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Abstract— A wavelet prefiltermaps sample values of an ana-
lyzed signal to the scaling function coefficient input of standard
discrete wavelet transform (DWT) algorithms. The prefilter is
the inverse of a certain postfilter convolution matrix consisting
of integer sample values of a noninteger-shifted wavelet scaling
function. For the prefilter and the DWT algorithms to have
similar computational complexity, it is often necessary to use
a “short enough” approximation of the prefilter. In addition
to well-known quadrature formula and identity matrix prefilter
approximations, we propose a Neumann series approximation, a
band matrix truncation of the optimal prefilter and derive simple
formulas for the operator norm approximation error. This error
shows a dramatic dependence on how the postfilter noninteger
shift is chosen.

We explain the meaning of this shift in practical applications,
describe how to choose it and plot optimally shifted prefilter
approximation errors for 95 different Daubechies, Symlet and
B-spline wavelets.

Whereas the truncated inverse is overall superior, the Neu-
mann filters are by far the easiest ones to compute and for some
short support wavelets, they also give the smallest approximation
error. For example, for Daubechies 1–5 wavelets the simplest
Neumann prefilter provide an approximation error reduction cor-
responding to 100–10 000 times oversampling in a non-prefiltered
system.

Index Terms— Biorthogonal wavelet, prefilter, initialization,
Neumann series, quadrature mirror filter, quadrature formula,
Lagrange interpolant, Sard optimal, pyramid algorithm, FWT al-
gorithm, Daubechies wavelet, Symlet, B-spline wavelet, sampling.

I. I NTRODUCTION

M ODERN wavelet theory is based on a division ofL2(R)
into subspacesVj spanned by integer-translated and

dilated copiesϕj,k
def= 2j/2ϕ(2j ·−k) of a scaling functionϕ,

that will be assumed to havecompact supportin this paper.
For anyJ ∈ Z+ and fJ(x) =

∑
k∈Z aJ,kϕJ,k(x) ∈ VJ with

x restricted to some finite intervalI, the index set can be
reduced to a setIJ consisting of those integers for which the
support ofϕJ,k overlapI:

fJ(x) =
∑

k∈IJ

aJ,kϕJ,k(x), ∀f ∈ VJ , ∀x ∈ I (1)

with index set size|IJ | = 2J |I| + M = O(2J) and M ∈ Z
depending on the support ofϕ. For unique definition of the
coefficients also if only the restriction offJ to I is known,
there are standard approaches like zeropadding, periodic exten-
sion or a more complicated modification of all basis functions
whose support overlap the endpoints ofI [1, Section 7.5].
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If ϕ and the subspacesVj satisfy certainmultiresolution
analysis properties (see, e.g., [1], [2], [3]), then there is a
correspondingmother waveletψ and an orthonormal basis

ϕn
def= ϕ(· − n) and ψj,k

def= 2j/2ψ(2j · −k) (2)

for VJ with j = 0, 1, . . . , J − 1 and k, n ∈ Z. The discrete
wavelet transformcomputes the coefficientsa0,n and dj,k

necessary for decomposingfJ into a wavelet series expansion

fJ (x) =
∑

n∈I0

a0,nϕ(x−n)+
J−1∑

j=0

∑

k∈Ij

dj,kψj,k(x), ∀x ∈ I,

(3)
where|Ij | = O(2j) with exact length depending on the length
of the supports ofϕ and ψ. These coefficients are usually
computed with the very fast pyramid algorithm (also known as
the fast wavelet transform or Mallat’s algorithm) or the even
faster lifting scheme approach (see, e.g, [1], [3], [4]). Both
algorithms use the coefficientsaJ,k of (1) as input (see also
Figure 1). For a more complete treatment of both the pyramid
algorithm and wavelet theory in general, see, e.g., [1], [2], [3].

The pyramid algorithm can very well be used in a purely
discrete setting, for example when designing a filter bank to
produce zero distortion effects, alias cancellation or cancella-
tions of discrete polynomials in the highpass channel. Quite
many applications, however, include analysis of sample values
of some non-discrete signalf or of its orthogonal projection
fJ on VJ . Figure 1 shows all computational steps involved
both in the analysis and the synthesis.

Sections II–III are devoted to the problem of how to
efficiently compute the coefficientsaJ,k (the vectoraJ in
Figure 1) from a vectorfJ of sample values offJ . We derive
a solution in the form of a convolution matrix multiplication

aJ = Φ−1fJ . (4)

Practical restrictions such as time-, memory- or chip area-
constraints may necessitate a sparse matrix approximation
Φ−1

approx≈ Φ−1 (or corresponding short enough filter) to assure
roughly the same computational complexity as for the pyramid
algorithm. We describe some traditional such approximations
and compare them with a band matrix truncation ofΦ−1 and
with a Neumann series family of approximations.

For this comparison, we derive simple formulas for the
operator norm approximation errors in Section IV and plot
these errors for a large number of Daubechies, Symlet and
B-spline wavelets in Section V.

Example 1: In a wavelet-based multicarrier signal trans-
mission system, the transmitted signal is by construction a
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function s ∈ VJ . Hence the received signal isf = s + n,
where n is noise. Thus the projectionPJ (computed, e.g.,
as described in Remark 1) will simply remove some of the
noise. For this particular application, basis functions of Gabor
type are commonly used today, for example in OFDM (for
mobile radio channels and digital audio broadcast) and DMT
(for wireline systems), but wavelets can also be used. For more
details and further references, see, e.g., [5, Section 2.3].

Remark 1:Under certain conditions onx0 andϕ, the initial
projectionPJ in Figure 1, assures thatfJ can be reproduced
from the sample values

(
fJ(2−J(x0 + k))

)
k∈Z (see, e.g., [6],

[7], [8]). For the Shannon wavelet, this is nothing but well-
known classical sampling theory andPJ is simply a lowpass
filtering at the Nyquist frequency. For other wavelets, there
are two main options for how to handle this projection:

1) To applyPJ as in Figure 1has clear advantages even if
f is supposed to be inVJ , as in Example 1. The sample
values offJ must be computed from theavailableinput,
which typically is sample values of a signalf that is
lowpass filteredat the Nyquist frequency. The hard way
to do this would be to first reconstructf from its sample
values. An efficient way to do it is described in [9].

2) WithoutPJ , fJ is replaced by a vectorf of sample values
of the original inputf , which, together with a sparse
matrix approximationΦ−1

approx, introducestwo different
errors in (4):

∥∥Φ−1
approxf − Φ−1fJ

∥∥ ≤ ∥∥Φ−1
approx

∥∥ ‖fJ − f‖
+

∥∥Φ−1
approx− Φ−1

∥∥ ‖fJ‖ ,

e.g., with l2-norm for vectors and the corresponding
operator norm for matrices (defined in (10)). For de-
riving error estimates of the first term, we suggest to
use known properties off (e.g., f bandpass filtered)
and some estimate of the error‖fJ − f‖, such as (for
several different norms) the sharp bounds in [10], [11] or
(for L2-norm,ψ̃ with m vanishing moments and withD

for differentiation) the well-known bound‖f − fJ‖ ≤
C2−jn ‖Dnf‖ for n = 0, 1, . . . , m− 1 [3, Section 4.7].

This paper is primarily devoted to approach 1). We will
derive simple estimates for the error

∥∥Φ−1
approxfJ − Φ−1fJ

∥∥ ≤∥∥Φ−1
approx− Φ−1

∥∥ ‖fJ‖ and derive band matricesΦ−1
approx with

small operator norm approximation error
∥∥Φ−1

approx− Φ−1
∥∥.

II. OPTIMAL PREFILTERING

As described after (1), the exact values ofaJ,l for l close to
the endpoints ofIJ depend on how interval boundary issues
are treated. This does not affect the following derivations,
except for some modification of matrix elements near the
matrix borders in the approach with modified basis functions,
so thatΦ no longer is a convolution matrix. However, for
“large enough” matrices, which also is the primary case
when prefilter approximations are useful, we expect these
modifications to have negligible effects on the approximation
errors that we analyze in the following sections.

The prefilter computes the most fine-scale coefficients

aJ =
(
aJ,0 aJ,1 · · · aJ,|IJ |−1

)T

(with IJ = {0, 1, . . . , |IJ | − 1} for simplicity of notation)
from a vectorfJ of sample valuesfJ (2−Jx0 + kTs), where
k = 0, 1, . . . , |IJ | − 1. We will show that prefilter approxima-
tions can have a very dramatic dependence onx0, but without
loss of generality, we can setTs = 2−J , so that

fJ =
(
fJ(2−Jx0) · · · fJ(2−J(x0 + |IJ | − 1))

)T
. (5)

From (1) we have

fJ (2−J (x0 + k)) =
∑

l∈IJ

aJ,lϕJ,l(2−J (x0 + k)), (6)

or, with linear algebra notation,

fJ = ΦJaJ
def= 2J/2ΦaJ , (Φ)k,l

def= ϕ(x0 + k − l). (7)

In the following sections, we will consider the asymptotic
case with doubly infinite matrices, for which we conclude in

Fig. 1. Discrete wavelet transform analysis (a) and synthesis (b) of a functionfJ ∈ VJ for biorthogonal (or orthonormal) wavelets. Digital-to-analog (DAC)
and analog-to-digital (ADC) converters handle the conversion betweenfJ and the vectorfJ of sample values. Both the well-known pyramid algorithm and
the slightly faster lifting scheme approach require pre- and postfilters for conversion betweenfJ and the most fine-scale scaling function coefficientsaJ .
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Remark 3, page 7, thatΦJ is invertible for several commonly
used wavelets. Hence, for compact supportϕ, we can truncate
ΦJ to a (not necessarily square) finite matrix with linearly
independent columns. Hence,‖fJ − ΦJaJ‖2 is minimal for
the least square error solutionaJ = (Φ∗JΦJ)−1Φ∗J fJ , where
Φ∗J is the conjugate transpose ofΦJ (with corresponding
truncation of the righthand side approximations in the finite
matrix version of (8)) oraJ = Φ−1

J fJ for the infinite ΦJ

of the following sections, as well as for any truncated and
squareΦJ with a finite (for invertibility) condition number
that is small enough for the numerical stability constraints of
the application at hand. In Figure 2 the numerical stability of
high degree Daubechies prefilters show a clear sensitivity to
the type of truncation, whereas high degree B-spline prefilters
have large condition numbers also without truncation of the
remaining columns.

For all commonly used wavelets,ϕ is very fast decaying or
even has compact support, soΦJ is usually a band matrix or at
least diagonally dominant, so that a good banded approxima-
tion is likely to exist. Such sparseness gives the computation
of ΦaJ in (7) the same computational complexityO(2J) as
the pyramid algorithm. The prefilter may be much less sparse
but sinceΦJ is a convolution matrix, it can be diagonalized
with the fast Fourier transform and the prefilter computation
aJ = Φ−1

J fJ can be thus performed inO(J2J) arithmetic
operations. We will now derive prefilter approximations that
decrease also the prefiltering complexity toO(2J ) arithmetic
operations.

III. L OW-COMPLEXITY PREFILTER APPROXIMATIONS

We will derive prefilter approximations for biorthogonal
wavelets (described in more detail, e.g., in [3]). To each
such basis corresponds adual (or biorthogonal) wavelet ba-
sis

{
ϕ̃j,k, ψ̃j,k ∈ L2(R)

∣∣∣k ∈ Z, j ∈ N
}

, such that the scaling

function coefficients are

aJ,k =
∫

R
fJ(x)ϕ̃J,k(x) dx.

Orthonormal wavelets are included as the special case that
occurs if ϕ̃ = ϕ and ψ̃ = ψ.

The most commonly used prefilter approximation is based
on the fact thatϕ̃ is well localized around somexmax such
that |ϕ̃(xmax)| = maxx |ϕ̃(x)| and on the observation

∫

R
ϕ̃J,k(x) dx = 2J/2

∫

R
ϕ̃(2Jx− k) dx = c2−J/2,

where

c
def=

∫

R
ϕ̃(x) dx (= 1 for orthonormal wavelets).

Consequently, for “large enough”J and continuousfJ , it
follows from (7) that

aJ,k =
∫

R
fJ(x)ϕ̃J,k(x) dx ≈ c2−J/2fJ(2−J(xmax + k))

⇒ Φ−1
J ≈ c2−J/2I . (8a)

Another approximation (suggested, e.g., in [3], [12], [13]
for orthonormal wavelets) is based on the rectangle integral
approximation

aJ,k =
∫

R
fJ(x)ϕ̃J,k(x) dx

≈2−J
∑

l∈Z
fJ (2−J (x0 + l))ϕ̃J,k(2−J (x0 + l))

=2−J/2
∑

l∈Z
fJ(2−J(x0 + l))ϕ̃(x0 + l − k)

⇒ Φ−1
J ≈ 2−J/2Φ̃∗ , (8b)
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Fig. 2. Typical example plot ofl2-condition numbers whenΦJ (with x0 given by (16)) is truncated to a100×100 matrix (a) and to a minimal 100 column
matrix with no nonzero column entries removed (b). While high degree Daubechies prefilters show a clear sensitivity to the truncation of nonzero entries, the
increasing B-spline condition numbers seems to rather be caused by increasingly slow-varyingϕ and increasingly more similar columns.



4 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. ?, NO. ?, AUGUST 2003

whereΦ̃∗ is the conjugate transpose ofΦ̃ and

(Φ̃)k,l
def= ϕ̃(x0 + k − l).

If ψ andψ̃ haven vanishing moments, then for polynomial
f of degree≤ n, (8b) gives perfect reconstruction of the
coefficientsaJ,k and (on finite intervals)f (see, e.g, [3], [1]).
In Remark 6, page 10, we describe some wavelet spaces for
which (8b) also becomes an equality.

Next, we exploit the fact (see Remark 3, page 7) that for
a large number of wavelet scaling functionsϕ, ‖I− Φ‖ < 1,
so thatΦ−1 exists and can be approximated with a truncated
Neumann series expansion:

Φ−1
J = 2−J/2Φ−1 ≈ 2−J/2

N∑

k=0

(I− Φ)k (8c)

For orthonormal wavelets andN = 0, (8c) coincides with
the standard approach (8a). ForN = 1, (8c) givesΦ−1

J ≈
2−J/2(2I−Φ), which is an equally sparse alternative to (8b).

We will also consider two higher degree quadrature for-
mula generalizations of (8b), denotedSard and Lagrange
approximation: For wavelets withp vanishing moments and
arbitrary integersm and n ≥ m + p, Ehrich [14] derived an
algorithm for computing a quadrature formula approximation
(Φ−1

approx)k,l = h(k − l) of the prefilter with nonzeroh(k)
only if k = −n, . . . ,−m. The approximation is derived only
for x0 = 0, but is “Sard-optimal”, which means that no
other prefilter with the same nonzero entries give a smaller
maximum error supf∈M2,p

∣∣(Φ−1
J fJ )k − aJ,k

∣∣ for f in the

Sobolev spaceM2,p
def=

{
f

∣∣f ∈ Cp−1 and
∥∥f (p)

∥∥
2
≤ 1

}
. It

is not completely clear from [14] whether these Sard-optimal
prefilters can be generalized to arbitraryx0. We leave this
question open for future research, but investigate the quadra-
ture formula for arbitraryx0 that follows from a Lagrange
polynomial interpolationfJ(x) ≈ ∑

l∈Ik
fJ (λl)LIk,l(x) (pro-

posed in [15]) with sampling pointsλl = 2−J(x0 + l), index
setIk = {k −M, k −M + 1, . . . , k + N} (symmetric around

k) andLIk,l(x) def=
∏

m∈Ik,m6=l
x−λm

λl−λm
. Thus

aJ,k = 〈fJ , ϕ̃J,k〉 ≈
∑

l∈Ik

fJ(λl) 〈LIk,l, ϕ̃J,k〉 ,

whereas by (7), aJ,k =
∑

l∈Z(Φ
−1
J )k,lfJ(λl). Hence

(Φ−1
J )k,l = 0 for k − l 6∈ [−N,M ] and for integersk − l ∈

[−N, M ] the substitutionsy = 2Jx− k andn = k−m gives

(Φ−1
J )k,l ≈

∫

R


 ∏

m∈Ik,m 6=l

x− λm

λl − λm


 ϕ̃J,k(x) dx

=2−
J
2

∫

R
ϕ̃(y)

∏

m∈Ik,m6=l

y − (x0 + m− k)
l −m

dy

(Φ−1
J )k,l ≈ 2−

J
2

∫

R
ϕ̃(y)

∏

n∈[−N,M ],n 6=k−l

y − (x0 − n)
n− (k − l)

dy

(8d)

We will use notation likeSard N and Lagrange N for
prefilter approximations that have the same number of nonzero
diagonals (or filter coefficients) as the NeumannN prefilter.

We will also compare with thetruncated inverseN ap-
proximation obtained by computingΦ−1, keeping the largest
(constant) diagonals and setting the others to zero. This
corresponds to convolution with a prefilter that is a minimum
l2-norm errorn-term approximation of the optimal prefilter.
In next section, this is equivalent to a minimum Fourier
seriesL2-error instead of theL∞-error that we will prefer to
minimize. So although it’s not truly optimal, it is still likely
to be a good and easily computed prefilter approximation.
In our implementation, we compute the filter coefficients of
ΦTrunc≈ Φ−1 with the formulahTrunc = IFFT(1/ FFT(hzp)),
where hzp is a “sufficiently zeropadded” copy of the filter
hn = ϕ(x0+n) = (Φ)k,k−n (k arbitrary integer). We describe
two other ways to computeΦ−1 in remarks 4 and 6, Section V.

Remark 2:For biorthogonal wavelets, the quadrature ap-
proaches (conjugate transpose, Sard and Lagrange) depend
on how ϕ̃ is chosen. In thesemiorthogonalspecial case,
ϕ̃ =

∑
l∈Z clϕl ∈ VJ is the uniquel2-solution (cl)l∈Z of

δ0,k = 〈ϕ̃, ϕk〉 =

〈∑

l∈Z
clϕl, ϕk

〉
=

∑

l∈Z
cl 〈ϕl, ϕk〉 ,

or in vector notation,
Gc = δ, (9)

whereδk = δ0,k and the doubly infinite matrixG is known
as theGram matrix. For B-spline wavelets of degree 2–30,
a numerical solution of (9) gives an exponentially decaying
ϕ̃ (typically increasing the essential support due to floating
point precision with a factor> 30), which would have to be
truncated to give a banded conjugate transpose approximation,
but then (and for the just described optimality reasons) we find
it more reasonable to instead truncateΦ−1. The long dual
support also made our implementation of the Lagrange inter-
polation too slow for the large scale comparison in Section V.
Thus we will investigate the conjugate transpose and Lagrange
approximation errors only for Daubechies and Symlet scaling
functions. (A standard orthonormalization procedure would
only give exponential decaying prefilterand postfilter [2], but
one possible future alternative might be to look for a compact
support dual, the existence of which is proved for so-called
minimally supported scaling functions in [16].)

IV. COMPUTING THE APPROXIMATION ERROR

For simple signal-length independent error analysis and
comparison of the approximations in Section III we consider
the limiting case with doubly infinite matrices and with
vectors, such asa, replaced byl2-sequencesa = (ak) with
the usual norm

‖a‖l2

def=

(∑

k∈Z
|ak|2

) 1
2

. (10a)

Finite length inputs are reperesented by doubly zeropadded
sequences. A reasonable performance measure for approxima-
tions Φ−1

approx is the relativel2-error of the resulting coefficient
approximationsΦ−1

approxf given by theoperator norm

∥∥Φ−1 − Φ−1
approx

∥∥ def= sup
0 6=f∈l2

∥∥Φ−1f − Φ−1
approxf

∥∥
l2

‖f‖l2

. (10b)
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In Proposition 1, we derive simple formulas for this error by
using an isomorphism (derived in Lemma 1)

U: C → B(L2([0, 1])), UH def= Mĥ∗ ,

in the following commutative diagram,

s ∈ l2
H∈C−−−−→ h ∗ s ∈ l2

F

y
xF−1

ŝ∗ ∈ L2([0, 1])
M

ĥ∗−−−−→ ĥ∗ŝ∗ ∈ L2([0, 1])

whereF is theFourier series operator

F (hk)k
def=

∑

k∈Z
hke−i2πk(·) def= ĥ∗,

Mu is the multiplicative operatorMu g
def= ug, B(L2([0, 1]))

is the set of linear bounded operators fromL2([0, 1]) to
L2([0, 1]) and C is the set of doubly infiniteconvolution
matricesH such that forHk,l = hk−l,

h = (hk)k∈Z ∈ l2 and ess sup
ξ

∣∣∣ĥ∗(ξ)
∣∣∣ < ∞. (11)

(See, e.g., [17] for definitions of essential infimum/supremum
and other functional analysis terminology used in our proofs.)

Lemma 1:For H ∈ C andh ∈ l2 as above, it follows that

‖H‖ = ‖UH‖ = ess sup
ξ∈[0,1)

∣∣∣ĥ∗(ξ)
∣∣∣ , (12a)

H invertible ⇔ Mĥ∗ invertible

⇔ ess inf
ξ∈[0,1)

∣∣∣ĥ∗(ξ)
∣∣∣ > 0,

(12b)

and that

H invertible ⇒ U(H−1) = M 1
ĥ∗

. (12c)

Moreover, for H1, H2 ∈ C with associatedl2-sequencesh1

andh2, respectively, it follows thatH1H2 ∈ C, H1 + H2 ∈ C,

U(H1H2) = (UH1)(UH2) and

U(H1 + H2) = UH1 + UH2.
(12d)

Proof: For anyg ∈ L2([0, 1]) andε > 0, chooseN such

that, for a = (ak) = F−1 g andgN
def=

∑
|n|≤N ane−i2πnx,

‖g − gN‖ < ε.

Then (11) gives that
∑
|n|≤N hk−nan ∈ l2 and

FH F−1 gN =
∑

k∈Z
(H F−1 gN )ke−i2πk(·)

=
∑

k∈Z

∑

|n|≤N

hk−nane−i2πk(·)

=
∑

|n|≤N

an

∑

l∈Z
hle−i2π(n+l)(·)

=
∑

l∈Z
hle−i2πl(·) ∑

|n|≤N

ane−i2πn(·)

=ĥ∗gN = Mĥ∗ gN .

Hence,FH F−1 = Mĥ∗ on a dense subset ofL2([0, 1]) and
thus also on all ofL2([0, 1]). Thus (12a) follows from the
Parseval equation‖F c‖ = ‖c‖:

‖H‖ =
∥∥FH F−1

∥∥ =
∥∥Mĥ∗

∥∥ = sup
‖g‖L2([0,1])=1

‖ĥ∗g‖

=ess sup|ĥ∗|.

SinceF is bijective, it is also apparent thatU H def= Mĥ∗ =
FHF−1 is invertible if and only ifH is invertible and that
when this is the case,(UH)−1 is bounded (according to the
open mapping theorem) and

U(H−1) = F H−1 F−1 = (U H)−1 = M−1

ĥ∗
= M1/ĥ∗ .

This proves (12b) and (12c). Finally, the well-known fact

ess sup
ξ

∣∣∣ĥ1 ∗ h2

∗
(ξ)

∣∣∣ = ess sup
ξ

∣∣∣ĥ1

∗
(ξ) · ĥ2

∗
(ξ)

∣∣∣ < ∞,

implies thatH1H2 ∈ C, so that (12d) follows directly from the
fact thatUH = FH F−1. This completes the proof.
Now we can compute all errors

∥∥Φ−1 − Φ−1
approx

∥∥ in Section III
by identifying h and then applying (12a). In particular, from
the above preservation of addition, multiplication and inverses,
we immediately get the following simple error bounds:

Proposition 1 (error bounds for(8a)–(8c)): Let m(ξ) def=
ĥ∗(ξ) in the special casehk = ϕ(x0 + k) corresponding to
H = Φ. Suppose that

∑

k∈Z
|ϕ(x0 + k)| < ∞ and |m(ξ)| > 0 (13)

for all ξ ∈ [0, 1]. Then for all integersN ≥ 0,

∥∥∥∥∥Φ−1
J − 2−J/2

N∑

k=0

(I− Φ)k

∥∥∥∥∥ =

= 2−J/2 max
ξ

∣∣∣∣∣
1

m(ξ)
−

N∑

k=0

(1−m(ξ))k

∣∣∣∣∣ . (14a)

Similarly, if m̃(ξ) def=
∑

k∈Z ϕ̃(x0 + k)e−i2πkξ and∑
k∈Z |ϕ̃(x0 + k)| < ∞, then

∥∥∥Φ−1
J − 2−J/2Φ̃∗

∥∥∥ = 2−J/2 max
ξ

∣∣∣∣
1

m(ξ)
− m̃(ξ)

∣∣∣∣ . (14b)

Proof: Suppose first thatJ = 0. Our assumption∑
k |ϕ(x0 + k)| < ∞ guarantees uniform convergence and

therefore also continuity of the 1-periodic functionm. Hence
the assumption|m(ξ)| > 0 implies that there are upper and
lower bounds

0 < A ≤ |m(ξ)| ≤ B < ∞. (15)

Consequently, we know from (12b) thatMm (and thus also
Φ) is invertible. Thus (12c) and (12d) give

U

(
Φ−1 −

N∑

k=0

(I− Φ)k

)
= M 1

m−
∑N

k=0(1−m)k
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Fig. 3. Example plots showing thex0-dependence of the asymptotic errors (14) forJ = 0. Multiplication with 2J/2 gives the actual error.
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and (14a) follows. For (14b), the matrixH = Φ̃∗ corresponds
to a convolution withh = (hk)k =

(
ϕ̃(x0 − k)

)
k
. Hence,

ĥ∗(ξ) =
∑

k∈Z
ϕ̃(x0 − k)e−i2πkξ

=
∑

n∈Z
ϕ̃(x0 + n)e−i2πnξ = m̃(ξ),

so that U Φ̃∗ = Mm̃ and (14b) follows. We have thus
proved (14) forJ = 0. The extension to arbitraryJ ∈ Z
now follows from a multiplication with2−J/2, since

Φ−1
J = (2J/2Φ)−1 = 2−J/2Φ−1.

A striking advantage of these bounds is that for compact
support scaling functions (like those studied in this paper),
m is an easily computed trigonometric polynomial.

Remark 3:We used the condition (13) to guarantee that
A < |m(ξ)| < B for someA, B > 0. For convergence of the
Neumann series approximation (whenN →∞), it is sufficient
to use the stronger condition|1−m(ξ)| < 1, or equivalently
‖I− Φ‖ < 1, which is known to hold, for example, for
Shannon wavelets and for all B-spline wavelets [6]. It is easy
to check (for example, inMATLAB ) that |1−m(ξ)| < 1 also
for Daubechies wavelets with 1–31 vanishing moments and at
least for all Symlet wavelets with up to 36 vanishing moments.

V. COMPUTATIONAL RESULTS, CONCLUSIONS& REMARKS

Recall from (5) and Remark 1 that throughout the paper,
we assume the input to beinteger translatedsample values
fJ(2−J(x0 + k)) of somefJ ∈ VJ . We also assumex0 to be
known or possible to choose, so that the prefilterΦ−1

J and its
approximations are uniquely defined by (7) and (8). This is
a reasonable assumption in several applications (like DMT in
Example 1), but others (e.g., due to synchronization problems,
OFDM in Example 1) might require an additional analysis of
the error caused by choosing an incorrectx0 in (7) and (8).
Both this and analysis of errors caused by irregular sampling
is out of the scope of this paper but a planned topic for future
papers. For now, we refer to, e.g., [6], [18] for some related
error bounds and irregular sampling theorems.

Hence the approximation errors
∥∥Φ−1 − Φ−1

approx

∥∥ depend on
ϕ and x0. For Daubechies and Symlet wavelets with 2–31
and 2–36 vanishing moments, as well as for B-spline wavelets
with polynomial degree 1–30, plots like the example plots in
Figure 3 show a dramatic dependence onx0. Hence, if the
application allows for it,x0 should be chosen with care.

In these and the following plotsJ = 0, so the actual
error is obtained by division with a factor2J/2, which is
asymptotically proportional to the square root of the signal
length |IJ | = 2J(|I|+ 2−JM) (with notation as in (1)). This
shows how to chooseJ for a given target error bound. It is
also a strong argument against decreasing the approximation
error (with a factor1/n) with oversampling (with a factorn2).

From eachx0-dependence plot, we have also found the
x0 (with precision±0.005) that minimizes the approximation
error and plotted the results in Figure 4. Note, for example,

that for Daubechies wavelets with 2–5 vanishing moments
the Neumann 1 error is about 10–100 times smaller than for
the computationally comparable approximationsΦ−1 ≈ I and
Φ−1 ≈ Φ̃∗ = ΦT . Hence,to obtain the same improvement by
oversampling, 100–10 000 times more samples are needed.

The right-hand plots in Figure 4 shows the nearly optimal
values ofx0 that we used in the left-hand plots. Note that the
minimum is obtained for somex0 ≈ xmax, with xmax such that

|ϕ(xmax)| = max
x
|ϕ(x)| . (16)

This was predicted in [6], but Figure 3 shows that even if
x0 ≈ xmax is a good rule of thumb for quick decisions, an
optimal x0 can give much lower approximation errors.

In figure 4 it is also notable that for scaling functions with
short support, the rectangle integral approximation (Φ−1 ≈
Φ̃∗ = Φ̃T ) is even worsethan doing nothing (Φ−1 ≈ I).

Due to the complexity of the algorithm for computing Sard-
optimal filter coefficients, our currentMATLAB implementa-
tion can compute prefilter errors reasonably fast and with high
precision only for up to 10 vanishing moments or polynomial
degree 10. It reproduced the filter coefficients in [14, Section
4.1] correctly but the resulting approximation errors are larger
than those plotted in Figure 5. Thus Sard-optimal prefilters
put some more demand on an efficient implementation and
for good performance, we also think that they should be
generalized (if possible) to arbitraryx0.

Figure 5, finally, is a comparison of the NeumannN
approximations with the truncated inverseN and LagrangeN
approximations (with equalN denoting identical number of
nonzero diagonals). Note that the LagrangeN error increases
with increasingN . The most likely reason for both this and
the Lagrange 1 behavior in Figure 5 (a) is that due to the fixed
sampling density, the higher degree Lagrange interpolants are
more likely to give high amplitude ripples and a bad local
approximation, as illustrated in Figure 5 (d), which shows
Lagrange 1 interpolation of the functionf0 given by a0,k =
(−1)k in (1) and with the Daubechies 22 optimal shift used
in Figure 5 (a).

As a final conclusion, we note that for short support
scaling functions, the Neumann filters (which also are the
easiest ones to compute) often have the smallest (or nearly
smallest) approximation errors and that for longer supports,
the truncated inverse prefilter is clearly superior to the others.

Remark 4:Recall from Section III thatΦ−1 can be rel-
atively fast computed and applied using the fast Fourier
transform. A much fastercomputationof Φ−1 is possible if
we only considerl2 with real scalars or ifΦ is Hermitian,
that is, if Φ = Φ∗, like for any B-splineϕ with x0 = xmax.
In both these cases, it follows from the invertibility condition
‖I− Φ‖ < 1 in Remark 3 thatΦ is positive definite. In fact,
under these assumptions,〈x, (I− Φ)x〉 ∈ R, so that (by the
Schwarz inequality and the definition of the operator norm)

〈x,Φx〉 = 〈x, Ix− (I− Φ)x〉
≥ ‖x‖2 − |〈x, (I− Φ)x〉| ≥ ‖x‖2 − ‖x‖ · ‖(I− Φ)x‖
≥‖x‖2 (1− ‖(I− Φ)‖) > 0, ∀x ∈ l2.
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Fig. 4. The left-hand column plots show the minimum operator norm errors of the prefilter approximations (8) whenJ = 0 and with x0 chosen (with
maximum error±0.005) for minimum error. Multiplication with2J/2 gives the actual error. The minimizingx0 used in the lefthand plots are plotted in the
right-hand column plots. In accordance with an observation in [6], the minimum errors occur for somex0 ≈ xmax with xmax defined in (16).
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(a) Daubechies wavelets with 2–31 vanishing moments.
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(b) Symlet wavelets with 2–36 vanishing moments.
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Fig. 5. Plots (a)–(c) show a comparison of the Neumann, truncated inverse and Lagrange prefilter approximation errors. Neumann prefilters can generally be
computed with the smallest number of arithmetic operations and also performs best for several short support wavelets, whereas the truncated inverse prefilter
is superior for longer support scaling functions. Plot (d) shows an example where Lagrange interpolation goes wrong.
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An important property of real, symmetric and positive definite
matrices is that inverses can be computed with the very fast
conjugate gradient method(see, e.g., [19]). Note also that it
is unlikely that Φ = Φ∗ for any real-valued and compactly
supportedorthonormalwavelet basis except for the Haar basis,
which is the only symmetric such basis [3, page 47].

Remark 5:Both the prefilter matrixΦ−1 and the invert-
ibility condition (13) appear in a few different variations and
disguises (equations (15) and (17)) in different books and
papers. We give a brief review and refer to, for example, [6],
[7], [8] for details, convergence issues and generalizations to
irregular sampling. With notation as in Proposition 1, it follows
from the Poisson summation formula that

m(ξ) =
∑

k∈Z
ϕ(x0 + k)e−i2πkξ =

∑

k∈Z

̂ϕ(x0 + ·)(ξ − k).

Thus, by the proof of Proposition 1, (13) can be replaced with
the weaker assumption (15), which sometimes appears in the
equivalent form

0 < A ≤
∣∣∣∣∣
∑

k∈Z

̂ϕ(x0 + ·)(ξ − k)

∣∣∣∣∣ ≤ B < ∞. (17a)

The prefilter, finally, is sometimes “hidden” in a so-called
interpolating Riesz basis(qJ,x0+k)k for VJ , which is con-
structed so that the reconstruction formulaf =

∑
k∈Z aJ,kϕJ,k

can be replaced with a reconstruction from sample values

f =
∑

k∈Z
2−Jf(2−J(x0 + k))q̃J,x0+k, ∀f ∈ VJ , (17b)

where (q̃J,k)k is some biorthogonal Riesz basis forVJ .
Roughly speaking, this is done by building the prefilter (or
equivalently, the factor1/m) into q̃J,x0+k

def= 2J/2q̃(2J ·
−(x0 + k)) def= 2J/2q̃x0(2

J · −k) in the following way: Set

̂̃qx0(ξ)
def=

ϕ̂(ξ)
m(ξ)

,

that is,

ϕ̂(ξ) = m(ξ) ̂̃qx0(ξ) =
∑

l∈Z
ϕ(x0 + l)e−i2πlξ ̂̃qx0(ξ).

Then (at least formally)ϕ =
∑

l∈Z ϕ(x0 + l)q̃x0(· − l) and

ϕJ,k =
∑

l∈Z
ϕ(x0 + l)q̃J,x0+k+l. (18)

Under certain mild decay and continuity conditions onϕ
(see [6], [8] for details), there is a unique family of functions
qx

def= q(· − x) def=
∑

k∈Z ϕ(x− k)ϕ̃(· − k) with the special
property that〈f, qx〉 = f(x) for all f ∈ V0. (It also follows
from the second last line of (19) that(qJ,k)k and (q̃J,k)k are
dual.) Thus we get the reconstruction formula (17b) from (18)

and the following change of basis:

f =
∑

k∈Z
〈f, ϕ̃J,k〉ϕJ,k =

∑

k∈Z
〈f, ϕ̃J,k〉

∑

l∈Z
ϕ(x0 + l)q̃J,x0+k+l

=
∑

k∈Z

∑

n∈Z
〈f, ϕ̃J,k〉ϕ(x0 + n− k)q̃J,x0+n

=
∑

n∈Z

〈
2−J/2f(2−J ·),

∑

k∈Z
ϕ(x0 + n− k)ϕ̃(· − k)

〉
q̃J,x0+n

=
∑

n∈Z

〈
2−J/2f(2−J ·), qx0+n

〉
q̃J,x0+n

=
∑

n∈Z
2−J/2f(2−J(x0 + n))q̃J,x0+n(x), ∀f ∈ VJ .

(19)
We mention also that [20] contain estimates of the error caused
by truncation of the series expansion (17b) to a finite sum.

Remark 6:Most commonly used wavelets satisfy the mild
decay and continuity conditions of Remark 5. Thus the
Lagrange prefilter approximation (8d) can usually be seen
as the result of a polynomial approximationfJ(x) ≈∑

l∈Ik
fJ (λl)LIk,l(x) of (19), thus (and once again with

q̃J,x
def= 2J/2q̃(2J · −x)) making (8d) an approximation of

the fact that

aJ,k = 〈fJ , ϕ̃J,k〉 =

〈∑

l∈Z
2−

J
2 fJ (λl)q̃J,x0+l, ϕ̃J,k

〉

=2−
J
2

∑

l∈Z
fJ(λl) 〈q̃x0+l, ϕ̃k〉

gives(Φ−1
J )k,l = 2−J/2 〈q̃x0+l, ϕ̃k〉. Moreover, ifV0 possesses

anorthonormalinterpolation function (such spaces are derived
in [21]), then q = q̃ and the above computation reduces to
aJ,k =

∑
l∈Z fJ(λl)ϕ̃(x0 + l − k). Thus, for such spaces,

Φ−1
J = 2−J/2Φ̃∗ and approximation (8b) becomes an equality.
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