesture  recognition,  etc.  Due  to  the

space  limitation,  only  a  brief  description  is  provided  in

this  paper.  Since  both  the  research  and  applications  on

point  data  are  now  growing  very  rapidly,  it  is  expected

that there will be an explosive growth of interest and ef-

forts in designing more efficient and effective recognition

models.
 3.2.4   Event data

In contrast to the motivations of data selection in the

above  three  kinds  of  data,  one  of  the  direct  motivations

for event selection is that there is too much noise in the

event stream. All vision sensors are noisy because of the

inherent  shot  noise  in  photons  and  transistor  circuit

noise, and this situation is especially true for DVS camer-

as.  Hence,  denoising  is  essential  to  work  for  event

streams. The  key  point  of  the  noise  cancellation  tech-

nique  is  identifying  whether  an  event  is  a  noise.  Some

typical methods  include  exploiting  the  motion  consist-

ency in the event stream[53],  modeling the randomness of

noise[72, 73], recovering  events  that  are  mistakenly  classi-

fied  as  noise[74],  etc.  Due  to  the  importance  of  event

stream denoising, most event-based datasets are denoised

when they are generated, and users generally do not need

to consider noise when processing event data.

Event streams also have huge redundancies in the spa-

tio-temporal domain,  similar  to  the  video  data.  Obvi-

ously,  the  event  streams  are  sparse  and  non-uniform,

which  is  caused  by  the  unique  dynamic  vision  sense

paradigm and irregular dynamic scene changes. A recent

work  termed  temporal-wise  attention  (TA)-SNN  verifies

this  point[52],  as  shown in Fig. 12. With the help of  tem-

poral-wise  attention,  TA-SNN  uses  binary  attention

scores to mask parts of input event streams. Experiment-

al  results  demonstrate  that  TA-SNN  can  get  similar  or

even  better  performance  with  only  half  of  the  input

events. Therefore, carefully reducing such selected events

shall  not  only  be  efficient  for  the  event-based  task,  but

also have great potential to improve the model′s perform-

ance.  How  to  effectively  and  efficiently  deal  with  the

event  streams  by  exploiting  the  sparse  and  non-uniform

characteristics  is  of  great  value  and  has  various  real-life

applications.  The  current  exploration  in  this  direction  is

scarce, and we think that data selection for event data is

a promising area to investigate.

 3.3   Data representation

 3.3.1   Image data
Image representation for recognition in the DNN era is

usually part of the representation learning network, not a

separate  pre-recognition  operation.  However,  when  there

is not enough training data (i.e., a small training set) or

only a small part of the training data gets labeled (i.e., a

semi-supervised  setting),  it  can  be  an  effective  and  also

 

 
Fig. 11     Video keyframes which are informative for recognition
could be sparse and unequally located.
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efficient choice to borrow image representation from some

suitable pre-trained model (trained on some source data)

or from a model trained under an unsupervised setting on

the target data before the main task-related training with

the limited labeled data.

There are some representative references for these two

cases.  For  the  first  one  about  borrowing  representation

from pre-trained models, a typical scenario is medical im-

age analysis or recognition, where people have to face the

reality of  insufficient training data for many reasons,  in-

cluding  the  privacy  issue.  A  highly  cited  work  in  the

field[75] discussed  full  training  versus  fine-tuning  (with

pre-trained  models)  for  medical  imaging  applications  in

three specialties (radiology, cardiology, and gastroentero-

logy) on three vision tasks, including classification, detec-

tion,  and  segmentation  with  extensive  experiments,  and

concluded that  the  use  of  a  pre-trained  CNN  with  ad-

equate  fine-tuning  outperformed  or,  in  the  worst  case,

performed as  well  as  a  CNN trained from scratch,  while

at the  same time enjoying  the  benefit  of  being  more  ro-

bust to the size of training sets (with the help of a layer-

wise fine-tuning  scheme).  A  similar  conclusion  was  re-

searched  in  a  study  on  the  effectiveness  of  using  pre-

trained CNNs as feature extractors for tuberculosis detec-

tion[76], where three different ways of utilizing pre-trained

CNNs (with  three  different  CNN  structures)  are  dis-

cussed,  and,  in  some  cases,  directly  using  pre-trained

CNNs  can  even  beat  their  fine-tuned  versions.  For  the

second case where data are sufficient but available labels

are scarce,  pre-training  a  network  under  the  unsuper-

vised  setting,  e.g.,  using  a  spatial  prediction  task  with

“Contrastive  Predictive  Coding”,  has  been  shown  to  be

effective for fast further training in recognition tasks with

little labeled data[77], which is called “data-efficient” as it

allows  task-related  training  on  only  a  small  account  of

data. Computationally, the task-related training shall also

be very efficient, as it can inherit the weights from a pre-

trained model, which is task-independent and can be ob-

tained  beforehand.  Actually,  besides  the  models  trained

under an unsupervised setting, models trained on a large

general  dataset  (e.g.,  ImageNet)  were  also  found  to  be

very  effective  for  image  representation  for  many  visual

tasks,  superior  to  well-designed  hand-crafted  features[78],

and such direct adoption of pre-trained models has served

as a good baseline for exploring new DNN models.
 3.3.2   Video data

Data representation  for  efficient  video-based  recogni-

tion  seen  has  two  representative  trends  in  recent  years.

Both of them are very new and look rather promising.

One  is  decomposing  video  sequences  into  individual

frames for frame-based representation and then represent-

ing the motion information by exploring temporal correla-

tions among the high-level features of frames. This is con-

tradictory to  the slightly  earlier  work (Carreira  and Zis-

serman, CVPR 2017[60]) on the inception 3D (I3D) archi-

tecture which is about 3DCNN. Wu et al.[79] proposed to

apply  2DCNN  on  individual  video  frames  and  then  do

computationally highly efficient 1D temporal convolution

on the extracted 2DCNN features, which is both more ef-

fective and much more efficient than 3DCNN models for

the  task  of  video-based  person  re-identification.  Later,

Xie et al.[61] replaced the 3D convolutions at the bottom

 

Fig. 12     Only parts of the events are selected with the help of attention.
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of  the  3D  CNN  network  with  low-cost  2D  convolutions

and temporal  convolution  on  high-level  “semantic”  fea-

tures (outputs of those 2D convolutions) and also got bet-

ter performance and faster speed for action classification.

Zhao  et  al.[155] further  found  that  making  the  temporal

convolution along the feature trajectories so that the rep-

resentation can be robust to deformations, and thus they

got improved accuracy on action recognition.

The other representative trend is using pooling to gen-

erate  a  super  compact  and  sparse  representation  for

videos  before  feeding  them  into  recognition  models.  A

very successful example in this direction is “dynamic im-

age”[80, 81], which  is  generated  by  an  efficient  and  effect-

ive  approximate  rank  pooling  operator,  turning  a  whole

video  into  just  one  single  highly  informative  image.  The

dynamic  image  can  simultaneously  capture  foreground

appearance and temporal evolution information, while at

the same  time  excluding  irrelevant  background  appear-

ance information. Therefore, even a simple 2DCNN mod-

el built on top of it can generate superior RGB video re-

cognition results. Soon, the model got extended for RGB-

D video-based activity recognition and showed good res-

ults[156], and very recently, it has also been used for gener-

ating  multi-view  dynamic  images  for  the  task  of  depth

video-based action recognition[157].
 3.3.3   Point data

In  order  to  perform visual  recognition  tasks  on  point

data, traditional works apply CNN with the same dimen-

sion as point data[158–160], which comes with huge compu-

tation  costs,  as  shown  in Fig. 13(a).  However,  compared

to RGB data, point data might be inherently sparse. Mo-

tivated by such a property, computationally efficient net-

works  are  developed.  A general  approach  is  to  align  the

coordinates dimension to the CNN channel dimension so

that one dimension is reduced compared with the origin-

al  point  data,  as  shown  in Fig. 13(b).  Nonetheless,  such

an approach arises a problem: The index-adjacent points

could  be  locally  uncorrelated  in  the  spatial  domain  no

matter  how  to  assign  the  point  indices.  Since  the

RNN/CNN inherently assumes local correlation exists,  it

is  inappropriate  to  directly  process  locally  uncorrelated

features. Therefore, it is preferred to model all points sim-

ultaneously in the network and let the network automat-

ically learn the proper relationship between them[82].

HCN[83] and  PointNet[154] are among  the  most  effi-

cient and  superior  networks  in  skeleton-based  action  re-

cognition and  point-cloud-based  object  recognition,  re-

spectively.  Although  they  may  look  different  at  first

glance,  they  all  align  the  coordinates  dimension  to  the

CNN channel  dimension  to  make  the  computation  effi-

cient and simultaneously model all points to avoid the in-

fluence of point orders.
 3.3.4   Event data

Due to  the  requirement  of  input  SNR,  events  are  of-

ten transformed into various representations that help to

extract meaningful information to solve a given task. The

representation  of  the  event  data  is  highly  related  to  the

handling  method.  Here  we  only  review  popular  deep

learning  representations,  please  refer  to  Gallego  et  al.[12]

for a comprehensive review of event-based representation.

The event-based processing can be viewed as a trade-

off between output latency and task accuracy. The num-

ber of events processed simultaneously is important since

the  more  input  is  fed,  the  better  performance  will  be

achieved. Currently,  DNNs  are  usually  adopted  to  pro-

cess  event  data.  They  adopt  alternative  representations

such as frame-based representation with CNN[34] or spik-

ing neural  network (SNN)[52],  graph-based representation

with graph-based convolutional network (GCN)[53], point-

based representation with PointNet[161],  etc. Fig. 14 illus-

trates the three main styles of representations, i.e., frame-

based, graph-based,  and  point-based  event  streams.  Ag-

gregating event  streams  into  frames  has  an  intuitive  in-

terpretation and  is  naturally  compatible  with  the  tradi-

tional computer vision framework. Temporal resolution is

a crucial hyper-parameter for frame-based representation,

which can be used to control latency and accuracy. Thus,

transforming  event  streams  into  frames  is  a  flexible  and

simple way of event processing. In contrast,  graph-based

representation aims to represent the stream of events as a

graph  and  perform  convolution  on  the  graph  for  object

classification. The  compact  graph  representation  can  re-

duce computation  and  memory  requirements  while  pay-

ing the price of latency. Moreover, events in a spatio-tem-

poral neighborhood can be treated as points in 3D space.

This is a sparse representation and is used in point-based

geometric processing methods. However, similar to graph-

based representation, the acquisition of a geometric struc-

 

 
Fig. 13     Two kinds of point data representation and the
corresponding neural networks for their processing
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ture  sacrifices  the  real-time  response  of  the  network  for

event input.

 4   On recognition: Network compres-
sion

DNNs  are  always  redundant  in  most  cases;  thus  the

great  potential  ability  of  compression  is  inherent  in  this

topic[162].  Moreover,  since  raw  visual  data  usually  have

some internal  high  dimensions,  corresponding  DNNs  be-

come  more  redundant  consequentially.  In  this  section,

four  approaches  of  network  compression  in  the  field  of

visual  recognition  are  introduced:  1)  compact  networks;

2) tensor decomposition; 3) data quantization; and 4) pru-

ning. These approaches can make huge visual recognition

networks  efficient.  Furthermore,  some  joint  compression

practices  which  synthesize  multiple  specific  approaches

are  also  presented.  However,  it  should  be  clarified  that

network  compression  might  still  be  an  open  issue  in  the

field of brain-inspired models such as SNNs. Only a small

number of practices have set foot in this direction[163, 164].

 4.1   Compact networks

 4.1.1   Compact CNNs

In fact, CNNs are born to deal with visual recognition,

and  the  key  natural  feature  of  CNNs  is  weight  sharing,

which can be regarded as the earliest practice of compact

networks  to  match  the  data  structure  of  images.  Thus,

based  on  the  characteristics  of  visual  recognition  tasks,

further  efforts  have  been  proposed  to  make  CNNs  more

compact to reduce the ever-growing network size[87, 165, 166].

In  general,  the  most  compact  design  for  CNNs  can  be

concluded  from  two  perspectives,  one  of  which  is  based

on the receptive field of filters, and the other one is based

on the topology within a single convolutional layer (intra-

layer) or  between  convolutional  layers  (inter-layer).  Be-

sides,  some  more  crazy  ideas,  which  invent  alternative

building blocks for reducing the parameters to learn, ap-

pear to be another novel aspect.

Receptive field aspect. It is clear that designing an

effective receptive field[167] is crucial to the representation

capability of convolutions, which is jointly determined by

the  filter  size  and  pattern.  Regarding  filter  size,  VGG-

Net[168] proposes a stack of two 3  3 convolutional lay-

ers  to  replace  a  5  5  convolutional  layer  because  their

receptive fields are equivalent. In contrast, there are more

practices in the aspect of filter pattern. For instance, an n 

n convolutional layer can be split into two chained layers,

which have an n  1 layer ahead, and a 1  n layer be-

hind[84, 169], atrous or dilated convolution[85, 170, 171] uses ir-

regular filters  with holes,  and deformable convolution[172]

generalizes  the  atrous  convolution  to  learn  the  offsets  of

sampling directly from the target tasks.

Topology aspect. The topology art of changing con-

nections in CNNs can bring more ability of expression or

lighter convolutional  units.  Since  the  well-known  net-

work  in  network  (NIN)[173] was  proposed,  it  has  been

known that vanilla convolutional kernels may be redund-

ant, especially in the situation of multiple stacked convo-

lutional kernels. Besides, Inception[174] and ResNet[175, 176]

are proposed to enhance the performance of CNNs, which

inspired many researchers to think about efficient convo-

lutional  units  under  the  well-designed  topology,  e.g.,

SqueezeNet[86] uses amounts of 1  1 convolutions to re-

place 3  3 convolutions and reduce the counts of chan-

nels in the rest 3  3 convolutions. The residual unit has

led to  relatively  more  results  in  efficient  structures,  e.g.,

bottleneck  architecture[84] and a  similar  one  with  depth-

wise  convolution[177] in  ShuffleNet[87],  MobileNetV2[178],

and  MobileFaceNet[179]. Fig. 15 illustrates  several  typical

compact network designs in the aspect of topology.

New  compact  building  blocks.  The  local  binary

convolutional  neural  networks  (LBCNNs)  introduced  in

[89] propose using an alternative to the traditional convo-

lutional  layer  called  the  local  binary  convolution  (LBC)

layer  inspired  by  the  design  of  traditional  local  binary

patterns  (LBP),  which  uses  a  set  of  filters  with  sparse,

binary and randomly generated weights that are fixed to

replace the traditional convolutional filters whose weights

need to be learned. A set (which can be just a small num-

ber)  of  learnable  linear  weights  is  used  to  integrate  the

feature  maps  after  convolution.  Later,  a  new  network

type  called  perturbative  neural  networks  (PNNs)[88] re-

placed each convolutional layer with a so-called perturba-

tion layer, which computes its response as a weighted lin-

ear  combination  of  non-linearly  activated  additive  noise

 

 
Fig. 14     Only parts of the events are selected with the help of
attention.
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perturbed  inputs.  Both  the  LBC  and  perturbation  layer

are shown to be a good approximation of the convolution-

al  layer  but  with  much  fewer  parameters  to  learn,  and

both LBCNNs  and  PNNs  share  the  same  idea  of  repla-

cing weighted convolution with a linear weighted combin-

ation of feature maps.
 4.1.2   Compact RNNs

RNNs are  often  used  for  video  recognition  to  extract

the  temporal  features,  but  designing  a  compact  RNN  is

harder  than  CNN  because  the  inner  structures  of  gated

units  are  complex,  such as  those  of  long short  term me-

mory (LSTM)[181, 182] and gated recurrent unit (GRU)[183].

That  is  to  say,  any  single  whole  RNN  contains  several

layers in which some units have elaborate internal struc-

tures. This situation is the most prominent characteristic,

which does not exist in neurons of other kinds of DNNs.

Therefore, compact RNNs can be designed at the level of

units or at the level of whole networks. To discuss expedi-

ently  and  concisely,  we  give  a  simple  equation  that  can

abstract any gated connection, such as forget gate, input

gate, output gate, etc.

y = σ(Wx(t) +Uh(t− 1) + b)

y W

x(t) U

h(t− 1) b

σ(·)

where  is  the  data  that  passed  the  gate,  is  the

weight matrix corresponding to the input data for current

time ,  is  the  weight  matrix  corresponding  to  the

status of the previous time ,  is the bias vector,

and the  is the activation function.

Units level. The topology of gated units in RNNs is

complex; however, some approximate reconstruction may

be considered to remove some subordinate connections. In

fact, GRU is actually a compact design based on LSTM.

In  detail,  there  are  four  gated  connections  described  by

(1)  in  LSTM,  whereas  GRU  has  only  three.  Thus,  the

space and computation consumption of GRU can be less

than  that  of  LSTM.  Other  than  GRU,  S-LSTM[90] and

JANET[91] contain forget gates only in their units. Minim-

al  gated unit  (MGU)[184] integrates  the reset  and update

gates.  Contrary  to  the  elaborate  gates,  FastGRNN[185]

uses a shared matrix that connects both input and state

so  that  the  number  of  gated  connections  is  kept,  but

parameters are cut down. Finally, a quasi-recurrent neur-

al network (QRNN)[186] replaces the previous output with

previous  input  in  the  gate  calculation,  and  accordingly,

gated connections are transformed from (1) to

y = σ(W [x(t),h(t− 1)] + b).

Networks level. One can also simplify the architec-

tures of stacked layers through multiple basic units, just

like compact CNNs. Sak et al.[92] introduce a linear recur-

rent projection layer to reduce the dimensions of the out-

put  of  the  LSTM layers.  Wu et  al.[93] introduce  residual

connections  into  their  8-layer  translation  LSTM.  Some

other  analogous  compact  RNNs  include  skip-connected

RNN[187], Grid LSTM[188], and sequential recurrent neural

network (SRNN)[189].

However, compact design is comparatively hard to im-

plement  and  lacks  uniform  principles.  Even  worse,  the

compact method  is  not  easy  to  achieve  a  high  compres-

sion ratio, making it devoid of significance in dealing with

large-scale visual recognition neural networks.  Thus, this

method is often used to combine with other compression

methods or sometimes relies on expensive extra disposing,

such as the transfer learning-based distillation[190].
 4.1.3   Neural architecture search

Unlike the rigid human-designed or hand-crafted net-

work architectures, neural architecture search (NAS) is a

promising  domain  that  can  automatically  construct  a

compact  DNN.  For  conventional  practice[94],  NAS  is  the

process of gradually training an RNN as the controller to

generate a good architecture. In detail,  this RNN should

train  repeatedly  to  gain  the  produced  architecture  and

update the RNN controller itself based on evaluating the

architecture by the environment or evaluator. Obviously,

this  process  leads  to  massive  training  costs,  since  the

search  space  will  enlarge  exponentially  when  the  target

DNN is deeper. More broadly, according to [17], there are

three  aspects  of  the  challenges  that  lie  in  the  field  of

NAS,  i.e.,  search  space,  search  algorithm and evaluation

strategy,  and  many  researchers  focus  their  attention  to

solving these problems. It is interesting that even though

the  controller  is  usually  an  RNN,  most  of  the  target

DNNs are oriented to CNNs, and only a few researchers

are considered for RNNs[191–194];  thus, the review of NAS

is mainly focused on CNNs here.

Search  space.  Search  space  contains  various  basic

network  elements,  e.g.,  normal  convolution,  asymmetric

convolution,  depthwise  convolution,  any kind of  pooling,

 

 
Fig. 15     Typical efficient inter-layer and intra-layer channel
correlations: (a) Bottleneck architecture[84]; (b) Group convolu-
tion with 4 groups[180]; (c) Reversed bottleneck architecture with
depthwise convolution[178]; (d) Depthwise-separable convolu-
tion[177].
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different activation  functions,  etc.,  and  the  laws  to  con-

nect these elements together. Generally, by restricting the

search space, the controller can search the basic network

cells,  consisting  of  some  concrete  elements  to  represent

local structures,  to  construct  the  target  DNN  sequen-

tially  and  efficiently[192, 195]. Moreover,  the  search  com-

plexity  can  be  further  reduced  in  the  range  of  the  cell,

e.g.,  by  progressively  increasing  the  number  of  blocks

within  one  layer,  as  shown  in Fig.  16(a)  and  searching

hierarchical  topology  within  a  cell  as  illustrated  in

Fig. 16(b).

  

 
Fig. 16     Typical cells of NAS: (a) Three-block cell[196]; (b)
Three-level hierarchical cell[197].
 

Search algorithm. Clearly, an appropriate search al-

gorithm is  critical  since  its  target  is  to  efficiently  com-

bine basic  network elements together to be a whole net-

work that fits the most specific task or dataset. Roughly

speaking,  except  for  naive  random  search,  these  algori-

thms can be classified into four approaches,  i.e.,  1) rein-

forcement learning (RL) including Q-learning[198, 199], RE-

INFORCE[94, 200, 201],  and  proximal  policy  optimization

(PPO)[192]; 2) neural evolutionary algorithm (EA)[95, 197, 202];

3)  Bayesian  optimization  (BO)[96, 203]; and  4)  differenti-

able gradient for architecture (DGA)[97, 193].  It is hard to

say  which  algorithm is  better;  however,  the  classical  RL

approach still  reveals  the  higher  boundary  of  perform-

ance[204].  Nowadays,  some other minor improvements are

also used to improve search efficiency, e.g., exploring the

search space with the network transformation and weight

reusing[200, 201, 205], and  sequential  model-based  optimiza-

tion (SMBO)[196], which can choose the most likely direc-

tion of optimization rather than blindly searching with a

wide range.

Evaluation  strategy.  It  is  clear  that  the  searched

architecture should be evaluated to verify whether it can

fit the task. The first strategy is simple, i.e., finitely train

and evaluate the target  DNN to observe its  trends,  e.g.,

just  train on a subset  of  the dataset[206], build an accur-

acy predictor trained on the limited search space to guide

the following search process[196, 207], predict the search dir-

ection  based  on  partial  training  curves  of  current

searched  architectures[194, 208],  etc.  The  second  way  is  to

use the searched architecture to inherit  the weights that

are produced in previous searched architectures[200, 201, 209].

The  third  aspect  is  called  one-shot  NAS,  which  only

trains the one-shot model, from which the searched archi-

tectures  can  directly  share  the  one-shot  weights  without

extra training[97, 193].

To fully show its promising development tendency, we

use Table  2 to  compare  some  well-known  human-de-

signed  networks  with  NAS  models  nowadays.  On  the

whole,  NAS  models  can  surpass  human  designs  in  both

accuracy  and  efficiency,  especially  EfficientNet[204] with

the  highest  accuracy  and  several  lightweight  models  for

mobile format[193, 200, 204] with a tiny number of paramet-

ers  and  operations  (GFLOPs).  Additionally,  the  search

time  of  NAS  algorithms  has  also  decreased  significantly

from 22 400[94] to  4[193] GPU days,  making  it  possible  to

apply NAS  models  on  real  embedded  devices.  Neverthe-

less, there are still some problems to be solved in this dir-

ection, e.g., a lack of practical reports on deploying NAS

models in fickle real data, enhancing the NAS models for

mobile platforms to find the limitation of compact archi-

tecture, handling the trade-off between accuracy and size,

etc. Hence, all signs indicate that this kind of approach is

promising, but still needs further studies.

 4.2   Tensor decomposition

Traditionally,  since  the  parameters  in  DNNs  are

mostly stored as matrices, matrix decomposition is widely

used in network compression, especially in singular value

decomposition  (SVD)[210–217].  However,  the  restriction  of

orders limits  the  use  of  matrix  decomposition  to  com-

press larger and larger visual recognition neural networks.

Besides,  tensors  may  have  some  inherent  connections

with neural networks[218]. Hence, discussing tensor decom-

position  here  is  sufficient  because  a  matrix  is  actually  a

second-order tensor.
 4.2.1   Classical tucker decomposition

d A ∈ n1×n2×···×nd

No matter  canonical  polyadic  (CP)  decomposition[219]

or  higher-order  singular  value  decomposition  (HO-

SVD)[220, 221],  all  classical  tensor  decomposition  methods

for a th-order tensor  can be represen-

ted uniformly in Tucker decomposition[222] like [223]:
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A = K ×1 F
(1) ×2 F

(2) ×3 · · · ×d F (d)

K ∈ r1×r2×···×rd

F (i) ∈ ri×ni (i ∈ {1, 2, · · · , d})
×i i

ri rC
K

K
K(x1, x2, · · · , xd) x1 = x2 = · · · = xd

F (i)

K

where  denotes  the  kernel  tensor,  any

one   is  the factor matrix,

and  the  operation  means  the  mode-  contracted

product[223].  If  every  equals  a  positive  integer  and

the kernel  tensor  presents like a superdiagonal tensor,

which  means  all  elements  in  are  0  except

 with ,  then  (3)  will

become CP (Canonical Polyadic) decomposition[223]. If all

the  factor  matrices  are  orthogonal  and  the  kernel

tensor  is  so-called  all-orthogonal[220, 221],  then  (3)  will

become HOSVD.

W ∈ M×N d

W ∈ m1n1×m2n2×···×mdnd M =
∏d

i=1 mi

N =
∏d

i=1 ni d

O((mn)d) O(dmnr + rd)

O(rd)

Many  researchers  have  applied  CP  and  Tucker  to

compress the weights in neural networks in recent years,

especially CNNs for visual recognition[98, 99, 227–235]. In gen-

eral,  to  utilize  (3)  efficiently,  any  single  weight  matrix

 should  be  mapped  into  a th-order  tensor

 where  and
[101].  Thus,  the  greater  value  of  can  bring

about  more  effective  compression,  which  decreases  the

complexity  from  to .  However,

the  curse  of  dimensionality[236, 237] has  not  been  solved

completely by Tucker because of .  In addition,  the

relatively  new  block  term  decomposition  (BTD)[238],

which is the sum of multiple Tucker blocks, can ease this

curse to some extent, since the size of each kernel tensor

may  be  smaller.  In  [100],  BTD-LSTM  shows  a  superior

ability to keep information for visual recognition, but the

corresponding computation process  is  relatively  complex.

On the other hand, the most recent Kronecker canonical

polyadic  (KCP)  decomposition[239],  which  combines  the

characteristic  of  Kronecker  products  and  the  sparsity  of

the kernel tensor of CP[240], can implement very fast cal-

culation  and  a  considerable  compression  ratio[163].  It  is

worth  mentioning  that  this  work[163] further  extends

tensor decomposition to the brain-inspired SNNs by con-

sidering SNN as a variant of RNN[241, 242].

 4.2.2   Tensor network

rd

The tensor network [243, 244], which represents a tensor

with a link of matrices or low order tensors with contrac-

ted products,  is  promising  to  avoid  the  curse  of  dimen-

sionality by eliminating the high order kernel tensor with

 elements according to (3). Commonly, there are three

types  of  tensor  networks  applied,  i.e.,  tensor  train

(TT)[245, 246],  tensor  chain  (TC)[247, 248] or  tensor  ring

(TR)[249, 250], and hierarchical Tucker (HT)[251, 252].

d

A ∈ n1×n2×···×nd

Tensor  train.  According  to[253],  a th-order  tensor

 can be represented as

A = G1 ×1 G2 ×1 · · · ×1 Gd

×1 (N, 1)

Gi ∈ ri−1×ni×ri

(i = 1, 2, · · · , d) r0 = rd = 1

O(dnr2) n

r

O(rd)

where  the  operation  is  the  mode-  contracted

product[254],  and  the  core  tensors 

 always  have .  Apparently,

according to the equation above, the spatial complexity of

the TT format is , where  is the maximum value

of  the  modes  and  is  the  maximum  value  of  the  TT

ranks.  It  is  obvious  that  the  in  classical

decomposition,  i.e.,  (3),  is  avoided,  and  the  curse  of

dimensionality is solved.

d A ∈ n1×n2×···×nd

r0 = rd �= 1

Tensor  chain. The  TC  format,  which  can  be  re-

garded as a variant of the TT format, was first proposed

by Khoromskij[247] and proved to  have  a  similar  approx-

imation  capability  as  TT  by  Espig  et  al.[248] Nowadays,

the TC format has been introduced in the field of DNNs

as the TR format by Zhao et al.[249, 250] Compared to TT,

the  TC  format  of  a th-order  tensor 

has  only  one  difference,  which  is .  Thus,  in

contrast  to  (4),  there  are  two pairs  of  equal  modes  that

must be contracted at the end, like

A = (G1 ×1 G2 ×1 · · · ×1 Gd−1)×3,1
1,d+1 Gd

(G1×1 G2×1 · · ·×1 Gd−1)∈ rd×n1×n2×···×nd−1×rd−1

Gd ∈ rd−1×nd×rd ×3,1
1,d+1

(d+ 1)

where ,

,  and  means  the  paired  contr-

acted modes are, the 1st of the former versus the 3rd of

the latter while the th of the former versus the 1st

of the latter. Fig. 17 shows TT and TC in tensor network

graphs,  where  every  node  represents  a  tensor,  and  each

edge is a mode of its connected tensor.

d A ∈ n1×n2×···×nd

t = {t1, t2, · · · , tk} s = {s1, s2, · · · , sd−k}

Hierarchical  tucker. In  fact,  HT  is  the  fountain-

head of TT, i.e., TT is a special form of HT[255], since HT

has an extremely flexible organizational structure. Partic-

ularly,  for  a th-order  tensor ,  their

modes  could  be  divided  into  two  sets  as

 and ,  then  we

have

 

Table 2    Comparison between state-of-the-art human-designed
networks (the upper part) and NAS models (the lower part)

proposed in recent years based on ImageNet

References Top-1 Acc (%)Params (106)Ops (109) Algo

ResNet-152[175] 78.6 60.3 11.3 –

DenseNet-264[224] 79.2 32 15 –

ResNeXt-101[180] 80.9 44 7.8 –

PolyNet[225] 81.3 92 – –

DPN-131[226] 81.5 79.5 16 –

Hierarchical[197] 79.7 64 – EA

NAS-Net-A[192] 82.7 88.9 23.8 RL

PNASNet[196] 82.9 86.1 25 SMBO

AmoebaNet-A[95] 82.8 86.7 23.1 EA

TreeCell (mobile)[200] 74.6 – 0.59 RL

DARTS (mobile)[193] 73.3 4.7 0.57 DGA

Proxy (mobile)[97] 74.6 5.7 –
DGA

RL

EfficientNet[204] 84 43 19 RL
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Ut = (Utl ⊗Utv )Bt

Ut ∈ nt1
nt2

···ntk
×rt Utl ∈ ntl1

ntl2
···ntli

×rtl

Utv ∈ ntv1
ntv2

···ntvk−i
×rtv

Bt ∈ rtlrtv×rt

⊗

Ui ∈ ni×ri A

A

where , ,

 are  called  truncated

matrices,  is  termed as a transfer matrix,

and  is  the  Kronecker  product.  One  can  continuously

use  (6)  until  all  the  truncated  matrices  become

.  Thus,  the  HT  format  of  will  be  done.

Obviously, there are multiple ways to split the modes of

.  However,  even  the  simplest  format  with  the  binary

tree is still formidable to write in the formulation[107, 108].

Fortunately,  the  tensor  network  graph  in Fig. 17(c)  can

provide a convenient description.
 4.2.3   Typical practices

In general,  the  TT  format  represents  the  most  vi-

brant  tensor  decomposition  method.  We  list  the  current

applications of  TT  compressed  neural  networks,  includ-

ing  both  CNNs  and  RNNs  for  visual  recognition,  in

Table  3, where  a  handful  of  TC and  HT are  also  intro-

duced.  We  find  an  interesting  phenomenon  that  the

tensor-decomposed  CNNs  for  image  tasks  are  hard  to

avoid  the  accuracy  loss,  while  RNNs  for  video  tasks  are

easy to achieve higher accuracy in compressed forms. We

guess that RNNs have a larger scale than CNNs in gener-

al, which verifies that a larger network is easier to com-

press[256]. The practice in 3DCNNs further verified this, as

3D  convolutional  kernels  have  heavier  redundancy[103].

However, how to deal with the accuracy loss still needs to

be learned.

 4.3   Data quantization

Data quantization  can  project  concrete  data,  includ-

ing weight matrices, gradients, nonlinear activation func-

tions,  etc.,  from  high-precision  value  space  to  low-preci-

sion  value  space,  e.g.,  from  real  number  field R to in-

teger  field N.  This  approach  can  not  only  reduce  the

space complexity of network parameters, but also acceler-

ate the running time of neural networks because bit oper-

ations are much faster than float operations. As raw visu-

al  data  is  generally  represented  by  integers,  quantized

neural networks may be more suitable for visual recogni-

tion tasks.
 4.3.1   Method

Problem formulation. In general, there are two for-
 

Table 3    Applications of neural networks compressed by tensor networks for visual recognition tasks

References Format Compressed parts Dataset Compression ratio Accuracy loss

Novikov et al.[101] TT CNN FC CIFAR10 11.9 1.26%

Zhao et al.[249] TC CNN FC CIFAR10 444 /1 300 0.13%/2.18%

Huang et al.[257] TT CNN FC MINST 14.85 1.5%

Su et al.[258] TT CNN FC MINST 500 2%

Garipov et al.[102] TT CNN Conv & FC CIFAR10 82.87 1.1%

Wang et al.[103] TT 3DCNN Conv & FC UCF11/ModelNet40 107.5 /160.7 0.22%/0.14%

Wang et al.[259] Nonlinear TT CNN Conv & FC CIFAR10/ImageNet 13.03 /7.65 1.57%/1.68%

Tjandra et al.[104] TT GRU W U & Sequential MNIST 43.52 /69.80 0.3%/0.3%

Yang et al.[105]
TT LSTM

W UCF11/Hollywood2
17 554.3 /23 158.8 –30.4%/–43.8%

TT GRU 13 687.1 /18 313 –32.5%/–28.8%

Pan et al.[106] TC LSTM W UCF11/HMDB51 34 192 –1.5%/–0.9%

Wu et al.[107] HT LSTM W U & UCF11/UCF50 58.41 /57.96 0.12%/1.37%

Yin et al.[108] HT LSTM W UCF11/Youtube Face 47 375 /72 818 –17.5%/–54.9%

Wang et al.[163] KCP LSTM W U & UCF11/UCF50 59 338 /278 219 –13.1%/–19.8%
 

 

 

d
A ∈ n1×n2×···×nd

Fig. 17     Tensor network graphs for (a) tensor train, (b) tensor
chain and (c) hierarchical tucker format of a th-order tensor

.
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mulations  to  describe  how  to  transform  floating-point

weights,  gradients,  activations,  etc.,  to  quantized  data

types.  One  category,  which  is  the  most  widely  used,

projects  the  original  high-precision  value  to  the  space  of

quantized data as

Q(x) = Δ · round
( x

Δ

)

x

Q(x)

round(·) Δ

K

Δ = 1/(2K−1) x ∈ [0, 1] 2K

where  is  the  original  high-precision  value  in  the

continuous space,  is the quantized data in a discrete

space,  is  the  rounding  operation,  and  is  the

quantization  step  length  if  the  discrete  states  have  a

uniform  distribution.  If -bit  quantization  is  used,  we

have  to  discretize  to  states.

This category, as described in (7), is straightforward and

easy to consider. Therefore, most practices have followed

this direction, which can be observed in Table 4.

The other category regards quantization as an optim-

ization problem and tries  to solve it  approximately.  The

classic model can be generally governed by

Q
‖X −Q(X)‖22, . . Qi ∈ XQ i

XQ = {Q1, Q2, · · · , Qn}(i ∈ {1, 2, · · · , n})
n

where  is  a  set

that  has  discrete  states  for  quantization.  The  earliest

and the most well-known quantization in the category of

optimization is XNOR-NET[111]. An obvious motivation is

that the optimization problem pays more attention to the

whole network rather than local quantization, so (8) may

be more appropriate for large-scale neural networks.

WQ

AQ GQ EQ UQ

Quantized objects.  As mentioned above, except for

weight (W), there are also several other different objects

in neural networks that can be quantized, such as activa-

tion (A), error (E), gradient (G), and weight update (U).

Fig. 18 illustrates the data of these quantized objects ,

, , , and  existing in forward pass, backward

pass, and weight update processes. The parameter (W) is

the most straightforward to be dealt with. The propaga-

tion  data  (A,  E)  correlate  strongly  with  the  data  flow

during forward and backward passes, which greatly influ-

ence  the  accelerating.  Quantized  gradient  and  update

greatly  help  train  the  full  quantized  networks,  but  are

harder  to  implement.  Thus,  the  corresponding  practices

are fewer, as shown in Table 4.

K

Algorithm description. Generally,  if  the  bit-width

 is given, (7) can be rewritten as

xQ = Q(x,K)

xQ K

WQ AQ GQ EQ UQ

where  is  the  quantized  data  with -bits,  i.e.,

quantized  objects , , ,  and  described
 

Table 4    Typical practices of quantization for CNNs

References Formulation Objects State distribution State projection Performance

VQN[260] Optimization W Uniform Deterministic CIFAR10, DenseNet, 91.22%

ADMM[261] Optimization W Non-uniform Deterministic ImageNet, ResNet50, 72.5%

INQ[262] Projection W Non-uniform Deterministic ImageNet, ResNet18, 66.02%

Joint training[263] Optimization WA Uniform Deterministic ImageNet, ResNet34, 73.7%

Balanced DoReFa[264] Projection WA Uniform Deterministic ImageNet, ResNet18, 59.4%

Regularization[265] Projection WA Uniform Deterministic ImageNet, ResNet18, 61.7%

HAQ[266] Projection WA Uniform Deterministic ImageNet, ResNet50, 76.14%

GXNOR-Net[267] Projection WA, U Uniform
Stochastic (W)

CIFAR10, VGG8, 92.5%
Deterministic (A)

QBPv2[268] Projection WA, E Uniform Deterministic CIFAR10, ResNet18, 89.2%

WAGE[109] Projection WA, G, E, U Uniform
Deterministic (WA, E, U)

ImageNet, AlexNet, 48.4%
Stochastic (G)

FX training[269] Projection WA, G, E, U Uniform Deterministic CIFAR10, ResNet20, 92.76%

8b training[270] Projection WA, G, E, U Uniform
Deterministic

ImageNet, ResNet50, 71.72%
Stochastic

OCS[271] Projection WA Non-uniform Stochastic ImageNet, ResNet50, 75.7%

Full 8-bit[110] Projection WA, G, E, U Uniform Deterministic ImageNet, ResNet50, 69.07%

AutoQ[112] Optimization WA Non-uniform Stochastic ImageNet, ResNet50, 74.47%

1b ReActNet[272] Projection WA Non-uniform Deterministic ImageNet, MobileNet, 71.4%

HybridQ[273] Optimization WA Non-uniform Stochastic ImageNet, ResNet50, 77.74%

VecQ[274] Optimization WA Non-uniform Stochastic ImageNet, MobileNetV2, 72.24%
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above.  Data  flow  among  these  quantized  data  can

generally  be  computed  by  a  bit-wise  operation  which  is

much faster than the full precision computation. Besides,

the  performance  of  quantized  networks  with  appropriate

bit-width  will  not  degenerate  which  can  be  learned  in

Table  4.  The  overall  algorithm  is  briefly  described  in

Fig. 18,  and a  more  comprehensive  algorithm description

of quantization can be consulted in [110].

State distribution and projection. The data in the

quantization  set  always  have  concrete,  discrete  states,

which  may  contain  different  distributions.  For  example,

uniform distribution  is  the  most  widely  used  one,  logar-

ithmic  distribution  has  exponential  variance  on  step

length that  has  obvious  benefits  to  convert  multiplica-

tion to addition, and adaptive distribution often occurs in

the situation when formulating the quantization as an op-

timization problem such as TTQ[275], ADMM[261], etc. The

appropriate distribution will help to achieve considerable

precision,  even  the  1-bit  quantization[272].  On  the  other

hand,  the  primary  mission  in  quantization  is  projecting

the  original  high-precision  data  to  the  discrete  state

space,  of  which  deterministic  and  stochastic  projections

are  the  two  main  approaches  used  widely.  The  former

projects  the  high-precision  data  to  the  nearest  discrete

state, while the latter projects the data to one of the two

adjacent states with probability,  which is  determined by

the distance from the original data to the discrete states.

Generally, deterministic projection is easier to handle, so

most references listed in Table 4 have selected it.
 4.3.2   Typical practices

In  the  aspect  of  CNNs,  we  list  a  number  of  typical

and latest  practices  with  their  best  performance  on  CI-

FAR10 or ImageNet in Table 4. Note that the compres-

sion  ratio  of  quantization  is  not  considered  because  it

relates directly to the bit-width; thus, the storage saving

is limited. As can be clearly observed, all the recent prac-

tices  quantize W, and most works quantize both W and

A, while a small number of works quantize G, E, or U. It

is  worth mentioning that the practice that quantizes W,

A, G, and E[109] inspires some practices on semantic seg-

mentation  tasks  in  terms  of  accelerating  corresponding

encoder-decoder  CNNs[276, 277].  We  emphasize  quantized

objects  here  rather  than  other  aspects  of  quantization,

e.g.,  state  distribution  and  state  projection,  because  the

choice  of  which  objects  are  quantized  can  influence  the

training and  inference  processes  significantly.  Particu-

larly, quantized G and U can simplify training greatly be-

cause  the  back-propagation data  flow can be  handled as

integers.  Moreover,  Banner  et  al.[268] propose  the  range

batch normalization (BN) to greatly reduce the numeric-

al instability and arithmetic overflow caused by the popu-

lar standard deviation-based BN. Hence, the BN can also

be quantized.  We  optimistically  believe  that  some  en-

tirely  quantized  DNNs will  come soon,  and then mature

and  efficient  integer  neural  networks  should  become  the

mainstream, especially for embedded surroundings.

The number of practices of quantized RNNs for visu-

al tasks is few, to the best of our knowledge, compared to

natural  language  processing  tasks[111, 264, 278–280].  Unlike

CNNs, RNNs are dynamic systems that reuse the weight

and accumulate  the  activation  error  in  the  temporal  di-

mension. Furthermore, there are two dimensions of back-

propagation in  RNNs:  spatial  (layer-by-layer)  and  tem-

poral  (step-by-step).  These  situations  make  it  harder  to

clarify the training data flow and quantization sensitivity.

In  fact,  many  quantization  methods  can  be  shared  by

both  CNNs  and  RNNs[264, 281]. However,  more  applica-

tions of quantized RNNs for visual tasks should be estab-

lished  considering  the  complexity  of  RNNs  discussed

above.

 4.4   Pruning

Pruning can reduce the number of weights or neurons.

Thus,  the  memory  and  calculation  costs  are  retrenched.

However, the  additional  indices  for  indicating  the  loca-

tion of non-zero elements, and the irregular access or exe-

cution pattern, become the two major drawbacks.
 4.4.1   Basic method

Problem  formulation.  Similar  to  quantization,

there are also two formulations that can describe pruning.

The first  one is  direct  and naive,  i.e.,  using some search

algorithms for trained DNNs to find those “unimportant”

weights or neurons to prune, like

S(X) = sparse(X)

X S(X)

sparse(·)
where  is  the  weight  matrix,  and  is  the  new

weight matrix after pruning. The function  is the

search  algorithm  to  pre-select  the  unimportant  weights

and neurons to be pruned. Such search approaches could

be  low-precision  estimation[113, 114],  negative  activation

prediction[115],  etc.  Besides,  hashing  trick[282] may  also

help to make weights in DNNs sparse[283], even if it seems

to  be  weight  sharing  rather  than  a  pruning  approach  in

concept.  Furthermore,  some other  hashing  methods  may

 

WQ AQ GQ EQ UQFig. 18     Data of quantized objects including , , ,  and 
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reveal  similar  abstract  thought  to  normal  pruning,  e.g.,

using  locality-sensitive  hashing  (LSH)  to  collect  neural

nodes in an active set, and other neural nodes not in this

set  will  not  be  computed  during  forward  and  backward

calculations[284].

However, it is obvious that the search algorithm may

consume vast computing time for large-scale DNNs. Fur-

thermore, as the same reason for quantization, the prob-

lem of  pruning  as  optimization  may be  a  more  adaptive

formulation for large DNNs because of the layer coupling.

A general  formulation of  pruning in optimization can be

described as[116]

W
L0(W ) + λ

G∑
g=1

‖W (g)‖2

W = {W (1),W (2), · · · ,W (G)}
G λ

L0(W )

where  is  the  set  of  all

weights  in  different  layers  or  parts,  is  a  penalty

parameter  that  affects  the  sparsity,  and  is  the

normal loss function of DNNs.

Pruning objects. There are two typical pruning ob-

jects: weight pruning and neuron pruning, which are illus-

trated in Fig. 19. The former reduces the number of edges

that  can  make  weight  matrices  sparser,  while  the  latter

reduces  the  number  of  nodes  to  make  weight  matrices

smaller. Evidently, the latter method may cause more ac-

curacy  loss  than  pruning  weights  alone.  Using  ResNet50

as an example, according to Table 5, weight pruning net-

works[285–288] can exceed neuron pruning networks[117, 289, 290]

in terms of the performance of top-1 accuracy on ImageN-

et in  most  cases.  Nevertheless,  this  gap  has  been  redu-

cing recently.

Pruning structure. Generally, the compute acceler-

ation  has  a  great  deal  to  do  with  the  sparse  pattern,

which is referred to as pruning structure in this survey. It

 

Table 5    Typical practices of pruning for CNNs

References Formulation Object Structure Compression ratio Performance Accuracy loss

Prune or Not[256] Search W Element 8× ImageNet, InceptionV3, 74.6% 3.5%

Nest[291] Search W & N Element & Block 15.7× ImageNet, AlexNet, 57.24% 0.02%

13.9× ImageNet, ResNet50, 71.94% 0.35%

DGC[285] Search W Element 597× ImageNet, AlexNet, 58.2% – 0.01%

277× ImageNet, ResNet50, 76.15% – 0.06%

ThiNet[117] Optimization N Block 16.64× ImageNet, VGG16, 67.34% 1%

2.06× ImageNet, ResNet50, 71.01% 1.87%

Slimming[292] Optimization N Block 2.87× CIFAR10, DenseNet40, 94.35% – 0.46%

1.54× CIFAR10, ResNet164, 94.73% – 0.15%

ISTA[289] Optimization N Block 1.89× ImageNet, ResNet101, 75.27% 1.13%

AutoPrunner[290] Optimization N Block 3.33× ImageNet, ResNet50, 73.05% 3.1%

LCP[286] Search W Vector – ImageNet, ResNet50, 75.28% 0.85%

AMC[287] Search W & N Element & Block 5× ImageNet, ResNet50, 76.11% 0.02%

Hybrid prune[288] Search W Element & Vector 3.69× ImageNet, ResNet50, 74.32% 1.69%

Joint sparsity[122] Optimization W Vector 2.8× ImageNet, ResNet18, 67.8% 0.4%

Importance[293] Search W & N Element & Block 3.29× ImageNet, ResNet101, 74.16% 3.21%

SSR[118] Optimization N Block 2.13× ImageNet, ResNet50, 71.47% 3.65%

Rewinding[294] Search W & N Element & Block 5.96× ImageNet, ResNet50, 76.17% 0%

SEP[295] Optimization W & N Block 1.75× ImageNet, ResNet50, 75.22% 0.9%

FSP[296] Optimization W & N Block 1.55× ImageNet, ResNet50, 75.22% 0.91%

EPruner[297] Optimization W & N Block 2.01× ImageNet, ResNet50, 74.26% 1.75%
 

 

 
Fig. 19     Pruning objects: (a) Weight pruning; (b) Neuron
pruning.
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is  well-known that the operation in one neural layer can

be abstracted  as  matrix  multiplication.  Thus,  the  prun-

ing structure can be described as the number of zeros in

the  matrix.  Besides,  the  convolutional  computation  is

commonly  converted  to  the  modality  of  GEneral  matrix

multiplication  (GEMM)  by  lowering  the  features  and

weight tensors to matrices[298].

Fig. 20 illustrates different  pruning  structures:  ele-

ment-wise, vector-wise,  and  block-wise.  Note  that  differ-

ent  pruning  grains  produce  different  pruning  structures.

For  instance,  in  weight  pruning,  kernel  (discrete),  fiber,

or  filter  pruning  produces  vector  sparsity,  while  channel

or kernel (group) pruning produces block sparsity.

 
 

 
Fig. 20     Pruning structure: (a) Element-wise; (b) Vector-wise;
(c) Block-wise.
 
 4.4.2   Typical practices

Here we let W and N denote weight pruning and neur-

on pruning, respectively.  In the aspect of  CNNs, accord-

ing  to Table  5,  the  works  that  prune W and  those  that

prune N are  close  in  terms  of  quantity,  and  just  a  few

practices have considered both of them (W and N)[291]. We

emphasize pruning objects here because as mentioned be-

fore,  pruning  only  weight  or  neuron  may  influence  the

performance more obviously than other aspects,  i.e.,  for-

mulation  and  structure.  From Table  5, in  terms  of  per-

formance, it cannot be absolutely deemed that optimiza-

tion is better than searching for large DNNs so far.  One

certain advantage of optimization is efficient training and

avoiding some time-consuming searching procedures.  For

pruning, element structure can be helpful for achieving a

higher  compression  ratio,  especially  in  the  case  of

DGC[285]. Relatively,  other  structures  may  bring  a  signi-

ficant  acceleration  of  computing,  particularly  filter  (vec-

tor) and channel (block) pruning in convolutional kernels.

On the  whole,  pruning on convolutional  kernels  is  much

more difficult than that on fully connected layers.

13.12×

In  the  aspect  of  RNNs,  there  are  two  typical  image

captioning tasks, one of them prunes W[299] and the other

prunes N[300]. The former has achieved a  compres-

sion ratio on the MS COCO dataset with a 2.3 improve-

ment in the CIDEr score. The latter has also used the MS

COCO  dataset  and  got  only  a  0.4  reduction  in  the

BLUE-4 score  with  50%  sparsity.  Comparatively  speak-

ing, it might imply that there is still a lot of potential for

visual RNNs with pruning to advance further.

 4.5   Discussions and the derived joint com-
pression

In fact, each compression method has its own charac-

teristics,  which  other  compression  methods  do  not  have.

Therefore, before listing recent practices of joint compres-

sion,  we  present  here  our  observations  and  thoughts

about  what  features  make  each  compression  method

worthy and unique based on the foregoing content in this

section.
 4.5.1   Main characteristics of each method

Compact  networks.  As  discussed  before,  there  are

two  levels  of  compact  design,  one  is  a  delicate  cell,  and

the  other  is  an  NAS  algorithm.  According  to Table  2,

NAS shows superior performance compared to human-de-

signed networks in both accuracy and storage saving. The

most critical point is that the execution time of the NAS

algorithm has been shortened a lot nowadays[193].  Such a

situation makes  NAS  promising  and  generic  for  embed-

ded  applications  with  various  or  changing  surroundings,

though there is still a lot of detailed work to do towards

real  applications.  While  other  compression  methods,  i.e.,

decomposition,  quantization,  and  pruning,  still  lack

enough flexibility because a single specific network archi-

tecture is hard to apply to all kinds of datasets.

Tensor decomposition.  In  early  studies  of  network

compression, tensor  decomposition  was  the  only  ap-

proach  that  supported  the  so-called  in  situ  training[301],

which means  training  a  new  model  from scratch.  Mean-

while,  quantization  and  pruning  needed  pre-training  in

most  cases  to  discover  the  distribution  of  weights  to

quantize or prune further. However, new studies of quant-

ization[263] and  pruning[302, 303] have  made  up  this  short

slab. Moreover, these reports conclude that in situ train-

ing could perform better than fine-tuned models. Even so,

tensor decomposition still appears to be the most power-

ful  in  the  aspect  of  compression  ratio,  particularly  for

RNNs, according to Table 3. Currently, the unique char-

acteristic  of  tensor  decomposition  is  that  various  tensor

network formats may have some inner links to DNN ar-

chitectures.  Thus,  a  theoretical  explanation  of  efficient

DNNs may be explored in this kind of compression. Chi-

en  and  Bao[99] regard  the  whole  Tucker  decomposition

process  in  (3)  as  a  neural  network  connection.  Su

et  al.[258, 304] use  the  HT  decomposition  to  explain  the

depth efficiency of DNNs. Chen et al.[305] find that BTD

can  describe  various  bottleneck  architectures  in  ResNet

and ResNeXt.  Li  and  Wang[306] propose a  new DNN ar-

chitecture based on the MERA tensor network, which is a

kind  of  renormalization  group  (RG)  transformation[307].

Wang  et  al.[259] map  the  TT  structure  into  a  sequenced

multi-layer architecture. In this sense, it is expected that

the studies of compressing DNNs with tensor decomposi-

tion can build a bridge between the experiments and the

system of theories about DNNs.

Data  quantization.  Although  data  quantization  is
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not very good at reducing model complexity (in terms of

the number  of  parameters)  of  DNNs  compared  with  de-

composition and pruning, it still has a significant advant-

age of computing acceleration and friendly deployment of

embedded hardware, which are guaranteed by the low bit

data flow in quantized DNNs.  The authors  implemented

WAGE[109] on an FPGA platform and further found that

8-bit  models  perform  faster  in  speed,  lower  in

power  consumption,  and  smaller  in  circuit  area  than

32  float  point  models[110]. Although  pruning  with  appro-

priate  structure  may  also  help  to  reduce  computation

complexity,  bit  operations  in  quantized  DNN  are  still

more adaptive for hardware environments.

Pruning. According to Tables 3 and 5, pruning has a

better capability  of  accuracy  maintenance  or  even  im-

provement,  though  seemingly  other  methods  like  tensor

decomposition have more potential power to gain a high-

er  compression  ratio.  However,  the  loss  of  accuracy  of

compressed DNNs under decomposition is hard to avoid,

especially for CNNs at present. For example, the perform-

ance of VGG16 on CIFAR10 with pruning can achieve an

increase in accuracy of almost 0.15% in the new study[302],

while  the  accuracy  loss  is  hard  to  compensate  for,  even

though the ranks are set very high based on TT convolu-

tions[103]. Additionally,  two  main  advantages  of  decom-

position, i.e.,  higher  compression  ratio  and in  situ  train-

ing, can be separately obtained by [285] and [302] in the

aspect of pruning. Furthermore, the so-called lottery tick-

et  hypothesis  (LTH)[303],  which  is  also  proposed  on  the

basis of pruning and claims that any DNN must have its

compressed  one  without  degradation,  appears  to  be  the

most promising  theoretical  explanation  for  neural  net-

work  compression[308–311],  and  can  also  be  extended  to

tensor  decomposition[163] and even  dynamic  neural  net-

works[52].  Like  NAS,  the  data structure  of  pruned DNNs

may present complexity and chaos, unfriendly to embed-

ded applications, and corresponding theory explanation.
 4.5.2   Joint compression

Considering different  characteristics  of  each  compres-

sion approach, recently, some researchers have made their

applications involve  more  than  one  class  of  methods  be-

sides  using  individual  compression  method,  termed  joint

compression in this survey. Corresponding visual recogni-

tion works are illustrated in Table 6. The joint compres-

sion  has  great  potential  for  a  higher  compression  ratio.

For  instance,  compression  ratio  of  89  of  AlexNet  on

ImageNet  (58.69%  accuracy)[262],  28.7  of  ResNet18  on

ImageNet (66.6% accuracy)[122], and 1910  of LeNet5 on

Mnist (98% accuracy)[312].

However,  researchers  should  pay  more  attention  to

maintaining  the  model  accuracy  in  joint  compression

through sufficient analyses and comprehensions of the re-

spective  characteristics  of  each  compression  component.

For  example,  since  there  might  be  a  projection  between

the structure  of  tensor  decomposition  and  the  architec-

ture of DNN as discussed above, the decomposition meth-

od  appears  to  be  perpendicular  to  the  other  methods  to

some  extent.  Hence,  combining  it  with  quantization  or

pruning  is  a  promising  direction  that  still  needs  further

research, according to Table 6.

 5   On recognition: Efficient inference

Efficient  training  can  allow learning  from more  data,

with  more  parameter  tuning  or  a  complete  architecture

search,  which  can  all  lead  to  a  better  trained  model.

However, it  is  also  critical  to  make  the  model  run  effi-

ciently on affordable or existing devices and easily trans-

fer  to  new  data/tasks.  In  many  cases,  training  may  be

done  just  once  or  only  in  one  place  (e.g.,  in  the  cloud)

with  powerful  computational  resources.  However,  run-

time inference has to be done on cost-sensitive and thus

resource-limited  edge  computing  devices.  Therefore,  in

some sense, the efficient inference is a more serious issue

when real applications are concerned. In this section, we

focus on fast run-time inference for model deployment at

the testing  stage  and dynamic  inference  efforts  for  mak-

ing the models efficient.

 5.1   Fast run-time inference

Efficiency is  not  only a big concern for  training deep

learning models,  but  also  rather  important  and  some-

times critical for deployment at the users′ end in real ap-

plications. Therefore,  the  acceleration  of  run-time  infer-

ence  with  limited  resources  is  an  indispensable  issue  of

great importance for industrial applications. This is even

more  critical  for  applications  that  require  real-time  or

even  faster  responses,  such  as  automatic  recognition  for

autonomous driving. There has already been rich literat-

ure  on  accelerating  run-time  inference  with  DNNs.  We

roughly categorize them into two groups based on the dif-

ference  of  focus:  data-aware  acceleration  and  network-

 

Table 6    Existing works of joint compression for visual
recognition tasks

References Compact Decompose Quantize Prune

Deep compression[121] – – � �

SCNN[119] – � – �

Force regularization[120] – � �

INQ[262] – – � �

Quantized distillation[313] � – � –

VNQ[260] – – � �

Joint sparsity[122] – – � �

Regularization[265] – – � �

ADMM[312] – – � �

PQASGD[314] – – � �

DNNC[315] – – � �

QTTNet[316] – � � –
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centric compression, and detail their recent advances and

trends as follows.
 5.1.1   Data-aware acceleration

During run-time inference, in many cases, there is no

need to check all  the input data for  generating the final

recognition results, especially for the data which may in-

clude  a  lot  of  irrelevant  or  redundant  information,  such

as videos.  Therefore,  efforts  to reduce or avoid the com-

putation of the irrelevant/redundant parts of the data are

very important for fast inference.

A  simple  yet  very  helpful  direction  is  to  explore  the

similarity of the intermediate feature maps of two consec-

utive  video  frames  to  reduce  redundant  computation.  A

representative earlier work is the one called deep feature

flow[47]. It runs full expensive convolutions only on sparse

keyframes,  and  then  propagates  their  deep  feature  maps

to other frames via a flow field. A significant speedup was

achieved as the flow computation is relatively faster than

full convolution. This work was extended to a more uni-

fied framework[317], which proved to be faster, more accur-

ate,  and  more  flexible.  The  framework  contains  three

main  components:  sparsely  recursive  feature  aggregation

for ensuring both efficiency and feature quality, spatially-

adaptive partial feature updating for improving the qual-

ity of features from non-keyframes, and temporally-adapt-

ive  keyframe  scheduling  for  more  efficient  and  better

quality  keyframe  usage.  However,  these  two  works  are

still  computationally expensive,  as they rely on per-pixel

flow computation, which is a heavy task.

Recently,  Pan  et  al.[123] have explored  another  direc-

tion.  They  proposed  a  novel  recurrent  residual  module

(RRM)  that  only  does  dense  convolution  on  the  first

frame and has the following frames fed into a sparse con-

volution module that only extracts  information from the

different images of neighboring frames. The sparse convo-

lution  has  no  bias  term,  and  it  shares  the  same  filter

banks and weights as dense convolution. After enhancing

the  sparsity  of  the  data  (by  different  images),  a  general

and powerful  inference  model  called  EIE  (efficient  infer-

ence  engine)[124], is  adopted  to  make  the  inference  effi-

ciently according to the dynamic sparsity of the input. In

usage, the video is split into several chunks, which can be

processed with RRM-equipped CNN in parallel. Good res-

ults (speedup) have been observed in object detection and

pose estimation in videos, and the model shall also be ap-

plicable  to  other  visual  recognition  tasks  for  videos.

Moreover,  since  it  only  explores  the  natural  sparsity  of

data, it can ensure that there is no loss of accuracy dur-

ing the speedup.

Besides information redundancy in consecutive frames,

irrelevant information may largely exist for object detec-

tion in videos, as objects often occupy only a small frac-

tion of each video frame. Therefore, an intuitive accelera-

tion strategy is to do dense, full processing on only a few

frames  and  make  use  of  the  spatio-temporal  correlation

among  nearby  frames  to  save  computation  on  the  other

frames. A  representative  work  reallocates  the  computa-

tion over a scale-time space called scale-time lattice[125]. It

performs  expensive  detection  sparsely  on  keyframes  and

propagates  the  results  across  both  scales  and  time  with

substantially  cheaper  networks  by  making  use  of  the

strong corrections among object scales and time. Togeth-

er with some other minor novel components (e.g.,  a net-

work  for  temporal  propagation  and  an  adaptive  scheme

for keyframe selection), the work achieved a better speed-

accuracy trade-off  than  previous  works.  Another  repres-

entative  work  called  spatiotemporal  sampling  network

(STSN) focuses  on feature-level  propagation across  adja-

cent frames.  STSN is  mainly  about  deformable  convolu-

tions over time, which is  optimized directly with respect

to video object detection performance. The approach has

natural  robustness  to  occlusion  and  motion  blur,  which

are two key challenges in detecting objects in videos.
 5.1.2   Network-centric compression

The  main  contents  of  the  last  section  focus  more  on

theoretical  methodology  and  training.  Meanwhile,  for

practical scenarios, a lot of effort has been made on gen-

eral  network-centric  compression  for  fast  inference.  A

comprehensive  survey  may  have  to  cover  several  dozens

of publications. Due to the scope and page limits of this

survey, only a few representative ones for showing the re-

cent advances and trends are covered here, as briefly in-

troduced and compared in Table 7.

Besides pointing out their key ideas, main approaches,

advantages, and disadvantages, we provide a group of key

property  indicators  (KPIs)  for  briefly  evaluating  them

from the perspective of important factors for real applica-

tions. There  are  five  indicators,  with  the  following  de-

tailed explanations.

“General or specific?” Whether the model is a gen-

eral  one  that  can  be  applied  to  the  compression  of  any

network or it is specific to some data types, tasks, or net-

work structures.

“Static or dynamic?” “Static” means that the com-

pression has to be done together with the training of the

original models, and any changes in the compressed mod-

el  have  to  be  accompanied  by  retraining  of  the  original

model so that once a compression model is  optimized, it

is  static;  “dynamic”  means  that  the  compression  model

can be  changed  dynamically  on-demand  without  requir-

ing retraining of the original model. In the last two years,

there  has  been a  clear  trend toward shifting  to  dynamic

compression,  so  most  of  the  references  in Table  7 are

about dynamic models, and only one representative of the

static model is listed.

“Easy user control?” Whether the compression can

be easily controlled by the users or not, such as using one

or very few hyper-parameters for an intuitive controlling

of the compression/speedup rate.

“Input  adaptive?” Whether  the  compression  is

made adaptive to the input data or not. When it is input

adaptive, the network can be changed for each specific in-
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put so that the inference time may be greatly reduced for

easier inputs.

“Resource-aware?” Whether  the  compression  is

aware  of  the  available  resources  (including  resources  for

storage,  transmission,  and  computation)  or  not.  Fewer

and  weaker  resources  shall  lead  to  a  higher  compression

rate  and  vice  versa.  Resource  types  shall  also  matter  in

detailed control of the compression.

There are a few findings in our study which are worth

mentioning.

 

Table 7    Recent representative network compression works for fast run-time inference. Please refer to the text for details about the key
property indicators.

Reference Key idea Main approach

Key property indicator

Pros&Cons (if known)General or
specific?

Static or
dynamic?

Easy user
control?

Input
adaptive?

Resource
aware?

Liu et al.[292] Directly enforcing
channel-level sparsity

Scaling factors
and sparsity-
induced penalty

General Static Yes No Yes Pros.: Simple and
general. Cons.: Static
(compression tied up
training).

Lin et al.[318];
Rao et al.[319]

Model the pruning of each
convolutional layer as a
Markov decision process

Reinforcement
learning

Seem to be
general

Dynamic Yes Yes Yes Pros.: Good properties.
Cons.: Overhead on
pruning may be high.

Shazeer
et al.[128]

Encourage components to
be specialized and
perform component
selection during inference

A new network
with multiple
specialized
branches, a gate
for branching,
and a combiner
for aggregating

Seem to be
general

Dynamic Yes Yes Yes Pros.: Intuitive, good
properties. Cons.:
Overhead on training
may be high.

Gao et al.[320] Use a low-overhead extra
component to predict
convolutional channels′
saliency for prunning

A new piecewise
differentiable
and continuous
function for
saliency
prediction

Seem to be
general

Dynamic No Yes No Pros.: Simple, fast,
currently lowest
accuracy loss. Cons.:
Not directly resource-
aware.

Yu et al.[321] Train a shared network
with different widths

Switchable
batch
normalization

General
(verified)

Dynamic Yes No Yes Pros.: Simple, clean,
well-motivated, fast
and easy to use. Cons.:
Not input-adaptive.

Lee
et al.[126]

Using a conditional
gating module (CGM) to
determine the use of each
residual block according
to the input image and
the desired scale

CGM Specific to
residual
networks

Dynamic Yes No Yes Pros.: Simple, clean,
fast, and easy to use.
Cons.: Not input-
adaptive, and specific
to residual networks.

Zhang
and Jung[322]

Cost-adjustable inference
by varying the unrolling
steps of recurrent
convolution (RC), with
independently learned BN
layers

Recurrent
convolution (a
particular kind
of RNN)

Specific to
RC

networks

Dynamic Yes No Yes Pros.: New approach,
interesting idea. Cons.:
Not input-adaptive,
and specific to RC
networks.

Liu et al.[323] Select a combination of
compression techniques
for an optimal balance
between user-specified
performance goals and
resource constraints

Reinforcement
learning

General
(verified)

Dynamic Yes No Yes Pros.: Systematic,
application oriented.
Cons.: Not input-
adaptive, and the
overhead can be high.

Fang
et al.[127]

Enables each DNN (by
making it a multi-
capacity model) to offer
flexible resource-
accuracy trade-offs, and
then do resource-aware
scheduling

A greedy
heuristic
approximation
for optimizing
MinTotalCost
and
MinMaxCost
scheduling
schemes

General Dynamic Yes No Yes Pros.: Highly
application oriented,
general, little
overhead. Cons.: Not
input-adaptive; the
overall solution looks
complicated.

Pan et al.[123] Using the similarity of the
intermediate feature
maps of two consecutive
frames to largely reduce
the redundant
computation

The proposed
novel recurrent
residual module

Video-
specific

Dynamic No Yes No Pros.: Properly
explored redundancy
in data, no accuracy
loss. Cons.: Not user-
controllable and not
resource-aware.
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1)  Like  the  channel-wise  sparsity  work  proposed  by

Liu et al.[292] or the slimmable neural  networks proposed

by Yu et al.[321], there is a clear trend that network prun-

ing  focuses  more  and  more  on  whole  channels  or

blocks[126],  as  such  structural  pruning  is  GPU-friendly

(can  be  exploited  by  GPUs)  and  allows  the  acceleration

to work  on  dense  operations  of  fewer  components,  in-

stead of many sparse individual weights.

2)  Models  that  can  be  easily  controlled  by  users

(“Easy user control”) are usually also “Resource-aware”,

as  there  is  a  common assumption that  users  can control

the compression  according  to  the  actual  situation  of  re-

sources. However, in real cases, the state of resources can

be  dynamic  even  for  a  specific  device  instance  (e.g.,

someone′s  smartphone),  as  all  the  factors  of  storage,

transmission,  and  computation  can  change  over  time.

There  can  be  multiple  processes/applications  running  at

the same time, and the internet connection speed is hard

to be consistent. Therefore, instead of asking the user to

specify the compression rate, having a model to dynamic-

ally decide it is a more practical and also more promising

choice, which  is  widely  ignored  and  far  from  being  ex-

plored.  Fang  et  al.[127] present  an  inspiring  work  in  this

direction.

3) Being  “Resource-aware”  and  being  “Input-adapt-

ive”  seem hard  to  be  achieved  at  the  same time,  as  the

former is  about  overall  compression,  which  can  be  con-

trolled  by  users,  while  the  latter  is  about  automatically

adjusting the compression based on each individual input

data instance. However, these two can be solved from dif-

ferent  aspects,  and  there  is  no  conflict  between  them.

Therefore,  integrating  both  factors  (“Resource-aware”

and “Input-adaptive”) is a promising direction worth fur-

ther investigation,  and  there  are  also  some  good  ex-

amples[128, 318, 319].

 5.2   Efficient dynamic inference

After  the  training  of  DNN,  traditional  static  models

have  fixed  computational  graphs  and  parameters  in  the

inference stage. In contrast, to improve the computation-

al  efficiency  of  inference,  there  is  an  emerging  research

topic termed “dynamic neural network (DyNN)” that fo-

cuses  on  adaptively  regulating  network  structures  or

parameters to different inputs in the inference stage. Re-

cently, there has already been a comprehensive survey[18]

on  efficient  dynamic  inference  with  DNNs.  However,  it

only focuses  on  classic  analog-based  DNNs  where  neur-

ons  use  activations  coded  in  continuous  values.  In  this

survey,  we  extend  the  concept  of  dynamic  inference  to

brain-inspired SNNs where spiking neurons communicate

through  spike  trains  coded  in  binary  events  rather  than

continuous activations in analog-based DNNs[136].  Details

on the motivations, strategies, and methods of these two

cases are given below.

 5.2.1   Analog-based dynamic inference
During  inference,  in  many  cases,  there  is  no  need  to

employ  the  same  computational  resource  for  each  input,

since  the  difficulty  levels  of  the  inputs  are  different.

Therefore,  efforts  to  reduce  or  avoid  the  computation  of

the irrelevant/redundant  parts  of  the  data  are  very  im-

portant for efficient inference. The goal of DyNN is that

less  computation  is  spent  on  canonical  samples  that  are

relatively  easy  to  recognize  or  on  less  informative

spatial/temporal locations  of  an  input.  As  the  descrip-

tion of DyNN in [18] is already very comprehensive, here

we only make a simple summary. Specifically, we categor-

ize the works of DyNN into two orthogonal aspects based

on the difference of focus: methods of DyNN and work di-

mensions of DyNN.

Methods  of  DyNN. Dynamic  networks  can  adapt

their  structures  or  parameters  to  different  inputs  at  the

inference  stage.  Thus,  dynamic  structure  and  dynamic

parameter are  two basic  methods to  achieve  efficient  in-

ference.

Dynamic structure models can selectively activate net-

work components conditioned on the input, such as sub-

networks[129, 324], layers[130, 325], or channels[320, 326]. For dy-

namic  sub-network,  there  are  two  classic  approaches  to

perform  inference  with  dynamic  architectures  on  each

sample, including enabling early exiting in cascading mul-

tiple models and skipping branches in mixture-of-experts

(MoE)  via  in  parallel  way.  For  example,  a  number  of

CNNs are cascaded in [327] and [328]. After each sub-net-

work, a decision function is trained to decide whether the

process should be an early exit. In contrast, in a parallel

way[329],  the  MoEs can adopt  real-valued soft  weights  to

boost the representations obtained from different experts,

or use  binary-valued  hard  weights  to  increase  the  infer-

ence  efficiency  of  the  MoE.  For  dynamic  layers  (which

can  be  simply  viewed  as  dynamic  depth),  the  intuitive

motivation  is  that  “easy”  samples  may  not  have  to  use

the entire network to process,  as  modern DNNs are get-

ting  increasingly  deep  for  recognizing  more  “hard”

samples. Layer skipping is one of the most popular meth-

ods  to  obtain  dynamic  depth,  which  can  exploit  hard

gates  to  efficiently  produce  binary  decisions  on  whether

to skip the computation of a residual block or layers[175].

Typical  methods  to  achieve  dynamic  layers  include

SkipNet[325],  Conv-AIG[330],  CoDiNet[331],  etc.  In  contrast

to dynamic layers, another alternative idea is performing

inference with dynamic channels, which can be seen as a

kind of dynamic width. Based on the common belief that

modern CNNs usually have considerable channel redund-

ancy,  the  adaptive  width  of  CNNs  could  be  realized  by

dynamically activating  convolutional  channels  for  differ-

ent samples, such as dynamic pruning[131, 293] with gating

functions and  dynamic  pruning  based  on  feature  activa-

tions.

Compared with dynamic structure models, which usu-

ally  need  special  designs  of  architecture,  training
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strategies, or  careful  hyper-parameters  tuning,  the  dy-

namic  parameter  works  to  adapt  network  parameters  to

different  inputs  while  keeping  the  architectures  fixed.

There are two common parameter adaption paths. Based

on  the  specific  input,  one  way  is  to  adjust  the  trained

parameters and the other way is to refine the features. A

typical  approach  to  obtaining  parameter  adjustment  is

using soft attention to regulate the weights based on their

input during inference[132–135]. For example, soft attention

can be executed on multiple convolutional kernels, produ-

cing an adaptive set of parameters[132, 133]. Similarly, fea-

ture  refinement  can  be  also  achieved  by  the  attention

mechanism.  Such  dynamic  regulations  on  network

weights or  features  are  easy  to  obtain  with  a  minor  in-

crease  in  computational  cost,  and  the  representation

power of networks will be significantly improved[332, 333].

Work  dimensions  of  DyNN. Dynamic  networks

can perform adaptive computation at three different work

granularities,  i.e.,  sample-wise[129, 318],  spatial-wise[334–336],

and  temporal-wise[66, 337].  Sample-wise  dynamic  models

process  each  sample  with  the  abovementioned  data-de-

pendent dynamic  structures  or  parameters.  Spatially  ad-

aptive  and  temporally  adaptive  models  can  also  be

viewed as  sample-wise  dynamic  networks,  since  they  ex-

ecute adaptive computation within each sample at a finer

granularity. In  visual  learning,  the  motivation  for  spa-

tially dynamic computation is that not all locations con-

tribute equally to the final prediction of CNNs[338]. Relev-

ant  approaches  of  spatially  dynamic  can be  divided into

three  smaller  levels:  pixel  level[334],  region  level[335],  and

resolution level[336].  Different  from the spatial  dimension,

adaptive  temporal-wise  dynamic  networks  are  dedicated

to improving  network  efficiency  by  dynamically  allocat-

ing  less/no  computation  to  the  inputs  at  unimportant

temporal locations[66, 340].
 5.2.2   Brain-inspired dynamic inference

Spike-based temporal processing allows for sparse and

efficient  information transfer  in the brain.  To mimic the

neuronal  behaviors  of  the  brain,  SNN  uses  binary  spike

signals  (0-nothing  or  1-spike  event)  for  inter-neuron

event-driven communication.  Each spiking neuron model

realizes  neuron-wise  dynamic  behaviors  by  aggregating

spatial information from presynaptic neurons and tempor-

al information from a leaky membrane potential, and only

fires  when  the  membrane  potential  exceeds  a  threshold.

The entire spike signals of SNN are often sparse, and the

computation  can  be  smoothly  executed  on  the  sparse

neuromorphic chip to avoid computing the zero values of

input or activation. A classic brain-inspired spiking mod-

el,  such  as  the  most  prominent  leaky  integrate-and-fire

(LIF)  neuron[8], is  a  trade-off  between  the  complex  dy-

namic characteristics of biological neurons and the simpli-

fied mathematical form. In this part, we try to re-under-

stand  the  brain-inspired  LIF-SNNs  in  the  framework  of

dynamic  networks.  We  focus  on  two  questions  “Is  that

SNN  a  dynamic  neural  network?”  and  “How  does  SNN

work as a dynamic network?”.

Is that SNN a dynamic neural network? SNN is

also  a  kind  of  dynamic  network.  It  naturally  performs

data-dependent dynamic  inference  that  activates  differ-

ent sub-networks for different inputs,  due to spike-based

neuron-wise dynamic activation. The smallest neural net-

work  has  only  one  neuron.  In  this  case,  the  neuron-wise

dynamic  network  can  decide  whether  to  activate  the

neuron  according  to  the  input.  For  spiking  neurons,  if

there are no input spikes or the membrane potential after

synapse accumulation is less than the threshold, the spik-

ing neuron will not be activated[8]. More importantly, this

neuron-wise  dynamic  function  of  SNN  can  be  smoothly

executed  on  the  neuromorphic  chip[136].  Spiking  neurons

are connected hierarchically forming an SNN. We already

know  that  dynamic  networks  can  adapt  their  structures

or  parameters  to  different  inputs  at  the  inference  stage.

Due to the neuron-wise dynamic characteristic of SNN, it

activates various sub-networks and parameters for differ-

ent inputs. Therefore, SNN is a dynamic neural network.

T = 1

How  does  SNN  work  as  a  dynamic  network?

When the total  simulation steps , SNN can be ap-

proximated as  a  spike-based  CNN  without  temporal  in-

formation, and the first layer of SNN can be regarded as

a  spiking  encoder  layer.  SNN  certainly  has  the  spatial-

wise  dynamic  because  of  the  unique  neuron-wise  sparse

dynamic  activation.  It  supports  the  pixel-level  spatial-

wise  dynamic,  which  performs  convolutions  only  on

sampled pixels set. The advantage of spatial-wise dynam-

ic  in  SNN  has  been  widely  used  in  event-based  vision.

Based on frame-based representation[52], the event stream

is  converted  into  a  video-like  sequence  with  many  zero

areas  in  each  frame  by  frame-based  representation,  and

non-zero areas  of  the  event-based  frame  can  be  con-

sidered  as  informative  pixels.  For  each  frame,  SNN  can

skip the  computation  of  zero  areas.  Without  any  addi-

tional  auxiliary  controller,  SNN is  naturally  a  temporal-

wise dynamic network, since it has the unique finest gran-

ularity  neuron-wise  dynamic.  At  each  time  step,  SNN

performs data-dependent processing that only activates a

part  of  spiking  neurons,  i.e.,  sub-networks.  In  summary,

SNN  can  naturally  work  on  all  three  different  dynamic

granularities (i.e., spatial-wise, temporal-wise, and sample-

wise)  without  any  additional  auxiliary  controller.  The

reason  is  that  spiking  neurons  naturally  have  a  neuron-

wise dynamic, while analog-based DNNs do not[18].

 6   Summary and discussions

 6.1   Summary of recent advances

As detailed  in  the  former  sections  and  also  summar-

ized  in Fig. 21,  to  design  an  efficient  visual  recognition

model or system, one may put effort into data processing

(compression, selection, and representation), which is usu-

ally data type specific, network compression that consists
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of multiple  methods,  and  efficient  inference  which  in-

cludes fast  run-time  and  dynamic  way,  as  already  ex-

plored by the rich literature in the past few years.

An  important  message  is  that  a  lot  of  things  can  be

done  on  the  data  side  or  having  it  taken  into  account

when  people  design  new  efficient  models,  which  is  not

only  important  for  the  recognition  performance  but  also

critical for ensuring that the network compression fits the

data well. In this sense, combining the data side and net-

work  side  together  as  one  will  be  a  significant  frontier

field,  and  each  side  should  be  dug  deeper  separately  to

promote this target as well.

 6.2   Unexplored yet promising new direc-
tions

Though  important  and  attractive  recently-emerged

directions have already been discussed in the former sec-

tions  when individual  topics  are  introduced,  there  might

still  be  some  unexplored  yet  promising  directions  worth

mentioning for preparing future data and network co-op-

timization.  Within  them,  the  following  two  are  believed

by us to be most valuable, though it is still challenging to

work on.

 6.2.1   Efficient network compression

Network compression  is  now  a  vibrant  research  sub-

ject, especially orienting to visual recognition neural net-

works, which are almost always large-scaled due to high-

dimensional  raw  visual  data.  However,  according  to  our

investigation,  we  summarize  several  promising  directions

of compression  methods  below,  which  may  further  pro-

mote  the  miniaturization  of  DNNs  and  brain-inspired

SNNs further.

1) NAS may become a promising or even requisite ap-

proach, especially for embedded vision applications. Such

a  particular  approach  is  very  suited  to  the  application

scenarios with variable surroundings, e.g., fault diagnosis

based on visual  information,  ground object  identification

based on aerial photography, etc. However, most existing

NAS methods  are  expensive,  so  optimizing  resource  cost

and searching time should be further researched.

2) Some tensor decomposition methods have not been

studied  adequately  due  to  their  complexity,  e.g.,  HT,

BTD, Kronecker tensor decomposition (KTD)[239, 339], etc.

Researching these tensor formats may imply potential un-

revealed  prospects  for  neural  network  compression.  For

instance,  Wang  et  al.[163] have  proposed  the  KCP-RNN,

which first  achieved  both  space  and  computation  com-

plexity at the same time, and they claimed that the fine-

grained tensor decomposition, such as KCP should be the

future.

3)  As  different  compression  methods  have  different

characteristics, it is natural to expect a super-synthetical

compression  method,  which  contains  the  flexibility  of

NAS, the regular architecture of tensor decomposition, ef-

ficient computing of quantization in embedded surround-

ings, and high accuracy of pruning, could be proposed in

the future. In other words, there is still much work to be

done to reach the culmination of network compression.

4) Except for DNNs, the miniaturization of the brain-

inspired  SNNs  has  a  great  practical  significance  as  well,

and  such  kinds  of  works  are  still  lacking.  On  the  other

hand, SNN can be seen as a specific kind of DNN since its

motivation of invention is to borrow the efficiency of bio-

 

Fig. 21     Overview of the recent advances and new directions
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neurons,  and current  brain-inspired chips[340, 341] can fur-

ther  highlight  the  advantages  of  SNNs.  Hence,  how  to

land  any  compression  methods  to  SNNs  and  further  to

various  brain-inspired  hardware  has  a  broad  prospect  to

study.
 6.2.2   Efficient brain-inspired dynamic spike-based

models

Though  analog-based  dynamic  DNNs  have  been

widely  studied  due  to  their  notable  advantages  in  terms

of  accuracy,  computational  efficiency,  adaptiveness,  etc.,

the inherent  gap  between  theoretical  and  practical  effi-

ciency is  insurmountable.  It  is  induced  by  a  sparse  dy-

namic computation that runs on dense hardware such as

a  GPU[18]. By  contrast,  as  described  in  Section  5.2,  per-

forming  dynamic  sparse  brain-inspired  SNNs  on  sparse

computation  neuromorphic  hardware  is  natural  without

the gap between algorithm and hardware at the aspect of

dynamic computation.

As  far  as  we  are  aware,  there  is  only  one  published

work  related  to  dynamic  SNN,  i.e.,  the  TA-SNN  work

proposed  by  Yao  et  al.  on  ICCV  2021[52].  Based  on  the

observation that the accuracy of the SNN would not be-

come worse even if they masked half of the input events,

they  used  a  lightweight  temporal-wise  attention  module

to handle  event  streams efficiently  by discarding irrelev-

ant  events.  In  this  survey,  we  present  some  qualitative

analysis  about  the  relationship  between  brain-inspired

SNN and dynamic networks, and explore two basic ques-

tions  “Is  that  SNN  a  dynamic  neural  network?”  and

“How dose SNN work as a dynamic network?”. We hope

that these discussions would further inspire the effective-

ness  and efficiency of  network architecture  design in  the

SNN domain.

 6.3   An important new frontier: Data and
network co-optimization

Recently,  some methods actually  have collaboratively

optimized  the  data  and  networks  together,  although  we

reviewed  them  separately  as  “Before  recognition”  and

“On  recognition”  above.  For  example,  in  a  previously

cited  paper[141], the  network  is  cascaded  by  a  data  com-

pression network and a classification network and trained

in end-to-end.  Thus,  the  compression  network  can  com-

press images more efficiently, retain classification inform-

ation, and also improve classification efficiency. Similarly,

in [48],  the compressed video is used as the input of the

action recognition network,  and the decoding function is

assigned  to  the  recognition  network  through  training.

Therefore,  the  network  learns  the  abilities  for  decoding

and  recognition  at  the  same  time  through  end-to-end

training.

In fact, end-to-end training has been a common desire

for  DNN-based and SNN-based solutions.  However,  even

though  joint  compression  and  recognition  are  already

made possible, so far, most of the existing solutions have

still  treated  them  as  two  separate  yet  linked  modules

rather than a single fused model. Compared with linking

them for  co-optimization,  fusing  them as  a  whole  model

may be  more  helpful  for  developing  more  computation-

ally efficient  models  with  minimum redundant  computa-

tions for real applications, even though that may lead to

more  space  consumption  due  to  the  uncompressed  data,

which  are  nowadays  relatively  easier  to  handle.  As  we

have not found any corresponding practices to the best of

our knowledge, based on the new directions mentioned in

the last Section 6.2, here we propose two possible aspects

for such a unified model design.

One  aspect  is  to  explore  quantization:  Linking  data

quantization  and  network  quantization.  As  discussed

earlier in Section 4.3 (especially Fig. 18 and Table 4) and

Section 4.5, quantization can be done for the whole data

flow  inside  the  neural  networks,  and  it  is  quite  superior

for  adapting  to  various  hardware  platform.  Thus,  it  is

closer  to  real  applications.  Meanwhile,  currently,  most

visual  data are originally represented by low-bit  integers

thanks to  the  advancement  of  digital  visual  sensors,  in-

cluding the brain-inspired DVS, which make data quant-

ization  convenient  and  straight-forward.  However,  the

main  barrier  to  linking  these  two  is  that  currently,  the

raw  visual  data  format  may  not  directly  match  the

quantized network data types. Therefore, we think neces-

sary and highly valuable future efforts should be either on

transforming the representation of raw data towards that

of the quantized models or going to the extreme to make

the  new  visual  sensors  able  to  produce  various  or  more

easily  adjustable  raw  data  formats  for  the  integration

with quantization. At present, one of the most promising

instances might be the binary SNNs, since both the spik-

ing  data  and  quantized  weights  are  binary,  and  such

kinds  of  models  might  be  more  amazing  on  brain-in-

spired chips[340, 341].

The  other  aspect  is  to  extend  the  tensor  network  to

cover the input data. Tensor networks can inherently de-

scribe linear transformations, e.g., matrix production and

tensor contraction. Meanwhile, a neural network architec-

ture is generally similar to a tensor network except for all

the nonlinear activation functions. Therefore, tensor net-

works can at least inspire us to develop some new neural

architectures  by  analyzing  the  probable  relationship

between  tensor  networks  and  neural  networks,  even

though the strict mapping from tensor network to neural

network  may  be  difficult.  Thus,  compressed  input  data

and a compressed neural architecture can be both put in-

to a system similar to a tensor network. For example, if

the  input  data  and  the  weights  in  a  neural  network  are

both  approximated in  TT format,  the  whole  system can

be  expressed  like  a  projected  entangled-pair  states

(PEPS) tensor network[342],  as  drawn in Fig. 22(a) where

red and green nodes illustrate input and output data, re-

spectively, and the existing efficient computing algorithm,

i.e., Algorithm 5 in [250], may help to accelerate this kind
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of models.  Furthermore,  if  one  layer  of  the  neural  net-

work is  designed  like  a  multi-scale  entanglement  renor-

malization ansatz (MERA)[307], a higher ability of expres-

sion  may  be  obtained,  as  presented  in Fig. 22(b).  It  is

easy to observe that the neural network in the MERA ar-

chitecture  has  a  stronger  local  correlation  than  PEPS,

e.g., the content of  in Fig. 22(b) comprises the inform-

ation from , , ,  and .  Through such efforts,  the

efficiency  of  data  representation  and  network  may  be

optimized  using  tensor  network  models  with  theoretical

support,  and  there  are  already  a  few  prospective

works[306, 343].

 
 

 
G1 G2Fig. 22     Input data (denoted by the red nodes , , ···) and

weights in a neural network may be uniformly modeled as a
tensor network, with typical examples such as (a) PEPS[342] and
(b) MERA[307].
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