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ABSTRACT

Based on the good time-frequency localization of the pulse

shaping, it is possible to build a multicarrier modulation that

reduces both narrowband interferences and multipath chan-

nel interferences. In this paper, the given solution is based

on wavelet theory: wavelet packet based multicarrier mod-

ulation is introduced and compared to the useful Orthogo-

nal Frequency Domain Multiplexing (OFDM) modulation in

a wireless environment with narrowband interferences and

multipath channel interferences. Simulations show that the

use of wavelet is more robust to narrowband interferences

than the OFDM modulation. For multipath transmission,

simulations show that the use of complex wavelet outper-

forms the use of real one and outperforms the OFDM modu-

lation when the cyclic prefix technique is not used.

1. INTRODUCTION

In multicarrier modulation, the essential requirement on the

elementary pulse shaping is the orthogonality with its time-

frequency shifted versions. However, the propagation over

the wireless channel leads to the loss of orthogonality, which

could produce intersymbol (ISI) and interchannel (ICI) inter-

ferences. In a multipath environment with time dispersion, it

has been proven that multicarrier transmission using OFDM

modulation is very efficient [1]. By using a cyclic prefix sym-

bol extension, ISI and ICI are completely cancelled. It results

in an equalization by subcarriers which is extremely simple

to implement. However, this symbol extension leads to a re-

duction of the bandwidth efficiency.

Therefore, to optimize the bandwidth efficiency, multicarrier

transmission schemes without cyclic symbol extension are

considered [2][3], they require a good time-frequency local-

ization [4] of the elementary pulse. Based on the character-

istics of the wireless channel, the characteristics of the pulse

shaping could reduce both ICI, ISI and narrowband interfer-

ence (NBI).

In order to design a multicarrier modulation with a significant

time and frequency properties, a given solution is to use the

wavelet theory. The application to filter bank and the exten-

sion to wavelet packet allow the construction of orthogonal

bases used to modulate the data as a multicarrier system. A

multicarrier modulation based on wavelet packet transform

is called WPM (Wavelet Packet Modulation).

Wavelet theory applied to multicarrier modulation has been

studied in previous works: it has been shown [5][6] that the

WPM is efficient for wired transmission and that the "classi-

cal" WPM is not efficient in a time dispersive environment [7].

In this paper, WPM is applied effectively to wireless trans-

mission, two different situations are considered: transmis-

sion with narrowband interference and transmission through

time and frequency dispersive channel. Compared to [7], the

major improvement of this paper is in the use of complex

wavelet to reduce time and frequency dispersive channel in-

terferences.

In the following, multicarrier transmission through wireless

channel and the concept of wavelet packet modulation is first

introduced in Sec. 2. Then transmissions through narrow-

band interference (Sec. 3) and through double dispersive chan-

nel (Sec. 4) are studied with both a discussion on the choice

of the wavelet and simulation results. Finally, conclusions

from simulations are drawn in Sec. 5.

2. COMMUNICATION SYSTEM DESCRIPTION

2.1. Multicarrier Transmission

LetM be the number of channels in the multicarrier scheme.

We consider a base of elementary signals {ψm,n(t), n ∈
Z, m = 0, . . . ,M − 1}.

The transmitted symbols are denoted by xm[n]. The index n
denotes the transmission time interval [nTs; (n+1)Ts] (Ts is

the transmitted symbol duration) and m the subcarrier num-

ber. The modulated signal results from a linear combination

of the base functions weighted with the xm[n]:

s(t) =

+∞
∑

n=−∞

M−1
∑

m=0

xm[n]ψm,n(t). (1)

In the case of a non-selective fading channel and orthonormal

functions, the demodulation symbols ym[n] are:

ym[n] = xm[n]hmn + bm[n], (2)

where hmn and bm[n] are the resulting channel attenuation

factor and noise for subcarrier m and time symbol n respec-

tively. (2) leads to an equalizer composed of a single tap per

subcarrier.

The OFDM modulation [1] uses a rectangular pulse shaping

of duration Ts and the orthogonality is attained for a carrier



spacing of 1/Ts. By noting ΠTs

0 (t) =

{

1 if 0 ≤ t < Ts

0 else
,

the rectangular function, ψm,n(t) is then expressed by:

ψm,n(t) = ej2π t
Ts ΠTs

0 (t− nTs). (3)

A cyclic prefix of duration ∆CP is then inserted between two

OFDM symbols.

2.2. Wireless transmission

In this study, two interferences of wireless communication

are considered and presented in the following.

2.2.1. Narrowband interferences

OFDM based Wireless Local-Area-Networks encounter in-

terferences from Bluetooth devices. In this case, a narrow-

band interference (NBI) could model these interferences.

In this study, the narrowband interference is modelled by a

sinusoidal wave [8] which interferes the data transmission.

The interfering signal j[n] is a sinusoid parameterised by its

frequency νj and its power Pj = 10 log(A2
j ) with Aj the

level of the sinusoid. The received signal r[n] is the sum of

the transmitted signal s[n] with the interfering signal:

r[n] = s[n] + j[n] with j[n] = Aje
j2πνjn. (4)

We note that the transmission is considered without another

interference.

2.2.2. Time and frequency dispersive channels

The (complex) baseband double dispersive channel can be

modelled by a random process in both time and frequency.

The largest delay τL produced by the channel is called the

multipath spread and the largest Doppler shift fd is called

the Doppler spread. This effect of time dispersion is charac-

terized in the frequency domain by the coherence bandwidth

Bc with Bc ∝ 1/τL. The effect of frequency dispersion is

characterized in the time domain by the coherence time Tc

with Tc ∝ 1/fd.

2.3. Wavelet packet modulation

2.3.1. Wavelet packet transform and filterbank

The concept of wavelet transform has been extended by es-

tablishing the theory for libraries of orthonormal bases which

were obtained by filling out the binary tree to some uniform

depth as shown in Fig. 1. This decomposition allows a uni-

form analysis of the spectrum. The obtained functions are

wavelet packets, which are recursively defined by:

p2m(t) =
√

2
∑

k

hkp
m(2t− n), (5)

p2m+1(t) =
√

2
∑

k

gkp
m(2t− n). (6)

hn and gn are a quadrature mirror filter (QMF) pair. hn is

a lowpass filter while gn is a highpass filter. They are con-

nected by the relation gn = (−1)nh1−n.

Fig. 1. Uniform wavelet packet decomposition.

Definition 1 A wavelet packet base ofL2(R) is all orthonor-

mal bases chosen among the functions:

{pm
l,n(t) = 2

l
2 pm(2lt− n), (l, n) ∈ (Z,Z), m ∈ N}. (7)

Therefore, any function f(t) of L2(R) can be decomposed

on the base {pm
l,n(t), (l, n) ∈ (Z,Z)}:

s(t) =
∑

l,n

am
l,np

m
l,n(t). (8)

All these coefficients am
l,n constitute the DWPT (Discrete

Wavelet Packet Transform) of s(t) and the inverse transform

is called IDWPT (Inverse Discrete Wavelet Packet Trans-

form).

2.3.2. Wavelet packet multicarrier modulation

From (8), we can see that any function s(t) of L2(R) can

be expressed as the sum of weighted wavelet packets. In

communication systems, this means that a signal can be seen

as the sum of modulated wavelet packets, which gives the

idea of wavelet packet modulation [5]: the transmitter trans-

forms the symbols from the wavelet domain to the time do-

main with an IDWPT and the receiver transforms the re-

ceived signal from the time domain to the wavelet domain

with a DWPT.

By choosing M = 2l, ψm,n(t) = pm
l,n(t) and ym[n] = am

l,n,

the tree shown in Fig. 1 represents an example of WPM de-

modulation for aM = 8 subcarriers system. The orthogonal-

ity of wavelet packets gives a perfect reconstruction system

for an ideal transmission without interference.

3. NARROWBAND INTERFERENCES

3.1. Choice of the wavelet

Firstly, the NBI’s influence is studied for monocarrier trans-

mission. The aim is to defined how the NBI interferes the

modulated pulse shaping to determine its parameters.

The modulation consists in giving a waveform to the trans-

mitted symbols around a chosen frequency νm. For OFDM



modulation, the complex exponential limited on the symbol

duration Ts is used:

ψ(t) = ei2πνmtΠTs

0 (t). (9)

We note X̂(ν) and X(ν) the Fourier transforms of the re-

ceived and transmitted symbols repectively, and Ψ(ν) the

Fourier transforms of ψ(t). It’s simple to determine that for

a sinusoidal NBI, the received symbols spectrum is:

X̂(ν) = X(ν) +AjΨ(νj). (10)

The spectrum X̂(ν) of the received symbols is decomposed

into two terms : a useful part corresponding to the spectrum

X(ν) of the transmitted symbols and a part resulting from

interferences. We can notice that NBI are contained in the

term Ψ(νj) which is the value of the pulse shaping spectrum

at the interfering frequency.

If the interfering frequency νj is equal to νm, the transmis-

sion is, in an obvious way, very disturbed even impossible

for a certain NBI’s power Pj . However, when the interfering

frequency νj is different to νm, the transmission is also dis-

turbed by the NBI. Indeed, the interfering signal will affect

sidelobes of the pulse shaping spectrum. The more powerful

the sidelobes are, the more disturbed the transmission will be.

In the case of rectangular pulse shaping used to modulate

data, the spectrum is a cardinal sine. The first sidelobe is

only 13dB attenuated from the mainlobe.

In order to reduce the transmission sensitivity with reference

to narrowband interference, we have to build a modulated

pulse shaping with lower sidelobes than time-limited expo-

nential waveform.

WPM allows the building of pulse shaping with very low

sidelobes power. However, the attenuation depends on the

choice and the complexity of the wavelet.

An example of a wavelet is shown in Fig. 2 by its power spec-

tral density. The wavelet shown is the Daubechies wavelet

with 12 coefficients. Daubechies wavelets are choosen be-

cause they are orthornormal wavelets with compact support.

Daubechies wavelets are parameterized by the number of co-

efficients L of filter hn. Coefficients hn have been published

by I. Daubechies in [9].

Fig. 2. Power Spectral Density of the Daubechies (L=12)

wavelet.

The PSD of this wavelet waveform shows that sidelobes are

at least 25dB attenuated compared with the main lobe, where-

as the attenuation is 13dB for the time-limited exponential

waveform.

So, the use of the wavelet allows the construction of a wave-

form with low sidelobes that should be more resistant to a

NBI signal.

3.2. Simulation results

3.2.1. Influence of narrowband interference on monocarrier

transmission

To test the sensitivity of the OFDM and WPM pulse shap-

ing to the sinusoidal NBI, the system is initially reduced to

the use of only one subcarrier. For the WPM, Daubechies

wavelets with L=12 and L=40 coefficients are used.

The 4-QAM symbols are transmitted on subcarrier νm =
0.0625. All the frequencies in this paper are normalized by

the bandwidth B required for the transmission (ν = f
B

with

f the real frequency).

The Mean Square Error (MSE) between transmitted and re-

ceived symbols is calculated for a NBI with a frequency rang-

ing from 0 to 0.2 and a power of 10dB. Results are shown in

Fig. 3.
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Fig. 3. Mean Square Error in the presence of a 10dB

power NBI as a function of interfering frequency for OFDM,

WPM (Daubechies L=12) and WPM (Daubechies L=40)

waveform.

By varying the interfering frequency, results show that errors

are weaker for wavelets than for OFDM modulation. At the

carrier’s sidelobes, the effect of the interfering is completely

cancelled for the WPM pulse shaping. The WPM pulse shap-

ing is thus less sensitive to the NBI than the OFDM carrier.

We can note the significant improvement due to the use of

the Daubechies wavelet with L=40 coefficients.

3.2.2. WPM performances in presence of narrowband inter-

ference

Let’s use a total system of multicarrier transmission. OFDM

modulation and WPM are compared with 4-QAM symbols

transmitted on M = 128 carriers. Wavelets used for the



WPM are Daubechies wavelets with L=12 and L=40 coeffi-

cients.

The used NBI has a variable frequency and measurements

are made for a constant power of 10dB, 20dB and 30dB. Re-

sults in Binary Error Rate are shown in Fig. 4.
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Fig. 4. Bit Error Rate as a function of interfering frequency

for different power and for OFDM, WPM (Daubechies

L=12) and WPM (Daubechies L=40) modulation.

Let’s observe the number of errors made according to the in-

terfering frequency, results show that WPM transmission are

less sensitive to NBI than OFDM transmission. The perfor-

mances of the WPM are more significant with the increase of

the NBI’s power.

We also note that the BER varies less according to the inter-

fering frequency. Because of their construction, each WPM

subcarrier is different, this explains the irregularities of the

curves of BER.

4. TIME AND FREQUENCY DISPERSIVE

CHANNEL

4.1. Choice of the wavelet

Wavelet theory offers a lot of orthogonal pulse shaping with

good time-frequency properties. In this study, we will use

the Daubechies wavelets. The choice of Daubechies wavelet

and the use of complex wavelet is discussed in the following.

4.1.1. Time-frequency Localization

In multicarrier transmission over dispersive channels, the in-

terference can be reduced [4] when the signal energy of a the

pulse shaping is very concentrated around its center. This

is measured by the frequency dispersion ∆F and the time

dispersion ∆T of the pulse shaping.

Definition 2 We make use of the dispersion characteristics

of the base functions and we postulate for ISI- and ICI-free

transmission:

∆T << Tc and ∆F << Bc. (11)

If these conditions are satisfied, the channel can be consid-

ered as frequency non-selective and slowly fading for each

carrier. Then, the transmission verifies (2) and a single tap

equalizer per subcarrier can be used.

Table 1 gives the time and frequency dispersions for several

Daubechies wavelets used by WPM and for the rectangular

pulse used in OFDM modulation.

Table 1. Time-frequency Localization for different wave-

form. Waveform ∆T ∆F

OFDM 130.98 0.083

Daubechies (L=12) 249.3 0.068

Daubechies (L=40) 560.3 0.026

Daubechies wavelets are better localized in frequency than

the rectangular waveform. However, they are worse localized

in time. Thus, conclusions of time-frequency measurements

are: according to (11), WPM should outperform OFDM mod-

ulation in a time dispersive channel and should not outper-

form OFDM modulation in a frequency dispersive channel.

4.1.2. Drawback of common discrete wavelet

Wavelets have good time-frequency localization. However, a

major problem of the common discrete wavelet packet trans-

form is its lack of shift invariance [10]. This means that on

shifts of the input signal, the wavelet coefficients vary sub-

stantially. The signal information may even not be station-

ary in the subbands so that the energy distribution across the

subbands may change. The shift dependence is illustrated

Fig. 5. shift sensitivity of the discrete wavelet packet trans-

form.

in Fig. 5. For presentation purpose, a dilated Daubechies

wavelet with L=12 [9] is chosen as signal s[k]. Making a

wavelet packet transform with itself, the result on the right

is clearly a single non-zero coefficient resulting in a single

subband with positive energy (only the coefficients absolute

value is plotted). Now on a signal shift of ∆ = 7 samples

s[k−∆], the other subbands of the wavelet packet transform

also contain a significant portion of the signal energy.

This shows that the orthogonal discrete wavelet packet trans-

form is highly sensible to the signal alignment relative to the

subsampling points.

4.1.3. Complex Wavelet

To overcome the problem of shift dependence, one possible

approach is to simply omit the subsampling causing the shift



dependence. Techniques that omit or partially omit subsam-

pling are also known as cycle spinning, oversampled filter

banks or undecimated wavelet transforms. However, these

transforms are redundant [11], which is not desirable in mul-

ticarrier modulation.

As an alternative, we used a non-redundant wavelet trans-

form that achieves approximate shift invariance [12]. This

transform yields to complex wavelet coefficients that modu-

late the data stream in the same way that for WPM.

We call the multicarrier modulation based on complex wavelet

packet transform: Complex Wavelet packet Modulation

(CWPM) [13]. In this study, simulations are limited to com-

plex Daubechies wavelet.

4.2. Simulation results

Performances of the proposed system are compared to OFDM

modulation with (∆CP =0.2Ts) and without (∆CP =0) a cyclic

prefix. All multicarrier systems are simulated with 4-QAM

symbols modulated on M=128 subcarriers. Two systems us-

ing the wavelets are tested: a WPM system using real Daube-

chies wavelets, and one using complex Daubechies wavelets.

Both have equalization with a single tap per subcarrier.

4.2.1. Time dispersive channel

The quality of the transmission depends on the multipath

spread τL of the channel. In order to evaluate the influence

of τL on the performance, a time invariant 2-paths chan-

nel is initially used. The received signal is expressed by

r[n] = s[n] + αs[n − τL] + b[n] with α the path’s power,

τL the path’s delay and b[n] an additive white gaussian noise

define by the signal to noise power ratio Eb

N0

. Results in Bit

Error Rate (BER) as a function of τL are shown in Fig. 6.
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Fig. 6. Bite Error Rate (BER) as a function of τL.

BER of WPM using complex waveform are lower than those

of WPM using real waveform. The solution that consists in

using complex wavelet instead of real one, is interesting. For

almost the same number of coefficients, CWPM system out-

performs WPM system.

Compared to OFDM modulation, results show that it is pri-

marily the use of a cyclic prefix that gives to OFDM modu-

lation interesting results in term of BER. WPM outperforms

OFDM modulation only when the cyclic prefix is not the so-

lution used.

4.2.2. Frequency dispersive channel

For a frequency dispersive transmission, the channel is now

composed of a single time-varying path α. The variation of

the coefficient is parameterized by the maximum Doppler

frequency fd. In discrete time, the received signal is thus

expressed by r[n] = α[n]s[n]. The path has a unit power.

Results in Mean Square Error (MSE) as a function of fd are

shown in Fig. 7.
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Fig. 7. Mean Square Error (MSE) as a function of fd.

MSE of WPM system are higher than those of OFDM modu-

lation. According to (11), the more significant the waveform

frequency dispersion is, the more sensitive to the Doppler ef-

fect the modulation is. Thus, real Daubechies wavelet are

more sensitive than the rectangular pulse shaping used by

OFDM modulation.

We note that complex Daubechies wavelet is more robust

than real Daubechies wavelet for an equivalent complexity.

5. CONCLUSION

In this paper, a multicarrier modulation system based on wa-

velet pulse shaping has been introduced.

In a NBI environment, WPM gives satisfactory results in Bit

Error Rate compared with OFDM modulation. Our experi-

ments have shown that WPM is less sensitive to a NBI, re-

sults are all the more significant as the NBI’s power is high.

For time and frequency dispersive channel, a new WPM sys-

tem based on complex wavelet has been introduced. The use

of complex wavelet outperforms the use of real one in both

time and frequency dispersive channel transmission. Further-

more, the complex wavelet packets based multicarrier mod-

ulation has given satisfactory results compared to OFDM

modulation. OFDM modulation shows limitations when the

cyclic prefix is not the solution used. Our experiments have

shown that the CWPM modulation is less sensitive in a time

dispersive channel transmission. Yet, OFDM modulation is

less sensitive than CWPM and WPM in a frequency disper-

sive channel transmission.

Moreover, WPM and OFDM modulation have nearly the same

complexity according to the number of carriers [14] and wave-

lets allow flexibility in the system’s design. The choice de-

pends on a compromise between the desired performance

and the system’s complexity.

Future work will consist in developing the use of complex



wavelet. Indeed, it has been proven that Meyer wavelet out-

performs Daubechies wavelet for WPM using real wavelet.

Thus, a solution to improve our results is to build a complex

version of Meyer wavelet.
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