
Scientific Programming 10 (2002) 67–74 67
IOS Press

Efficiently building on-line tools for

distributed heterogeneous environments

Günther Rackl∗, Thomas Ludwig, Markus Lindermeier and Alexandros Stamatakis
Lehrstuhl für Rechnertechnik und Rechnerorganisation (LRR), Institut f ür Informatik, Technische Universität

München (TUM), 80290 München, Germany

E-mail: {rackl,ludwig,linderme,stamatak}@in.tum.de

Abstract: Software development is getting more and more complex, especially within distributed middleware-based environments.

A major drawback during the overall software development process is the lack of on-line tools, i.e. tools applied as soon as there

is a running prototype of an application. The MIMO MIddleware MOnitor provides a solution to this problem by implementing

a framework for an efficient development of on-line tools.

This paper presents a methodology for developing on-line tools with MIMO. As an example scenario, we choose a distributed

medical image reconstruction application, which represents a test case with high performance requirements. Our distributed,

CORBA-based application is instrumented for being observed with MIMO and related tools. Additionally, load balancing

mechanisms are integrated for further performance improvements.

As a result, we obtain an integrated tool environment for observing and steering the image reconstruction application. By using

our rapid tool development process, the integration of on-line tools shows to be very convenient and enables an efficient tool

deployment.

1. Introduction

Supporting the software development process within

complex distributed environments is still a problem

due to the lacking on-line tool infrastructures. Espe-

cially, application-oriented approaches for developing

integrated and tool-supported applications are rare.

In this paper, we present the MIMO approach, which

proposes an infrastructure and methodology for devel-

oping on-line tools for distributed heterogeneous en-

vironments. As the MIMO approach is application-

oriented, we illustrate it by means of a real-world ap-

plication scenario: We show how to integrate on-line

tool functionality into a medical image-processing ap-

plication. The characteristics of this application are the

high performance requirements that make it necessary

to build a parallel and distributed version in order to

limit processing times. Furthermore, an automatic load

∗Present address: Günther Rackl, Holzstraße 20, 80469 München,

Germany. E-mail: guenther@rackls.de.

balancer is applied to the application for performance

reasons, such that the application can be executed in

parallel within a cluster of distributed workstations.

As the on-line tool support should not be limited to

the pure development of applications, we provide a tool

environment that supports both the development and

the subsequent deployment of the application. Dur-

ing development, the observation of the distributed ap-

plication can be used for debugging and performance

tuning purposes, while during deployment the steering

facilities can be used for maintenance tasks. For exam-

ple, for management purposes, all computation objects

might have to be migrated away from a specific node,

what can easily be carried out using our tool environ-

ment, without interfering the running computation.

In the following, we first give an introduction into the

components participating in our environment, which

are the medical image-processing application, the load-

balancer, and the MIMO system. Subsequently, we

describe the composition of these components into an

integrated, tool-supported real-world application. The

ISSN 1058-9244/02/$8.00 2002 – IOS Press. All rights reserved

68 G. Rackl et al. / Efficiently building on-line tools for distributed heterogeneous environments

evaluation with a genuine test case proves the applica-

bility of our approach.

Altogether, this paper therefore contributes to an en-

hanced tool development and usage process for com-

plex distributed applications. The MIMO system pro-

vides the basis for this approach, while the tool devel-

opment methodology shows to be an appropriate pro-

cedure for its efficient deployment.

2. The medical image-processing application

We explore our concepts by means of the parallel

medical image-processing application described in [1,

2]. In this application, a realignment process forms part

of the Statistical Parametric Mapping (SPM) applica-

tion developed by the Wellcome Department of Cog-

nitive Neurology [3]. SPM is used for processing and

analysing tomograph image sequences, as obtained for

example by functional Magnetic Resonance Imaging

(fMRI) or Positron Emission Tomography (PET). Such

image sequences are used in the field of neuro-science,

for the analysis of activities in different regions of the

human brain during cognitive and motoric exercises.

Realignment is a cost intensive computation per-

formed during the preparation of raw image data for the

forthcoming statistical evaluation. It computes a 4 × 4

transformation matrix for each image of the sequence,

for compensating the effect of small movements of the

patient, caused e.g. by his breath. The images are

realigned relatively to the first image of the sequence.

The realignment algorithm for image sequences as

obtained by fMRI will briefly be presented. One has to

distinguish two cases:

1. Realignment of one sequence of images: The ref-

erence data set and the first matrix is obtained

by performing a number of preparatory computa-

tions using the image data of the first image. The

matrices for all remaining images are calculated

using the reference data set.

2. Realignment of multiple sequences of images:

The reference data set and the first matrix of the

first sequence are calculated. Thereafter, the first

images of all remaining sequences are realigned

relatively to the first image of the first sequence

and its reference data set. Finally, the realign-

ment algorithm as described in the first case is

applied to all sequences independently.

At this point the only precondition for the calcula-

tion of the transformation matrix is the availability of

the reference data set, which is calculated only once for

each sequence. Once the reference data set(s) is(are)

available, the matrices of the sequence(s) can be com-

puted independently.

As the realignment process has high performance re-

quirements, it is parallelised using Java and CORBA as

a programming language and communication platform.

Computational parts written in C++ are integrated by

using the Java Native Interface (JNI).

The following sections describe the load manage-

ment system used for tuning the performance of the

realignment application, and the monitoring approach

used to observe and steer the running application.

3. The load management system

In order to improve the performance of the paral-

lel realignment application, the load management ap-

proach described in [4] is applied. In general, load man-

agement systems can be split into three components:

The load monitoring, the load distribution, and the load

evaluation component. They fulfil different tasks at dif-

ferent abstraction levels. This eases the design and the

implementation of the overall system. Figure 1 shows

the components of a load management system and a

runtime environment containing application objects.

The load monitoring component provides both in-

formation on available computing resources and their

utilisation, and information on application objects and

their resource usage. This information has to be pro-

vided dynamically, i.e. at runtime, in order to obtain

knowledge about the current state of the runtime envi-

ronment.

Load distribution provides the functionality for dis-

tributing workload. Load distribution mechanisms for

system level load management are initial placement,

migration, and replication.

Initial placement stands for the creation of an object

on a host that has enough computing resources in

order to efficiently execute an object.

Migration means the movement of an existing object

to another host that promises a more efficient ex-

ecution. As migration is applied to existing ob-

jects, the object state has to be considered. The

object’s communication has to be stopped and its

state has to be transferred to the new object, and

all communication has to be redirected to the new

object.

G. Rackl et al. / Efficiently building on-line tools for distributed heterogeneous environments 69

Load Management System

Load Monitoring

Object

Load Evaluation Load Distribution

Runtime Environment

ObjectObject

Fig. 1. The components of a load management system.

Replication is similar to migration but the original ob-

ject is not removed, so that identical objects called
replicas are created. Further requests to the object

are divided among its replicas in order to distribute

workload (requests) among them. Replication is
restricted to replication safe objects. This means

that an object can be replicated without applying

a consistency protocol to the replicas.

Finally, the load evaluation component makes deci-

sions about load distribution based on the information

provided by load monitoring. The decisions can be
reached by a variety of strategies. The aim of the di-

verse strategies is to improve the overall performance

of the distributed application by compensating load im-
balance. There are two main reasons for load imbal-

ance in distributed systems. First, background load can

substantially decrease the performance of a distributed
application. Second, request overload that is caused by

too many simultaneously requesting clients increases

the request processing time and thus, decreases the per-
formance of the overall application. Both sources of

load imbalance have to be considered by a load man-

ager.
Distributed object oriented environments like

CORBA [5] or DCOM [6] are based on some kind

of object model. CORBA objects are connected to
the middleware by the POA (Portable Object Adapter).

The object adapter provides functionality for creating
and destroying objects, and for assigning requests to

them. The POA is configured by the developer via poli-

cies. The ORB (Object Request Broker) provides func-
tionality for creating object adapters and for request

handling. A request to an object arrives at the ORB

that transmits it to the appropriate POA. Subsequently,
the object adapter starts the processing of the request

by an implementation of the object (Servant).

The load management functionality, especially load
monitoring and load distribution, have to be integrated

into the ORB and the POA because we decided to make

a system level implementation. Therefore, we added

some policies and interfaces to the POA in order to

enable state transfer and the creation of replicas.

The migration and replication of objects is realised

using new policies that determine the creation of ob-

jects by means of factories, and a persistence policy

that allows to migrate the state of an object. Request

redirection is performed by the CORBA Location For-

ward mechanism [7]. It enables to hand over object

references to clients by raising an ForwardRequest

exception. The client runtime transparently reconnects

to the forwarded reference. This guarantees migration

and replication transparency.

4. MIMO

This section introduces the MIMO MIddleware

MOnitoring system, an infrastructure for monitor-

ing and managing distributed, heterogeneous middle-

ware [8].

To handle heterogeneity, MIMO is based on a multi-

layer-monitoring approach which classifies collected

information using several abstraction levels and there-

fore serves as a foundation for integrating diverse mid-

dleware. In order to enable a rapid and flexible tool

design and construction, MIMO’s structure relies on a

three-tier model separating tools, the monitoring sys-

tem, and the instrumented application through generic

interfaces. These interfaces make it possible to use

the core MIMO infrastructure for building tools and

application instrumentation in an appropriate fashion

for the monitored middleware. Finally, in order to de-

sign GUI tools advantageously, the component-based

MIVIS tool framework can be used to integrate new

tool functionality easily by means of Java beans.

4.1. Multi-layer-monitoring

Figure 2 shows an illustration of a typical distributed

middleware environment that we consider. The ob-

70 G. Rackl et al. / Efficiently building on-line tools for distributed heterogeneous environments

Fig. 2. Layer model of the distributed environment.

served system consists of six abstraction layers from

which the monitor collects information and provides it

to tools.

The highest abstraction level within the system is the

application level. Here, only complete applications are

of interest for the monitoring system. Within an appli-

cation, the whole functionality exported by the compo-

nents is described by interfaces. These interfaces are

defined in an abstract way in the interface layer. The

implementation of the behaviour described by these in-

terfaces is done by objects within the distributed object

layer. These objects may still be considered as abstract

entities residing in a global object space. In order to

enable communication between the distributed objects,

some type of middleware is required, and especially,

a mechanism to define and uniquely identify objects

within the object space is needed.

As objects on the distributed object level are still ab-

stract entities, they need to be implemented in a con-

crete programming language. This implementation of

the objects is considered in the subsequent implemen-

tation layer. Finally, the implementation objects are ex-

ecuted within a run-time environment which can be an

operating system or a virtual machine on top of an op-

erating system that is being executed by the underlying

hardware nodes.

For various middleware platforms or applications,

this abstract model can be mapped to concrete entity

types related to the respective environments. We will

show the mapping of the realignment application to the

MLM model in the following section.

4.2. MIMO design and architecture

The MIMO MIddleware MOnitor provides a frame-

work for online monitoring and management tools

Fig. 3. 3-Tier model of the monitoring architecture.

which is compliant to the multi-layer-monitoring ap-

proach. The fundamental architecture relies on the

separation of the tools from the monitoring system

and the observed applications [9]. Figure 3 illustrates

the resulting 3-tier model, which shows tools making

use of MIMO by means of a tool-monitor-interface,

while MIMO collects information from the moni-

tored applications by means of intruders or adapters

which communicate with MIMO through a intruder-

monitor-interface. The difference between intruders

and adapters is that intruders are transparently inte-

grated into the application, while adapters might be

built by inserting code into the application.

Tools interact with the monitor system by means

of a standardised tool-monitor interface, while instru-

mented components make use of a generic intruder-

monitor interface that allows to exchange any kind of

event-based information.

4.3. MIVIS tool framework

MIVIS (MImo VISualizer) represents a general pur-

pose framework for GUI-based tools. It contains basic

visualisation functionality needed for sophisticated ob-

servation of any middleware, and allows for easy exten-

sion to include other advanced tool functionality. The

generic MIVIS framework cares for the interaction with

MIMO and presents data it receives in an advantageous

way to the user.

To fulfil the requirement of uncomplicated extensi-

bility of the visualisation tool, it is split into a main

program and several JavaBeans software components.

The main program takes care of the communication

with MIMO and the processing of the data, and the Jav-

aBeans do the graphical display. Hereby, all JavaBeans

are discovered by MIVIS at startup time, and get dy-

namically integrated into the GUI. If a different type of

display is needed, a user can program that display type

using Java and turn it into a JavaBean. This compo-

nent is placed into a specific directory so that MIVIS

G. Rackl et al. / Efficiently building on-line tools for distributed heterogeneous environments 71

can find and use it. The main program does not have

to be changed at all, the only requirement is that the

JavaBean implements a minimal interface that enables

the main program to communicate with the bean.

The bean-specific properties can be set by the user.

MIVIS knows about these properties by means of the in-

trospection mechanism and provides editors to change

the settings of these properties. Additional editors for

properties of a special data type can be placed inside

the JavaBean and used instead of the standard editors.

Hence, this approach offers a very dynamic and flexi-

ble way to configure the behaviour of various display

types. More details about MIVIS can be found in [10].

In the following, we make use of the MIMO capabili-

ties to monitor and steer our load-balanced realignment

application.

5. Integrating the load-balanced realignment

environment

In this section, we now describe how to monitor and

steer the load-balanced realignment application. First,

we begin with a general overview of the tool devel-

opment process proposed by MIMO, before we subse-

quently show the integration of the realignment appli-

cation. As a result, we obtain a visualisation tool show-

ing the activities of the realignment application, and a

steering possibility that allows to migrate or replicate

objects using interactive drag-and-drop mechanisms.

5.1. Tool development with MIMO

To enable monitoring of a new middleware with
MIMO, a general methodology consisting of three ma-

jor steps exists:

– Define relevant middleware entities and map them

to the MLM model: The first step is to define enti-

ties within the middleware which are relevant for

being monitored with MIMO. This can either com-

prise application-specific entities like business-

objects, or middleware-specific entities like e.g.

CORBA objects. The choice of these entities de-

pends on the focus of interest and strongly influ-

ences the further activities.

After defining the relevant entities, they need to be

mapped to MIMO’s multi-layer-monitoringmodel

described before. Here, a certain degree of free-

dom exists and be exploited for the respective

goals. The result is a middleware-specific layer-

model with a mapping to the general MIMO MLM.

– Define relevant events: After defining the entities,

relevant events that may occur within the middle-

ware or application have to be determined. For

example, these events may include generation or

deletion of entities, or interactions between enti-

ties. As before, the definition of relevant events

highly depends on the focus of the monitoring

goals and can be completely user-defined. In any

case, the result is a list of event names and their

corresponding parameters that have to be passed

with them. Also, it is possible to pass events from

the application to the tools, as well as passing back

commands from tools to the intruders or adapters

residing in the application in order to manipulate

the running application.

– Implement instrumentation code and tool: The last

step in our methodology is the actual implemen-

tation of intruders/adapters and the tools based on

the previous entity and event definitions. Here,

MIMO serves as a common monitoring frame-

work, and the MIMO core can be used as an intel-

ligent communication infrastructure between tools

and intruders/adapters. Moreover, the MIVIS tool

framework can be used for easy development of

GUI tools.

Hence, with this procedure new platforms can eas-

ily be integrated to the MIMO system by following

a fixed set of rules. This general approach therefore

enables a rapid and easy tool development which is

highly application- and middleware-oriented, such that

developers can concentrate on tool development with-

out worrying about general monitoring issues. The

steps of the tool development methodology are sum-

marised in Fig. 4.

5.2. Integrating the realignment application

Based on the general tool development process, we

now show the integration of the realignment application

into the tool environment. Figure 5 depicts the struc-

ture of the realignment application. The service offered

by the server object is the compute() service, which

calculates the transformation matrix for an image. The

state of a server object consists of a reference data queue

(cache). Therefore it is replication safe since it can be

replicated without applying a consistency protocol to

its replicas, i.e. the required cache data can easily be

reestablished. A getReferenceData() service is

offered by each client and provides the specific refer-

ence data to the server if it is not already cached.

72 G. Rackl et al. / Efficiently building on-line tools for distributed heterogeneous environments

1. Define tool

functionality

2. Define required

monitoring data

3. Map concrete

middleware

to MLM model

4. Define events

and / or

commands

5. Implement tool

& instrumentation

Fig. 4. MIMO tool development methodology.

Table 1

Mapping of the realignment application

Realignment application MIMO MLM entity

Realignment application Application

Compute-interface Interface

Compute-object IOR Distributed object

Java realignment class Implementation

Realignment process ID Runtime

Node Hardware

For integrating these components within MIMO, the

relevant entities have to be determined at first. The

resulting mapping of realignment entities to the MIMO

MLM model is illustrated in Table 1.

The next step is to define appropriate events of in-

terest. These include both events for observing the

progress of the realignment process, as well as steer-

ing events allowing to manipulate the running applica-

tion. The main events being tracked by MIMO are as

follows:

– Creation and deletion events for new client and

servant objects

– Replication of objects

– Migration of objects

– Information events reporting the load of nodes and

objects

For steering the realignment process, two events are

used:

– Migrate object

– Replicate object

The parameters for those events include the target

object and the respective destination node. More exact

details about the events and their parameters can be

found in [1].

5.3. Example scenario

The final step of our integration is the development

of a visualisation bean making use of the MIVIS frame-

work. We developed a new display that is used for the
visualisation of the processes described before. Fig-

ure 6 presents the basic layout of the graphical on-

line tool. Client and server objects are located within
the respective rectangles representing the client and

server hosts. In addition, server object load (numeri-

cal representation) and server host load values are de-

picted (numerical and graphical representation). The
CORBA method compute() is represented as black

arrow with a counter and getReferenceData() as

offset turquoise arrow. Replications and Migrations
are represented as white and red arrows respectively.

Replication and Migration actions can be initiated man-

ually with a drag-and-drop functionality; the user can

therefore easily migrate objects to other nodes, or repli-
cate them, if adequate.

Consequently, the combination of MIMO and

MIVIS provides a flexible and extensible infrastructure
for the development and the maintenance of large scale

distributed applications.

6. Evaluation

In order to prove the efficiency of the presented

load management concept and its implementation, we
present a test case for our integrated realignment appli-

cation [11].

The hardware consists of three machines with equal

configuration. There is no background load on the ma-
chines. The examined CORBA application is the medi-

cal image-processing application described in Section 2

with two simultaneously requesting clients. The appli-
cation is replication safe as already mentioned in Sec-

tion 3. Thus, migration and replication can be applied

to this application.

Figure 7 shows the processing time per image against
the number of the processed image for both clients. At

the beginning, one server object is created and placed

on a machine (initial placement) and the clients start

G. Rackl et al. / Efficiently building on-line tools for distributed heterogeneous environments 73

 Server

 compute()

 getReferenceData()
Client

Cache

Fig. 5. The structure of the medical image-processing application.

Fig. 6. Visualization of a replication and of object interactions.

requesting the server. The image processing time is
equivalent for both clients now because the server al-
ternately processes their requests. After a while the
load management system recognises that the server is
overloaded because both clients permanently request
the server. Accordingly, replication is performed, i.e. a
second server object (replica) is created and each client
gets a replica on its own. In consequence of the replica-
tion, the image processing time of each client decreases
about 50%. Some time later backgroundprocessor load
is generated on the machine that is used by the sec-
ond client’s replica. Hence, the image processing time
of the second client substantially increases. Again,
the load management system recognizes the processor
overload and migrates the affected replica to the third
machine which was not used so far. The consequence
is that the image processing time returns to its normal
level.

The test case shows how the load management sys-
tem is able to deal with different kinds of overload. Re-

quest overload is compensated by replication, whereas
background load is compensated by migrating an object
to a less loaded host. Consequently, the load manage-
ment systems improves the performance and the scala-
bility of the medical image-processing application.

Additionally, the integrated tool environment makes
it possible to visualise and manually steer the load-
balanced application, what is helpful for performance
tuning as well as for maintenance tasks.

7. Conclusion and future work

In this paper, we have presented an approach for
developing on-line tools for distributed middleware-
based applications. By means of our load-balanced
medical realignment application, we have shown how
to integrate monitoring functions and to implement a
visualisation and steering tool, which can be used for
both development and deployment tasks.

74 G. Rackl et al. / Efficiently building on-line tools for distributed heterogeneous environments

10 15 20 25 305

Processing Time / Image [Sec.]

Client 1Replication

0
6

8

10

12

14

16

18

40

20

Migration

35

Clinet 2

Background Load

Image Nr.

Fig. 7. The load managed medical image-processing application.

The MIMO infrastructure provides an infrastructure

for implementing integrated tool environments. The

tool development methodology cares for a systematic

and concerted development process for tools and in-

strumentation components. Finally, we have presented

a real-world application scenario that proves the appli-

cability of our approach.

Future work includes the elaboration of further tool

interoperability concepts, which enable a coordinated

and simultaneous application of several tools to a single

application. The integration of our load-balancer and

the visualisation and steering tool is a first step towards

this direction.

The global goal of our endeavours is to contribute

to an enhanced overall software development and de-

ployment process by improving the tool support for the

“on-line phases” of the software lifecycle. We aim at

an increased acceptance of on-line tools by showing

an approach for their rapid development and efficient

usage.

References

[1] A. Stamatakis, Interoperability of Tools for Distributed

Object-Oriented Environments, Diploma thesis, Technische

Universität München, 2001, (in German).

[2] M. May, Vergleich von PVM und CORBA bei der verteilten

Berechnung medizinischer Bilddaten, Master’s thesis, Tech-

nische Universität München, 2000.
[3] K. Friston, SPM, Technical report, The Wellcome Department

of Cognitive Neurology, University College London, 1999.

[4] M. Lindermeier, Load Management for Distributed Object-

Oriented Environments, in: International Symposium on Dis-

tributed Objects and Applications (DOA’2000), IEEE Press,

Antwerp, Belgium, 2000,

[5] OMG (Object Management Group), The Common Object Re-
quest Broker: Architecture and Specification – Revision 2.3.1,

Technical report, http://www.omg.org, 1999.

[6] G. Eddon and H. Eddon, Inside Distributed COM, Microsoft

Press, 1998.

[7] M. Henning, Binding, Migration, and Scalability in CORBA,

Communications of the ACM, 1998.

[8] G. Rackl, Monitoring and Managing Heterogeneous Middle-

ware, Dissertation, Technische Universiẗat München, Febru-
ary 2001, http://tumb1.biblio.tu-muenchen.de/publ/diss/in/

2001/rackl.html.

[9] T. Ludwig, R. Wismüller, V. Sunderam and A. Bode, OMIS

— On-Line Monitoring Interface Specification (Version 2.0),

Vol. 9 of Research Report Series, Lehrstuhl für Rechnertechnik

und Rechnerorganisation (LRR-TUM), Technische Universität

München, Shaker, Aachen, 1997.

[10] M. Rudorfer, Visualisierung des dynamischen Verhaltens

verteilter objektorientierter Anwendungen, Master’s thesis,

Technische Universität München, 1999.

[11] T. Ludwig, M. Lindermeier, A. Stamatakis and G. Rackl, Tool

Environments in CORBA-based Medical High Performance

Computing, in: Proc. of the PACT 2001 Conference, Novosi-

birsk, Russia, September 2001, To appear.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

