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Secure identification is an important security issue to avoid computer fraud due to masquerading. This can be achieved

with zero-knowledge based smart cards. We present very efficient new zero-knowledge schemes in a general algebraic

setting. Particular cases of our scheme improve the performance of the Guillou-Quisquater and the Chaum-Evertse-

van de Graaf schemes. Our scheme is formally proven and, overall, is more efficient than currently available schemes

including the Fiat-Shamir scheme. As an application we discuss how our scheme can be used for identification, in

particular as an electronic passport scheme.
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1. INTRODUCTION

To guarantee computer security one needs a secure login.
Login methods used nowadays are insecure. When typing
in a password on a terminal bystanders can easily
overlook and see what is being entered. Worse, often one
is logging in at a remote machine, thousands of miles
away. The password travels electronically from a terminal
or a personal computer to the remote machine and
meanwhile it is easy to eavesdrop. Due to the use of
workstations and the progress in networking, ethernet
based Local Area Networks (LANs) have become
common. For such networks the password of each user
passes through all local workstations, making the task of
eavesdropping much easier. In many cases of computer
break-in the attacker does not have to eavesdrop to get
the password, but just consults a dictionary of frequently
used passwords. So there is no doubt that more secure
login procedures must be developed. In our paper we
discuss techniques to achieve this.

Before addressing this problem we remark that
entering a PIN in an Automatic Teller Machine (ATM),
or at a Point of Sales (POS) terminal, is a special case of
login. The same applies for phone cards. Although the
amount involved in such transactions usually is small,
criminal organisations are sometimes targeting ATMs
and POSs. Indeed due to the very large number of
customers the total amount involved in such transactions
could be enormous. To reduce such criminal activities
some credit card companies are using cards which are
harder to forge, for example, by displaying a hologram.
In some countries, such as France,27 smart cards are
already in use today to further reduce the risk.

The problem of secure login is a special case of the
problem of secure identification. Identification is the
process in which an individual (the prover) identifies
himself to another individual or a machine. The last
party is called the verifier. Tokens for identification
purposes such as, drivers' licences, identification cards,
passports and visas, are often used in our society.

* Research partly done while visiting the EISS, University of
Karlsruhe, West Germany.

Furthermore, to an increasing degree credit cards are
accepted for identification purposes (although without
pictures). Fake passports and fake drivers' licenses are
handy tools for criminals and terrorists.

A brief survey of identification schemes

Let us briefly overview the history of identification
mechanisms. One of the oldest methods of identification
has been the password. This mechanism is based on
secret knowledge. As already mentioned this solution is
insecure because the prover reveals his secret. Indeed the
prover does not know if he identifies himself to an
adversary who could later on use the password fraudu-
lently.

Other techniques rely on the assumption that it is hard
(expensive) to produce certain types of cards. However
old-fashioned cards 'can be manufactured, without
excessive difficulty, to resemble true cards sufficiently
well as to deceive most people having to deal with
them'.15

Recently systems relying on the physical description of
the individual have been proposed. Such systems have a
questionable security and in many circumstances this
approach is either too expensive, or too impractical or
unacceptable for the users. Davies and Price have stressed
this last aspect,14 giving examples, for example measuring
lips for identification purposes which would be rejected
on hygienic grounds. The idea of measuring fingerprints
creates the fear that some machines could cut an
individual's finger.

Today, a major research topic in data security is the
design of secure identification mechanisms.35-4121 Re-
cently great attention has been directed to identification
based on zero-knowledge.22 The prover does not have to
reveal his secret password. Instead, he proves (using
interactive challenges) to a verifier the knowledge of a
secret without revealing it. Since this proof requires a
computation, a chip card which contains the secret of the
prover is used. At first glance, it appears that the verifier
cannot masquerade as the prover, because the secret is
not revealed. However, it has been pointed out318 that
the verifier could perform an on-line fraud by forwarding

THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992 21

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/1

/2
1
/3

9
8
2
2
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



M. BURMESTER, Y. DESMEDT AND T. BETH

the bits which are being exchanged. Techniques to avoid
this, and similar frauds, have been proposed3'5 and make
zero-knowledge identification attractive when implemen-
ted carefully. One of these is that a trusted centre keeps
a black list of stolen or lost tokens. Another is that the
prover's secret is hidden from him, to prevent the prover
from helping others impersonate him. This can be
achieved by having the trusted centre encapsulate the
secret in a tamper-proof device. All so far known
problems with zero-knowledge based identification
methods can be easily overcome, except the rental of
smart cards. If no physical description is used then it is
hard to detect this fraud because the card is identified
and not the individual. However, one could argue that it
is unlikely that one will rent one's own credit card!

This paper is organised as follows. In the remainder of
this section we give some definitions. In Section 2 we
discuss a particular case of our protocol and introduce
zero-knowledge informally. In Section 3 we describe the
general protocol, and in Section 4 we discuss its efficiency.
In Sections 5 and 6 we prove that our protocol is a zero-
knowledge proof. Many informally presented zero-
knowledge schemes have collapsed, or require radical
modifications.10 For this reason we have opted for a
formal approach. At a first reading the proofs could be
omitted. In Section 7 we consider an application of our
scheme to electronic passports, and we conclude in
Section 8.

Definitions

In this paper we focus on the development of new and
faster zero-knowledge protocols. A characteristic prop-
erty of our protocols is that the number of messages
exchanged, or rounds, is 'almost-constant'. This property
to a large extent accounts for their efficiency. A function
/ = t(n) of the natural numbers is almost-constant if it is
an unbounded function which grows very slowly, for
example significantly slower than logw. For our purpose
it is not necessary to specify such functions any further,
but if it helps to have a particular function in mind then
we could take t(n) = log *n (so t{n) grows slower than
any iterated logarithm).7

We note that if fg are functions of the natural
numbers then J{ri) = O(g(n)) if there is a constant c such
that f[n) < cg(n) for (almost) all n, and f[n) = &(g(n))
if there are positive constants c, d such that
cg(n) ^f{ri) < dg(n) for (almost) all n.

Finally a set L belongs to the class BPP if it can be
recognised by a polynomially bounded probabilistic
Turing machine with bounded error probability.23

2. AN ALMOST-CONSTANT ROUND

PROTOCOL

In this Section we discuss intuitively the concept of zero-
knowledge schemes, by considering a concrete new
example. We use this to make a practical identification
scheme for passports and remote login (see Section 7).
This scheme will be utilised as the building block for a
zero-knowledge proof (of membership) for the discrete
logarithm problem, which is the most efficient so far
presented (see Corollary 2 of Section 5).

The discrete logarithm is an important one-way
function which is often used in modern cryptography.

Many key exchange protocols19'3334 and the El Gamal
signature scheme20 have been based on the discrete
logarithm. As an illustrative example, when we perform
our calculations mod 7, then the discrete logarithm of 2
base 5 is 4, because 5 4 s 2 (mod 7). When 7 is replaced
by a very large prime number then finding the discrete
logarithm, or even finding whether it exists, is considered
to be difficult.37

Let p be a prime number and Zp be the ring of integers
modulo p. Define kp to be the largest divisor of p~ 1
whose prime factors are at least as large asi; = flog2p].
We note that it is easy to compute kp.

We shall consider a language (set) L whose elements
are the strings x = (/;/?,/?), where /? is an element of
Z* = Zp\{0} for which 0*p = l(mod/>) and IeZ* is such
that /•/?" = l(modp) for some seZv_v That is,

L = {(/;£,/>) \p is a prime, p,IeZ*; p"v = l(mod/?);
^seZv^:I-ps = l(modp)}.

We call / the ' public' number and s the ' secret' number.
Let Hbe the subgroup of Z*() which has order kp. Then
the public numbers are elements of H. Observe that any
PeH,fl 4= 1, has order at least v = \\og2p\.

In the following protocol, \p\ is the binary length of p
and aeRA indicates that the element a is selected
randomly with uniform distribution from the set A.

Protocol (P, V): Input x = (/;/?,/>).
V checks that p is a prime,42 then computes kv and

checks that IeH and that /?*? = l(mod/>). If any one of
these conditions fails then V halts and rejects. Otherwise
the following Steps are repeated / times independently,
where t = t(\p\) is almost-constant.

Step 1. P sends to V: z = /T(mod/?), where reRZv_1.

Step 2. V sends to P: q, where qeRZM.

Step 3. P verifies that qeZM, and if so, sends to V:

y = r + qs{rnod. (/?— 1)), where the * is such that
P " I =

Step 4. V verifies that yeZp_x and that
z = pyP{modp). If this check fails then the protocol is
halted.

After t complete rounds V accepts (V is convinced).
This protocol is a proof of membership in the language

L. That is, when xeL then the verifier will (almost)
always accept, whereas when x$L the verifier will
(almost) always reject. Indeed, when xeL then
Pv-IQ=Pr-pQ'-P = z(PsI)'' = z(mo<ip), so that the
verification in Step 4 checks and V always accepts. Next
\etx$L. When I$Hor/?*? ^ l(mod/>), Kalways rejects.
When IeH and /?*" = l(mod/?) and when there is no s
such that PSI = 1 (mod p), then it can be shown (Lemma 1
of Section 5) that it is not possible, even for an infinitely
powerful dishonest prover, to answer more than one of
the queries q in Step 3 of any particular round. So the
probability that V will accept after t consecutive rounds
when there is no s such that PSI = l(modp) is negligible
(at most \p\~').

The protocol is also a zero-knowledge proof (a formal
definition and proof are given in Section 5). Intuitively,
the prover does not reveal any new knowledge to the
verifier because the verifier can simulate by himself the
communications of the protocol. The verifier can guess
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IDENTIFICATION SCHEMES FOR SMART CARDS

his own question q and obtain by himself the z and y
which the prover would send him. That is he can produce
strings (z,q,y) which satisfy the conditions in Step 4,
with the same distribution as in the actual protocol. A
crucial aspect of this simulation is that given any q and
any y it is easy to obtain an appropriate z. Of course a
simulated proof will not convince the verifier that xeL.

This protocol with suitable preprocessing can be used
to recognise the elements of any subgroup </?> generated
by /? of Z*, with no restriction on the order of p or /
(Corollary 2 of Section 5).

If the factors of (/?— 1) are not known then it is
generally believed that checking membership in L is a
hard problem.1 So a prover P who has unlimited
computational power can use this protocol to prove that
xeL to a verifier with limited resources.

Next suppose that the verifier V is given the factors of
(p— 1), say as an additional part of the common input x.
Then V can easily check by himself membership in L.
Indeed from the factors of (p— 1) the verifier can obtain
the order of ft, say d. Then when the initial test is
satisfied, xeL if and only if /" = l(mod/>), since Z* is
a cyclic group (from elementary group theory). However,
even though Fcan confirm the existence of an s such that
0s • I = l(mod/>), it is generally believed1 that it is hard to
find such an s. This is called the discrete logarithm
problem. In this case the protocol can be used as a proof
of knowledge. The prover convinces the verifier that he
'knows' a secret s such that /?*•/= l(mod/>), and not
merely that there exists such an s (as in the case of proofs
of membership).

3. A GENERAL PROTOCOL

The protocol above can be generalised. One obvious
generalisation is to replace Z p by any finite field GF(q).
There are many other possible settings. One such setting
is based on elliptic curves whose ^-rational points form
an Abelian group. Discrete logarithms on elliptic curves
have recently been extensively studied because in our
present state of knowledge they implement much faster
algorithms36'32>8 (for a given level of security). To allow
for such settings, and for others which cannot be foreseen,
we shall consider a general protocol.

The protocol in Section 2 is based on the homo-
morphism Zp_1( + )->Z*(-):r^-pr. We can generalise
this by taking a group homomorphism/:( /->// . How-
ever, to make a complexity theoretic treatment possible
we have to consider families fn:Gn-> Hn of such
homomorphisms. Here Gn,Hn are groups, and
fn{ab)=fja)fn{b) for all a,beGn. These families are
indexed by a string neJ, where J is an infinite subset of
{0,1}*. To have cryptographic value the functions /„
must be one-way. A number of things are specified by n.
In particular, the triple (/„, Gn, Hn) is described in some
uniform way. Also n specifies a number v = v(n) which
will be used in our protocol. For convenience, and when
there is no ambiguity, we will omit the subscript n from
Gn and Hn (but not from /„).

The input x of our protocol consists of the 'public
number' IeHn and the string n. We use the abbreviation
JC = (/;«).

General Protocol (P,V): Input x = (/;«)•
V checks that neJ and IeH, calculates v = v(n), and

then executes a probabilistic polynomial time test T to be
specified later (7* is always true when unspecified). If any
of these conditions fails then V halts the protocol and
rejects (the proof of P). Otherwise the following steps are
repeated / times independently, where t = t(\n\) is almost-
constant.

Step 1. P sends to V: z =/n(r), where reRG.

Step 2. V sends to P: q, where qeRZv.

Step 3. P verifies that qeZv and if so, sends to V:

y = r-^eG, where the s is such that //„(•?) = 1.

Step 4. V verifies that yeG and that z = fn(y)-I«. If
this check fails then the protocol is halted.

After t successful rounds V accepts (the proof of P).

In order that the verifier can execute efficiently his part
of the protocol we have to restrict the setting as follows:

• the mappings /„ and the operation of Hn can be
executed in polynomial time (in \n\),

• LG = U neJ Gn and LH = U neJ Hn are in BPP.
• / can be efficiently represented, that is |/| is O(\n\).
• it is easy to recognise the strings n of J (that is, J

belongs to BPP).
From now on we shall assume that these conditions are
always satisfied.

In Section 5 we will prove that this protocol is a proof
of membership for the language L = {(/;«)\neJ;
Iefn(Gn)}, if appropriate conditions are satisfied. In
Section 6 we consider the case when the protocol is a
proof of knowledge.

4. EFFICIENCY

In this section we discuss the performance of our
protocol and compare it with existing schemes. We shall
assume that v (the number of 'queries' in Step 2) is
polynomially bounded in \n\, and hence that \v\ =
C>(log|«|). For the communication and computation
complexity we only consider the case when the elements
of the groups G, H are modular numbers and when the
group operations can be expressed in terms of modular
operations. For convenience we assume that H = Z*
(the set of numbers modulo m which are relatively prime
to m) and that the length of the input is ®(\m\). The
performance of our protocol will be measured in terms of
\m\.

The number of iterations

An interactive protocol is of Arthur-Merlin (A-M) type
if the strings sent by the honest verifier consist of random
bits.2 It has been shown24 that a constant round A-M
proof for a language L cannot be proven zero-knowledge
(using black-box simulation) unless L belongs to BPP.
This result has been extended to proofs of knowledge.30

Our protocol is A-M (for us v is not necessarily a power
of 2: however this makes little difference). Consequently,
in the cases when our protocol is a zero-knowledge
proof, our choice of almost-constant rounds is optimal
(provided that the corresponding problem is hard).

To achieve almost-constant rounds we have had to use
a relatively large v. The idea of using such vs is related to
'deep coin tosses'.28 However, in earlier work no bounds
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were set on v, resulting in informal systems which are not
zero-knowledge (provided that the corresponding
problem is hard).

The number of bits communicated

With each round of the protocol \m\ bits are com-
municated in Step 1 and Step 3 and \v\ bits in Step 2. For
t iterations we have t(2\m\ + \v\) bits. Since \v\ = O(log \m\),
when / « log^lml, the number of bits communicated is

The number of operations

We shall assume, for convenience, that the cost of
multiplication in G is no more than in Hand that the cost
of the exponentiation r° in H is (on average) 3/2 log q
multiplications. Suppose that the cost of computing
/„(/-) eH,reG, is equivalent to l(r) multiplications in H.
Then we have l{r) multiplications in Step 1,1+ 3/2 log q
multiplications in Step 3, and 1 + /(y) + 3/2 log q multi-
plications in the verification step. For f«log' |m|
iterations we get approximately (l(r) + l(y) + O(log\m\))
log* \m\ multiplications, since q < v and \v\ = OQog \m\).
If we assume that l(r) = @(\v|), for example when
fn(r) = r" (as in many schemes28388), then the com-
putational complexity is approximately Iog1+£|w| multi-
plications. When l(r) = 0(|/"|), for example
when f(f)=pr (as in many schemes),11440 the com-
putational complexity is approximately |m|log£|w|
multiplications (in the general case).

Comparison with other schemes

In Table 1 we compare the performance of many
schemes.

For the Fiat-Shamir scheme,22 G = H = Zm(-), where
m = pq,p,q distinct primes, and f-.r-^-r2. The input
x = (I1,...,Ilc;m) has k public numbers, k = 0(log|ra|).
We can take the number of rounds to be / x log1+c \m\
so that the number bits communicated is
t(2\m\+k) « |w|log1+*|w|. The (average) number of multi-
plications is t(k + 2) x k\og1+c\m\. For the Guillou-
Quisquater28 and Ohta-Okamoto38 schemes we have
G = H = Z* (•) and/: r -»- r", and we get the same bounds.
However if our conditions for Corollary 1 of Section 5
apply, then we can take t « log* \m\ and the com-
munication complexity reduces to \m\ log* \m\ bits. For
the Chaum-Evertse-van de Graaf scheme11 and the Beth
scheme4 we have G = Zp_x{ + ),pa prime, H = Z*( •) and
/:r->/T,/?eZ*,andwecan taker « Iog1+C\p\. The number
of bits communicated is t(2\p\+k) « |/?|log1+£|/>|, where
k = O(\og\p\) is the number of secrets, and the number
of multiplications is k\p\ log* \p\. If we use our protocol in
Section 2 then we can reduce the communication

complexity to |/?| log^ J/?| (see Section 5, Corollary 2, and
Section 6, Corollary 3). The Schnorr identification
scheme40 uses a one round protocol and therefore is not
zero-knowledge24 (unless the discrete logarithm problem
is easy). This scheme is not necessarily sound.9 However,
if the Schnorr protocol is modified so that Corollary 3
of Section 6 applies, then we get an almost-constant
round zero-knowledge proof. We note that it is not
necessary for the order of /? to be a prime number (as in
Ref. 40).

Reducing the computational complexity

We consider the protocol in Section 2 when G = Zp_1( + )
and/n:G->//;/•-•/T,/?e/f. In this case the computa-
tional complexity can be as much as |/?| log^ |/?|
multiplications. We can reduce this to
Iog1+£|/>| by modifying the language in such a way that
H is replaced by / / ' , a subgroup of H with super-
polynomial order, G by G' = Zord(H.)( + ) c Zp_1( + ), and
f G ' p p

5. A PROOF OF MEMBERSHIP

Definitions

We present an overview of the concept of zero-knowledge
interactive proofs.25 Informally a proof should convince
a reader, i.e. a verifier, that a theorem is true. It should not
be possible for the verifier to be convinced of an untruth.
With interactive proofs25 the verifier is allowed to ask
questions. For us both the prover and the verifier will use
randomness (toss coins). The randomness is obtained
from private random tapes (that is bit strings with
uniform distribution). As a consequence the verifier is
only convinced with a certain probability.

Formally the prover P and the verifier V are
probabilistic interactive Turing machines. P and V share
a common input tape, private work tapes and private
random tapes. The interaction is done by using com-
munication tapes.

Definition 1. Let Lc{0 , l}* be a language and let
(P, V) be a pair of interactive probabilistic Turing
machines. (P, V) is an interactive proof for L if for
common input x,

# Completeness: when xeL then (P, V) accepts with
overwhelming probability (> 1 — (1/|JC|°, any a)

# Soundness: when x$L, for any prover P', (Pr, V)
accepts only with negligible probability (< (l/|x|a),
any a).

P' is a prover who may deviate from the protocol (for
example, in an attempt to prove to V an untruth). With
this setting it is customary to assume that P has unlimited

Table 1. The complexity of some zero-knowledge identification schemes. |JC| is the length of the input

Zero-knowledge schemes Number of rounds Bits communicated Multiplications

Fiat-Shamir22

Guillou-Quisquater,28 Ohta-Okamoto38

Chaum-Evertse-van de Graaf,11 Beth"
Schnorr40 (not zero-knowledge)
Our scheme (Particular cases)

log1" \x\
Iog1 + £ |* |

Iog1+C|jc|

One
log«W

|JC| log1+c |x|
j * | l o g 1 + c |JC|
Wlog1+£W
0(|x|)
Wlog«W

/c log1+E |jcj, A: = 0 ( log |* | )
log1+£ |*|

fc|*|log1+£|*|,fc = 0(log|*|)
0(1*1) (without preprocessing)
Iog1+£|*|

24 THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992
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IDENTIFICATION SCHEMES FOR SMART CARDS

computational resources (and can therefore 'recognise'
the elements of L), whereas V is polynomially bounded
(and cannot check membership by himself, if this is a
'hard' problem). P and V are the 'honest' parties.

We shall now consider the impact of a possibly
dishonest verifier V on a proof (P, V). V may deviate
from the protocol in an attempt to gain some additional
knowledge, for example, about the input x. Informally a
proof is zero-knowledge2b if it guarantees that the prover
reveals no more knowledge than that xeL (one bit), to
any verifier V. V may wish to use previously obtained
knowledge. To allow for this we shall assume that the
verifier has an additional tape, called the history tape, on
which such knowledge can be written. During the
execution of a proof, P and V exchange messages. We
define the view of V to be everything that V sees. That
is, the messages exchanged and the portion of the
random tape that V uses. Clearly V will gain no further
knowledge if this view can be simulated without any help
from the prover. We define View(P v^(x, h) to be the
random variable whose value is the view of V. Here h is
the contents of the history tape of V. Formally we have,

Definition 2. An interactive proof (P, V) for L is perfect
zero-knowledge^ if, for every V there is an expected
polynomial time Turing machine Mv., the simulator,
which given xeL and h will generate a distribution which
is identical to that generated by View(P „.)(.*, h).

We also have25 statistical and computational zero-
knowledge. These, however, will not concern us here.

Our zero-knowledge proof of membership

Theorem 1. Suppose that the following condition is
satisfied:

Cl VneJ:v = \]ogn\:\/IeHn\\/qeZ°v:
Pefn(Gn)=>Iefn(Gn).

Then protocol (P, V) is a perfect zero-knowledge proof for
the language L = {(/,ri)\neJ;Iefn(Gn)}.

To prove this theorem we use the following,

Lemma 1. Suppose that condition Cl is satisfied. If
there is a zeHn for which there is more than one qeZv

such that z = fn(y)-I°, some yeGn, then Iefn(Gn).

Proof. If 2 =/„(/)•/*' =/,(/)•/•" for / , y"eG, and
q',q"eZv,q' > q", then fn(y)Iq = 1 with y = ( / T V ,
q = q'-q". So /• = fn(y-1)efn(G), and by condition Cl
we have Iefn{G). •

Proof of Theorem. Completeness follows directly from
the fact that/n is a homomorphism. For soundness we
have to show that if x$L then the probability with which
the verifier will accept is negligible. From the Lemma
there cannot be more than one query q such that
z=fn(y)I". Since the verifier V chooses the qeZv

randomly with a uniform probability distribution, the
probability that the verification in Step 4 is successful
when x $ L is bounded by 1 /v. This is the probability of
error per iteration. So the probability that V will accept
after / independent iterations is bounded by v~'. This is
negligible. Indeed we are assuming that v = 0(|«|) and
that \n\ = Q(\x\). So v~l = (1/0(1x1)'), which is negligible
when / is unbounded.

For perfect zero-knowledge we have to show that

when xeL, then the view of any verifier V can be
simulated by a probabilistic expected polynomial time
Turing machine Mv., with an identical distribution. We
use the technique of'probing and resetting' the verifier.25

In our case Mv. first prepares ' transcripts' of the form
(z = fn(r) • I", q,y = r), where r eR G and q eR Zv, and then
obtains the appropriate distribution by probing and
resetting V. The simulator can do this because the
expected number of probings is O(tv), which is poly-
nomial in |.v|. •

We remark that if / is linear in |«| then we can do without
condition Cl in Theorem 1.

Corollary 1. Suppose that v is as in Theorem 1, and that
there exists an integer k = k(n) such that

C2 H" c fjfi): that is, for any IeH there exists aweG
such that Ik =fn(w),

C3 The smallest prime factor ofk is at least v.

Then protocol (P, V) is a perfect zero-knowledge inter-
active proof for L provided that test T checks these
conditions.

Proof. We only need to show that conditions C2
and C3 imply Cl of Theorem 1. Suppose that
P =fn(u),IeH,qeZ°v,ueG. Then since 0 < q < v and
since the smallest prime factor of k is at least v, we must
have gcd(q, k) - 1. So there exist integers a, d with
aq + dk=\. Consequently I = Iaq+d" = Iaq • Idk =
fniMY-fniwf =fn(u

awd)efn(G), since /• = / » for some
weG by condition C2. So Iefn(G) and we get condition
Cl. •

Examples. We will consider two particular cases for
which condition C2 is trivially satisfied. In the first case,
Gn = Hn = Z* a n d / » : r + r * . with m = m{n),k = k(n).
Then Hk

n = (Z*)* =fn{Gn). This case has been discussed
elsewhere.8 The second case is the one considered in
Section 2. For this protocol we have H* = {1}.

Corollary 2. The discrete logarithm decision problem is
polynomial-time reducible (efficiently) to the language in
Section 2. This result can be generalised to the (relaxed)
discrete logarithm over any Abelian group with known
order. This implies that after suitable preprocessing16 the
zero-knowledge proof of Section 2 recognises the elements
of any subgroup of Z*.

Proof. Our argument is based on smooth numbers12

and the Pohlig-Hellmann algorithm.39 Let the input be
(I;P,p). The verifier first checks that / ^ e ^ p ) . If this is
successful, the prover and verifier use the protocol of
Section 2 with input (/<p-1)/*J>;£<p-1>/*p,/7). •

6. PROOFS OF KNOWLEDGE

Definitions

We refer the reader to the discussion at the end of
Section 2 for an example of a proof of knowledge. The
only difference from a proof of membership is that with
proofs of knowledge a dishonest prover who does not
know the secret (or an equivalent) should fail to convince
the verifier. The problem is to define the meaning of
'knowledge', allowing for knowledge one is not aware
of. The solution4321 is to employ an 'outsider', the
extractor, who succeeds in extracting from the prover (a
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machine) the secret. The extractor will fail if the prover
does not know the secret.

The formal setting for proofs of knowledge21 requires
that both the prover P and the verifier Fare polynomially
bounded Turing machines, and the prover has access
to a restricted oracle (from which he obtains the
secret).

Definition 3. (P, V) is an interactive proof of knowledge21

of the relation R if for common input x,

# Completeness: (P, V) will accept x = (I; ri) with
overwhelming probability when (x,s)eR.

0 Soundness: there is a probabilistic polynomial time
Turing machine M (the extractor) which is such
that, given any P' and any string h: if (/>', V)
accepts x with non-negligible probability then M
will output an / = M(P'', h, x) which is such that
(x, s') e R with overwhelming probability.

Definition 4. Zero-knowledge is as for proofs of
languages. We have unrestricted input zero-knowledge21

if the simulator can simulate the view of V even when
x$L, where L = {x\3s:(x, s)eR}.

The zero-knowledge proof of knowledge

For proofs of knowledge the prover P is polynomially
bounded. So we have to assume, additionally, that

# the operation in Gn can be executed in polynomial
time (otherwise P cannot compute y in Step 3),

0 for all y&Gn,y~x can be computed in polynomial
time.

With such proofs, P proves that it knows an s such that
I-fn(s) = 1 (and not merely that such an s exists). So
condition Cl of Theorem 1 must be strengthened.

Theorem 2. Suppose that x = (/; n), that v is as in
Theorem 1 and that,

C4 There exists a probabilistic polynomial time algo-
rithm which for any neJ, when given as input n,
IeHn,qeZ°v,ueGn with I" =/„(«), will output an weGn

such that I =fn(w).
Then the protocol (P, V) is a perfect zero-knowledge

proof of knowledge of the relation

R = {(x, s) | n eJ; seGn ;/•/„(*) = 1}.

Furthermore (P, V) is unrestricted input zero-knowledge if
test T checks that Iefn(Gn).

Proof. The proof of completeness and zero-knowledge
are the same as for Theorem 1. The proof of soundness
is similar to that in Feige-Fiat-Shamir when one defines
vertices of degree 2, or more, as 'heavy'.21 We assume
that (a portion of) the random tape of a (possibly
cheating) prover P' is such that the verifier V accepts
with non-negligible probability when the input is x, and
show that there is a probabilistic polynomial time
machine M which will obtain a witness seG such that
I-fn(s) = 1. As in Feige-Fiat-Shamir,21 by probing and
resetting the prover P', it is possible for M to find in
expected polynomial time a ' heavy' vertex (of degree 2
or more), and hence to obtain a zeH,y',y"eG, and
numbers q',q"eZv,q' > q", such that z = /„( / ) /* ' =
fn(y")I"'. So M can obtain q = q' — q" and u = (.y')"1/'
such that /* =/„(«). Then by using condition C4, M can
compute &weG such that / = fn(w), and thus an s = w'1

such that I-fn(s)= 1. •

When Gn and Hn are cyclic groups then condition C4 can
be simplified.

Corollary 3. Suppose that Gn and Hn are cyclic groups,
that fn:Gn^-Hn;r^-pr, that /? is given, and that

C5 The order offn(Gn), say m, is known, and test T
checks that Im = 1.

Then condition C4 is satisfied.

Proof. Test T is equivalent to that in Theorem 2.
Observe31 that for any divisor d of the order of a cyclic
group there is only one subgroup of order d. So for any
IeH: IefJJJ), if and only if, Im = 1. We shall now show
that condition C5 implies condition C4 of Theorem 2.
Suppose that I" =/n(«) = ^JeH^e^ueG. Since
Im = 1, we must have / =fn(w) = /T for some weG. So
ffw = P". Let m0 = gcd(<7,m) with m = m'mo,q = q'm0,
u = u'm0. Then there exists29 an integer a such that,

w = au mod m' + cm', for some ceZn (1)

Now m0 ̂  q < v, so c is polynomially bounded in \x\.
Consequently it is possible to compute in polynomial
time all the values of w in (1) and thus obtain the
appropriate w. So we get condition C4. •

Examples. Consider the case when Gn = Hn = Z%
and fn{r):r^r", with TV = N{n),k = k{n), and
gcd(/c, <j>(N)) = 1 (a trusted centre which may know the
factorisation of JV must guarantee this). Then we only
need condition C3 to get C4 of Theorem 2. So we have
a zero-knowledge proof of knowledge if the smallest
prime factor of k is at least v. Indeed suppose that we are
given IeH,qeZ°v,ueG with I" = uk(modN). Then
by C3, gcd(g, k) = 1, so that aq + bk = 1 for suitable
a, b. So / = IaQ+bk = uak • Ibk = (M°/6)*(mod N). Thus
/ = ^(mod N) for w = ual"(mod N), and we have
condition C4.

For the second example we take Gn = Zp_v Hn = Z*
and fn:r^-pr,PeZ*. The input \s{I;p,y,p), were y is the
list of all prime factors of (/? — 1). Note that it is easy
to compute the order m of /?, given y. So we apply
Corollary 3 to get a zero-knowledge proof of knowledge.

Remark. Let us compare Corollary 1 to Corollary 3.
When H is cyclic, condition C2 of Corollary 1 is satisfied
for k = h/m (the index of/„((?) in H). Indeed in this case
Hk=fn(G). However, in Corollary 3 we make no
assumption on the size or the factors of k.

Corollary 3 can be extended to Abelian groups, with
minor adjustments. We recall that finite Abelian groups
have an independent set of generators31 with invariant
properties.

Corollary 4. Suppose that Hn is an Abelian group, that
a set of independent generators fi(,i= \,...,b, offn(Gn)
is given, that the orders mi of fi( are given, that
Gn = Zmy +) x ... x ZmJi + ){direct product), and that v is
as in Ttieorem 1. Let fn:{ul,...,u^)->T\b_lf%K Suppose
that the order of Hn, say h, is given and that m = !!*_! mi

is relative prime to k = h/m. Then protocol (A, B) is a
perfect unrestricted input zero-knowledge proof of knowl-
edge of the relation

R = {(iI;n),(sl,...,sb))\neJ;(s1,...,sb)eGn;
=1},

provided that test T checks that Im = 1.
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IDENTIFICATION SCHEMES FOR SMART CARDS

Proof. We show that /„((?) e BPP and that condition
C4 of Theorem 2 applies. Observe31 that H has only one
subgroup which has order m since gcd(w, k) = 1. Thus
IefJG), if and only if, Im = I. The rest is similar to
Corollary 3. •

This result holds for any set of independent generators /?(

of/n((7n). Corollary 4 can be modified to allow for the
case when gcd(w, k) 4= 1, provided that we impose a
condition on the index k. We have

Corollary 5. We get the same conclusion as in Corollary
4 if we replace the condition k = h/m by the assumption
that k satisfies conditions C2 and C3 of Corollary 1.

Proof. We show that condition C4 is valid. If
IeH,u = (u1,...,u,,)eG and qeZ°v are such that,

/'=/„(») = #""#», (2)

and if condition C2 holds, then it is possible to compute
in polynomial time a w = (w1,...,wl>)eG such that
/=/B(w) = ^ - - - ^ » . Indeed by C2 there is a
(w1,...,wb)eG such that I* = ffi-~fi°*. Then by (2),
/s* = ptu,...^ku, = ffqwl...p,uiQ S m c e t n e p( a r e indepen-
dent, we must have qw( = ku((modmi),i =],...,b. As
in Corollary 3, we can compute in polynomial time the
iv(. We now proceed as in Corollary 1. In this case we
have /"« = #"—#"», and hence / = ft*.*"-^"**"*,
where a, d are such that aq + dk = 1. •

7. APPLICATIONS

Passports are an important means of identification.
Compared with other identification tokens (or tools)
such as credit cards, there are many centres, each one
distrusting the other, that issue tokens.

An electronic passport scheme

An international body, say the U.N. (or I.S.O.), organises
a setting in which various countries can issue unforgeable
electronic passports.13 It is assumed that the countries
will not trust the U.N., or each other. Furthermore it
should not be possible for citizens to make passports, or
for one country to issue passports for another country.

Initiation. The U.N. chooses a large prime number p
and a primitive element a.eZ* (it is not necessary for a
to be primitive, but its order must be superpolynomial in
\p\). The U.N. guarantees that p, a are correct and makes
these numbers public.

Registration of a country. Each participating country
chooses a random ueZv_x and computes y/ = a". The
public number of the country is yi, and the secret number
is u.

Making a passport. For each citizen who applies for a
passport, the country chooses a random keZ%_lt such
that the smallest prime factor of A: is at least v,v = flogp].
Then it computes P = a* mod/?, and the secret number s
by solving the congruence20

up+ks = J (mod(p-l)), (3)

where / i s the value of a string which identifies the citizen
(name, etc.). The numbers /,/? = a*mod/? and
[ = P~'modp, are the public numbers of the passport.
These can be read using bar codes or may be given by the

electronic passport. The country encapsules k and s in a
tamper-proof electronic passport (modern smart cards
are not very tamper-proof), k, s are the secret numbers of
the passport.

Verification of a passport. To verify a passport
x = (/;/;/?; y/;a;p), a verifier must first check that y/, a,
and p are as published, that J is not on the black list, and
that

aJ-l=w^ (modp). (4)

Then he must check that the secret numbers of the
passport are k, s. For this purpose our protocol is used
twice as a proof of existence (or knowledge) of a k and an
s such that /? = a*(modp) and I = ft'{modp). Then
*JI= aJ-ks{modp) and / = au"(mod/>), so that from
(4) we see that k, s must satisfy (3).

A secure remote login scheme

In our introduction we mentioned that login was a
special case of identification. The aspect of remoteness of
login makes it possible for an active eavesdropper to
divert the zero-knowledge proof to another verifier
(remote machine). The scheme above can be extended to
cover this case. To solve17 this problem the prover signs20

the name of the remote machine J, and keeps the
resulting signature k, s secret. This time, u is the secret
key of the prover and y/ is his public key. To login he
proves knowledge of k, s to the remote machine.

8. CONCLUSION

Modern cryptography is being used to securely auth-
enticate and sign messages. Many schemes rely on the
difficulty of factoring or on the discrete logarithm. The
use of cryptography has led to the design of more secure
identification tokens. Zero-knowledge identification
schemes have the advantage that the secret used to
identify is guaranteed not to leak. A lot of research has
concentrated on finding more efficient zero-knowledge
schemes. In this paper we present new schemes for which
the efficiency is far better than that of existing schemes.
Although our examples have focused on schemes which
are based on the discrete logarithm and on factoring, our
setting is more general.

We have presented two practical identification
schemes: a cryptographic passport scheme and a secure
remote login scheme. These can be further enhanced by
using smart cards.

Generalisations

In this paper we have assumed that v = flog«]. We can
extend all our results to the case when \n\a ^ v J* \n\",
where a, b are constants, 0 < a < b.

The input for our protocol x = (/; n) has only one /.
We can easily extend all our results to the case when
there are / inputs /„.. . , /„ where / is a constant. The
proof is then a proof of existence (or knowledge) of
secrets st for the Ivj = 1,...,/.
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Book Review

BRIAN SHACKEL and SIMON RICHARDSON (eds),

Human Factors for Informatics Usability,
Cambridge University Press, 1991. £35,
ISBN 0-521-36570-8.

This book is the outcome of an Advanced
Study Course held in December 1986. It is
divided into five parts: Informatics Usability
- introduction, scope and importance; System
Design - orientation and approaches; Special
topics in depth; Organisational aspects and
design in large systems; and Design and
Evaluation - some specific methods. In the
preface Shackel explains the main objectives:
to review the knowledge and methods avail-
able from the field of human factors to help
improve the usability of informatics systems;
to present recent theoretical and methodo-
logical developments in this field; to stimulate
increased application of this knowledge and
these methods.

In the first part Brian Shackel and Simon
Richardson give a background to human
factors and usability, and in the following
chapters Shackel goes into more detail about
usability, its design and evaluation. In chapter
3, Alphonse Chapanis reviews many studies of
human factors issues in real world situations
and attempts to evaluate the cost savings
involved in good human factors designs.

Part 1 commences with Ken Eason and
Susan Harker discussing the needs of a broad
range of users and how human factors can
help if they are incorporated in the design
process. Tom Stewart's chapter again looks at

these issues but from a consultant's perspec-
tive, and William Newman's lends yet another
voice from the perspective of the system
designer. Arthur Gardner describes an attempt
to classify different sources of existing advice
from the literature on human factors into an
overall framework, and locate them within the
system life cycle.

Phil Barnard starts the section on special
topics with a discussion of the contribution of
cognitive psychology. This is another attempt
to establish a much-needed framework within
which to place aspects of usability. Formal
models are discussed by Jurgen Ziegler and
Hans-Jorg Bullinger; and they finish with a
table showing where each method has been
used, and conclude that no one method is
universally applicable to all situations. The
following chapter by Brian Gaines applies
familiar human-computer interface design
principles to expert systems which generate
new modes of interaction between people and
computers.

Part 4, with chapters by Greif, Mumford
and Damodaran, emphasises organisational
aspects of design. In particular Siegfried Greif
discusses the dimensions which must be con-
sidered: size, centralisation versus decentra-
lisation, the reward and feedback system, and
division of labour or specialisation. Enid
Mumford looks at participation in design and
describes the ETHICS methodology which
deals with organisational factors in design;
and the human factors strategy, a holistic
approach to IT from the users organisation's

perspective, is elaborated in the chapter by
Leela Damodaran.

The last part discusses some of the more
basic interface issues. Ben Shneiderman shows
the various styles of interface dialogues and
Patricia Wright explains the reasons for the
prevalence of poor documentation, and
methods by which it can be improved. In the
final chapter, Chapanis argues that lack of
evaluation is why some computers, computer
programs and manuals are hard to use. He
gives guidelines for evaluation and cites
numerous relevant examples.

Overall, the book brings together an
interesting, well-written and worthwhile col-
lection of papers, and an extensive collection
of references; my only criticism is the length of
time taken to achieve this status. As Shackel
points out, much of the material is as timely
now as it was five years ago when the papers
were written. However, it is clear, especially
from the screens in some chapters, that the
material is somewhat dated. Indeed, much has
happened on the human factors front in the
last few years, as is evident from CHI and
similar conferences.

This is a solid and useful book for anyone
interested in interface design issues including
undergraduate and postgraduate students.
Although more recent material is missing,
what is in this book is valuable, and inevitably
something had to be omitted.

MILDRED L. G. SHAW

University of Calgary

THE COMPUTER JOURNAL, VOL. 35, NO. 1, 1992 29

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/1

/2
1
/3

9
8
2
2
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2


