
INV ITED

P A P E R

Efficient Visual Search for
Objects in Videos
Visual search using text-retrieval methods can rapidly and accurately
locate objects in videos despite changes in camera viewpoint,

lighting, and partial occlusions.

By Josef Sivic and Andrew Zisserman

ABSTRACT | We describe an approach to generalize the

concept of text-based search to nontextual information. In

particular, we elaborate on the possibilities of retrieving

objects or scenes in a movie with the ease, speed, and accuracy

with which Google [9] retrieves web pages containing partic-

ular words, by specifying the query as an image of the object or

scene. In our approach, each frame of the video is represented

by a set of viewpoint invariant region descriptors. These

descriptors enable recognition to proceed successfully despite

changes in viewpoint, illumination, and partial occlusion.

Vector quantizing these region descriptors provides a visual

analogy of a word, which we term a Bvisual word.[ Efficient

retrieval is then achieved by employing methods from statis-

tical text retrieval, including inverted file systems, and text and

document frequency weightings. The final ranking also de-

pends on the spatial layout of the regions. Object retrieval

results are reported on the full length feature films BGroundhog

Day,[ BCharade,[ and BPretty Woman,[ including searches from

within the movie and also searches specified by external

images downloaded from the Internet. We discuss three

research directions for the presented video retrieval approach

and review some recent work addressing them: 1) building

visual vocabularies for very large-scale retrieval; 2) retrieval of

3-D objects; and 3) more thorough verification and ranking

using the spatial structure of objects.

KEYWORDS | Object recognition; text retrieval; viewpoint and

scale invariance

I . INTRODUCTION

The aim of this research is to retrieve those key frames and

shots of a video containing a particular object with the

ease, speed, and accuracy with which web search engines

such as Google [9] retrieve text documents (web pages)

containing particular words. An example visual object

query and retrieved results are shown in Fig. 1. This paper

investigates whether a text retrieval approach can be

successfully employed for this task.

Identifying an (identical) object in a database of images

is a challenging problem because the object can have a

different size and pose in the target and query images, and

also the target image may contain other objects (Bclutter[)

that can partially occlude the object of interest. However,

successful methods now exist which can match an object’s

visual appearance despite differences in viewpoint, light-

ing, and partial occlusion [22]–[24], [27], [32], [38], [39],

[41], [49], [50]. Typically, an object is represented by a set

of overlapping regions each represented by a vector

computed from the region’s appearance. The region

extraction and descriptors are built with a controlled

degree of invariance to viewpoint and illumination

conditions. Similar descriptors are computed for all images

in the database. Recognition of a particular object proceeds

by nearest neighbor matching of the descriptor vectors,

followed by disambiguating or voting using the spatial

consistency of the matched regions, for example by

computing an affine transformation between the query

and target image [19], [22]. The result is that objects can

be recognized despite significant changes in viewpoint,

some amount of illumination variation and, due to mul-

tiple local regions, despite partial occlusion since some of

the regions will be visible in such cases. Examples of

extracted regions and matches are shown in Figs. 2 and 5.

In this paper, we cast this approach as one of text

retrieval. In essence, this requires a visual analogy of a

word, and here we provide this by vector quantizing the
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descriptor vectors. The benefit of the text retrieval

approach is that matches are effectively precomputed so

that at run time frames and shots containing any

particular object can be retrieved with no delay. This

means that any object occurring in the video (and

conjunctions of objects) can be retrieved even though

there was no explicit interest in these objects when

descriptors were built for the video.

Note that the goal of this research is to retrieve

instances of a specific object, e.g., a specific bag or a

building with a particular logo (Figs. 1 and 2). This is in

contrast to retrieval and recognition of Bobject/scene

categories[ [8], [11], [13], [14], [35], [44], sometimes also

called Bhigh-level features[ or Bconcepts[ [4], [47] such as

Bbags,[ Bbuildings,[ or Bcars,[ where the goal is to find

any bag, building, or car, irrespective of its shape, color,

appearance, or any particular markings/logos.

We describe the steps by which we are able to use text

retrieval methods for object retrieval in Section II. Then in

Section III, we evaluate the proposed approach on a ground

truth set of six object queries. Object retrieval results,

including searches from within the movie and specified by

external images, are shown on feature films: BGroundhog

Day[ [Ramis, 1993], BCharade[ [Donen, 1963] and BPretty

Woman[ [Marshall, 1990]. Finally, in Section IV we

discuss three challenges for the presented video retrieval

approach and review some recent work addressing them.

II . TEXT RETRIEVAL APPROACH
TO OBJECT MATCHING

This section outlines the steps in building an object

retrieval system by combining methods from computer

vision and text retrieval.

Each frame of the video is represented by a set of

overlapping (local) regions with each region represented by

a visual word computed from its appearance. Section II-A

describes the visual regions and descriptors used.

Section II-B then describes their vector quantization into

visual Bwords.[ Sections II-C and II-D then show how text

retrieval techniques are applied to this visual word

representation. We will use the film BGroundhog Day[

as our running example, though the same method is

applied to all the feature films used in this paper.

A. Viewpoint Invariant Description
The goal is to extract a description of an object from an

image which will be largely unaffected by a change in

camera viewpoint, object’s scale, and scene illumination,

and also will be robust to some amount of partial

occlusion. To achieve this we employ the technology of

viewpoint covariant segmentation developed for wide

baseline matching [27], [32], [39], [49], [50], object

recognition [22], [32], and image/video retrieval [41], [46].

The idea is that regions are detected in a viewpoint

Fig. 1. Object query example I. Frames from top six ranked shots retrieved from a search of the movie ‘‘Charade’’ for visual query shown.

Querying the entire movie took 0.84 s on a 2-GHz Pentium. A live demonstration of object retrieval system is available online [3].
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covariant mannerVso that for images of the same scene,

the pre-image of the region covers the same scene

portion. This is illustrated in Fig. 2. It is important to note

that the regions are detected independently in each frame.

A Bregion[ simply refers to a set of pixels, i.e., any subset

of the image. These methods differ from classical

detection and segmentation since the region boundaries

do not have to correspond to changes in image appearance

such as color or texture. A comprehensive review of

viewpoint covariant (also called affine covariant) region

detectors, and a comparison of their performance, can be

found in [29].

In this paper, two types of affine covariant regions are

computed for each frame of the video. The first is con-

structed by elliptical shape adaptation about a Harris [18]

interest point. The implementation details are given in [27]

and [39]. This region type is referred to as shape adapted

(SA). The second type of region is constructed by selecting

areas from an intensity watershed image segmentation. The

regions are those for which the area is approximately

stationary as the intensity threshold is varied. The

implementation details are given in [26]. This region type

is referred to as maximally stable (MS).

Two types of regions are employed because they detect

different image areas and thus provide complementary

representations of a frame. The SA regions tend to be

centered on corner-like features, and the MS regions

correspond to blobs of high contrast with respect to their

surroundings such as a dark window on a grey wall. Both

types of regions are represented by ellipses. These are

computed at twice the originally detected region size in

order for the image appearance to be more discriminating.

For a 720 � 576 pixel video frame the number of regions

computed is typically 1200. An example is shown in Fig. 2.

Each elliptical affine covariant region is represented by

a 128-dimensional vector using the SIFT descriptor

developed by Lowe [22]. This descriptor measures

orientation of image intensity gradients, which makes it

robust to some amount of lighting variations. In [28], the

SIFT descriptor was shown to be superior to others used in

the literature, such as the response of a set of steerable

filters [27] or orthogonal filters [39]. One reason for this

superior performance is that SIFT, unlike the other

descriptors, is designed to be invariant to a shift of a few

pixels in the region position, and this localization error is

one that often occurs. Combining the SIFT descriptor with

Fig. 2. Object query example II. (a) Top row: (left) frame from the movie ‘‘Groundhog Day ’’ with outlined query region and (right) close-up of

query region delineating object of interest. Bottom row: (left) all 1039 detected affine covariant regions superimposed and (right) close-up

of query region. (b) (Left) two retrieved frames with detected regions of interest and (right) close-up of images with affine covariant regions

superimposed. These regions match to a subset of the regions shown in (a). Note significant change in foreshortening and scale between

query image of object and object in retrieved frames. (c)–(e) Close-ups of one of the affine covariant regions matched between

query (c) and retrieved frames (d), (e). Note that regions are detected independently in each frame, yet cover the same surface area on

building facade (the letter ‘‘T’’).
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affine covariant regions gives region description vectors

which are invariant to affine transformations of the image.

Note, both region detection and the description is

computed on monochrome versions of the frames, color

information is not currently used in this work.

To reduce noise and reject unstable regions, informa-

tion is aggregated over a sequence of frames. The regions

detected in each frame of the video are tracked using a

simple constant velocity dynamical model and correlation.

The implementation details are given in [40] and [45]. Any

region which does not survive for more than three frames

is rejected. This Bstability check[ significantly reduces the

number of regions to about 600 per frame.

B. Building a Visual Vocabulary
The objective here is to vector quantize the descriptors

into clusters which will be the visual Bwords[ for text

retrieval. The vocabulary is constructed from a subpart of

the movie, and its matching accuracy and expressive power

are evaluated on the entire movie, as described in the

following sections. The vector quantization is carried out

by k-means clustering. Two alternative vocabulary building

methods are discussed in Section IV-A.

Each descriptor is a 128-vector, and to simultaneously

cluster all the descriptors of the movie would be a

gargantuan task. Instead, a random subset of 474 frames is

selected. Even with this reduction there still remains

around 300 K descriptors that must be clustered. A total of

6000 clusters is used for SA regions and 10 000 clusters

for MS regions. The ratio of the number of clusters for

each type is chosen to be approximately the same as the

ratio of detected descriptors of each type. The k-means

algorithm is run several times with random initial assign-

ments of points as cluster centers and the lowest cost result

used. The number of clusters K is an important parameter,

which can significantly affect the retrieval performance.

Typically, it is chosen empirically to maximize retrieval

performance on a manually labelled object or scene ground

truth data. Empirically, the relatively high number of

cluster centers (with respect to the number of clustered

data points) is important for good retrieval performance

[42], [46]. We will return to the issue of choosing the

number of cluster centers in Section IV-A.

Fig. 3 shows examples of the regions which belong to

particular clusters, i.e., which will be treated as the same

visual word. The clustered regions reflect the properties of

the SIFT descriptorsVthe clustering is on the spatial

distribution of the image gradient orientations, rather than
the intensities across the region.

The reason that SA and MS regions are clustered

separately is that they cover different and largely

independent regions of the scene. Consequently, they

may be thought of as different vocabularies for describing

the same scene, and thus should have their own word sets,

in the same way as one vocabulary might describe

architectural features and another the material quality

(e.g., defects, weathering) of a building.

C. Visual Indexing Using Text Retrieval Methods
Text retrieval systems generally employ a number of

standard steps [5]: the documents are first parsed into

words, and the words are represented by their stems, for

example Bwalk,[ Bwalking,[ and Bwalks[ would be

represented by the stem Bwalk.[ A stop list is then used

to reject very common words, such as Bthe[ and Ban,[

which occur in most documents and are therefore not

discriminating for a particular document. The remaining

words are then assigned a unique identifier, and each

document is represented by a vector with components

given by the frequency of occurrence of the words the

document contains. In addition, the components are

weighted in various ways (such as inverse document

Fig. 3. Samples of normalized affine covariant regions from clusters corresponding to a single visual word: (a), (c), (d) shape adapted

regions and (b) maximally stable regions. Note that some visual words represent generic image structures, e.g., corners (a) or

blobs (b), and some visual words are rather specific, e.g., eye (c) or a letter (d).
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frequency weighting, see the following). All of the above

steps are carried out in advance of actual retrieval, and the

set of vectors representing all the documents in a corpus

are organized as an inverted file [52] to facilitate efficient

retrieval. An inverted file is structured like an ideal book

index. It has an entry for each word in the corpus followed

by a list of all the documents (and position in that

document) in which the word occurs.

A query text is treated in a similar manner: its vector of

weighted word frequencies is computed. Matching docu-

ments are obtained by measuring the similarity between

the query and document vectors using the angle between

the vectors. In addition, the degree of match on the

ordering and separation of words may be used to rank the

returned documents.

We now describe how these standard steps are employed

in the visual domain where a document is replaced by an

image/frame.

1) Stop List: Using a stop list analogy the most frequent

visual words that occur in almost all images are

suppressed. These might correspond to small specularities

(highlights), for example, which occur in many frames.

Typically, 5%–10% of the most common visual words are

stopped. This amounts to stopping the 800–1600 most

frequent visual words out of the vocabulary of 16 000.

Fig. 5 shows the benefit of imposing a stop listVvery

common visual words occur in many places in an image

and can be responsible for mismatches. Most of these are

removed once the stop list is applied.

2) tf-idf Weighting: The standard weighting [5] is known
as Bterm frequency-inverse document frequency[ (tf-idf)
and is computed as follows. Suppose there is a vocabulary

of V words, then each document is represented by a vector

vd ¼ ðt1; . . . ; ti; . . . ; tVÞ> (1)

of weighted word frequencies with components

ti ¼
nid
nd

log
N

Ni
(2)

where nid is the number of occurrences of word i in doc-

ument d, nd is the total number of words in the document d,
Ni is the number of documents containing term i, and N is

the number of documents in the whole database. The

weighting is a product of two terms: the word frequency,
nid=nd, and the inverse document frequency, logN=Ni. The

intuition is that the word frequency weights words

occurring more often in a particular document higher

(compared to word present/absent), and thus describes it

well, while the inverse document frequency downweights

words that appear often in the database, and therefore do

not help to discriminate between different documents.

At the retrieval stage documents are ranked by the

normalized scalar product (cosine of angle)

simðvq;vdÞ ¼
v
>
q vd

kvqk2kvdk2
(3)

between the query vector vq and all document vectors vd

in the database, where kvk2 ¼
ffiffiffiffiffiffiffiffiffi

v
>
v

p
is the L2 norm of v.

In our case, the query vector is given by the frequencies

of visual words contained in a user specified subpart of an

image, weighted by the inverse document frequencies

computed on the entire database of frames. Retrieved

frames are ranked according to the similarity of their

weighted vectors to this query vector.

3) Spatial Consistency: Web search engines such as

Google [9] increase the ranking for documents where the

searched for words appear close together in the retrieved

texts (measured by word order). This analogy is especially

relevant for querying objects by an image, where matched

covariant regions in the retrieved frames should have a

similar spatial arrangement [38], [41] to those of the

outlined region in the query image. The idea is

implemented here by first retrieving frames using the

weighted frequency vector alone and then reranking them

based on a measure of spatial consistency.

A search area is defined by the 15 nearest spatial

neighbors of each match, and each region which also

matches within this area casts a vote for that frame.

Matches with no support are rejected. The object bounding

box in the retrieved frame is determined as the rectangular

bounding box of the matched regions after the spatial

consistency test. The spatial consistency voting is illus-

Fig. 4. Spatial consistency voting. To verify a pair of matching regions

(A, B) a circular search area is defined by k (¼ 5 in this example) spatial

nearest neighbors in both frames. Each match which lies within the

search areas in both frames casts a vote in support of match (A, B).

In this example, three supporting matches are found. Matches

with no support are rejected.

Sivic and Zisserman: Efficient Visual Search for Objects in Videos

552 Proceedings of the IEEE | Vol. 96, No. 4, April 2008



trated in Fig. 4. This works well as is demonstrated in the

last row of Fig. 5, which shows the spatial consistency

rejection of incorrect matches. The object retrieval

examples presented in this paper employ this ranking

measure and amply demonstrate its usefulness.

Other measures which take account of, e.g., the affine

mapping between images may be required in some

situations, but this involves a greater computational

expense. We return to this point in Section IV-C.

D. Algorithm for Object Retrieval
Using Visual Words

We now describe how the components of the previous

sections are assembled into an algorithm for object

retrieval given a visual query.

We first describe the offline processing. A feature

length film typically has 100–150 K frames. To reduce

complexity, roughly one keyframe is used per second of

video, which results in 4–6 K keyframes. Shot boundaries

are obtained by simple thresholding of the sum of absolute

differences between normalized color histograms of

consecutive frames of video [21]. Descriptors are comput-

ed for stable regions in each keyframe (stability is

determined by tracking as described in Section II-A).

The descriptors are vector quantized using the centers

clustered from the training set, i.e., each descriptor is

assigned to a visual word. The visual words over all

keyframes are assembled into an inverted file structure

where for each word, all occurrences and the position of

the word in all keyframes are stored.

Fig. 5. Matching stages. Top row: (left) query region and (right) its close-up. Second row: original matches based on visual words.

Third row: matches after using stop-list. Last row: final set of matches after filtering on spatial consistency.
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At run time a user selects a query region, which

specifies a set of visual words and their spatial layout.

Retrieval then proceeds in two steps: Firstly, a short list

of Ns ¼ 500 keyframes are retrieved based on their tf-idf

weighted frequency vectors (the bag-of-words model),

and those are then reranked using spatial consistency

voting. The entire process is summarized in Fig. 6 and an

example is shown in Fig. 7.

1) Processing Requirements: Optimized implementations

of the region detection, description, and visual word

assignment currently run at 5 Hz [31]; this is an offline cost.

The average query time for the six ground truth queries on

the database of 5640 keyframes is 0.82 s with a Matlab

implementation on a 2-GHz Pentium. This includes the

frequency ranking and spatial consistency reranking. The

spatial consistency re-ranking is applied only to the top

Ns ¼ 500 keyframes ranked by the frequency based score.

This restriction results in no loss of performance (measured

on the set of ground truth queries in Section III).

In terms of memory requirements, the inverted file for

the movie BGroundhog Day[ takes about 66 MB and stores

about 2 million visual word occurrences (this is with the

10% most frequent words removed).

III . PERFORMANCE AND
RETRIEVAL EXAMPLES

In this section, we first evaluate the object retrieval

performance over the entire movie on a ground truth test

set of six object queries. In part, this retrieval performance

assesses the expressiveness of the visual vocabulary, since

only about 12% of ground truth keyframes (and the invariant

descriptors they contain) were included when clustering to

form the vocabulary. In the following sections we: 1)

examine in detail the retrieval power of individual visual

words; 2) show examples of searches specified by external

images downloaded from the Internet; and finally 3) discuss

and qualitatively assess the retrieval performance.

The performance of the proposed method is evaluated

on six object queries in the movie BGroundhog Day.[ Fig. 8

shows the query frames and corresponding query regions.

Ground truth occurrences were manually labelled in all

the 5640 keyframes (752 shots). Retrieval is performed on

keyframes as outlined in Section II-D and each shot of the

video is scored by its best scoring keyframe. Similar to [4]

and [47], the performance is evaluated on the level of shots

rather than keyframes. We found video shots better suited

than keyframes for browsing and searching movies as a

particular shot may contain several similar keyframes,

which usually have similar rank and clutter the returned

results. However, the suitable granularity (frames, key-

frames, shots) of returned results might depend on a

particular application. Performance is measured using a

precision-recall plot for each query. Precision is the

number of retrieved ground truth shots relative to the total

number of shots retrieved. Recall is the number of

retrieved ground truth shots relative to the total number

of ground truth shots in the movie. Precision-recall plots

are shown in Fig. 9. The results are summarized using the

average precision (AP) in Fig. 9. AP is a scalar valued

measure computed as the area under the precision-recall

graph and reflects performance over all recall levels. An

ideal precision-recall curve has precision 1 over all recall

Fig. 6. The object retrieval algorithm. Example retrieval results are shown in Fig. 7.
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levels, which corresponds to AP of 1. In other words, the

prefect performance is obtained when all relevant shots

are ranked higher than nonrelevant shots. Note that a

precision-recall curve does not have to be monotonically

decreasing. To illustrate this, say there are three correct

shots out of the first four retrieved, which corresponds to

precision 3=4 ¼ 0:75. Then, if the next retrieved shot is

correct the precision increases to 4=5 ¼ 0:8.

Fig. 7. Object query example III: ‘‘Groundhog Day.’’ Screenshot of running object retrieval system showing results of object query 3 from

query set of Fig. 8. Top part of screenshot shows an interactive timeline, which allows user to browse through retrieved results on that page

in a chronological order. Bottom part of screenshot shows the first seven ranked shots from the first page of retrieved shots. Each shot is

displayed by three thumbnails showing (from left to right) the first frame, matched keyframe with identified region of interest shown in

white, and last frame of the shot. Precision-recall curve for this query is shown in Fig. 9.
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It is evident that for all queries the AP of the

proposed method exceeds that of using frequency vectors

aloneVshowing the benefits of using the spatial consis-

tency to improve the ranking. In [42], we further show

that the proposed visual word matching method does not

result in a loss of retrieval performance compared to a

standard frame-to-frame descriptor matching used by, e.g.,

[22] and [41].

Examining the precision-recall curves in Fig. 9 we note

that the performance is biased towards high precision at

lower recall levels. In practice, this might be acceptable for

some applications: for example a visual search of videos/

images on the Internet, where the first few correctly

retrieved videos/images (and their corresponding web

pages) might contain the relevant information. We note,

however, that for some other applications, where finding

all instances of an object is important (e.g., surveillance),

higher precision at higher recall levels might be preferable.

Examples of frames from low ranked shots are shown

in Fig. 10. Appearance changes due to extreme viewing

angles, large scale changes, and significant motion blur

affect the process of extracting and matching affine covar-

iant regions. The examples shown represent a significant

challenge to the current object matching method.

Figs. 2 and 7 show example retrieval results for two

object queries for the movie BGroundhog Day,[ Figs. 1, 11,

and 12 show retrieval examples for the film BCharade,[

and Fig. 13 shows a retrieval example for the movie BPretty

Woman.[ Movies BCharade[ and BPretty Woman[ are

represented by 6503 and 6641 keyframes, respectively,

and a new visual vocabulary was built for each of the two

movies, as described in Section II-B.

A. Quality of Individual Visual Words
It is also interesting to inspect the Bquality[ of

individual query visual words. The goal here is to examine

retrieval performance if only a single visual word is used

as a query. Visual words with good retrieval performance:

1) should occur mostly on the object of interest (high

precision) and 2) should retrieve all the object occurrences

in the database (high recall). In particular, for an

individual visual word, the retrieved keyframes are all

keyframes where the visual word occurs. Note that here

there is no ranking among the retrieved keyframes as all

occurrences of a single visual word are treated with an

equal weight. As a result, a single visual word produces a

single point on the precision-recall curve. Precision is the

number of retrieved ground truth keyframes relative to the

Fig. 8. Query frames with outlined query regions for six test queries with manually obtained ground truth occurrences in the movie

‘‘Groundhog Day.’’ Table shows number of ground truth occurrences (keyframes and shots) and number of affine covariant regions lying

within query rectangle for each query.

Sivic and Zisserman: Efficient Visual Search for Objects in Videos

556 Proceedings of the IEEE | Vol. 96, No. 4, April 2008



total number of keyframes retrieved. Recall is the number

of retrieved ground truth keyframes relative to the total

number of ground truth keyframes in the movie. The

precision/recall graph, shown in Fig. 14, indicates that

individual visual words are Bnoisy,[ i.e., occur on multiple

objects or do not cover all occurrences of the object in the

Fig. 9. Precision-recall graphs (at shot level) for six ground truth queries on the movie ‘‘Groundhog Day.’’ Each graph shows two curves

corresponding to (a) frequency ranking (tf-idf) followed by spatial consistency reranking (circles) and (b) frequency ranking (tf-idf) only

(squares). Note the significantly improved precision at lower recalls after spatial consistency reranking (a) is applied to the frequency

based ranking (b). Table shows average precision (AP) for each ground truth object query for two methods. Last column shows mean

average precision over all six queries.

Fig. 10. Examples of missed (low ranked) detections for objects 1, 2, and 4 from Fig. 8. In left image, two clocks (objects 1 and 2) are

imaged from an extreme viewing angle and are barely visibleVred clock (object 2) is partially out of view. In right image, digital clock

(object 4) is imaged at a small scale and significantly motion blurred.
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database. It should be noted here that the requirement that

each visual word occurs on only one object (high

precision) might be unrealistic in a real world situation

as it implies that the vocabulary would grow linearly with

the number of objects. A more realistic situation is that

visual words are shared across objects and that an object is

represented by a conjunction of several visual words. Also,

perfect recall might not be attained simply because the

region is occluded in some of the target keyframes.

B. Searching for Objects From Outside the Movie
Fig. 15 shows an example of a search for an object

specified by a query image outside the Bclosed world[ of

the film. The object (a Sony logo) is specified by a region of

an image downloaded from the Internet. The image was

preprocessed as outlined in Section II-A. Fig. 16 shows two

more examples of external searches on feature length

movies BPretty Woman[ and BCharade.[

To evaluate the external search performance we

manually labelled all occurrences of the external query

objects in the respective movies. Both the BHollywood[

sign and the BNotre Dame[ cathedral appear in only one

shot in the respective movies and in both cases the

correct shot is ranked first, which corresponds to a

perfect AP of one. The BSony[ logo appears on two

objectsVa monitor and a TV camera, which are both

found and shown in Fig. 15. The TV camera, however,

appears in several other shots throughout the movie. To

measure the performance, we manually selected shots

where the BSony[ logo is readable by a human (usually

larger than roughly 20 pixels across in a 720 � 576

keyframe), which resulted in a ground truth set of three

shots. These are all retrieved, ranked 1st, 4th, and 35th

(AP of 0.53).

Searching for images from other sources opens up the

possibility for product placement queries, or searching

Fig. 11. Object query example IV: ‘‘Charade,’’ (a) Keyframe with user specified query region (a picture), (b) close-up of query region,

and (c) close-up with affine covariant regions superimposed. (d)–(g) (First row) keyframes from 5th, 8th, 12th, and 18th retrieved shots

with identified region of interest, (second row) close-up of image, and (third row) close-up of image with matched elliptical regions

superimposed. First false positive is ranked 20th. Querying 6503 keyframes took 1.28 s on a 2-GHz Pentium.
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movies for company logos, or particular buildings or

locations.

C. Qualitative Assessment of Performance
Currently, the search is biased towards (lightly)

textured regions which are detectable by the applied

region detectors (corner-like features, blob-like regions).

Examples of challenging object searches include texture-

less objects (bottles, mugs), thin and wiry objects

(bicycles, chairs), or highly deformable objects such

people’s clothing. The range of searchable objects can be

extended by adding other covariant regions (they will

define an extended visual vocabulary), for example those

of [50]. Including shape and contour-based descriptors [7],

[30] might enable matching textureless or wiry [10]

objects. Another interesting direction is developing

specialized visual vocabulary for retrieving faces of a

particular person in video [43].

IV. DIRECTIONS FOR FUTURE
RESEARCH IN VISUAL
OBJECT RETRIEVAL

In this section, we discuss three research directions and

review some recent work addressing them. In particular,

we focus on: 1) building visual vocabularies for very large-

scale retrieval; 2) retrieval of 3-D objects; and 3) more

thorough verification and ranking using spatial structure of

objects.

A. Challenge I: Visual Vocabularies for
Very Large Scale Retrieval

In this paper, we have shown object retrieval results

within an entire feature length movie, essentially searching

through 150 000 frames indexed by more than 6000

keyframes. One direction of future work is scaling-up, with

the ultimate goal of indexing the billions of images available

Fig. 12. Object query example V: ‘‘Charade.’’ (a) Keyframe with user specified query region (a hat), (b) close-up of query region, and

(c) close-up with affine covariant regions superimposed. (d)–(g) (First row) keyframes from 5th, 17th, 22nd, and 28th retrieved shots

with identified region of interest, (second row) close-up of image, and (third row) close-up of image with matched elliptical regions

superimposed. First false positive is ranked 30th. Querying 6503 keyframes took 2.06 s on 2-GHz Pentium.
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online. Issues are the cost of building a visual vocabulary

from such large databases (if descriptors from all images are

used) and the size of the vocabularyVshould the vocabu-

lary increase in size as the number of images grows? How

discriminative should visual words be? Recent papers by

Nister and Stewenius [31] and Philbin et al. [33] have

addressed these issues.

Nister and Stewenius use a hierarchical k-means

clustering (also called tree structured vector quantization

[17, p. 410]) to obtain a vocabulary organized in a tree. The

benefit of this approach is a reduced algorithmic

complexity of the vocabulary building stage to

OðN logðKÞÞ compared to OðNKÞ of standard k-means

used in our approach. Here, N is the number of descriptors

being clustered and K is the number of cluster centers. As a

result, building larger vocabularies (with up to 1 million

visual words reported in [31]) from more training

descriptors became feasible. Another benefit is the

reduced cost (OðlogðKÞ compared to OðKÞ used in this

paper) of assigning visual word labels to novel unseen

descriptors. This allows fast insertion of new images into

the database. Nister and Stewenius show successful object

retrieval on a database of 50 000 CD covers. Experiments

reported in [31] also suggest that the tree structured

vocabulary might overcome to some extent the difficulty of

choosing a particular number of cluster centers.

Philbin et al. [33] replace exact k-means by an

approximate k-means also reducing the algorithmic

complexity of vocabulary building to OðN logðKÞÞ and

showing impressive retrieval results on a database of up to

1 million images downloaded from the photo sharing site

Flickr [2]. Furthermore, vocabularies built using the

Fig. 13. Object query example VI: ‘‘Pretty Woman.’’ (a) Keyframe with user specified query region (a polka dot dress), (b) close-up of query

region, and (c) close-up with affine covariant regions superimposed. (d)–(g) (First row) keyframes from 2nd, 6th, 8th, and 13th retrieved shots

with identified region of interest, (second row) close-up of image, and (third row) close-up of image with matched elliptical regions

superimposed. First false positive is ranked 16th. Querying 6641 keyframes took 1.19 s on 2-GHz Pentium.

Sivic and Zisserman: Efficient Visual Search for Objects in Videos

560 Proceedings of the IEEE | Vol. 96, No. 4, April 2008



Fig. 14. ‘‘Quality ’’ of single visual words. (a) Precision-recall graph shows ‘‘quality ’’ of each individual query visual word for ground truth

object (3) of Fig. 8. Each precision-recall point in graph represents quality/performance of a single query visual word. Note that many

visualwords are quiteweak individuallywith low recall andprecision. Somevisualwords aremore indicative for presence of the object, but none

of themachieves perfect results,whichwouldbe the top-right cornerof graph. (b) Examplesof visualwordsdescribingobject (3)V‘‘Frames sign.’’

Top row: scale normalized close-ups of elliptical regions overlaid over query image. Bottom row: corresponding normalized regions.

Visual words are numbered and their precision and recall values are shown in precision-recall graph (a).

Fig. 15. Searching for a Sony logo. First column: (top) Sony Discman image (640 � 422 pixels) with user outlined query region and

(bottom) close-up with detected elliptical regions superimposed. Second and third column: (top) retrieved frames from two different shots of

‘‘Groundhog Day’’ with detected Sony logo outlined in yellow and (bottom) close-up of image. Retrieved shots were ranked 1 and 4.
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approximate k-means method outperform the vocabulary

tree [31] on the standard image retrieval benchmark [1].

In Section III-B, we show that a vocabulary built from

one movie can generalize to images from outside the

closed world of the movie, e.g., downloaded from the

Internet. Another issue is the ability of a vocabulary to

generalize to new objects and scenes, not seen at the

vocabulary building stage. To this end, experiments

performed in [42] indicate a drop in retrieval performance

when a vocabulary built from one movie is used for

retrieval in another movie. However, retrieval perfor-

mance can be restored using a vocabulary built jointly from

both movies. Learning a universal visual vocabulary, with

improved generalization to unseen objects and scenes,

remains a current research challenge. Alternatively, a

visual vocabulary might not be static but instead evolve

over time when new images are added to the database.

B. Challenge II: Retrieval of 3-D Objects
In the video retrieval application described so far, a

query is specified by an image of the object of interest.

Such queries enable retrieval of objects with some degree

of generalization over viewpoint and deformationVbut

specifying the front of a car as a query will not retrieve

shots of the rear of the car. In general, there is a problem of

not retrieving a visual aspect that differs from that of the

query. We mention here two approaches to address this

problem.

The first approach builds on the idea that within a

video there are often several visual aspects that can be

associated automatically using temporal informationVfor

example the front, side, and back of a car as illustrated in

Fig. 17. Grouping aspects by tracking can be performed

on the query side (the query frame is associated with

other frames in the query shot) or/and on the entire

stored and indexed video database. On the query side,

selecting one aspect of the object then automatically also

issues searches on all the associated aspects. An example

of the resulting retrievals following a multiple aspect

query is shown in Fig. 17. The exemplars (regions of the

frames) are associated automatically from video shots

despite background clutter. More details can be found in

[45]. Grouping on the database side (rather than the

query) means that querying on a single aspect can then

return all of the pregrouped frames in a particular video

shot. Other approaches to building appearance models

from video include that of [25], where optic-flow-based

motion segmentation is used to extract objects from

video, and that of [51], where an object is modelled by

selecting keyframes (using interest point tracking) from

video sequences of single objects (some of which are

artificial).

Note that in the approach above, the 3-D structure of

the object (a van in Fig. 17) is represented implicitly by a

set of exemplar images. An alternative approach was

developed by Rothganger et al. [37], where tracks of affine

Fig. 16. Searching for locations using external images downloaded from the Internet. (a) Query frame. (b) Frame from first shot retrieved

(correctly) from ‘‘Pretty Woman.’’ (c) Query frame (Notre Dame in Paris). (d) Frame from first shot retrieved (correctly) from ‘‘Charade.’’

Note viewpoint change between query and retrieved frame.
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covariant regions are used to build an explicit 3-D model of

the object/scene automatically from a video shot. Scenes

containing a small number of independently moving

objects are also handled. Although, in principle, 3-D

models can be used for retrieval in videos, and we return to

this point in the next section, the focus of [37] is more on

model building than matching, and only rigid objects are

considered.

C. Challenge III: Verification Using Spatial
Structure of Objects

The spatial consistency reranking (Section II-C3) was

shown to be very effective in improving the precision and

removing false positive matches. However, the precision

could be further improved by a more thorough (and more

expensive) verification, based on a stricter measure of

spatial similarity. Examples include angular ordering of

regions [41], region overlap [16], deformable mesh

matching [34], common affine geometric transformation

[24], [33], or multiview geometric constraints [36]. Unless

the system is being designed solely to retrieve rigid objects,

care must be taken not to remove true positive matches on

deformable objects, such as people’s clothing, by using

measures that apply only to rigid geometry. To reduce the

computational cost, verification can be implemented as a

sequence of progressively more thorough (and more

expensive) filtering stages. The cost of spatial verification

can be further reduced by including some of the spatial

layout of regions in the precomputed index. In the

following, we review in more detail two spatial verification

methods based on matching local image regions. The two

methods are complementary as they are designed,

respectively, for matching deformable and 3-D objects.

The first method, proposed by Ferrari et al. [16], is
based on measuring spatial overlap of local regions as

illustrated in Fig. 18(a) and (b). A set of local regions in the

query (model) image, shown in Fig. 18(a), is deemed

matched to a set of local regions in the retrieved image,

Fig. 17. Automatic association and querying multiple aspects of 3-D object. (a) Five frames from one shot (188 frames long) where

camera is panning right, and van moves independently. Regions of interest, shown in yellow, are associated automatically by tracking affine

covariant regions and motion grouping tracks belonging to rigidly moving 3-D objects. Note that regions of interest cover three aspects

(front, side, and back) of van. (b) Multiple aspect video matching. Top row: Query frame with query region (side of the van) selected

by the user. Query frame acts as a portal to automatically associated frames and query regions, shown in (a). Next two rows: example

frames retrieved from entire movie by multiple aspect query. Note that views of van from back and front are retrieved.
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shown in Fig. 18(b), if regions are matched individually on

appearance and the pattern of intersection between

neighboring regions is preserved. This verification proce-

dure has been applied to retrieval of objects from video

[15] and example results are shown in Fig. 18(c)–(e). This

verification was shown to work well for deformations,

which can be approximated locally by affine 2-D geometric

transformation. On the downside, the matching is

computationally expensive as it involves search over

parameters of the affine map for each local region.

The second verification method, proposed by

Rothganger et al. [36], is based on matching a 3-D object

model composed of a set of local affine covariant regions

placed in a common 3-D coordinate frame. The model is

built automatically from a collection of still images. An

example 3-D model is shown in Fig. 19. Note that the

model explicitly captures the structure of the object.

During verification, the consistency of local appearance

descriptors as well as the geometric consistency of the

projected 3-D object model onto the target image is

required. The benefit of this approach is that the object

can be matched in a wide range of poses, including poses

unseen during the model building stage, as shown in

Fig. 19(c) and (d). On the downside, the 3-D model is

currently built offline, and the model building requires

several (up to 20) images of the object taken from

different viewpoints and with fairly clean background.

V. DISCUSSION AND CONCLUSION

We have demonstrated a scalable object retrieval archi-

tecture, which utilizes a visual vocabulary based on vector-

quantized viewpoint invariant descriptors and efficient

indexing techniques from text retrieval.

It is worth noting two differences between document

retrieval using a bag-of-words, and frame retrieval using

a bag-of-visual-words: 1) because visual features overlap

in the image, some spatial information is implicitly

preserved (i.e., randomly shuffling bits of the image

around will almost certainly change the bag-of-visual-

words description). This is in contrast to the bag-of-words

representation of text, where all spatial information

Fig. 18. (a), (b) Spatial verification based on overlap of local regions. (a) Set of local regions (shown in black) on a model view of object

(magazine cover). (b) Same set of regions matched to a different view of same object. Note that pattern of intersection between neighboring

regions is preserved despite the fact that object is imaged from a different viewpoint and deformed. (c), (e) Retrieval of deformable objects

(logos on t-shirts) in video. (c) Two query objects delineated by user. Rest of the frame is blanked out. (d), (e) Examples of retrieved frames.

Automatically found regions of interest are delineated in white and black. Figure courtesy of Ferrari, Tuytelaars, and Van Gool [15], [16].
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between words (e.g., the word order or proximity) is

discarded. 2) An image query typically contains many more

visual words than a text queryVas can be seen in Fig. 2 a

query region of a reasonable size may contain 50–100 visual

words. However, since the visual words are a result of

(imperfect) detection and also might be occluded in other

views, only a proportion of the visual words may be

expected to match between the query region and target

image. This differs from the web-search case where a query

is treated as a conjunction, and all words should match in

order to retrieve a document/web page.

This paper demonstrates an application of text

retrieval techniques for efficient visual search for objects

in videos. Probabilistic models from statistical text

analysis and machine translation have been also adapted

to the visual domain in the context of object category

recognition [6], [44], [48] and scene classification [8],

[12], [20], [35].

A live demonstration of the object retrieval system on

two publicly available movies (BCharade[ [Donen, 1963]

and BDressed to Kill[ [Neill, 1946]) is available online

at [3]. h
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