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Abstract—Localization of sensor nodes is a fundamental and important
problem in wireless sensor networks. Although classical multidimensional
scaling (MDS) is a computationally attractive positioning method, it is sta-
tistically inefficient and cannot be applied in partially-connected sensor
networks. In this correspondence, a weighted MDS algorithm is devised to
circumvent these limitations. It is proved that the estimation performance
of the proposed algorithm can attain Cramér—Rao lower bound (CRLB)
for sufficiently small noise conditions. Computer simulations are included
to contrast the performance of the proposed algorithm with the classical
MDS and distributed weighted MDS algorithms as well as CRLB.

Index Terms—Localization, multidimensional scaling, wireless sensor
networks.

[. INTRODUCTION

Wireless sensor networks (WSNs), consisting of inexpensive smart
nodes, have gained intensive research interest over the past few years.
WSNs have wide applications in military, medical and commercial
areas such as battlefield surveillance, doctor and patient tracking inside
a hospital, machine diagnosis as well as building automation [1]-[4].
Usually, the sensor nodes are deployed randomly. To accomplish the
mentioned applications, the positions of the sensor nodes must be es-
timated first. As a result, the sensor localization is one of the impor-
tant signal processing tasks in WSNs. Generally, sensor positioning in-
volves two steps: first, observations related to the location information
between the sensors are measured, and typical measurement models
include time-of-arrival (TOA), time-difference-of-arrival, angle-of-ar-
rival, and received-signal-strength [5]. Second, positions of the nodes
are estimated with the use of the distance or bearing information de-
rived from the measurements and locations of the known-position sen-
sors, referred to as anchors. The main focus of this correspondence lies
in the second step as we assume that the TOA information is already
converted to noisy distance measurements.

Positioning algorithms in WSNs can be categorized as centralized
and distributed approaches. In centralized localization, all distance
measurements are sent to a central unit for calculating the sensor
positions. Centralized processing is advantageous in the sense that
the solution obtained is generally more accurate and a global map is
available. However, the central processor may be unavailable in some
applications and is unable to perform heavy computation particularly
for large-scale sensor networks. While in distributed localization,
each node performs self-localization using the distances it measures
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and the local information it collects from its neighbors. Without the
need of a powerful central processor, the computational burden is
shared among all nodes in this scalable approach at the expense of
possibly performance degradation. The algorithm development in this
work corresponds to the centralized approach. For comprehensive
discussions on centralized and distributed localization, the interested
reader is referred to [1], [3], and [6].

Assuming that the distance measurements are corrupted by white
Gaussian noise, the maximum-likelihood (ML) algorithm provides
optimal estimation accuracy [7], [8]. As the ML cost function is
multimodal, sufficiently close initial guess is required to obtain the
global solution. On the other hand, semidefinite relaxation (SDR)
algorithm [9] approximates the sensor localization problem by a
convex optimization and hence global solution is guaranteed. A com-
putationally attractive range-based positioning technique is to employ
classical multidimensional scaling (MDS) [4], [10]-[12] which trans-
forms the pairwise distance information into the relative coordinates
of nodes. However, the MDS method is suboptimal and it requires
all pairwise distance measurements of sensors to produce the global
solution. These requirements may not be satisfied in practice and
thus limit its application. Metric MDS [10], [11] is an improve-
ment to the classical MDS and a representative technique is the
scaling by majorizing a complicated function (SMACOF) algorithm
[13]. Based on SMACOF, Costa et al. have proposed a distributed
weighted multidimensional scaling (dwMDS) algorithm [14], which
corresponds to nonlinear weighted least squares (WLS) methodology,
to increase node localization accuracy. In this correspondence, we ex-
ploit classical MDS to develop a weighted multidimensional scaling
(WMDS) position estimator whose accuracy can attain Cramér—Rao
lower bound (CRLB) for sufficiently small noise conditions. Unlike
the dwMDS algorithm, the proposed WMDS algorithm is based on
linear WLS. The proposed algorithm also generalizes the work of [15]
which considers single source localization. Our contributions are sum-
marized as i) developing accurate range-based positioning algorithm
for multiple sensor localization, ii) extending the proposed algorithm
to operate in partially-connected WSNs, and iii) producing the theo-
retical performance of the proposed algorithm. It is noteworthy that
our previous works on source localization include [16]-[18]. Both
[16] and [17] address the problem of single-source positioning where
the former is a modified version of the classical MDS scheme while
the latter utilizes the subspace technique. The work of [18] general-
izes [17] to positioning of multiple nodes in WSNs. As the standard
least squares (LS) technique is employed in [16]-[18], their estima-
tion performance is suboptimal. While WLS is exploited in this work
to attain optimum estimation accuracy in node localization.

The rest of the correspondence is organized as follows. The problem
formulation and algorithm development of the WMDS algorithm are
presented in Section II. In Section III, performance analysis of the
WMDS algorithm is provided. The WMDS methodology is extended
to partially connected WSNs in Section IV. In Section V, numerical
examples are provided to demonstrate the performance of the WMDS
algorithm by comparing with classical MDS and dwMDS methods as
well as CRLB. Finally, conclusions are drawn in Section VI. Before
proceeding further, the mathematical symbols used in this correspon-
dence are first introduced in Table 1.
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TABLE I
LIST OF SYMBOLS

Symbol Meaning
T transpose
-1 inverse
i pseudo inverse
Il l5 norm
vec vectorization
® Kronecker product
E expectation operator
1; i x 1 vector with all elements 1
I; i X 1 identity matrix
Oix; i X j zero matrix
e; ith column of I a(m—1y
€; ith column of Ij;
€; ith column of In/—x
min(i, j) return ¢ if ¢ < j and j otherwise
max (7, 5) return ¢ if 2 > j and j otherwise
diag(-) diagonal matrix
cov(-) covariance
1] empty set
{¢}i’€:1 {d’l:d’za"' 7¢k}
N (,uA o?) | Gaussian density with mean 4 and variance o2

II. WEIGHTED MULTIDIMENSIONAL SCALING

In this section, the problem of WSN localization is formulated and
the WMDS algorithm will be devised.

A. Problem Formulation

We consider two-dimensional WSN localization problem as exten-
sion to three-dimensional case is straightforward. Suppose there are M
nodes. The position of ith sensor is denoted by ¢, = [x; yi]7. The dis-
tance measurement between the ith and jth sensor is

L*J:]-a?ﬂaﬂﬁ[ (1)

rig =150 = di + gigs

where d;; = ||¢; — ¢,|| is the noise-free distance and ¢;; ~
N(0,07;) is the uncorrelated noise. We assume that {7} have
been accurately estimated and are known a priori [7], [9], [19].
Without loss of generality, let ¢,, i = 1,2,---,k, be the positions
of anchors where & > 3. The task is to estimate {@,}." 41 using
{ri;} and {¢L}f:1

It should be pointed out that under practical situations especially in
indoor environments, non-line-of-sight (NLOS) propagation is a major
source of error, which can introduce large positive biases in the TOA
measurements and result in unreliable position estimation. As recent
works [20], [21] on source localization under NLOS environments have
reported some promising results, we reasonably assume that the NLOS
errors in the TOA measurements have been successfully mitigated in
this work.

B. Algorithm Development

Assuming that all pairwise noise-free distances are available, the
MDS algorithm utilizes the following matrix:

B=J®"®&J = —0.5JRJ )
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where

1
IJ=Iy - =1ull,

M _ _ [
0 dis dig df,M
3, 0 di, d3 ar
d2 d2 0 P
R = 3,1 3,2 3,M
A3y die diis 0
®=[3, &,
¢, = [¢1 &y - ¢k]
®. = [¢A~+1 ¢L~+2 Sl

Without loss of generality, we assume that ®,1, = 02x1 which is ful-
filled by a simple translation usirhlg o, — Z;‘f:] &;/k,j=1,2, T k,
and thus the actual sensor positions can be recovered in a similar
manner. Partitioning J into upper and lower parts, we have

3 =9,3.+®.J, (3)
where
J= [JZ JZ]T
3. = {Ik S IST %mﬁm}
J, = {—%leklz Tk — Alf 1Mfklx«lfk] .

By further rearrangement, (3) can be expressed as

®]=2,%, C))

where

3. @, = [®, 02><(wak)]T- 3)

Employing matrix inversion lemma, <i>i can be simplified using (5) as

ot ST [ T\~ & =Lyt
e =2 (<I>a¢I>a) - |:0(M:;c)><2 ' IL:I—]Z_L } - ©
From (4) and (6), we get
BIB, = &, = BIB. D, = 0oy )
where
&, =[o] - IM_k]T.
Combining (7) and (2) yields
B‘i’iéu = Onrx(rm—k)- 3)

Basically, (8) corresponds to a set of linear equations with unknown
®,, and it generalizes the work of [15] which addresses single source
localization. Furthermore, unlike [15], the derivation of (8) does not
involve eigenvalue decomposition (EVD).
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In practice, B is approximated by B which is constructed by the
noisy distance measurements:

B = -0.5JRJ ()]
where
2 2 2
0 T2 T3 SWY
2 2 2
21 0 2.3 o M
N 2 0 2
R=|T"31 3,2 T3 M
2 2 2
vy Tmz Tmsz o 0

and (8) does not hold. Note that in the classical MDS approach, EVD
is performed on B to give a LS estimate for B which corresponds to
a standard LS scheme. While our proposed approach constructs linear
equations from B without using EVD and exploits WLS to solve the
equations as follows.

Let E be the left-hand side of (8):

E= Bd &, = H/ &, — Hp (10)
where
. &f
woal, ]
O(rr—k)x2
— T
e
IR/]’—A»
Vectorizing both sides of (10) yields
&= vec(E) = ﬂmbu — (11)

where

As the noises in & are not independent and identically distributed, it
is well known [22] that the standard LS estimator can only provide a
suboptimal solution. To improve accuracy, we utilize WLS technique
and the corresponding cost function to be minimized is given by
hr) W(H; ¢, — hr)

n;in(I:Ir,qSu (12)

where W is the weighting matrix and an optimal choice is the Markov

estimate [19], [23]:
ot
= {Fee"} .

This WLS estimator is also known as the best linear unbiased estimator
[22]. The inverse of (13) is calculated by rewriting (11) as follows:

13)

£ = —0.5vec (Jﬁ@l@u) = Fvcc(ﬁ) (14)

where

VR T
F=-05 <(<I>Q<I>u) ® J> :
Note that from (6), 151&’;: 0 x s and hence J<i>; = <i>i in (14) is
obtained. Expressing vec(R) as ¥r, (14) can be written as

Fvec( ) F¥r (15)
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where

= [\IIT A \IIA/]T
\I&:[ET

.
3, 0w M(M-1) Ez,i]

Esz: = I:e(x(iJ) . en,(i,;—n]T
E,:.= [ : ea(M,z‘)]T

a(i,j) =0.5(2jM — 2M — j — j) +i

€a(it1,i)

.2 2 2 2 2 T
r= [7“1,2 CTyaM Tosctct To Mottt rﬂlfl,AM] .

Squaring (1) and assuming that the noise power is sufficiently small,
we have

vi;—di ;= 2di g0, + a4l ;. max(i,j) >k
~ le‘,]’qiyj. (16)
The covariance of 712 ; can then be approximated by
cov (7,2]) = 47'?“]-0?“]-. 17)
Based on (13) and (17), W is calculated as
s LT
W = (F¥Q¥ F")t (18)
where
Q =4A%A
¥ =diag (0$,k:+1 PR U’?M—],IW)
A =diag(ri ggr, - rm—1,m).

Here, ¥ equals ¥ but with the columns corresponds to those distances
between anchors being removed. The columns removed are contained
intheset®(M, k) ={(i—-1D)M-((i—1)/2)+1,--- (i —1)M —
(i(i—1)/2)+k—ili=1,2,---,k — 1}. To speed up the weighting
matrix inversion, fast algorithms are available [24], [25]. The WLS po-
sition estimate of (12) is
6, = (ﬂ'{wm) ' H!Why. (19)

As the ideal weighting matrix for W is a function of ¢, which is to
be determined, an iterative procedure to update weighting matrix is
thus required. In the beginning, W is set to Irs(ar—#) to get an initial
estimate of ¢,,. The whole WMDS algorithm is summarized as follows.

1) Set W = AIM(Adfk)-

2) Calculate ¢,, using (19).

3) Construct W using (18).

4) Repeat Steps 2) to 3) until a stopping criterion is satisfied.
The typical stopping criteria are i) norm of parameter difference in two
successive iterations is less than a small positive number, ii) number of
iterations reaches a certain limit, and iii) combination of i) and ii).

Itis worthy to point out that this iterative weighting strategy has been
a standard technique [26] and is commonly referred to as the iterative
quadratic maximum-likelihood (IQML) approach [27], [28] in the field
of signal processing. To the best of our knowledge, the global conver-
gence for this form of iterative relaxation algorithm has not yet been
proved. While local convergence proof for the IQML algorithm is avail-
able for limited applications [29]. Nevertheless, simulation results in
Section V show that the algorithm is able to achieve the global solution
with performance attaining the CRLB when the noises in the distance
measurements are sufficiently small.
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III. PERFORMANCE ANALYSIS

In this section, we are going to prove that the covariance of g;S can
attain the CRLB [1] if {(Tf ;} are sufficiently small. The covariance of
the WLS position estimate of (19) is well approximated by using the
noise-free H,, and the actual weighting matrix [22]

Q

cov((b”) (I:I€VVI:IL)_1

3!
O —kyx2

S -
Onr—k)yx2 '

On the other hand, the Fisher information matrix (FIM) of ¢,, is [22]

T
<Il\4k 2B ) (FUQY¥ F)!

X <I.\/f—l.~, @B (20)

FIM=D"E"'D Q@D
where
Fér = 7
ﬁ 012 O1x2
6T 4T
O1x2 %ﬂl O1x2
D= :
o
O1x2 012 %
T o7 _
O1x2 O1x2 ﬁ ]
Comparing (20) and (21), it suffices to show that
D=A(F¥)H, (22)

where

A= diag(d1,k+1, (11,/9+2-, Tty fleLM)-

Proving (22) is equivalent to show that

STy T s u @Ta
(Qaéu) ©J)¥AD=1,_, o (B . @3)
Ot —k)yx2
The left-hand side of (23) can be expressed as
VR A v
<(‘I>a,‘1’u) ® J) YAD =[g1 & 8a(M—k)—1  B2(M—k))
(24)

where
g: = vec (JG,; (éz‘:}“))

=vec <JG7‘, 2.2+ %1k1£'r_kj|>

—Ty—k
G:{s,;+sf, i is odd
' T; + T/, iiseven

S, = ( 1y —®'L )1 .

Ik+% M 1 ek+%
T, = (yﬂ#m - <I>TL2) &l
L, =[1 0]"
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When i is odd, we can partition S; and S7  into left and right parts to
obtain

o [®ie. + tak ~(si+8!) 22, + 11l
‘ X ‘ ' —Ta—k
=Zin+Zi2o+2Z,3+%Z;4 (25)
where

1 ,
Zi1 =S;Ly (<I>Z<I>u + Zlklif_k)

Z;»=—-S;L,
Z;s :SzTL3 <Q-c‘;¢u + %1k:1£[7k>
Zis= —S! Ly

T
L3 [Ik 0A~><(M—L»)]
T
Li = [Oi—iyxe Inri]
As é{+((i+l)/2)L3 = O1xk, Zi;1 = Oy (a1—r). Furthermore, Z; 3 is
simplified by noting that

$k+

o + 1
47;1 ek+“'_+71111\_/[L3 (q)clbq)u + Elklz{jik>

. 1
N T ; T
g 21 e,ﬁ%lk <‘I’a<1>u, + Elklek>

=
2
o T
:.’T,k+iglek+igl 1y (26)
and
. 1
ek+#LT§L3 (él@u + Zlkl}‘],k>
3 : 1
= e]\»_;'_%:[‘;r@a <¢a§u + E1k1£17k>
=&, L] ®.. 27
Combining (26) and (27), we have
Zia=¢& i (v, 010 4 —L{®.). (28)
Moreover, we get
Ziz=— (vt — L1 &) i Lo (29)
Zia=—6, i (ark+i_+7111{4 - L{@) L.
— _é . o . T _ T = 7.
= —& i (1T L) = ~Zis. (0)
With the use of (28), (30), and (25) is written as
Zio = (@TL] _ IH%W) ¢/, i Lu. G1)
Similarly, when ¢ is even, (25) is
(‘PTLQ - yk+%1M) éz,;%L4- (32)

From (31) and (32), we have, fori = 1,3,---,2(M — k) — 1
g git1]= [voc (J'I'TL1é:+%L4>
vec (J@TLQéL_#LL;)]
- [(Lfék+%) © (J®"L)
(Lo, i1 ) © (38" 1a)| = & 038", (33)
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Using (33), (24) is
<(<i>1<i>u)T @J) YAD=1, , 38"
T (<I>,,<I>GT)(<I>,1<I>GT)_1

3]

O(v—k)x2

;
2. :|> (35)
Oar—ryx2

=TIy 2J®"® (34)

Since ®,1, = 021, (34) becomes

=1y +® <B

which is the right-hand side of (23).

8]

Ty . 0J® &3
Oar—ryx2

IV. EXTENSION TO PARTIALLY CONNECTED WIRELESS
SENSOR NETWORKS

The WMDS algorithm derivation in Section III assumes that dis-
tance measurements between all sensor pairs are available, which is
not always valid for practical situations. In the following, the WMDS
algorithm is extended to a partially-connected WSN. Our basic idea is
estimate the unavailable or missing distance (MD) measurements prior
to employing the proposed method. The estimated positions are then
used to update the MDs, and we repeat the estimation process in an it-
erative manner until a stopping criterion is met.

Let the connectivity function, denoted by ¢; ; be 1 if the distance
measurement between the ith and jth sensor is available and 0
otherwise.

If ¢; ; = 0, then obviously their distance exceeds the maximum
communication range, namely, Rinax:

di,; > Rmax- (36)
On the other hand, if both the /th and jth sensors connect to the /th
sensor, then we have

d,‘,j < di.’] + dly]. (37
By combining (36) and (37), we have
R1(1,1n71) > d > Rmax (38)

where R4 = min{d;; + di;}, 1 = 1,2,-

min '7-:\-[ Cil = ClLy; =
1. In practice, when the maximum communication range is unknown,
Rmax is replaced by the largest distance measurement and RED g

min

approximated by min{r; ; 4+ r; ;}. Initially, all MDs are estimated as

(39)

ri; = 0.5 (Rﬁfng) + Rmdx) ,  Cij=0.
Note that the idea of (39) is modified from the shortest path distance
algorithm [12], [30]. Instead of using r; ; = Pﬁmff in [12] and [30],
we employ the average between R,Erl]’if]) and Ruax to get the initial
MD estimates. The MD estimation algorithm proceeds as follows: first,
{’I‘L'J' Gy = 0, {l G = Gy = Ll = 1, 2, ety J\[}# @} are
estimated using (39) and the corresponding {¢; ;} are set to 1. The
process repeats until all MDs have been obtained. After initialization,
the WMDS algorithm in Section II is employed and the position esti-
mates obtained are utilized to calculate a new set of MDs. This recur-
sive process is terminated when certain stopping criterion is satisfied.
The operation of the WMDS for partially-connected WSNss is depicted
in Table II.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 11, NOVEMBER 2009

TABLE II
WMDS ALGORITHM FOR PARTIALLY-CONNECTED WSNS

While ¢;; =0,¢,j =1,2,--- ,M
Fori=1,2,--- ,M
Forj=1,2,---,M
Compute r; ; using (39)
end
end
end

While stopping criterion is not satisfied
Estimate <2>“ with WMDS algorithm
Calculate 7;,; where ¢; j =0

end

10 log,(AMSPE) (dB)
o

O MDS
20H + dwMDS (WMDS initialization) — |......i..o TN A
*  dwMDS (true positions initialization) 'Y
A WMDS
Mean CRLB : :
-30 T T T T i i i

10 15 20 25 30 35 40 45 50
10log (k) (dB)

Fig. 1.
network.

Average mean square position error versus x in fully connected

V. NUMERICAL EXAMPLES

Computer simulations are conducted to evaluate the performance of
WMDS algorithm. We consider that there are 1/ = 24 sensors in a
100 m x 100 m area with k& = 4 anchors at positions (0,0) m, (0,100)
m, (100,0) m, and (100,100) m. All simulation results are averages of
N = 100 independent runs and the average mean square position er-
rors (AMSPEs) of the 20 unknown-position sensors are plotted in fully
connected and partially connected WSN scenarios. The AMSPE is de-
fined as

4! : 2 A(i 2
Zis X ( U - i"”) + (yi) - yj)

AMSPE =
N

where (3,;5,"’ is the estimate of «; in the :th independent run. In the
two scenarios, the WMDS algorithm is compared with the classical
MDS [12] and dwMDS [14] methods as well as CRLB. The dwMDS
algorithm is initialized using the position estimates of WMDS with
W = I(ar—r) and the true sensor positions. The WMDS algorithm
has iterated ten times as further iterations cannot produce noticeable
improvement. We assign ro? = =d? j» Where k is a constant is set to
make a longer distance to have a larger measurement error.

In the first scenario, sensors are fully connected and the sensors are
randomly deployed in the 100 m X 100 m area in each run. The mean
value of CRLBs for different sensor geometries is employed as the min-

imum achievable performance bound. In Fig. 1, it is observed that the
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60 T T T T T T T
o ° ° ¢ o ° °
0 S P TPt PRFTO PR I fenn
_ A0 b o MDS SRR SRA
@ +  dwMDS (WMDS initialization) :
~ 30} *  dwMDS (true positions initialization) s
m A WMDS
% 20§§ .................. MeanCRLB |5 J
z o
< 10 +
S :
o 0
o
=
0 T Y CCEETETETS FOTR
A
-20 X
-30 i i i i i i

10 15 20 25 30 ?;5 40 45 50
10log(x) (dB)

Fig. 2. Average mean square position error versus  in partially connected net-
work.

AMSPEs of the dwMDS algorithm with both initializations can attain
the CRLB in the whole  range. On the other hand, the AMSPEs of
the WMDS algorithm can attain the CRLB when x > 30 dB. Further-
more, the AMSPE of the MDS algorithm is larger than the CRLB by
about 8 dB.

In the second scenario, all the simulation settings are the same as
the previous one except that the communication range is set to 70 m.
Therefore, the WSN is now partially connected and the average node
degree is 15.4 [31]. The same MDs are initialized for both the MDS
and WMDS algorithms. It is shown in Fig. 2 that the AMSPEs of the
WMDS algorithm can attain the CRLB when x > 25 dB. On the other
hand, the MDS algorithm performs unsatisfactorily and its AMSPEs
deviate the CRLB by at least 30 dB. Moreover, the AMSPEs of d WMDS
method initialized by true sensor positions can attain the CRLB for
the whole x range. However, the one initialized by WMDS position
estimates deviate from the CRLB when « > 25 dB.

VI. CONCLUSION

A weighted multidimensional scaling algorithm for node localiza-
tion in a fully connected sensor network is devised. Modifications
to partially connected scenarios are also suggested. Statistical per-
formance is analyzed and simulation results show that its estimation
accuracy can attain Cramér—Rao lower bound for sufficiently small
noise conditions. As a future work, we will study the local convergence
[29] of the proposed algorithm.
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