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Abstract—We describe an approach to object retrieval that searches for and localizes all of the occurrences of an object in a video,

given a query image of the object. The object is represented by a set of viewpoint invariant region descriptors so that recognition can

proceed successfully despite changes in viewpoint, illumination, and partial occlusion. The temporal continuity of the video within a

shot is used to track the regions in order to reject those that are unstable. Efficient retrieval is achieved by employing methods from

statistical text retrieval, including inverted file systems, and text and document frequency weightings. This requires a visual analogy of

a word, which is provided here by vector quantizing the region descriptors. The final ranking also depends on the spatial layout of the

regions. The result is that retrieval is immediate, returning a ranked list of shots in the manner of Google [6]. We report results for object

retrieval on the full-length feature films “Groundhog Day,” “Casablanca,” and “Run Lola Run,” including searches from within the movie

and specified by external images downloaded from the Internet. We investigate retrieval performance with respect to different

quantizations of region descriptors and compare the performance of several ranking measures. Performance is also compared to a

baseline method implementing standard frame to frame matching.

Index Terms—Object recognition, viewpoint and scale invariance, text retrieval.

Ç

1 INTRODUCTION

THE aim of this work is to retrieve those key frames and
shots of a video containing a particular object with ease,

speed, and accuracy with which Google [6] retrieves text
documents (web pages) containing particular words. This
paper investigates whether a text retrieval approach can be
successfully employed for this task.

Identifying an (identical) object in a database of images is
now reaching some maturity. It is still a challenging
problem because an object’s visual appearance may be very
different due to viewpoint and lighting and it may be
partially occluded, but successful methods now exist [17],
[18], [20], [25], [33], [34], [35], [41], [42]. Typically, an object
is represented by a set of overlapping regions, each
represented by a vector computed from the region’s
appearance. The region extraction and descriptors are built
with a controlled degree of invariance to viewpoint and
illumination conditions. Similar descriptors are computed
for all images in the database. Recognition of a particular
object proceeds by the nearest neighbor matching of the
descriptor vectors, followed by disambiguation using local
spatial coherence (such as common neighbors, or angular
ordering) or global relationships (such as epipolar geometry
or a planar homography).

We explore whether this type of approach to recognition
can be recast as text retrieval. In essence, this requires a

visual analogy of a word, and here, we provide this by
vector quantizing the descriptor vectors. However, it will be
seen that pursuing the analogy with text retrieval is more
than a simple optimization over different vector quantiza-
tions. There are many lessons and rules of thumb that have
been learned and developed in the text retrieval literature,
and it is worth ascertaining if these also can be employed in
visual retrieval.

The benefits of the text retrieval approach is that matches
are effectively precomputed so that at runtime, frames and
shots containing any particular object can be retrieved with
no delay. This means that any object occurring in the video
(and conjunctions of objects) can be retrieved even though
there was no explicit interest in these objects when descrip-
tors were built for the video. However, we must also
determine whether this vector quantized retrieval misses
any matches that would have been obtained if the former
method of nearest neighbor matching had been used.

1.1 Review of Text Retrieval

Text retrieval systems generally employ a number of
standard steps [3]: The documents are first parsed into
words and the words are represented by their stems, for
example, “walk,” “walking,” and “walks” would be
represented by the stem “walk.” A stop list is then used
to reject very common words, such as “the” and “an,”
which occur in most documents and are therefore not
discriminating for a particular document. The remaining
words are then assigned a unique identifier, and each
document is represented by a vector with components
given by the frequency of occurrence of the words the
document contains. In addition, the components are
weighted in various ways (such as inverse document
frequency (idf) weighting, described in more detail in
Section 4). All of the above steps are carried out in advance
of actual retrieval, and the set of vectors representing all the
documents in a corpus are organized as an inverted file [45]
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to facilitate efficient retrieval. An inverted file is structured
like an ideal book index. It has an entry for each word in the
corpus followed by a list of all the documents (and position
in that document) in which the word occurs.

A query text is treated in a similar manner: Its vector of
weighted word frequencies is computed. Matching docu-
ments are obtained by measuring the similarity between the
query and document vectors using the angle between the
vectors. In addition, the returned documents may be ranked
by the correspondence of the word ordering and separation
with the query.

1.2 Paper Outline

In this paper, we explore the visual analogies of each of
these steps. Section 2 describes the visual descriptors used.
Section 3 then describes their vector quantization into visual
“words” and Sections 4 and 5 show how the text retrieval
techniques are applied in the visual domain. Finally, in
Section 6, we evaluate the proposed approach on a ground-
truth set of six object queries. We investigate retrieval
performance with respect to various visual vocabularies
and compare the performance of several ranking measures.
Performance is also compared to a baseline method
implementing standard frame to frame matching without
vector quantization. Object retrieval results, including
searches from within the movie and specified by external
images, are shown on feature films: “Groundhog Day”
[Ramis, 1993], “Casablanca” [Curtiz, 1942], and “Run Lola
Run” [Tykwer, 1998].

Although previous work has borrowed ideas from the
text retrieval literature for image retrieval from databases
(e.g., Squire et al. [40] used the weighting and inverted file
schemes), to the best of our knowledge, this is the first
systematic application of these ideas to object retrieval in
videos. This paper is an extended version of [39].

2 VIEWPOINT INVARIANT DESCRIPTION

The goal is to extract a description of an object from an
image, which will be largely unaffected by a change in
camera viewpoint, the object’s scale, and scene illumination
and will also be robust to some amount of partial occlusion.
To achieve this, we employ the technology of viewpoint
invariant segmentation developed for wide baseline match-
ing [20], [25], [33], [41], [42], object recognition [18], [25], and
image/video retrieval [35], [39]. The idea is that regions are
detected in a viewpoint invariant manner—so that, for
images of the same scene, the preimage of the region covers
the same scene portion. It is important to note that the
regions are detected independently in each frame. A
comprehensive review of viewpoint invariant (also called
affine covariant) region detectors and a comparison of their
performance can be found in [22].

In this work, two types of affine covariant regions are
computed for each frame. The first is constructed by
elliptical shape adaptation about a Harris [12] interest
point. The method involves iteratively determining the
ellipse center, scale, and shape. The scale is determined by
the local extremum (across scale) of a Laplacian and the
shape by maximizing intensity gradient isotropy over the
elliptical region [4], [16]. The implementation details are
given in [20] and [33]. This region type is referred to as
Shape Adapted (SA).

The second type of region is constructed by selecting
areas from an intensity watershed image segmentation. The
regions are those for which the area is approximately
stationary as the intensity threshold is varied. The im-
plementation details are given in [19]. This region type is
referred to as Maximally Stable (MS).

Two types of regions are employed because they detect
different image areas and thus provide complementary
representations of a frame. The SA regions tend to be
centered on corner-like features and the MS regions
correspond to blobs of high contrast with respect to their
surroundings such as a dark window on a gray wall. Both
types of regions are represented by ellipses. These are
computed at twice the originally detected region size in
order for the image appearance to be more discriminating.
For a 720 � 576 pixel video frame, the number of regions
computed is typically 1,200. An example is shown in Fig. 1.
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Fig. 1. Object query example 1. (a) Top row: (left) A frame from the
movie “Groundhog Day” with an outlined query region and (right) a
close-up of the query region delineating the object of interest. Bottom
row: (left) All 1,039 detected affine covariant regions superimposed and
(right) close-up of the query region. (b) (left) Two retrieved frames with
detected regions of interest and (right) a close-up of the images with
affine covariant regions superimposed. These regions match to a subset
of the regions shown in (a). Note the significant change in foreshortening
and scale between the query image of the object and the object in the
retrieved frames. For this query, there are four correctly retrieved shots
ranked 1, 2, 3, and 12. Querying all of the 5,640 keyframes of the entire
movie took 0.36 second on a 2 GHz Pentium.
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Each elliptical affine covariant region is represented by a
128-dimensional vector using the SIFT descriptor developed
by Lowe [18]. In [21], this descriptor was shown to be
superior to others used in the literature, such as the
response of a set of steerable filters [20] or orthogonal
filters [33], and we have also found SIFT to be superior (by
comparing scene retrieval results against a ground truth
[39]). One reason for this superior performance is that SIFT,
unlike the other descriptors, is designed to be invariant to a
shift of a few pixels in the region position and this
localization error is one that often occurs. Combining the
SIFT descriptor with affine covariant regions gives region
description vectors, which are invariant to affine transfor-
mations of the image. Note that both region detection and
the description is computed on monochrome versions of the
frames; color information is not currently used in this work.

To reduce noise and reject unstable regions, information
is aggregated over a sequence of frames. The regions
detected in each frame of the video are tracked using a
simple constant velocity dynamical model and correlation
[34], [38]. Any region that does not survive for more than
three frames is rejected. This “stability check” significantly
reduces the number of regions to about 600 per frame.

3 BUILDING A VISUAL VOCABULARY

The objective here is to vector quantize the descriptors into
clusters that will be the visual “words” for text retrieval. The
vocabulary is constructed froma subpart of themovie, and its
matching accuracy and expressive power are evaluated on
the entire movie, as described in the following sections. The
running example is for the movie “Groundhog Day.”

The vector quantization is carried out by K-Means
clustering, though other methods (K-medoids, histogram
binning, mean shift, etc.) are certainly possible. Recent
works have demonstrated the advantages of using a
vocabulary tree [24] or a randomized forest of k-d trees
[28] to reduce search cost in the quantization stage.

3.1 Implementation

Each descriptor is a 128 vector and to simultaneously
cluster all the descriptors of the movie would be a
gargantuan task. Instead, a random subset of 474 frames
is selected. Even with this reduction, there still remains
around 300K descriptors that must be clustered.

Mahalanobis distance is used as the distance function
for K-Means clustering. The distance between two de-
scriptors x1, x2 is then given by

dðx1;x2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � x2Þ>��1ðx1 � x2Þ
q

: ð1Þ

The covariance matrix � is determined by 1) computing
covariances for descriptors throughout tracks within several
shots and 2) assuming that � is the same for all tracks (i.e.,
independent of the region) so that covariances for tracks can
be aggregated. In this manner, sufficient measurements are
available to estimate all elements of �. The Mahalanobis
distance enables the more noisy components of the
128 vector to be weighted down and also decorrelates the
components. Empirically, there is a small degree of
correlation. As is the standard, the descriptor space is affine
transformed by the square root of � so that euclidean
distance may be used.

There are 6,000 clusters used for the SA regions and

10,000 clusters for the MS regions. The ratio of the number

of clusters for each type is chosen to be approximately the

same as the ratio of detected descriptors of each type. The

K-Means algorithm is run several times with random initial

assignments of points as cluster centers and the lowest cost

result used. The number of clusters was chosen empirically

to maximize matching performance on a ground-truth set

for scene retrieval [39]. The object retrieval performance

with respect to the number of clusters is tested on a new

ground-truth set for object retrieval in Section 6.
Fig. 2 shows examples of the regions that belong to

particular clusters, i.e., which will be treated as the same

visual word. The clustered regions reflect the properties of

the SIFT descriptors, which penalize intensity variations

among regions less than cross-correlation. This is because

SIFT emphasizes orientation of gradients, rather than the

position of a particular intensity within the region.
The reason that SA and MS regions are clustered

separately is that they cover different and largely indepen-

dent regions of the scene. Consequently, they may be

thought of as different vocabularies for describing the same

scene and thus should have their own word sets. In the

same way, as one vocabulary might describe architectural

features and another the material quality (e.g., defects and

weathering) of a building.

4 VISUAL INDEXING USING TEXT RETRIEVAL

METHODS

In text retrieval, each document is represented by a vector

of word frequencies. However, it is usual to apply a

weighting to the components of this vector [3], rather than

use the frequency vector directly for indexing. In Section 4.1,

we describe the standard weighting that is employed, and

the visual analogy of document retrieval to frame retrieval.

The following sections then describe the visual analog of a

stop list and the method used to rank images based on the

spatial layout of their visual words.
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Fig. 2. Samples of normalized affine covariant regions from clusters
corresponding to a single visual word: (a)-(c) SA regions and (d)-(f) MS
regions. Note that some visual words represent generic image
structures, e.g., (a) corners or (d) blobs, and some visual words are
rather specific, e.g., (c) a letter or (f) an eye. Samples for each visual
word example were generated uniformly from all occurrences of the
particular visual word in the movie and are shown sorted (in a scan-line
order) according to the Mahalanobis distance (1) from the cluster center.
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4.1 Term Frequency-Inverse Document Frequency
Weighting

The standard weighting [3] is known as “term frequency-
inverse document frequency” (tf-idf) and is computed as
follows: Suppose there is a vocabulary of V words, then
each document is represented by a vector

vd ¼ ðt1; . . . ; ti; . . . ; tV Þ> ð2Þ

of weighted word frequencies with components

ti ¼
nid

nd
log

N

Ni
; ð3Þ

where nid is the number of occurrences of word i in
document d, nd is the total number of words in the
document d, Ni is the number of documents containing
term i, and N is the number of documents in the whole
database. The weighting is a product of two terms: the word
frequency, nid=nd, and the inverse document frequency,
logN=Ni. The intuition is that the word frequency weights
words occurring more often in a particular document
higher (compared to word present/absent) and thus
describes it well, while the inverse document frequency
downweights words that appear often in the database and
therefore do not help to discriminate between different
documents.

At the retrieval stage, documents are ranked by the
normalized scalar product (cosine of angle),

simðvq;vdÞ ¼
v
>
q vd

kvqk2 kvdk2
; ð4Þ

between the query vector vq and all document vectors vd in
the database, where kvk2 ¼

ffiffiffiffiffiffiffiffiffi

v
>
v

p
is the L2 norm of v.

Note that if document and query vectors are prenorma-
lized to have unit L2 norm, then (4) can be rewritten as

simðvq;vdÞ ¼ v
>
q vd ¼ 1� 1

2
kvq � vdk22: ð5Þ

As a consequence of (5), sorting documents according to
their ascending (squared) L2 distance to the query vector
produces the same ranking as sorting using the (descend-
ing) angle score (4).

In our case, the query vector is given by the frequencies
of visual words contained in a user specified subpart of an
image, weighted by the inverse document frequencies
computed on the entire database of frames. Retrieved
frames are ranked according to the similarity of their
weighted vectors to this query vector.

4.2 Stop List

Using a stop list analogy, the most frequent visual words
that occur in almost all images are suppressed. In our case,
the very common words are large clusters of over 2K points.
These might correspond to small specularities (highlights),
for example, which occur in many frames. The effect of
applying a stop list is evaluated on a set of ground-truth
queries in Section 6.

Fig. 4 shows the benefit of imposing a stop list—very
common visual words occur in many places in an image
and can be responsible for mismatches. Most of these are
removed once the stop list is applied. The removal of the
remaining mismatches is described next.

4.3 Spatial Consistency

Google [6] increases the ranking for documents, where the
searched-for words appear close together in the retrieved
texts (measured by word order). This analogy is especially
relevant for querying objects by an image, where matched
covariant regions in the retrieved frames should have a
similar spatial arrangement [34], [35] to those of the
outlined region in the query image. The idea is implemen-
ted here by first retrieving frames using the weighted
frequency vector alone and then reranking them based on a
measure of spatial consistency.

Spatial consistency can be measured quite loosely by
requiring that neighboring matches in the query region lie
in a surrounding area in the retrieved frame. It can also be
measured very strictly by requiring that neighboring
matches have the same spatial layout in the query region
and retrieved frame. In our case, the matched regions
provide the affine transformation between the query and
retrieved image, so a point to point map is available for this
strict measure.

We have found that a good performance is obtained at
the less constrained end of this possible range of measures.
A search area is defined by the 15 nearest spatial neighbors
of each match in the query and target frames. Each region
that also matches within the search areas casts a vote for
that frame. Matches with no support are rejected. The
spatial consistency voting is illustrated in Fig. 3. To discount
repeated structures, which we found are responsible for
many highly ranked false positives, matches with the same
visual word label are not allowed to vote for each other and
each match can accumulate at most one vote from one
distinct visual word. The final score of the frame is
determined by summing the spatial consistency votes and
adding the frequency score simðvq;vdÞ given by (4).
Including the frequency score (which ranges between 0
and 1) disambiguates ranking among frames that receive
the same number of spatial consistency votes. The object
bounding box in the retrieved frame is determined as the
rectangular bounding box of the matched regions after the
spatial consistency test. This test works well, as is
demonstrated in the last row of images of Fig. 4, which
shows the spatial consistency rejection of incorrect matches.
The object retrieval examples presented in this paper
employ this ranking measure and amply demonstrate its
usefulness.
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Fig. 3. Illustration of spatial consistency voting. To verify a pair of
matching regions (A, B), a circular search area is defined by the k (¼ 5 in
this example) spatial nearest neighbors in both frames. Each match that
lies within the search areas in both frames casts a vote in support of
match (A, B). In this example, three supporting matches are found.
Matches with no support are rejected.
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Other measures that take account of the affine mapping
between images may be required in some situations, but
this involves a greater computational expense. We return to
this point in Section 7.

5 OBJECT RETRIEVAL USING VISUAL WORDS

We first describe the offline processing. A feature length film
typically has 100K-150K frames. To reduce complexity,
roughly one keyframe is used per second of video, which
results in 4K-6K keyframes. Descriptors are computed for
stable regions in each keyframe (stability is determined by
tracking, as described in Section 2). The descriptors are vector
quantized using the centers clustered from the training set,
i.e., each descriptor is assigned to a visual word. The visual
words over all frames are assembled into an inverted file
structure where for each word, all occurrences and the
position of the word in all frames are stored.

At runtime, a user selects a query region, which specifies a
set of visual words and their spatial layout. Retrieval then
proceeds in two steps: First, a short list ofNs ¼ 500 frames are
retrieved based on their tf-idf weighted frequency vectors
(the bag of words model) and those are then reranked using
spatial consistency voting. The frequency-based ranking is
implemented using Matlab’s sparse matrix engine and the
spatial consistency reranking is implemented using the
inverted file structure. The entire process is summarized in
Fig. 5 and examples are shown in Figs. 6 and 7.

It is worth examining the time complexity of this
retrieval architecture and comparing it to that of a method
that does not vector quantize the descriptors. The huge
advantage of the quantization is that all descriptors

SIVIC AND ZISSERMAN: EFFICIENT VISUAL SEARCH OF VIDEOS CAST AS TEXT RETRIEVAL 5

Fig. 4. Matching stages. (a) Query region and its close-up. (b) Original

matches based on visual words. (c) Matches after using the stop-list.

(d) Final set of matches after filtering on spatial consistency.

Fig. 5. The Video Google object retrieval algorithm. Example retrieval

results are shown in Figs. 6 and 7.

Fig. 6. Object query example 2: Groundhog Day. A screen shot of the
running object retrieval system, showing results of object query 3 from
the query set in Fig. 8. The top part of the screen shot shows an
interactive timeline, which allows the user to browse through the
retrieved results on that page in a chronological order. The bottom part
of the screen shot shows the first seven ranked shots from the first page
of retrieved shots. Each shot is displayed by three thumbnails showing
(from left to right) the first frame, the matched keyframe with the
identified region of interest shown in white, and the last frame of the
shot. The precision-recall curve for this query is shown in Fig. 9.
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assigned to the same visual word are considered matched.
This means that the burden on the runtime matching is
substantially reduced as descriptors have effectively been
prematched offline.

In detail, suppose there are N frames, a vocabulary of
V visual words, and each frame contains R regions and
M distinct visual words. M < R if some regions are
represented by the same visual word. Each frame is
equivalent to a vector in IRV with M nonzero entries.
Typical values are N ¼ 10;000, V ¼ 20;000, andM ¼ 500. At
runtime, the task is to compute the score of (4) between the
query frame vector vq and each frame vector vd in the
database (another situation might be to only return the
n closest frame vectors). The current implementation

exploits sparse coding for efficient search as follows: The
vectors are prenormalized (so that the denominator of (4) is
unity) and the computation reduces to one scalar product
for each of theN frames. Moreover, only them � M entries,
which are nonzero in both vq and vd, need to be examined
during each scalar product computation (and typically,
there are far less than R regions in vq as only a subpart of a
frame specifies the object search). In the worst case, if m ¼
M for all documents, the time complexity is OðMNÞ.

If vector quantization is not used, then two alternative
architectures are possible. In the first, the query frame is
matched to each frame in turn. In the second, descriptors
over all frames are combined into a single search space. As
SIFT is used, the dimension, D, of the search space will be
128. In the first case, the object search requires finding
matches for each of the R descriptors of the query frame,
and there are R regions in each frame, so there are
R searches through R points of dimension D for N frames,
a worst case cost of OðNR2DÞ. In the second case, over all
frames, there are NR descriptors. Again, to search for the
object requires finding matches for each of the R descriptors
in the query image, i.e., R searches through NR points,
again, resulting in time complexity OðNR2DÞ.

Consequently, even in the worst case, the vector
quantizing architecture is a factor of RD times faster than
not quantizing. These worst case complexity results can be
improved by using efficient nearest neighbor or approx-
imate nearest neighbor search [18], [28], [36].

Processing requirements. The region detection, description,
and visual word assignment takes about 20 seconds per
frame (720 � 576 pixels) in this implementation, but this is
done offline. Optimized implementations currently run at
5 Hz [24]. In terms of memory requirements, the inverted
file for the movie “Groundhog Day” takes about 66 Mbytes
and stores about 2 million visual word occurrences (this is
with the 10 percent most frequent words removed). For
each visual word occurrence, we store 1) the frame number,
2) the x and y position in the frame, and 3) the distance to
the 15th nearest neighbor in the image to define the radius
of the search region for spatial consistency reranking. For
comparison, storing 128-dimensional descriptors in double
precision (8 bytes) for two million regions would take about
2 Gbytes.

6 EXPERIMENTS

Here, we evaluate the object retrieval performance over the
entire movie on a ground-truth test set of six object queries.
First, in Sections 6.1 and 6.2, we introduce the ground-truth
queries and compare performance and retrieval times with
a baseline method implementing standard frame to frame
matching (without quantization). In part, this retrieval
performance assesses the expressiveness of the visual
vocabulary, since only about 12 percent of the ground-truth
keyframes (and the invariant descriptors they contain) were
included when clustering to form the vocabulary. In
Section 6.3, we discuss typical failure modes and give a
qualitative assessment of retrieval performance. Finally, we
study the object retrieval performance with respect to
different visual vocabularies (Section 6.4) and investigate in
depth various frequency ranking and weighting methods
(Section 6.5).

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. X, XXXXXXX 2009

Fig. 7. Object query example 3: Casablanca. (a) Keyframe with user
specified query region (lamp). (b) Screenshot showing the first eight
ranked shots. Each shot is displayed by three thumbnails, showing (from
left to right) the first frame, the matched keyframe with the identified
region of interest shown in white, and the last frame of the shot.
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6.1 Retrieval Performance against a Baseline

The performance is compared to a baseline method
implementing standard frame to frame matching. The goal
is to evaluate the potential loss of performance due to the
descriptor quantization. In the baseline method, the same
detected regions and descriptors (after the stability check)
in each keyframe are used. The detected affine covariant
regions within the query area in the query keyframe are
sequentially matched to all 5,640 keyframes in the movie.
For each keyframe, matches are obtained based on the
descriptor values using nearest neighbor matching with a
threshold � on the distance. This results in a single or no
match between each query descriptor and each keyframe.
Euclidean distance is used here. Keyframes are ranked by
the number of matches, and shots are ranked by their best
scoring keyframes. Note that the baseline method is
essentially equivalent to pooling all descriptors from all
5,640 keyframes into a single database and performing an
“�-nearest neighbor search” for each query descriptor. In
more detail, the �-nearest neighbor search amounts to
finding all points in the database within (euclidean)
distance � of the query descriptor with an additional
uniqueness constraint that only the best matching descrip-
tor from each keyframe is retained. This is a type of
descriptor matching method used by Schmid and Mohr [35]
and later by Lowe [18].

The performance of the proposed method is evaluated
on six object queries in the movie Groundhog Day. Fig. 8
shows the query frames and corresponding query regions.
Ground-truth occurrences were manually labeled in all the
5,640 keyframes (752 shots). Retrieval is performed on
keyframes, as outlined in Section 4, and each shot of the
video is scored by its best scoring keyframe. Performance is
measured using a precision-recall plot for each query.
Precision is the number of retrieved ground-truth shots
relative to the total number of shots retrieved. Recall is the
number of retrieved ground-truth shots relative to the total
number of ground-truth shots in the movie. Precision-recall
plots are shown in Fig. 9. The results are summarized using

the Average Precision (AP) in Fig. 9. AP is a scalar valued
measure computed as the area under the precision-recall
graph and reflects performance over all recall levels. An
ideal precision-recall curve has precision 1 over all recall
levels, which corresponds to AP of 1. Note that a precision-
recall curve does not have to be monotonically decreasing.
To illustrate this, say, there are three correct shots out of the
first four retrieved, which corresponds to precision
3=4 ¼ 0:75. Then, if the next retrieved shot is correct, the
precision increases to 4=5 ¼ 0:8.

It is evident that, for all queries, the AP of the proposed
method exceeds that of using frequency vectors alone—
showing the benefits of using the spatial consistency to
improve the ranking. On the average (across all queries), the
tf-idf frequency ranking method performs comparably to
the baseline method. This demonstrates that using visual
word matching does not result in a significant loss in
performance against the standard frame to frame matching.
Further examining the precision-recall curves in Fig. 9, we

SIVIC AND ZISSERMAN: EFFICIENT VISUAL SEARCH OF VIDEOS CAST AS TEXT RETRIEVAL 7

Fig. 8. Query frames with outlined query regions for the six test queries
with manually obtained ground-truth occurrences in the movie Ground-
hog Day. The table shows the number of ground-truth occurrences
(keyframes and shots) and the number of affine covariant regions lying
within the query rectangle for each query.

Fig. 9. Precision-recall graphs (at the shot level) for the six ground-truth
queries on the movie Groundhog Day. Each graph shows three curves
corresponding to (a) frequency ranking (tf-idf) followed by spatial
consistency reranking (circles), (b) frequency ranking (tf-idf) only
(squares), and (c) the baseline method implementing standard frame
to frame matching (stars). Note the significantly improved precision at
lower recalls after spatial consistency reranking (a) is applied to the
frequency-based ranking (b). The table shows average precision for
each ground-truth object query for the three different methods. The last
column shows mean average precision over all six queries.
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note that the performance is biased toward high precision at
lower recall levels. In practice, this might be acceptable for
some applications: For example, a visual search of videos/
images on the Internet, where the first few correctly
retrieved videos/images (and their corresponding web
pages) might contain the relevant information. We note,
however, that, for some other applications, where finding
all instances of an object is important (e.g., surveillance),
higher precision at higher recall levels might be preferable.

Figs. 1, 6, 10, and 11 show example retrieval results for
four object queries for the movie “Groundhog Day,” Fig. 7
shows a retrieval example for the black and white film
“Casablanca” and Fig. 12 shows a retrieval example for the
movie “Run Lola Run.” Movies “Casablanca” and “Run
Lola Run” are represented by 5,749 and 3,768 keyframes,
respectively, and a new visual vocabulary was built for each
of the two movies, as described in Section 3.

Fig. 13 shows an example of a search by an image from
outside the “closed world” of the film. The image was
preprocessed, as outlined in Section 2. Searching for images
from other sources opens up the possibility for product
placement queries or searching movies for company logos,
particular buildings, or types of vehicles.

6.2 Retrieval Time

The average query time for the six ground-truth queries on
the database of 5,640 keyframes is 0.82 second with a
Matlab implementation on a 2 GHz Pentium. This includes

the frequency ranking and spatial consistency reranking.
The spatial consistency reranking is applied only to the top
Ns ¼ 500 keyframes ranked by the frequency-based score.
This restriction results in no loss of performance (measured
on the set of ground-truth queries).

The query time of the baseline matching method on the
same database of 5,640 keyframes is about 500 seconds. This
timing includes only the nearest neighbor matching
performed using linear search. The region detection and
description is also done offline. Note that on this set of
queries our proposed method has achieved about 600-fold
speedup compared to the baseline linear search.

6.3 Qualitative Assessment of Performance

Examples of frames from low ranked shots are shown in
Fig. 14. Appearance changes due to extreme viewing angles,
large-scale changes, and significant motion blur affect the
process of extracting and matching affine covariant regions.
The examples shown represent a significant challenge to the
current object matching method.

Currently, the search is biased toward (lightly) textured
regions, which are repeatably detected by the applied affine
covariant region detectors [22]. Examples of challenging
object searches are shown in Fig. 15.

Typical failure modes include the following cases: 1) no
regions are detected on the query object (e.g., object “A” in
Fig. 15). Such queries return no results. 2) Extracted affine
regions (and descriptors) generalize only over a very
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Fig. 10. Object query example 4: Groundhog Day. (a) Keyframe with user specified query region (Phil sign), (b) close-up of the query region, and
(c) close-up with affine covariant regions superimposed. (d)-(g) (first row) Keyframes from the 1st, 4th, 10th, and 19th retrieved shots with the
identified region of interest, (second row) a close-up of the image, and (third row) a close-up of the image with matched elliptical regions
superimposed. The first false positive is ranked 21st. The precision-recall graph for this query is shown in Fig. 9 (object 5). Querying 5,640 keyframes
took 0.64 second on a 2 GHz Pentium.
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limited range of viewpoint and lighting variations. This
typically happens when affine regions are extracted on
object boundaries (with depth discontinuities) and therefore
include other objects or background, or when affine regions
are detected on image structures arising from lighting
effects such as specular reflections or shadows. An example
is shown in Fig. 15, object “B” (coffee pot). Other examples
include textureless (bottles and mugs) or thin and wiry
objects (bicycles and chairs). 3) Extracted affine regions are
highly unstable (e.g., change/disappear over time). Exam-
ples include highly deformable objects such as people’s
clothing (see object “C” in Fig. 15) or unstructured nonrigid
objects such as running water or leaves moving in the wind.

The range of searchable objects can be extended by
adding other covariant regions (they will define an
extended visual vocabulary), for example, those in [42].
Including shape and contour-based descriptors [5], [23]
might enable matching textureless or wiry [7] objects.
Finally, an interesting direction is developing specialized
visual vocabularies for retrieving instances of object classes,
such as a face-specific visual vocabulary for retrieving faces
of a particular person in a video [37].

6.4 Vocabulary Investigation

In the following experiments, we vary the parameters of the
object retrieval system such as the number of words in the
visual vocabulary, the size of the stop list, and the size of
the retrieval database.

6.4.1 Varying the Number of Words of the Visual

Vocabulary

The goal here is to evaluate the performance of the proposed

object retrieval system for different cardinalities of the visual

vocabulary. The visual vocabulary is built, as described in

Section 3, and retrieval is performed, as outlined in Section 4,

using both the frequency ranking and spatial consistency

reranking steps. The top 10 percent most frequent visual

wordsare stopped.TheproportionofSA toMSregions iskept

constant ð¼ 3=5Þ throughout the experiments. The results are

summarized in Fig. 16. The best performance is obtained for a

visual vocabulary size of 16,000.
The size of the visual vocabulary is clearly an important

parameter which affects the retrieval performance. When

the number of clusters is too small, the resulting visual

words are nondiscriminative, generating many false posi-

tive matches. On the other hand, when the number of

clusters is too large, descriptors from the same object/scene

region in different images can be assigned (due to, e.g.,

noise) to different clusters, generating false negative

(missed) matches.
Recently, Nister and Stewenius [24] proposed a visual

vocabulary organized in a tree together with a hierarchical

scoring scheme, which seems to overcome the difficulty of

choosing a particular number of cluster centers.
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Fig. 11. Object query example 5: Groundhog Day. (a) Keyframe with user specified query region (tie), (b) close-up of the query region, and

(c) close-up with affine covariant regions superimposed. (d)-(g) (first row) Keyframes from the 1st, 2nd, 4th, and 19th retrieved shots with the
identified region of interest, (second row) a close-up of the image, and (third row) a close-up of the image with matched elliptical regions

superimposed. The first false positive is ranked 25th. Querying 5,640 keyframes took 0.38 second on a 2 GHz Pentium.
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6.4.2 Effect of the Stop List

Table 1 evaluates the effect of varying the size of the stop list

on the performance of the proposed object retrieval system

(after the spatial consistency re-ranking). The best perfor-

mance (meanAP0.72) is obtainedwhen10percentof themost

frequent visual words are stopped. This amounts to stopping

1,600 most frequent visual words out of the vocabulary of

16,000. Note that stopping the 1,600 most frequent visual

words removes about 1.25 million visual word occurrences

(out of the total of about 3.2 million) appearing in the

5,640 keyframes of the movie “Groundhog Day.”

6.4.3 Evaluating Generalization Performance of the

Visual Vocabulary

To test the generalization performance of the visual
vocabulary, we evaluate the object retrieval performance
on the 5,640 keyframes of “Groundhog Day” with different
visual vocabularies. The results are shown in Table 2. Visual
vocabularies (a) from “Groundhog Day” and (b) from
“Casablanca” were built as outlined in Section 3, i.e., vector
quantization was performed only within frames of one
movie. Visual vocabulary (c) was obtained by concatenating
visual vocabularies (a) and (b). Using the visual vocabulary
built from “Casablanca” (b) for retrieval in “Groundhog
Day” results in a performance drop in comparison to the
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Fig. 12. Object query example 6: Run Lola Run. (a) Keyframe with user specified query region (a logo on a hat), (b) close-up of the query region,

and (c) close-up with affine covariant regions superimposed. (d)-(g) (first row) Keyframes from the 3rd, 9th, 10th, and 11th retrieved shots with the

identified region of interest, (second row) a close-up of the image, and (third row) a close-up of the image with matched elliptical regions

superimposed. The first false positive is ranked 12th. Querying 3,768 keyframes took 0.36 second on a 2 GHz Pentium.

Fig. 13. Searching for a location in the movie “Run Lola Run” using

an external image downloaded from the Internet. (a) A query frame.
(b) and (c) Frames from two shots, ranked 3 and 7, correctly retrieved
from the movie. All three images show the same building—a museum in
Berlin, which was redesigned to look like a bank in the movie. In the first
20 retrieved shots, there are three correct matches (ranked 3, 7, and 11).

Fig. 14. Examples of missed (low ranked) detections for objects 1, 2,
and 4 in Fig. 8. In (a), the two clocks (objects 1 and 2) are imaged from
an extreme viewing angle and are barely visible—the red clock (object 2)
is partially out of view. In (b), the digital clock (object 4) is imaged at a
small scale and significantly motion blurred. Examples shown here were
also low ranked by the baseline method.
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performance of the “Groundhog Day” vocabulary (a). On
the other hand, case (c), simple concatenation of vocabul-
aries (a) and (b), brings the performance almost to the
original level (a). Note that, in all three cases, (a)-(c), the top
5 percent most frequent visual words are stopped. Using
the 10 percent stop list lowers the performance (measured
by the mean AP) of vocabulary (b) and (c). This might be
attributed to higher importance of more general (and more
common) visual words in this case.

6.4.4 Increasing the Database Size

Here, we test the retrieval performance on a larger database
composed of 11,389 keyframes from the two movies
“Groundhog Day” (5,640 keyframes) and “Casablanca”
(5,749 keyframes). The same ground-truth set of queries from
the movie “Groundhog Day” (Fig. 8) is used here, but the

additional keyframes from “Casablanca” act as distractors,
potentially lowering the precision/recall of the retrieved
results. The test was performed with five different visual
vocabularies: (a) the original vocabulary of 16,000 visual
words computed from “Groundhog Day,” (b)-(e) vocabul-
aries clustered from 474 “Groundhog Day” keyframes and
483 “Casablanca” keyframes into different vocabulary sizes,
varying between 16,000-40,000 visual words. Results are
summarized in Table 3. In all cases, the top 10 percent most
frequent visual words were stopped. Examining results for
the vocabulary (a), we observe that increasing the database
size by adding the extra distractor keyframes from “Casa-
blanca” lowers the mean AP from 0.72 to 0.63 (cf., Fig. 9,
method (a)). The best performance on the extended database
(mean AP 0.66) is achieved for vocabulary (d), where
descriptors from “Groundhog Day” and “Casablanca” are
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Fig. 15. Examples of challenging object searches. (a) Keyframe from the movie “Groundhog Day” with three query regions (denoted as A, B, and
C). (b) The same keyframe with affine covariant regions superimposed. (c), (e), and (g) Query region close-ups. (d), (f), and (h) Query close-ups with
affine covariant regions superimposed. (i)-(l) Example retrievals for (i)-(j) object B and (k)-(l) object C. Each column shows (top) a keyframe from the
retrieved shot with the identified region of interest, (middle) a close-up of the image, and (bottom) a close-up of the image with matched affine regions
superimposed. Query analysis: Query A (plain wall) does not contain any visual words and hence returns no results. Query B (coffee pot) retrieves
two shots taken from very similar viewpoints (the second ranked is shown in (i)). Other shots are not retrieved as affine regions extracted on the
object either include background or cover specular reflections, which change with viewpoint and lighting conditions. The first false positive (ranked
third) is shown in (j). Query C (the white shirt) retrieves three correct shots (the second ranked is shown in (k)), but most of the matches are on the
background object. This is because affine regions on the shirt are detected on creases, which change as the person moves. The first false positive
(ranked fourth) is shown in (l).
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pooled together and jointly clustered into 32,000 visual
words. This suggests that including descriptors from
“Casablanca” in the vocabulary building step is beneficial
and reduces confusion between “Groundhog Day” and
“Casablanca” objects. Again, note that the number of visual
words is an important parameter, which significantly
influences the final performance. Similar “quantization”
effects were observed on the database composed of only
“Groundhog Day” keyframes (Fig. 16) but with the best
performance at 16,000 visual words.

6.5 Comparison of Term Frequency Weighting and
Ranking Methods

In this section, we describe alternative term frequency
weighting and ranking schemes and compare their perfor-
mance with the standard tf-idf weighting (described in

Section 4.1). Performance is evaluated on the ground-truth
set of queries in Fig. 8. Spatial consistency is not applied.

6.5.1 Freq-L2

In this method, document vectors are formed using only
absolute term frequencies:

ti ¼ nid; ð6Þ
and query and document vectors are normalized to have
unit L2 norm. Note that starting from relative term
frequencies

ti ¼
nid

nd
ð7Þ

gives the same document vector as starting from absolute
term frequencies (6), as the L2 normalization cancels the
nd term in the denominator of (7). Similarity is computed
using the normalized scalar product (4). The reason for
including this method is to compare the term frequency
weighting with the tf-idf weighting and assess the
contribution of the idf term.

6.5.2 Freq-L1

In this method, document vectors are formed using term

frequencies (6) but are normalized to have unit L1 norm
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Fig. 16.Changing the vocabulary size. Performance for object retrieval

on 5,640 keyframes of “Groundhog Day” with respect to vocabularies of

different sizes. The graph and table show the mean average precision

computed over the six ground-truth object queries in Fig. 8.

TABLE 1
Effect of the Stop List

Mean average precision (AP) of the proposed object retrieval methodwith
the varying size of stop list. The mean average precision is computed
over the six ground-truth object queries in Fig. 8. The vocabulary size is
16,000 visual words.

TABLE 3
Increasing the Database Size

Performance for object retrieval on a database of 11,389 keyframes from two movies (“Groundhog Day” and “Casablanca”) with respect to different
visual vocabularies. See text. Performance is measured by average precision on the six ground-truth queries from “Groundhog Day” shown in Fig. 8.

TABLE 2
Generalization Performance

Performance for object retrieval on 5,640 keyframes of “Groundhog Day” with respect to different visual vocabularies. (a) Visual vocabulary of
16,000 visual words built from 474 keyframes of “Groundhog Day.” (b) Visual vocabulary of 16,000 visual words built from 483 keyframes of
“Casablanca.” (c) Visual vocabulary of 32,000 visual words obtained by concatenating visual vocabularies (a) and (b). Performance is measured by
average precision on the six ground-truth queries from “Groundhog Day” shown in Fig. 8.
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(instead of L2), kvqk1 ¼ 1, kvdk1 ¼ 1, where kvk1 ¼
PV

i¼1 jtij.
Using L1 normalization is equivalent to using relative term

frequencies (7). The similarity score is computed using L1

distance as

1� 1

2
kvq � vdk1: ð8Þ

The goal here is to compare the L1 and L2-based normal-
ization and similarity score.

6.5.3 Freq-�2

Here, document vectors are treated as normalized histo-
grams (probability distributions) over terms [13], [15], [27],
[43], [44], i.e., relative word frequencies (7) are used (vectors
are normalized to sum to one). Similarity between two
vectors (normalized histograms) is computed using the
�2 distance [15], [30], [43] as

1� 1

2
�2ðvq;vdÞ; ð9Þ

where

�2ðvq;vdÞ ¼
X

V

i¼1

ðtqi � tdiÞ2
ðtqi þ tdiÞ

: ð10Þ

6.5.4 Freq-KL

As in the “Freq-�2” method above, document vectors are
treated as probability distributions over terms, but the
dissimilarity score between the query vector and document
vectors is computed using the Kullback-Leibler (KL) diver-
gence [13], [27], [44]:

DKLðvqkvdÞ ¼
X

V

i¼1

tqi log
tqi
tdi

: ð11Þ

Note that the KL divergence is not symmetric,
DKLðvqkvdÞ 6¼ DKLðvdkvqÞ. In particular, note that docu-
ment terms that are not present in the query have limited
effect on the DKLðvqkvdÞ, as the corresponding tqi are zero.
This is an important difference from the �2 distance-based
ranking (9), as the �2 distance is symmetric and penalizes
terms that are present in the document vector vd and
missing in the query vector vq.

6.5.5 tf-idfKL

In this method, document vectors are formed using the tf-
idf weighted visual word frequencies (3). Document vectors
are then normalized to sum to one, and the dissimilarity
score between the query vector and document vectors is
computed using the KL divergence (11). The goal is to
compare performance of this method with the “Freq-KL”
method above and evaluate the contribution of the idf
weights.

6.5.6 Freq-Bhattacharyya

As above, document vectors are treated as probability
distributions over terms, i.e., visual word frequencies (6) are
used and query and document vectors are normalized to
have unit L1 norm, kvqk1 ¼ 1, kvdk1 ¼ 1. The similarity
score between the query vector and document vectors is
measured using the Bhattacharyya coefficient [2], [9]:

Bðvq;vdÞ ¼
X

V

i¼1

ffiffiffiffiffiffiffiffiffiffiffi

tqi tdi
p

: ð12Þ

The Bhattacharyya coefficient can be geometrically inter-
preted [2], [9] as a cosine of the angle between vectors uq ¼
ð ffiffiffiffiffiffi

tq1
p

; . . . ;
ffiffiffiffiffiffiffi

tqV
p Þ> and ud ¼ ð ffiffiffiffiffiffi

td1
p

; . . . ;
ffiffiffiffiffiffiffi

tdV
p Þ>. Note that

both uq and ud have unit L2 norm since vq and vd have
unit L1 norm.

6.5.7 tf-idf Bhattacharyya

Here, document vectors are formed using the tf-idf
weighted visual word frequencies (3). Document vectors
are then normalized to sum to one, and the similarity score
between the query vector and document vectors is
computed using the Bhattacharyya coefficient (12). The
goal is to compare the performance of this method with the
“Freq-Bhattacharyya” method above and evaluate the
contribution of the idf weights.

6.5.8 Binary

Here, document vectors are binary, i.e., ti ¼ 1 if the word
i is present in the document and zero otherwise.
Similarity is measured using the (unnormalized) scalar
product v

>
q vd. This similarity score simply counts the

number of distinct terms in common between the query
and the retrieved document. Note that this method can be
also viewed as an intersection of binary (unnormalized)
histograms, vq and vd.

In addition to the binary vector method described above,
we introduce four other binary vector-based methods:
Binary-L2, Binary-L1, Binary-�2, and Binary-KL. These
methods are analogous to methods described above, i.e., the
same normalization and similarity score is used. The only
difference is that the initial document vectors (before
normalization) are binary rather than based on term
frequencies (6). The reason for including the “binary”
methods is to assess the importance of using term
frequencies. Note that the Binary-Bhattacharyya method is
not included as it produces the same document ranking as
the Binary-L2 method.

6.5.9 Performance Comparison

Precision-recall plots for thedifferent term frequency ranking
methods are shown in Fig. 17. Results are summarized using
average precision (AP) in the table in Fig. 17.

The best average performance over all queries (mean
AP 0.61) is achieved by the “tf-idf Bhattacharyya” frequency
ranking method (a), which combines the “tf-idf” term
weighting with the Bhattacharyya ranking score. Relatively
high performance (mean AP 0.58-0.60) is also achieved by
KL divergence methods ((b), (c), and (d)) and the standard
“tf-idf” method (e), described in Section 4.1. Considerably
worse results (mean AP 0.26-0.40) are obtained using �2

((j) and (k) and L1 ((l) and (m)) distance-based methods.
The L1 ((l) and (m)) and �2 ((j) and (k)) methods perform

poorly on queries 1-2 and 5-6. By close inspection of the
results, we found that this is due to highly ranked false
positive images with small total number (10-50) of visual
words and only 1-2 visual words common with the query.

Note also the superior performance (measured by the
mean AP) of the KL divergence method (c) to the
�2 method (j). This can be attributed to the asymmetry of
the KL divergence as discussed above.
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By comparing each frequency method with its corre-
sponding binary method, we also note that using term
frequencies seems to produce slightly better ((j),(k) and
(l),(m)) or equal ((g),(h) and (c),(d)) results, measured by the
mean AP. The superior performance (measured by the
mean AP) of the tf-idf methods ((a), (b), and (e)) compared
with their frequency-based counterparts ((f), (c), and (g))
may be attributed to the positive contribution of the idf
weighting.

In all of the above experiments, the top 5 percent most
frequent visual words were stopped. If the 10 percent stop
list is used, the performance of method (b) goes down
slightly to mean AP 0.59. The performance of methods ((a)
and (e)) remains the same. Note that methods ((a), (b), and
(e)) use the tf-idf weighting. More interestingly, perfor-
mance of the other methods ((c), (d), (f)-(m)), which do not
use the tf-idf weighting, slightly increases (by on the
average 0.035). For example, the mean AP of methods (f)
and (g) increases from 0.56 and 0.54 to 0.59 and 0.57,
respectively, which makes them comparable to their tf-idf

counterparts (a) and (e). This suggests that applying a stop
list has a similar effect to using tf-idf weights. In other
words, the inverse document frequency (idf) weighting
component might be viewed as a “soft” stop-list down-
weighting very common visual words. Applying the stop
list, however, has the additional benefit of discarding
mismatches (as was illustrated in Fig. 4), which helps in
the spatial consistency reranking stage (cf., Table 1) and is
also useful for localizing objects in images.

6.5.10 Discussion

The proposed object retrieval system uses the normalized
scalar product (method (e)) for initial visual word frequency-
based ranking of video frames, but methods based on
KL divergence and Bhattacharyya coefficient seem to
produce similar (or slightly better) results on our ground-
truth set of test queries. As observed in the text retrieval
literature [3], idf weighting consistently improves retrieval
performance. Interestingly, the L1 distance-based ranking
(method (l)) performs very poorly on our data, which is in
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Fig. 17. Comparison of frequency ranking methods. Precision-recall graphs (at the shot level) for the six ground-truth queries on the movie

Groundhog Day, comparing the performance of different term frequency ranking methods. The table shows Average Precision for each ground-truth

object query. The last column shows mean Average Precision over all six queries. Note that precision-recall graphs are shown only for methods (a),

(e), (i), (j), and (l) from the table, so that the curves are visible.
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contrast with experiments performed by Nister and
Stewenius [24] on their data set. We think this might be
attributed to 1) different statistics of extracted (quantized)
visual descriptors and/or 2) different statistics of the data
set used for experiments. Our data set contains queries for
small objects in highly cluttered and possibly changing
background, whereas Nister and Stewenius query mostly
by entire images (with some change of camera viewpoint).

7 DISCUSSION AND CONCLUSIONS

We have demonstrated a scalable object retrieval architec-
ture, which utilizes a visual vocabulary based on vector-
quantized viewpoint invariant descriptors. The vector
quantization does not appear to introduce a significant loss
in retrieval performance (precision or recall) compared to
nearest neighbor matching.

Currently, descriptors are assigned to the nearest cluster
center using linear search. Recently, however, efficient search
methods using hierarchical tree structured vocabulary [24],
vocabulary indexed by randomized trees [28], or descriptor
indexing by decision trees [14], [26] have been used.
Hierarchical vocabularies [11], [24] canalso reducedescriptor
quantization effects and can, to some extent, overcome the
difficulty with choosing the number of cluster centers.

The spatial consistency reranking was shown to be very
effective in improving the precision and removing false
positive matches. However, the precision could be further
improved by a more thorough (and more expensive)
verification, based on a stricter measure of spatial similarity
(e.g., angular ordering of regions [35], region overlap [10],
deformable mesh matching [29], or common affine geo-
metric transformation [18], [28]). Unless the system is being
designed solely to retrieve rigid objects, care must be taken
not to remove true positive matches on deformable objects,
such as people’s clothing, by using measures that apply
only to rigid geometry. To reduce the computational cost,
verification can be implemented as a sequence of progres-
sively more thorough (and more expensive) filtering stages.
Spatially verified returns can be used to automatically
expand the initial user-given query with additional visual
words leading to a significantly improved retrieval
performance [8].

The method in this paper allows retrieval for a particular
visual aspect of an object. However, temporal information
within a shot may be used to group visual aspects and
enable object level retrieval [32], [38].

It is worth noting some differences between document
retrieval using a bag of words and frame retrieval using a
bag of visual words: 1) because visual features overlap in
the image, some spatial information is implicitly preserved
(i.e., randomly shuffling bits of the image around will
almost certainly change the bag-of-visual-words descrip-
tion). This is in contrast to the bag-of-words representation
of text, where all spatial information between words (e.g.,
the word order or proximity) is discarded. 2) An image
query typically contains many more visual words than a
text query, as can be seen in Fig. 8, a query region of a
reasonable size may contain 30-100 visual words. However,
since the visual words are a result of (imperfect) detection
and also might be occluded in other views, only a
proportion of the visual words may be expected to match
between the query region and target image. This differs

from the web-search case, where a query is treated as a
conjunction, and all words should match in order to retrieve

a document or web page. 3) Internet search engines exploit
cues such as the link structure of the Web [6] and web page
popularity (the number of visitors over some period of

time) to compute a static rank [31] of web pages. This query
independent rank provides a general indicator of a quality
of a web page and enables more efficient and in some cases
more accurate retrieval. For example, the inverted file index

can be ordered by the static rank, allowing the retrieval
algorithm to access the high-quality documents first. An
interesting research question would be to develop an analog

to static ranking for video collections.
A live demonstration of the “Video Google” system on

two publicly available movies (“Charade” [Donen, 1963]

and “Dressed to Kill” [Neill, 1946]) is available online in [1].
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