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Abstract— A wavelet prefiltermaps sample values of an ana-  If ¢ and the subspaceg; satisfy certainmultiresolution
lyzed signal to the scaling function coefficient input of standard analysis properties (see, e.g., [1], [2], [3]), then there is a

discrete wavelet transform (DWT) algorithms. The prefilter is  ¢4respondingnother wavelet) and an orthonormal basis
the inverse of a certain postfilter convolution matrix consisting

of integer sample values of a noninteger-shifted wavelet scaling def def
function. For the prefilter and the DWT algorithms to have ¢n = ¢(-—n) and Vik =
similar computational complexity, it is often necessary to use S .

a “short enough” approximation of the prefilter. In aﬁdition for V; with j = 0,1,...,J —1 and k’n_ e Z. The discrete
to well-known quadrature formula and identity matrix prefiter ~ Wavelet transformcomputes the coefficients,, and d;
approximations, we propose a Neumann series approximation, a hecessary for decomposirfg into a wavelet series expansion
band matrix truncation of the optimal prefilter and derive simple

222 k) (2)

e ; J—1
formulas for the operator norm approximation error. This error
shows a dramatic dependence on how the postfilter noninteger fi(z) = Z GO,nW(x—”H'Z Z dj ks (), Ve eI,
shift is chosen. nely =0 kel;

We explain the meaning of this shift in practical applications, 3

describ_e hpw to choose it ar]d plot optimally_shifted prefilter where|I;| = 0(23‘) with exact length depending on the length
approximation errors for 95 different Daubechies, Symlet and ¢ the supports ofp, and v. These coefficients are usually
B-spline wavelets. . ) - .

Whereas the truncated inverse is overall superior, the Neu- computed with the very fast pyramld’algorlthm (@lso known as
mann filters are by far the easiest ones to compute and for some the fast wavelet transform or Mallat's algorithm) or the even
short support wavelets, they also give the smallest approximation faster lifting scheme approach (see, e.g, [1], [3], [4]). Both
error. For example, for Daubechies 1-5 wavelets the simplest algorithms use the coefficients;;, of (1) as input (see also
Neumann prefilter provide an approximation error reduction cor- Figure 1). For a more complete treatment of both the pyramid

responding to 100—10 000 times oversampling in a non-prefiltered algorithm and wavelet theory in general, see, e.g., [1], [2], [3].

SyTr:Zr;( Terms— Biorthogonal wavelet, prefilter, initialization The pyramid algorithm can very well be used in a purely

Neumann series, quadragture mirror filt’er!oquadr:'slture formula: discrete settlng_, for _example whe_n designing _a filter bank to

Lagrange interpolant, Sard optimal, pyramid algorithm, FWT al- produce zero distortion effects, alias cancellation or cancella-

gorithm, Daubechies wavelet, Symlet, B-spline wavelet, sampling. tions of discrete polynomials in the highpass channel. Quite
many applications, however, include analysis of sample values
of some non-discrete signdl or of its orthogonal projection

I. INTRODUCTION f7 on V;. Figure 1 shows all computational steps involved
M ODERN wavelet theory is based on a divisionigf(R) Poth in the analysis and the synthesis.
into subspaced/; spanned by integer-translated and Sections II-lIl are devoted to the problem of how to

efficiently compute the coefficients;; (the vectora; in
Figure 1) from a vectof; of sample values of ;. We derive
a solution in the form of a convolution matrix multiplication

dilated copiesp; x 4t 9i/25(23 . k) of ascaling functiony,
that will be assumed to haveompact supportn this paper.
ForanyJ € Z, and f;(x) = >, cz arresr(z) € Vy with

x restricted to some finite interval, the index set can be a; = o f;. 4)
reduced to a sef; consisting of those integers for which the
support ofp ;s overlapl: Practical restrictions such as time-, memory- or chip area-

constraints may necessitate a sparse matrix approximation
f1(@) =Y aswpsnl@),  VfeVy Veel (1) ®,L o~ ®~1 (or corresponding short enough filter) to assure
kel roughly the same computational complexity as for the pyramid
with index set sizgl;| = 27 |I| + M = O(27) and M € Z algorithm. We describe some traditional such approximations
depending on the support @f. For unique definition of the and compare them with a band matrix truncation®of! and
coefficients also if only the restriction of; to I is known, with a Neumann series family of approximations.
there are standard approaches like zeropadding, periodic exter=or this comparison, we derive simple formulas for the
sion or a more complicated modification of all basis functionsperator norm approximation errors in Section IV and plot
whose support overlap the endpointsiofl, Section 7.5]. these errors for a large number of Daubechies, Symlet and
i ) ) B-spline wavelets in Section V.
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function s € V;. Hence the received signal i = s + n, for differentiation) the well-known bound f — f;| <
where n is noise. Thus the projectioR; (computed, e.g., Cc2-n||Dnf|| forn =0,1,...,m— 1 [3, Section 4.7].
as described in Remark 1) will simply remove some of thEhis paper is primarily devoted to approach 1). We will
noise. For this particular application, basis functions of Gabdenve S|mple estimates for the errh&@appro)fj - *1f]” <
type are commonly used today, for example in OFDM (fof®,\,,— | [|f;] and derive band matnce@approx with
mobile radio channels and digital audio broadcast) and DMsmall operator norm approximation errH){) — ¢! H

(for wireline systems), but wavelets can also be used. For more

details and further references, see, e.g., [5, Section 2.3]. [I. OPTIMAL PREFILTERING

Remark 1:Under certain conditions ary, andy, the initial As described after (1), the exact valuesugf; for [ close to
projectionP; in Figure 1, assures thgl; can be reproduced the endpoints off ; depend on how interval boundary issues
from the sample valuegf,; (277 (zo + k))), ., (S€€, e.g., [6], are treated. This does not affect the following derivations,
[7], [8]). For the Shannon wavelet, this is nothing but wellexcept for some modification of matrix elements near the
known classical sampling theory aiit); is simply a lowpass matrix borders in the approach with modified basis functions,
filtering at the Nyquist frequency. For other wavelets, thew that® no longer is a convolution matrix. However, for
are two main options for how to handle this projection: “large enough” matrices, which also is the primary case

1) To applyP; as in Figure 1has clear advantages even ifvhen prefilter approximations are useful, we expect these

f is supposed to be i, as in Example 1. The samplemodifications to have negligible effects on the approximation
values off; must be computed from trevailableinput, errors that we analyze in the following sections.
which typically is sample values of a signglthat is The prefilter computes the most fine-scale coefficients

approx

lowpass filteredat the Nyquist frequency. The hard way a; = (a a g )T

to do this would be to first reconstrugtfrom its sample J S0 S Sils=1

values. An efficient way to do it is described in [9]. (with I; = {0,1,...,|I;] — 1} for simplicity of notation)
2) WithoutP , f; is replaced by a vectdrof sample values from a vectorf; of sample values';(2~7z¢ + kT%), where

of the original inputf, which, together with a sparsek =0, 1,...,|I;| — 1. We will show that prefilter approxima-

matrix approximation®, ., introducestwo different tions can have a very dramatic dependence:@rbut without

errors in (4): loss of generality, we can s&t = 2~7/, so that

_ _ T
[Dabrod — D] < (| ®aprond| I1E7 — £l fr=(fs2"720) - f527 (2o +1s1-1)) . (5)
+ | P approx— @] 1411, From (1) we have
e.g., with lr-norm for vectors and the corresponding £1(27 (w0 + ) Z w0127 (@ + k), (6)
operator norm for matrices (defined in (10)). For de- lels

riving error estimates of the first term, we suggest ter, with linear algebra notation,

use known properties of (e.g., f bandpass filtered) _ def o7/2 def

and some estimate of the errhf; — f||, such as (for fr=25a; = 27/ ®ay, (P = pxo+k—1). (7)
several different norms) the sharp bounds in [10], [11] dn the following sections, we will consider the asymptotic
(for Ly-norm,+) with m vanishing moments and with  case with doubly infinite matrices, for which we conclude in

Pyramid algorithm

Postfilter

Fig. 1. Discrete wavelet transform analysis (a) and synthesis (b) of a funtjianV; for biorthogonal (or orthonormal) wavelets. Digital-to-analog (DAC)
and analog-to-digital (ADC) converters handle the conversion betygeand the vectof; of sample values. Both the well-known pyramid algorithm and
the slightly faster lifting scheme approach require pre- and postfilters for conversion beflyvaed the most fine-scale scaling function coefficieays
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Remark 3, page 7, that; is invertible for several commonly function coefficients are
used wavelets. Hence, for compact suppgrive can truncate _
@, to a (not necessarily square) finite matrix with linearly ak = /RfJ(l")W,k(l") dz.

independent columns. Hencgf; — ®ya;||, is minimal for i .
the least square error solutiery = (9%® )~ 1®%f,, where Orthonormal wavelets are included as the special case that

&* is the conjugate transpose df, (with corresponding OCcurs if¢ = ¢ andd = 9. _ S
truncation of the righthand side approximations in the finite The most commonly used prefilter approximation is based
matrix version of (8)) ora; = @;1fj for the infinite ®, ©N th~e fact thaty is W(E” localized around SOMErmax such
of the following sections, as well as for any truncated arff#at|¥(zmax)| = max, [4(x)| and on the observation
square®; with a finite (for invertibility) condition number ~ 772
that is small enough for the numerical stability constraints of Pok(e) de =2 /
the application at hand. In Figure 2 the numerical stability of ®
high degree Daubechies prefilters show a clear sensitivity where
the type of truncation, whereas high degree B-spline prefilters ot
have large condition numbers also without truncation of the ¢ = /@(:v) dx (=1 for orthonormal wavelejs
remaining columns. R

For all commonly used wavelets, is very fast decaying or Consequently, for “large enoughJ and continuousfy, it
even has compact support, §9 is usually a band matrix or at follows from (7) that
least diagonally dominant, so that a good banded approxima-
tion is likely to exist. Such sparseness gives the computationa s , = / fr(@)Pk(r)de =~ E2‘J/2f.](2_‘](:vmax+ k))
of ®a; in (7) the same computational complexi®y(2”’) as R
the pyramid algorithm. The prefilter may be much less sparse = @;1 ~2 /21 (8a)
but since®; is a convolution matrix, it can be diagonalized
with the fast Fourier transform and the prefilter computatiofnother approximation (suggested, e.g., in [3], [12], [13]
a; = ®;'f; can be thus performed i®(J27) arithmetic for orthonormal wavelets) is based on the rectangle integral

operations. We will now derive prefilter approximations thaPproximation

P27 x —k)dx = 27772,

decrease also the prefiltering complexity®g2”/) arithmetic _
operations. ajk :/ fi(@)@un(x)da
R
~2 7 (27 (2o + 1) P k(277 (20 + 1
I1l. L OW-COMPLEXITY PREFILTER APPROXIMATIONS éf‘]( (2o +1)@ux( (zo +1)
We will derlvg pref_llter approxmatlons f(_)r biorthogonal :24/22]{](27.7(% )P0 11— k)
wavelets (described in more detail, e.g., in [3]). To each =
such basis correspondsdaial (or biorthogonal) wavelet ba- ; T2
~ -1 o o— *
sis {@M/Jj,k € Ly(R) ‘k €Z,je N}, such that the scaling = b, =277, (8b)
Example plot for 100x100-matrices ® Example plot: 100—column @ with all zero—rows removed.
—— B-spline, polynomial degree 1-31 i ‘," —— B-spline, polynomial degree 1-31
14]] == Daubechies, 1-31 vanishing moments Y -+ Daubechies, 1-31 vanishing moments
1071 ..« Symlet, 1-31 vanishing moments ’,' ] 105k -+ Symlet, 1-31 vanishing moments
’
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7
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Fig. 2. Typical example plot of;-condition numbers whe ; (with z¢ given by (16)) is truncated to 00 x 100 matrix (a) and to a minimal 100 column
matrix with no nonzero column entries removed (b). While high degree Daubechies prefilters show a clear sensitivity to the truncation of nonzero entries,
increasing B-spline condition numbers seems to rather be caused by increasingly slow-yagyidgncreasingly more similar columns.
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where®* is the conjugate transpose ofand We will also compare with thdruncated inverseN ap-
~ def ~ proximation obtained by computing—!, keeping the largest
(@), = Pxo +k—1). (constant) diagonals and setting the others to zero. This
If and{Z haven vanishing moments, then for polynomialcorresponds to convolution with a prefilter that is a minimum
f of degree< n, (8b) gives perfect reconstruction of thegs-norm errorn-term approximation of the optimal prefilter.
coefficientsa, and (on finite intervalsy (see, e.g, [3], [1]). In next section, this is equivalent to a minimum Fourier
In Remark 6, page 10, we describe some wavelet spaces geriesLo-error instead of thd .-error that we will prefer to
which (8b) also becomes an equality. minimize. So although it's not truly optimal, it is still likely
Next, we exploit the fact (see Remark 3, page 7) that fé® be a good and easily computed prefilter approximation.
a large number of wavelet scaling functiops||T — ®|| < 1, In our implementation, we compute the filter coefficients of
so that®~! exists and can be approximated with a truncatebtrunc ~ ®~* with the formulahrune = IFFT(1/ FFT(hyp)),

Neumann series expansion: where hp is a “sufficiently zeropadded” copy of the filter
~ hn = @(zo+n) = (®)k x—n (k arbitrary integer). We describe
—1; .
Bl =272 a0 Z(I — @) (8¢) two other ways to computé " in remarks 4 and 6, Section V.
p Remark 2:For biorthogonal wavelets, the quadrature ap-

proaches (conjugate transpose, Sard and Lagrange) depend

For orthonormal wavelets and/ = 0, (8c) coincides with on how ¢ is chosen. In thesemiorthogonalspecial case,

the standard approach (8a). Ff = 1, (8c) gives®;' ~ = > ez apr € Vy is the uniquel,-solution (¢;),,, of

2-7/2(21 — ®), which is an equally sparse alternative to (8b).

We will also consider two higher degree quadrature for- = _ _

mula generalizations of (8b), denote®ard and Lagrange S0 = (B = <;clw’%> - ;Cl (on,ou)

approximation: For wavelets witph vanishing moments and

arbitrary integersn andn > m + p, Ehrich [14] derived an
; . oo Gec =34, 9

algorithm for computing a quadrature formula approximation

(Papproxki = h(k — 1) of the prefilter with nonzeroi(k) whered; = do,, and the doubly infinite matrixG is known

only if K = —n,...,—m. The approximation is derived only as theGram matrix For B-spline wavelets of degree 2-30,

for zo = 0, but is “Sard-optimal”’, which means that noa numerical solution of (9) gives an exponentially decaying

other prefilter with the same nonzero entries give a smaller (typically increasing the essential support due to floating

maximum errorsup eyy, \(<I>}1fJ)k - aJ,k[ for f in the point precision with a factor- 30), which would have to be

Sobolev spacé\ls, def {f ’f c -1 and Hf(p)H2 <1 } It truncated to give a banded conjugate transpose approximation,

is not completely clear from [14] whether these Sard—optimQPt then (and for the just described optimality reasons) we find

H 1
prefilters can be generalized to arbitrary. We leave this It MOre reasonable to instead truncake . The long dual
question open for future research, but investigate the quadfd4PPOrt also made our implementation of the Lagrange inter-

ture formula for arbitraryx, that follows from a Lagrange polation toQ §Iow fgr the large spale comparison in Section V.
polynomial interpolationf, (z) ~ S, f(\) L1, 1(x) (pro- Thus we will investigate the conjugate transpose and Lagrange

posed in [15]) with sampling points; = 2~ (2o + 1), index approximation errors only for Daubechies and Symlet scaling
setl, = {k— M,k — M +1 k+ N} (symmetric’around functions. (A standard orthonormalization procedure would

def Ao only give exponential decaying prefiltand postfilter [2], but
K) and L i(#) = Tlmermeat 3=3- THUS one possible future alternative might be to look for a compact
aze = (f7.P.1) ~ Z F1ON) (Lrot, ) s support dual, the existence of which is proved for so-called
7 ’ BT minimally supported scaling functions in [16].)

or in vector notation,

Lely,

whereas by (7),a > ez (@7 kafs(N). Hence IV. COMPUTING THE APPROXIMATION ERROR

—1 o - .
(@) )k =0for k-1 &[N, ﬂVf] and for integerss — [ € For simple signal-length independent error analysis and
[N, M] the substitutiong = 2"z —k andn = k —m giveS  comparison of the approximations in Section Iil we consider
the limiting case with doubly infinite matrices and with

(@51 )5y z/ H T dm Grk(z)de vectors, such asa, replaced byl,-sequences = (ay) with
R\ mely,m#l AL = Am the usual norm
[y e— y—(zo+m—k) 3
=927 2 d def 2
/RW/) H L Iom y lall,, (Zau ) . (10a)
e keZ
(@71) ~ 9—% /@ H y — (zo —n) dy Finite length inputs are reperesented by doubly zeropadded
S R el N Mgkt (k—=1) sequences. A reasonable performance measure for approxima-
S~ a4 tions @0 iS the relativel,-error of the resulting coefficient
(8d) approximationsb;plproxf given by theoperator norm
We will use notation likeSard N and Lagrange N for ||<I>*1f o1 xf||
refilter approximations that have the same number of nonzero) - — _ def ~ Fappro
P PP || t— (I)aplproxH = sup L2 (10b)

diagonals (or filter coefficients) as the Neumaknprefilter. " 0ifels I £1l,,
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In Proposition 1, we derive simple formulas for this error bilence, FHF !

using an isomorphism (derived in Lemma 1)

U: C — B(Ls([0,1])), UH%E M;,

in the following commutative diagram,

s€ly AL hssel,

Fl TF_l
M;.  ~
5% € Ly([0,1]) —— h*3* € Ly([0,1])
whereF is the Fourier series operator
hk k dit Zh —i27k(-) dCf /\*
kEZ
M, is the multiplicative operatoM,, g L ug, B(L2([0,1]))
is the set of linear bounded operators fral([0,1]) to

Ls([0,1]) and C is the set of doubly infiniteconvolution
matricesH such that forH ; = hx—;,

ess sup |h*(€)
3

and

h = (hi)gey € bo <o (D)

= M;. on a dense subset df,([0,1]) and
thus also on all ofL,([0,1]). Thus (12a) follows from the
Parseval equatiofiF c|| = ||c]|:
1

= I[p.

sup  [[h7g]|

912y 0.1y =

[H|| =||[FHF~

=ess sup|ﬁ*|.
SinceF is bijective, it is also apparent thaf H def M, =
FHF~! is invertible if and only ifH is invertible and that
when this is the caséU H)~! is bounded (according to the
open mapping theorem) and
UH ) =FH'F'=(UH) "' =M"=M ;..

This proves (12b) and (12c). Finally, the well-known fact

ess sup h?k\hg*(g)‘ = ess sup ‘h1 ) ﬁ;*(f)‘ < 0,

3 3
implies thatH; Hs € C, so that (12d) follows directly from the
fact thatUH = FHF !, This completes the proof. ]
Now we can compute all errofgdb~! — ®_1,,/| in Section IlI

by identifying h and then applying (12a) In particular, from

(See, e.g., [17] for definitions of essential infimum/supremuthe above preservation of addition, multiplication and inverses,
and other functional analysis terminology used in our proofsge immediately get the following simple error bounds:

Lemma 1:ForH € C andh € I, as above, it follows that

JE| = U H| = ess sup [3* (&) (123)

€€[0,1)

Hinvertible <« M;, invertible

& ess inf ‘h ‘ > 0, (12b)

¢efo,1)

and that
Hinvertible = UMH ) =M_ . (12c)
x

Moreover, forH;,Hy € C with associateds-sequenceg,

and hs, respectively, it follows thatl;Hs € C, H; + Hy € C,

U(H;Hz) = (UH;)(UHy)

U(H; + Hy) =UH; + UH,.

Proof: For anyg € Ly([0, 1]) ande > 0, chooseN such
that, fora = (ay) = F~' g and gy def > nl<N ape” iz e,

and
(12d)

lg — gnll <e.

Then (11) gives thaEmlSN hi_nan € ly and

FHF ' gy =» (HF ' gy)ge 20

kEZ

= Z Z hi—pane” 27kC)
kEZ |n|<N

= 3 Y e 20
In|<N  Il€Z

=3 e 20§ gemizem0)
ez |n|<N

=h*gn = M;,. gn-

Proposition 1 (error bounds fo(8a)(8c)): Let m(¢) 2

h*(€) in the special casé; = ¢(z, + k) corresponding to
H = ®. Suppose that

Y lelzo+k) <oo and  |m(€)>0  (13)
kEZL
for all £ € [0,1]. Then for all integersV > 0,
N
@;1 o 27]/2 Z(I
k=0
N
=97/2 maX Z ¥l (14a)
Similarly, if (&) % Y, (w0 + k)e 2™ and
> ez |P(zo + k)| < oo, then
~ j E—
d-1 9T 2H*|| = 90— 7/2 max‘ —m(& ‘ . (14b)
o e e e a4
Proof: Suppose first that/ = 0. Our assumption

>k le(zo + k)| < oo guarantees uniform convergence and
therefore also continuity of the 1-periodic function Hence
the assumptionm(£)| > 0 implies that there are upper and
lower bounds

0<A<|m(§)] <B< . (15)

Consequently, we know from (12b) thaf,, (and thus also
®) is invertible. Thus (12c) and (12d) give

N
U <<I>1 -y 1-®)*

> = M%—ZQ’:O(l—m,)k
k=0
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Shift dependence, Daubechief_\lo wavelet
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(a) Daubechies wavelets with 2 and 10 vanishing moments.

Shift dependence, Symlet 2 wavelet
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(c) B-spline wavelets of polynomial degree 1 and 10.

Fig. 3. Example plots showing they-dependence of the asymptotic errors (14) Jor= 0. Multiplication with 27/2 gives the actual error.
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and (14a) follows. For (14b), the matrix = o+ corresponds that for Daubechies wavelets with 2-5 vanishing moments
to a convolution withh = (hy,), = (m) . Hence, the Neumann 1 error is about 10-100 times smaller than for
k the computationally comparable approximati@ns' ~ I and
n* (&) = Zmefi%ké ®~! ~ &* = 7. Hence,to obtain the same improvement by
ez oversampling, 100-10 000 times more samples are needed.

Ears iomne _ =TE The right-hand plots in Figure 4 shows the nearly optimal

=Y _ @lwo +n)e = m(&), values ofz, that we used in the left-hand plots. Note that the
ne minimum is obtained for somey ~ xmax, With zmax such that

so that U®* = M= and (14b) follows. We have thus

proved (14) forJ = 0. The extension to arbitrary € Z |#(2max)| = max |p(z)] . (16)

now follows from a multiplication witt2=7//2, since ) ) ) ) )
This was predicted in [6], but Figure 3 shows that even if

ol = (2/20)7 =272, To ~ Tmax iS @ good rule of thumb for quick decisions, an
optimal zy can give much lower approximation errors.
In figure 4 it is also notable that for scaling functions with

A striking advantage of these bounds is that for compacﬁort support, the rectangle integral approximati@m ~

support scaling functions (like those studied in this papef},,~ =7\ . : Ny
m is an easily computed trigonometric polynomial. % = ") is even wor_sethan doing npthmg% - I)i
Remark 3:We used the condition (13) to guarantee that Due to the complexity of the algorithm for computing Sard-

A < [m(€)| < B for someA, B > 0. For convergence of the optimal filter coefficients, our currelATLAB implementa-
Neumann series approxima&ion (th’n—> o), itis sufficient tion can compute prefilter errors rgasonably fast and with h'igh
to use the stronger conditiol — m(¢)| < 1, or equivalently precision only for up to 10 vanishing moments or polynomial
IT=®| < 1, which is known to hold ,for example fordegree 10. It reproduced the filter coefficients in [14, Section
Shannon Wa\;elets and for all B-spline V\;avelets [6]. It i,s eas 1] correctly but th? re;ulting approximation errors are '?rger
to check (for example, iMATLAB) that |1 — m(¢)| < 1 also than those plotted in Figure 5. Thus Sard-optimal prefilters

for Daubechies wavelets with 1-31 vanishing moments andpé{t some more demand on an efficient implementation and

least for all Symlet wavelets with up to 36 vanishing moment: or goo_d per_forman_ce, we al_so think that they should be
generalized (if possible) to arbitran.

Figure 5, finally, is a comparison of the Neumat
approximations with the truncated inverdeand LagrangeV

Recall from (5) and Remark 1 that throughout the papeipproximations (with equaN denoting identical number of
we assume the input to bateger translatedsample values nonzero diagonals). Note that the Lagrargesrrorincreases
f1(277(x0 + k)) of somef; € V;. We also assume, to be with increasingN. The most likely reason for both this and
known or possible to choose, so that the prefiltsr and its the Lagrange 1 behavior in Figure 5 (a) is that due to the fixed
approximations are uniquely defined by (7) and (8). This kampling density, the higher degree Lagrange interpolants are
a reasonable assumption in several applications (like DMT fore likely to give high amplitude ripples and a bad local
Example 1), but others (e.g., due to synchronization problenagproximation, as illustrated in Figure 5 (d), which shows
OFDM in Example 1) might require an additional analysis dfagrange 1 interpolation of the functiofy given by ag =
the error caused by choosing an incorregtin (7) and (8). (—1)* in (1) and with the Daubechies 22 optimal shift used
Both this and analysis of errors caused by irregular sampliitg Figure 5 (a).
is out of the scope of this paper but a planned topic for future As a final conclusion, we note that for short support
papers. For now, we refer to, e.g., [6], [18] for some relategtaling functions, the Neumann filters (which also are the
error bounds and irregular sampling theorems. easiest ones to compute) often have the smallest (or nearly

Hence the approximation errof® ' — ®a7p1pr0>” depend on smallest) approximation errors and that for longer supports,
¢ and zo. For Daubechies and Symlet wavelets with 2-3the truncated inverse prefilter is clearly superior to the others.
and 2-36 vanishing moments, as well as for B-spline waveletsRemark 4: Recall from Section Il thatb—! can be rel-
with polynomial degree 1-30, plots like the example plots igtively fast computed and applied using the fast Fourier
Figure 3 show a dramatic dependence agn Hence, if the transform. A much fastecomputationof ®~! is possible if
application allows for ity should be chosen with care.  \ve only consider, with real scalars or if® is Hermitian,

In these and the following ploty = 0, so theactual that is, if ® = &*, like for any B-spliney with 2o = Zmax.
error is obtained by division with a facta’/2, which is |n both these cases, it follows from the invertibility condition
asymptotically proportional to the square root of the signal — || < 1 in Remark 3 thatb is positive definite. In fact,
length|7,| = 27(|I| + 2~/ M) (with notation as in (1)). This under these assumptions;, (I — ®)z) € R, so that (by the
shows how to choosé for a given target error bound. It is Schwarz inequality and the definition of the operator norm)
also a strong argument against decreasing the approximation

error (with a factorl /n) with oversampling (with a factor?). (z, ®z) = (z,1z — (I — ®)z)

From eachz-dependence plot, we have also found the > Hfﬂ||2 |, (1— ®)z)| > ||$||2 el - 1 = @)
xo (with precision+0.005) that minimizes the approximation o -
error and plotted the results in Figure 4. Note, for example, > [lz)” (1 = (T =@)[]) > 0, Va € .

V. COMPUTATIONAL RESULTS, CONCLUSIONS& REMARKS
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Comparison of X ax with optimal shift for Daubechies N wavelets.
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(c) B-spline wavelets of polynomial degree 1-30.

Fig. 4.
maximum error+0.005) for minimum error. Multiplication with27/2 gives the actual error. The minimizing, used in the lefthand plots are plotted in the
right-hand column plots. In accordance with an observation in [6], the minimum errors occur forzgomermax With zmax defined in (16).

The left-hand column plots show the minimum operator norm errors of the prefilter approximations (8Y whehand with zg chosen (with
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Fig. 5. Plots (a)—(c) show a comparison of the Neumann, truncated inverse and Lagrange prefilter approximation errors. Neumann prefilters can generall
computed with the smallest number of arithmetic operations and also performs best for several short support wavelets, whereas the truncated inverse pre

(d) Lagrange interpolation example

is superior for longer support scaling functions. Plot (d) shows an example where Lagrange interpolation goes wrong.
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An important property of real, symmetric and positive definitand the following change of basis:
matrices is that inverses can be computed with the very fast B _ _
conjugate gradient methosee, e.g., [19]). Note also that it/ :Z {f,00k) Pk = Z {f,00k) ZLP(”UO D @sz0+i+1

is unlikely that® = &* for any real-valued and compactly — *€Z kez lez
supportedrthonormalwavelet basis except for the Haar basis, = Z Z (f, @ak) (o + 1 — k)@ 2040
which is the only symmetric such basis [3, page 47]. kEZnEL
Remark 5:Both the prefilter matrix®~! and the invert- ; —_—
. . . . — =J/2 09—, —kBo( — o
ibility condition (13) appear in a few different variations and — Z <2 e )’Zw(xo + 1= k)P( = k) ) @rao+n
neEZ kEZ

disguises (equations (15) and (17)) in different books and

papers. We give a brief review and refer to, for example, [6], = » _ <2_‘]/2f(2_‘]-), qz0+n> 4J,z0+n

[7], [8] for details, convergence issues and generalizations to
irregular sampling. With notation as in Proposition 1, it follows — Z 27712127 (w0 4+ 1)) § 2 4n (),

from the Poisson summation formula that

m(€) =Y plzo + k)e ™ = 3" o(zg + (€ - k).

kEZ keZ

neZ

Vf e Vy.

19)
We mention also that [20] contain estimates of the error caused
by truncation of the series expansion (17b) to a finite sum.
Remark 6:Most commonly used wavelets satisfy the mild

nez

Thus, by the proof of Proposition 1, (13) can be replaced wifiecay and continuity conditions of Remark 5. Thus the
the weaker assumption (15), which sometimes appears in #grange prefilter approximation (8d) can usually be seen

equivalent form

0<A<|> plao+ )(E—k)

kEZ

< B < o0. (17a)

The prefilter finally, is sometimes “hidden” in a so-called

interpolating Riesz basi$q;.,+x), for V;, which is con-
structed so that the reconstruction formgiles >, _, ajr@ sk

can be replaced with a reconstruction from sample values

F=> 277127 (w0 + k) qs w0 ks

keZ

VieVy, (17b)

where (¢s), is some biorthogonal Riesz basis fdf;.

as the result of a polynomial approximatiofi;(z) =

>er, fr(A) L () of (19), thus (and once again with

Qe % 27227 - —2)) making (8d) an approximation of

the fact that

ark ={fr. Q1K) = <Z 2_ng(Al)aJ,zg+l7@J,k>

lez

:27% Z fJ()\l) <z1vro+lv ¢k>

IeZ

gives(®; ") = 277/2 (Guy 11, P1). Moreover, ifV, possesses
anorthonormalinterpolation function (such spaces are derived
in [21]), theng = ¢ and the above computation reduces to
ajk = Y ez fr(M)p(wo 41— k). Thus, for such spaces,
q);l =2-7/2%* and approximation (8b) becomes an equality.

Roughly speaking, this is done by building the prefilter (or

equivalently, the factorl/m) into Gy ..+ def 27/25(27 -

—(zo + k) ¥ 279725, (27 - —k) in the following way: Set
== def 9/0\( )
qro g = Y
©) ()
that is,

o~

B(E) = m()dne () = D (o + D27, (€).

IeZ

Then (at least formallyy = >, ., w(zo +1)gz, (- — 1) and

Gk = @0+ D)Tsaothst (18)

I€Z

Under certain mild decay and continuity conditions ¢n

(see [6], [8] for details), there is a unique family of functions

e

Gz = q(- — x) def > orez (@ — k)o(- — k) with the special
property that(f, q,) = f(z) for all f € V. (It also follows
from the second last line of (19) thét; ), and(gx), are

dual.) Thus we get the reconstruction formula (17b) from (18)
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