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ABSTRACT

Efficiently computing k-edge connected components in a large graph,
G = (V, E), where V is the vertex set and E is the edge set, is
a long standing research problem. It is not only fundamental in
graph analysis but also crucial in graph search optimization algo-
rithms. Consider existing techniques for computing k-edge con-
nected components are quite time consuming and are unlikely to
be scalable for large scale graphs, in this paper we firstly propose
a novel graph decomposition paradigm to iteratively decompose a
graph G for computing its k-edge connected components such that
the number of drilling-down iterations h is bounded by the “depth”
of the k-edge connected components nested together to form G,
where h usually is a small integer in practice. Secondly, we devise
a novel, efficient threshold-based graph decomposition algorithm,
with time complexity O(l× |E|), to decompose a graph G at each it-
eration, where l usually is a small integer with l ≪ |V |. As a result,
our algorithm for computing k-edge connected components signif-
icantly improves the time complexity of an existing state-of-the-art
technique from O(|V |2|E|+ |V |3 log |V |) to O(h× l× |E|). Finally, we
conduct extensive performance studies on large real and synthetic
graphs. The performance studies demonstrate that our techniques
significantly outperform the state-of-the-art solution by several or-
ders of magnitude.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data mining; G.2.2 [Graph The-

ory]: Graph algorithms

Keywords

k-edge connected components; graph decomposition; minimum cut

1. INTRODUCTION
In many real applications, various data and their relationships

can be modeled as a graph G = (V, E), where vertices in V repre-
sent the entities of interest and edges in E represent the relation-
ships between the entities. With the proliferation of graph data
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based applications, such as social networks, information networks,
web search, bi-chemistry, biology, and road networks, significant
research effort has been made towards many fundamental problems
in managing and analyzing graph data. Given a graph G = (V, E),
the problem of computing k-edge connected components of G is to
find a collection of maximal induced subgraphs {Gi} of G such that
each Gi is k-edge connected, i.e., the resulting graph is still con-
nected after the removal of any (k−1) edges from Gi [3, 20]. Fig. 1
shows an example; the graph in Fig. 1 is 2-edge connected, and it
has four 3-edge connected components highlighted by the dotted
circles, respectively.

v12 v13

v17 v18v3 v5

v1

v6

v7 v8

v10 v11

v14

v16v9v4

v15

v2

G3

G2

G1

Figure 1: 3-edge connected components

Computing k-edge connected components has many real appli-
cations. For example, in social networks, computing k-edge con-
nected components can identify the closely related entities to pro-
vide useful information for social behavior mining [1]. In a web-
link based graph, a highly connected graph may be a group of web
pages with a high commonality, which is useful for identifying the
similarities among web pages. In computational biology, a highly
connected subgraph is likely to be a functional cluster of genes for
biologists to conduct the study of gene microarrays. Computing
k-edge connected components also potentially contributes to many
other technology developments such as graph visualization, robust
detection of communication networks, community detection in a
social network (e.g., Facebook), graph sparsification, etc, [7, 16,
19, 20]. Motivated by these, the problem of computing k-edge con-
nected components has been studied very recently in [17, 20].

Clearly, if a graph G is not k-edge connected, there must be a
set C of edges, namely a cut, such that the number |C| of edges in
C is smaller than k (i.e., |C| < k) and the removal of the edges in
C cuts the graph G into two disconnected subgraphs G1 and G2.
Based on this observation, the authors in [17, 20] develop a cut-
based technique to iteratively cut a non k-edge connected graph
into two disconnected subgraphs by applying the global min-cut

algorithm in [14] (to be defined in the next section) till all remain-
ing connected subgraphs are k-edge connected or no edge is re-
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maining in the graph. For example, considering the graph in Fig. 1
and a given k = 3, suppose that a cut {(v4, v9), (v5, v12)} is first dis-
covered. The cut-based technique in [17, 20] cuts the graph into
G1 and (G2 ∪ G3) where G1 is induced by vertices v1, v2, . . . ,
v5, and (G2 ∪ G3) is induced by v6, . . . , v18. In the next itera-
tion, the cut-based technique is executed against subgraphs G1 and
(G2 ∪G3), respectively. Since the time complexity of the technique
in [14] is O(|V ||E| + |V |2 log |V |), the cut-based technique runs in
O(|V ||E| + |V |2 log |V |) time to find one cut. Consequently, the cut-
based technique in [17, 20] runs in time O(|V |2(|E| + |V | log |V |)) to
compute k-edge connected components of G. The authors in [20]
also develop a set of novel techniques to reduce the running time
of the proposed algorithm in practice. Nevertheless, due to its high
order time complexity and the nature of the framework (cut-based),
the techniques and the framework are not scalable to efficiently
process large scale graphs; this is also confirmed by our empirical
studies in Section 5. Motivated by this, in this paper we study the
problem of efficiently computing k-edge connected components.

Our Approach. Our technique is based on a graph decomposition
paradigm. We here use the graph G in Fig. 1 as an illustrative exam-
ple, which consists of three subgraphs G1, G2, and G3, as depicted
by dotted rectangles, such that G1 is connected to the other part of
G by two edges, and G3 is also connected to the other part of G by
two edges. Assuming that k = 3, we can decompose the graph into
three disconnected subgraphs G1, G2, and G3 instead of separating
G1 from G.

... ...

...... ...

G
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G1,1 G1,j G1,m Gl,1 Gl,n

h

Figure 2: Graph decomposition tree

Generally, a non k-edge connected (k > 1) graph G can be repre-
sented by a decomposition tree as depicted in Fig. 2 such that each
k-edge connected component of G is represented by a leaf node,
and each intermediate node of the tree is a connected subgraph of
G that is not k-edge connected. Moreover, the sibling nodes (sub-
graphs) in the tree have the property that each of them is connected
to the remaining part of the parent graph by less than k edges except
one sibling subgraph. For example, in Fig. 2, G1, G2, ..., Gl are the
sibling graphs with the parent graph G, and there are at least (l− 1)
graphs among G1, G2, ..., Gl each of which (say Gi) is connected
to the remaining part of G (i.e., G − Gi) by less than k edges. Our
graph decomposition paradigm guarantees to decompose an inter-
mediate graph G by detecting and removing all inter edges cross its
children subgraphs.

To efficiently compute k-edge connected components of a graph
using the graph decomposition paradigm, we develop a novel, effi-
cient algorithm to decompose graph G for a given k, which runs in
time O(l|E|) and has the following property that 1) if G is not k-edge
connected, it will remove all the edges cross its children subgraphs
(in the decomposition tree), and 2) each k-edge connected compo-
nent will not be broken into several parts. Iteratively running graph
decomposition algorithm (till all remaining connected subgraphs
are k-edge connected) gives a solution to the problem of computing
k-edge connected components; this gives the overall time complex-
ity O(h × l|E|) instead of O(|V |2(|E| + |V | log |V |)), where h is the
height of the decomposition tree (see Fig. 2) and l ≪ |V |.

Contributions. Our primary contributions are summarized as fol-
lows.

• We propose an effective graph decomposition paradigm to
efficiently compute k-edge connected components.

• We develop a novel graph decomposition technique to effi-
ciently decompose a non k-edge connected graph in O(l×|E|)
time, where l usually is a small integer with l ≪ |V |. Conse-
quently, our technique for computing k-edge connected com-
ponents runs in O(h×l×|E|) instead of O(|V |2(|E|+|V | log |V |))
time of the state-of-the-art technique in [20], where h is the
height of the decomposition tree and is practically a small
integer.

• We conduct both theoretical and empirical studies on large
real and synthetic graphs. Extensive performance studies
demonstrate that the proposed algorithm significantly out-
performs the state-of-the-art algorithm by several orders of
magnitude.

Organization. The rest of the paper is organized as follows. A
brief overview of related work is given below. Section 2 provides
the necessary background information, including the problem def-
inition, the global min-cut algorithm in [14], and an existing al-
gorithm for testing edge connectivity [11]. Section 3 presents the
graph decomposition paradigm, while Section 4 presents the graph
decomposition technique. The experimental results are reported
in Section 5. Finally, a conclusion is given in Section 6.

Related Work. Efficiently computing subgraphs, based on some
designated densities, has recently drawn a great deal of attentions
from both database and algorithm communities. The designated
densities can be classified into two categories, 1) local density, and
2) connectivity density.

1. Local Density. Efficient techniques for computing all maximal
cliques and quasi-cliques of a graph are presented in [6, 4] and
[18], respectively. The authors in [16] investigate the problem of
efficiently enumerating another kind of dense induced subgraphs,
namely DN-subgraphs, where a DN-subgraph has the property that
for each pair of adjacent vertices, u and v, they share at least λ com-
mon neighbors. Problems of efficiently computing other dense sub-
graphs, including k-core [5], triangle k-core motifs [19], etc., have
also been recently investigated. An extension of k-core, i.e., finding
dense subgraphs g of each graph G such that the h-hop neighbor-
hood of a vertex in g has at least k vertices whose attributes satisfy
a certain constraint, is also studied in [9]. Nevertheless, due to
inherently different problem natures, these existing techniques are
inapplicable to computing k-edge connected components.

2. Connectivity Density. The authors in [17] investigate the prob-
lem of efficiently computing frequent closed k-edge connected sub-
graphs from a set of data graphs with the focus on k-edge connectiv-
ity and the number of occurrence of subgraphs. The edge connec-
tivity of a graph is the minimum number of edges whose removal
disconnects the graph. Note that a frequent closed subgraph is not
necessarily an induced subgraph. The only existing technique to
tackle the scalability of computing k-edge connected components
is reported in [20]. The technique is based on iteratively cutting a
graph with lower (than k) connectivity into two parts, and the au-
thors in [20] also develop a set of novel pruning rules to reduce
the running time in practice. Similar (to that in [20]) framework
is also used to compute SkyGraph in [13]. Here, the problem of
computing SkyGraph outputs a subset S of induced subgraphs of
G with the properties: 1) for each induced subgraph g < S, there
must be a subgraph g′ in S such that both the connectivity of g′ and
the number of vertices of g′ are no smaller than those of g with at
least one of these two strictly larger; and 2) none of two subgraphs
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in S has such property regarding each other. As pointed out earlier,
due to the high order time complexity and the nature of the frame-
work (cut-based), the techniques and the framework in [20] are not
scalable enough to efficiently process large scale graphs.

The problem of efficiently computing every maximal subset Vi

of vertices of G, such that each pair of vertices in Vi is k-edge con-
nected in G, has been studied in [8, 12, 10, 15]. Note that in such a
maximal vertex subset Vi of G, each pair of vertices that are k-edge
connected in G is not necessarily k-edge connected in the induced
subgraph by Vi; in fact, the induced subgraph may be disconnected.
Therefore, computing all such maximal vertex subsets is inherently
different from computing the k-edge connected components of G.
Note that, although [10] also uses the term “k-edge connected com-
ponent”, the meaning is different as discussed above.

2. BACKGROUND INFORMATION
In this paper, we focus on an undirected graph G = (V, E), where

V is the set of vertices and E is the set of edges. We denote the num-
ber of vertices and the number of edges by |V | and |E|, respectively.

Given a vertex subset Vs ⊆ V , the induced subgraph G[Vs] by
the vertices in Vs is a subgraph of G with Vs as its vertex set such
that the edge set of G[Vs] consists of only the edges in G with both
endpoints in Vs. That is, G[Vs] = (Vs, {(u, v) ∈ E | u, v ∈ Vs}).

2.1 Problem Statement

Definition 2.1: A graph G is k-edge connected if the remaining
graph is still connected after the removal of any (k − 1) edges from
G. �

For example, the graph G in Fig. 3 is 2-edge connected, while
the two subgraphs G1 and G3 in Fig. 3 are 3-edge connected.
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Figure 3: A graph and its 3-edge connected components

Definition 2.2: Given a graph G, a subgraph g of G is a k-edge
connected component if 1) g is k-edge connected, and 2) any super-
graph of g in G is not k-edge connected. �

Problem Statement: Given a graph G and an integer k, we study
the problem of efficiently computing k-edge connected components
of G.

Properties of k-edge connected components:

• A k-edge connected component is an induced subgraph;

• A k-edge connected component is maximal; that is, by adding
any vertex or a set of vertices into a k-edge connected com-
ponent, the resulting induced subgraph will not be k-edge
connected;

• All k-edge connected components of a graph are disjoint.

2.2 Cut-based Framework, Global Min-Cut,
and Connectivity Test

Definition 2.3: Given a graph G = (V, E), a cut C = (S ,T ) is a
partition of V into two non-empty, disjoint subsets, S ∪ T = V and
S ∩ T = ∅. �

We also denote a cut by the set of edges whose endpoints are in
different subsets, i.e., {(u, v) ∈ E | u ∈ S , v ∈ T }. The value of a cut
is the number of edges in the cut, i.e., w(C) = w(S ,T ) = |{(u, v) ∈
E | u ∈ S , v ∈ T }|.

Definition 2.4: A cut C = (S ,T ) is called an s–t cut if s and t are
in different partitions, and it is a minimum s–t cut if its value is no
larger than the value of any other s–t cuts. �

Let λ(s, t; G) denote the value of a minimum s–t cut in G. The
connectivity between s and t in G is defined as λ(s, t; G). Two
vertices s and t are called k-edge connected in G if and only if
λ(s, t; G) ≥ k. In the following, we simply denote k-edge connected
as k-connected.

Definition 2.5: The global min-cut of a graph G is the cut of G that
has the smallest value among all cuts of G. �

Let λ(G) denote the value of the global min-cut of G, or equiv-
alently, λ(G) = mins,t∈G,s,t λ(s, t; G). A graph G is k-connected if
and only if λ(G) ≥ k. For example, C1 = {(v4, v7), (v5, v7), (v5, v12)}
and C2 = {(v5, v12), (v9, v11)} are cuts of the graph in Fig. 3. C1 is a
minimum v1–v8 cut and C2 is a global min-cut.

Cut-based framework: For computing k-edge connected com-
ponents of a graph G, an existing solution [20] uses a cut-based
framework by iteratively computing a small cut of each connected
subgraph by running a variant of the global min-cut algorithm, and
removing all edges in cuts with values less than k. The connected
subgraphs in the final graph are k-edge connected components of
G. The pseudocode is shown below.

1: Procedure: find k-edge connected components (G, k)
2: Find a small cut, C, of G;
3: if the value of C is less than k then
4: Remove all edges of C from G;
5: Find k-edge connected components of each connected subgraph of

G;
6: else
7: Output G as a k-edge connected component;

Computing a global min-cut: We introduce an approach to find-
ing global min-cut of graphs [14]. The general idea is finding min-
imum s–t cuts for (|V | − 1) pairs of vertices, and reporting the one
with the smallest value as a global min-cut. Instead of computing
maximum flows, the authors in [14] propose a procedure called the
maximum adjacency search or maximum cardinality search, de-
noted by Mas, to find a minimum s–t cut. Given a graph as input,
Mas returns the minimum cut for a pair of vertices s and t. The effi-
ciency of this approach is due to the fact that s and t are determined
by Mas rather than its input. Whenever a minimum s–t cut is found
by Mas, s and t are merged into a super-vertex, and the resulting
graph is given as an input to Mas for another iteration. The global
min-cut is found after (n − 1) iterations.

The procedure Mas computes an order of all vertices in G, de-
noted by a list L. Let t be the last vertex in L and s be the vertex
prior to t in L. Then it has the property that the adjacent edges of t in
G is the minimum s–t cut. The list L is constructed as follows. It is
initialized as a singleton list containing an arbitrary vertex from V .
As long as there are vertices not included in L, the vertex u, which is
the one most tightly connected to L, i.e., u = arg maxv∈V\L w(L, v),
where w(L, v) denotes the number of edges between v and the ver-
tices in L, is added to the tail of L.

Theorem 2.1: [14] Let s and t be the two vertices (in the order)

most recently added to L, then (L\{t}, {t}) is a minimum s–t cut.

The time complexity of Mas is O(|E| + |V | log |V |) if the Fibonacci

heap is used for finding the most tightly connected vertex. �
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As a consequence of Theorem 2.1, the time complexity of find-
ing a global min-cut of G is O(|V ||E|+ |V |2 log |V |) [14]. In [20], the
authors propose that, in order to compute k-edge connected com-
ponents, as long as the value of the minimum cut found by Mas in
an iteration is smaller than k, the procedure for finding a small cut
will terminate. Note that the time complexity of Mas is Ω(|E|), i.e.,
it is lower bounded by |E|. Therefore, if a graph is k-connected, the
running time of [20] is Ω(|V ||E|) which limits the algorithm to be
only applicable to small graphs.

Testing edge connectivity: The problem of testing whether a graph
is k-edge connected is also studied in the literature. For unweighted
simple graphs, the best previous known algorithm runs in time
O(|V ||E|) which is based on dominating set and maximum flow
techniques [11], denote by TestConnect. If the minimum degree
of a graph G is less than k, then G is not k-edge connected. Other-
wise, the algorithm maintains three disjoint vertex subsets S ,T,U

of V , where T consists of all vertices adjacent to but not in S , and
U consists of all remaining vertices. S is initialized to contain an
arbitrary vertex. Whenever U is non-empty, it picks a vertex v from
U and computes the minimum cut C between v and S . If the value
of C is less than k, then G is not k-edge connected, otherwise, v is
added to S , and T and U are updated accordingly. Finally if U is
empty, then G is k-edge connected. For more details, please refer
to [11]. Note that, TestConnect terminates when a cut of value
less than k is found or U is empty, and with a slight modification
it can be used in the cut-based framework to replace the procedure
of finding global min-cut. However, existing works for computing
k-edge connected components of a graph are unaware of this algo-
rithm. We also evaluate the performance of using TestConnect in
our empirical studies (see Section 5).

3. COMPUTING K-EDGE CONNECTED

COMPONENTS
Before presenting techniques to compute k-edge connected com-

ponents, we claim that the set of k-edge connected components of
a graph is unique.

Lemma 3.1: Given a graph G, all its k-edge connected components

are unique. �

Proof Sketch: We prove it by contradiction. Assume that there
are two different sets of k-edge connected components. Then there
must exist two k-edge connected components from each one of the
two sets, g1 and g2, that are non-disjoint and also non-identical.
Otherwise, the two sets of k-edge connected components are the
same. Therefore, (g1 ∪g2) is also k-connected (since there is no cut
of value less than k that can disconnect (g1∪g2)), which contradicts
that both g1 and g2 are k-edge connected components which should
be maximal. �

3.1 Graph Decomposition-based Framework
Given a graph G and an integer k, our graph decomposition-

based framework for computing k-edge connected components is
iteratively decomposing a non k-connected subgraph into several
(possibly more than two) connected subgraphs by removing edges
in all cuts of G with values less than k. More specifically, initially,
we have one connected graph which is G, and whenever there are
connected subgraphs that are not k-connected, we try to decom-
pose them into sets of smaller subgraphs. The algorithm terminates
when all connected subgraphs are k-connected. The pseudocode of
our framework is shown in Alg. 1, where Decompose denotes an
algorithm to decompose a graph which will be discussed shortly.

The connected subgraphs (including the intermediate subgraphs

Algorithm 1 Computing k-edge connected components

Input: A graph G = (V, E) and an integer k.
Output: k-edge connected components of G.

1: Initialize a queue Qg consisting of a single graph G;
2: for each subgraph g in Qg do

3: φk(g)← Decompose(g, k);
4: if φk(g) consists of only one subgraph then
5: Output φk(g) as one of the k-edge connected components;
6: else

7: Push all subgraphs of φk(g) into Qg;

and the final k-edge connected components) can be organized into
a tree structure as depicted in Fig. 2, called decomposition tree,
where each ellipse represents a connected subgraph. The root rep-
resents the input graph G, and the children of a connected sub-
graph represent the set of connected subgraphs obtained by decom-
posing that subgraph (using Decompose). Therefore, all k-edge
connected components of G are represented by leaf nodes of the
tree. Decomposition tree is further characterized in Section 3.3.
Alg. 1 generates all k-edge connected components by conducting a
Breadth-First Search traversal on the decomposition tree.

We define a partition graph PG and two operators, the merge
operator ρu,v(PG) and the split operator γS ,T (PG), on it in the fol-
lowing.

Partition Graph: A partition graph PG = (G,D) of a graph G =

(V, E) is obtained from G by augmenting each vertex u ∈ V with
a set of elements from domain D, such that ∪u∈V D(u) = D and
D(u) ∩ D(v) = ∅,∀u , v, where D(u) denotes the set of elements
associated with vertex u ∈ V . That is, sets of elements associated
with the vertices in V form a partition of D.

An ordinary graph G = (V, E) is a special partition graph with
D = V , where D(u) = {u},∀u ∈ V . Therefore, the input to our
algorithm is a partition graph PG = (G = (V, E),D(= V)) where
D(u) = {u},∀u ∈ V .

v1
v2 v4

v5v3

v6
v8v7

v9

v10 u1

v12

{v11, v13}

(a) Result of merging v11, v13

v6
v8v7

v9

v1
v2 v4

v5v3

u2
{v10, v11, v12, v13}

(b) Result of merging v10, v12, u1

{v1, v2, v3, v4, v5} {v6, v7, v8, v9}
u3 u4 u2

{v10, v11, v12, v13}

(c) Final partition graph

Figure 4: Partition graphs

Merge Operator: A merge operator ρu,v(PG) merges two vertices
u and v of PG into a single super-vertex, denote the new super-
vertex by vuv. More specifically, the operator adds vuv to PG with
D(vuv) = D(u) ∪ D(v), and adds parallel edges (vuv, x) to PG for
each x ∈ V\{u, v}, where the number of parallel edges is equal to
the total number of parallel edges (u, x) and (v, x), and then removes
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vertices u and v and their associated edges from PG. Note that, after
the merge, edge (u, v) is removed if it is in PG, and other edges are
retained.

For example, Fig. 4(a) shows the result of the merge operator
ρv11 ,v13 (PG) where PG is the partition graph implied by Fig. 3.
There are two parallel edges between v10 and u1. Edge (v11, v13)
is removed in the resulting partition graph.

Split Operator: A split operator γS ,T (PG) removes all edges of cut
C from PG, where C = (S ,T ) is a cut of PG.

Given an arbitrary partition graph PG = (G = (V, E),D), the
resulting graph obtained by performing either the merge operator
or the split operator is still a partition graph. To simplify the pre-
sentation, in the rest of the paper, we use ρs,t(PG) and γS ,T (PG) to
denote the resulting partition graphs after applying the correspond-
ing operators, respectively.

Graph Decomposition: The general idea of our graph decomposi-
tion algorithm, Decompose, is iteratively applying merge and split
operators on the partition graph PG = (G = (V, E),D(= V)) to fi-
nally obtain a special partition graph PGr = (Gr = (Vr, Er),D(=
V)) with Er = ∅, such that each D(u), u ∈ Vr, induces a con-
nected subgraph of G. Let φk(PGr) denote the set of connected
subgraphs represented by PGr, i.e. φk(PGr) = {G[D(u)] | u ∈ Vr}.
Decompose returns φk(PGr) as the decomposed graph. For ex-
ample, for the graph in Fig. 3, if we decompose it for k = 3, the
final special partition graph will be in the form of Fig. 4(c), from
which we can see that φ3(G) = {G1,G2,G3}. The pseudocode of
Decompose is shown in Alg. 2. Given an input graph G and an
integer k. The algorithm first constructs the corresponding parti-
tion graph PG (Line 1). Then, it proceeds iteratively to update the
partition graph until its edge set is empty (Lines 3-8), through the
split operator (Line 5) and the merge operator (Line 7). To choose
which operator to be applied depends on the value of the cut found
by MinCut (Line 3) which computes the minimum cut for a pair of
vertices.

Algorithm 2 Decompose(G, k)

1: Construct the corresponding partition graph PG of G, PG0 ← ((G0 ←

G), (D← V)), i← 0;
2: while The edge set of PGi is non-empty do
3: (s, t, S ,T )← MinCut(PGi, k);
4: if w(S ,T ) < k then

5: PGi+1 ← γS ,T (PGi);
6: else
7: PGi+1 ← ρs,t(PGi);
8: i← i + 1;
9: return φk(PGi);

Example 3.1: Consider the graph in Fig. 3 and k = 3. Assume the
first iteration of computing minimum cut is computed between ver-
tices v11 and v13. As the value of the cut is 3, v11 and v13 are merged
and the resulting partition graph is shown in Fig. 4(a). Fig. 4(b)
shows the partition graph after merging v10, v12, u1. The next pair of
vertices, whose minimum cut is computed, is v9 and u2, then edges
in the cut C = {(v5, u2), (v9, u2)} are removed since the cut consists
of only two edges. The resulting partition graph is the union of the
subgraph shown in the dotted rectangle in Fig. 4(b) and the isolated
vertex u2. After applying a few more merge operators and split op-
erators, we will get the special partition graph shown in Fig. 4(c)
from which we can get the 3-edge connected components. �

3.2 Algorithm Correctness
In this section, our goal is to prove the correctness of the frame-

work (Alg. 1) provided that MinCut in Alg. 2 correctly returns the
minimum cut for a pair of vertices.

Lemma 3.2: Given a partition graph PG, after applying a to-

tal number of (|V | − 1) of merge operators and split operators,

Decompose will produce a partition graph with no edges. �

Proof Sketch: We prove it by induction. (Base Case) for |V | = 1,
the claim is trivially true. (General Case) for |V | > 1, we consider
two cases based on the type of the first operator applied. If the first
operator is a merge operator, then the resulting partition graph has
|V ′| = |V | − 1 vertices which requires (|V ′| − 1) iterations of merge
operators and split operators to remove all the edges. Therefore, the
claim is true. If the first operator is a split operator, assuming that
the split operator divides the partition graph into two disconnected
subgraphs with |V1| and |V2| vertices each. Then all edges can be
removed in 1+ (|V1|−1)+ (|V2|−1) operations. Therefore, the claim
is true. �

Atomicity property: Here, we prove the atomicity of Decompose,
i.e., each of the connected subgraphs returned by Decompose will
contain either all vertices of a k-edge connected component or none
of its vertices.
Proof Sketch: To prove the claim, we prove that all edges in a
k-edge connected component g = (Vg, Eg) will not be removed dur-
ing the execution of Decompose. As the algorithm removes only
edges in cuts with values less than k, it is equivalent to prove that
any edge of g will not be included in any cut with value less than k.

We prove it by contradiction. Assume that some of the edges of
g are included in cuts with values less than k, and let (u, v) be the
first such edge included in a cut C; that is, cuts are considered in
the order of being found by iterations of MinCut. Let V1 and V2

denote the vertices of the two disconnected subgraphs that contain
u and v respectively after removing all edges in C. Then C ∩ Eg is
a cut of g which cuts Vg into V1 ∩ Vg and V2 ∩ Vg. This means that
there is a cut C ∩ Eg of g with value less than k, which contradicts
that g is a k-edge connected component. �

Cutability property: To prove the cutability of Decompose, we
prove that if a graph is not k-connected, then Decompose will de-
compose it into at least two disconnected subgraphs.
Proof Sketch: Given a non k-connected graph G, there must exist
cuts of value less than k that can cut G into at least two disconnected
subgraphs. The rest is to prove that Decompose can find at least
one such cut eventually during the decomposition process.

We prove it by contradiction. Assume that Decompose are not
able to find any cut of value less than k during the decomposition
process. Consider such a cut C of value less than k. For any edge
(u, v) ∈ C, u and v are not going to be merged since they are not
k-connected. Therefore, all the edges in C are retained after merge
operators, which contradicts that there is no edge remaining in the
final partition graph obtained by Decompose (Lemma 3.2). �

Having shown the atomicity property and the cutability property
of Decompose, we are now ready to show the correctness of the
graph decomposition-based technique for computing k-edge con-
nected components (Alg. 1) of a graph.

Theorem 3.1: Alg. 1 correctly computes all k-edge connected com-

ponents of a graph, provided that MinCut in Alg. 2 returns the min-

imum cut for a pair of vertices. �

Proof Sketch: From the atomicity property, we know that a k-edge
connected component will never be further decomposed into multi-
ple subgraphs during the decomposition process (atomicity prop-
erty). As long as a graph is not k-connected, Decompose will
decompose it into at least two disconnected subgraphs (cutability
property). Therefore, the input graph will be decomposed into a set
of k-edge connected components by Alg. 1 eventually. �
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3.3 Complexity

Time complexity of Alg. 1: Let h denote the height of the decom-
position tree as illustrated in Fig. 2 and defined in Section 3.1, and
TDec(G) denote the time complexity of decomposing a graph G us-
ing Decompose, which will be discussed in the next section. Then,
the time complexity of Alg. 1 is O(h × TDec(G)).

Characterization of the decomposition tree: A decomposition
tree of G, as depicted in Fig. 2, is a representation of the itera-
tive process that decomposes non k-connected subgraphs of G into
smaller subgraphs. Each k-edge connected component of G is rep-
resented by a leaf node, and each intermediate node is a connected
subgraph of G that is not k-connected itself. The sibling nodes (sub-
graphs), e.g., G1,1, . . . ,G1,m, represent the result of decomposing its
parent graph, G1.

In a simple way, the sibling subgraphs have the property that
each of them is connected to the remaining part of its parent graph
by less than k edges except one sibling subgraph. For example,
consider the graph in Fig. 1 and k = 3, G1,G2,G3 form the sibling
subgraphs for the parent graph G. Both G1 and G3 are connected to
the remaining part of G by 2 edges, while G2 is connected to the re-
maining part of G by 4 edges. Now, consider another graph in Fig. 3
and k = 3, (G1 ∪G2),G3 form the sibling subgraphs, because both
G1 and G2 are connected to the remaining part of the parent graph
by 3 edges. More rigorously, the sibling subgraphs have the prop-
erty that each of them is connected to any vertex in the remaining
part of the parent graph by less than k edge-disjoint paths. Given a
graph G = (V, E), we define a partition of V based on the connec-
tivity between pairs of vertices, denote byVp = {V1, · · · ,Vm}, such
that each pair of vertices in the same partition is k-connected in G,
and otherwise not k-connected. Then, the vertex set of each sub-
graph obtained by Decompose(G, k) is contained in exactly one of
the partitions of Vp. As a result, a non k-connected graph G will
be decomposed into at least m ≥ 2 disconnected subgraphs. For
example, if we attach a four-vertex clique G4 to be adjacent to v16

in Fig. 1 by two edges, then Decompose can decompose the graph
into four subgraphs G1,G2,G3, and G4, in one iteration.

By iteratively constructing children subgraphs for each non k-
connected subgraph in the above way as defining the sibling sub-
graphs, the decomposition tree can be constructed. Each level of
the tree can be computed from the union of their parent graphs by
a single iteration of Decompose. The height h of the decomposi-
tion tree reflects the “depth” of the k-edge connected components
nested together to form G. After each iteration of Decompose, the
“depth” of nestedness is reduced by one. For example, in Fig. 1, the
“depth” is two. After the first iteration of Decompose with k = 3,
there are three disconnected subgraphs G1,G2, and G3, where G2

consists of two k-edge connected components nested together and
can now be decomposed in the next iteration.

Potentially a smaller h: Intuitively, given a non k-connected graph
G, the more the number of disconnected subgraphs returned by
Decompose, the shorter the height h of the decomposition tree.
The minimum number of disconnected subgraphs that will be re-
turned by Decompose is guaranteed by the number of sibling sub-
graphs as discussed above. Usually, we will get more disconnected
subgraphs. For example, consider the graph in Fig. 3, there are only
two sibling subgraphs (G1 ∪G2) and G3 as discussed above. How-
ever, in practice, if G3 is split from G before any merge of a pair of
vertices where one is from G1 and the other is from G2, then G1 and
G2 will also be split by a following split operator in the same itera-
tion of Decompose. Therefore, three disconnected subgraphs will
be returned by Decompose, and we get h = 1. This phenomenon
is observed in our experimental studies. For example, each of the

Amazon and web-Google dataset has almost 1, 000 10-edge con-
nected components, however, h is only 3. We also observe that, in
our testing, the small value of h is quite steady across different sizes
of graphs and different numbers of k-edge connected components
in a graph.

4. GRAPH DECOMPOSITION
In this section, we first discuss a baseline algorithm for graph de-

composition, and then propose a simple yet efficient data structure
to replace the Fibonacci heap as required by the baseline algorithm.
Finally, we propose several optimization techniques to further im-
prove the performance of our decomposition approach based on the
threshold k of computing k-edge connected components.

4.1 Baseline algorithm
The baseline algorithm for graph decomposition is by calling the

procedure of maximum adjacency search (Mas in Section 2.2) to
compute the minimum cut between a pair of vertices, i.e., replace
MinCut in Alg. 2 by Mas, denoted by BaseLine. Recall that, Mas

computes a linear order L for the vertices of G, and let s and t be
the two vertices that are most recently added to L, and t be the last
one, then the adjacent edges of t is a minimum s–t cut.

Iterations List L

1 v1, v2, v3, v4, v5, v7, v6, v8, v9, v11, v12, v10, v13

2 v1, v2, v3, v4, v5, v7, v6, v8, v9, v11, v12, {v10, v13}

3 v1, v2, v3, v4, v5, v7, v6, v8, v9, v11, {v10, v12, v13}

4 v1, v2, v3, v4, v5, v7, v6, v8, v9, {v10, v11, v12, v13}

5 v1, v2, v3, v4, v5, v7, v6, v8, v9

6 v1, v2, v3, v4, v5, v7, {v8, v9}, v6

7 v1, v2, v3, v4, v5, v7, {v6, v8, v9}

8 v1, v2, v3, v4, v5, {v6, v7, v8, v9}

9 v1, v2, v3, v4, v5

10 v1, {v4, v5}, v2, v3

11 v1, {v2, v3}, {v4, v5}

12 v1, {v2, v3, v4, v5}

Table 1: Execution of BaseLine
Example 4.1: Consider the graph in Fig. 3 and k = 3. The first iter-
ation of Mas will produce the order L = (v1, v2, v3, v4, v5, v7, v6, v8,

v9, v11, v12, v10, v13). Then s = v10 and t = v13, and it can be verified
that {(v10, v13), (v11, v13), (v12, v13)} is a minimum v10–v13 cut.

The lists L obtained from all 12 iterations of Mas during the
running of BaseLine are shown in Table 1, where super-vertices
are denoted by their associated elements. We omit those isolated
vertices. For the first three iterations, we apply the merge operator
since the value of cut found is no less than 3, and the resulting parti-
tion graph after the first three iterations is shown in Fig. 4(b). After
the fourth iteration, we find a cut with value 2, then the split oper-
ator is applied. The graph is decomposed into three disconnected
subgraphs after 12 iterations. �

Time complexity of BaseLine: Since the time complexity of Mas

is O(|E| + |V | log |V |) (Theorem 2.1), and BaseLine will invoke at
most (|V | − 1) iterations of Mas (Lemma 3.2), the time complexity
of BaseLine thus is O(|V ||E| + |V |2 log |V |).

4.2 A Simple Efficient Data Structure
The term |V | log |V | in the time complexity of BaseLine is due

to finding the most tightly connected vertex in Mas using the Fi-
bonacci heap, which assumes that the update-key operation and the
extract-max operation takes O(1) and O(log |V |) time, respectively.
Note that extract-max and update-key are the only two operations
of Fibonacci heap needed in Mas, assuming that insert and remove
are special cases of the update-key operation. However, the Fi-
bonacci heap is complicated and does not guarantee good perfor-
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mance in practice for a reasonable size graph. Motivated by this, we
propose a simple yet efficient data structure to accelerate BaseLine

as follows.

Data Structure: Let key(v) denote the key of vertex v during the
execution of Mas, i.e., key(v) = w(L, v) which is the number of
edges between v and vertices in L. Let c̄ denote the maximum
value among all minimum cuts for different pairs of vertices. We
have key(v) ≤ c̄,∀v ∈ V , and c̄ ≤ |E|. We propose to use doubly
linked lists coupled with a head table to accommodate the extract-
max and update-key operations.

For the doubly linked lists, we use an array of size 3|V | to store
the data; that is, for each vertex u ∈ V , key(u) stores the key, pre(u)
and next(u) store the predecessor and successor vertices in the dou-
bly linked list, respectively. Each doubly linked list links all the
vertices with identical keys. In the head table H, H(x) stores the
first vertex in the doubly linked list whose key value equals to x.
For example, in Fig. 5, assume that vertices vi and v j have the same
key value x, and vi is the first vertex in this doubly linked list, then
H(x) = vi, pre(v j) = vi, and next(vi) = v j. Since the maximum key
value can be potentially be c̄, the size of head table H is c̄ in worst
case. We discuss in the next subsection how to lower the size of H.

· · ·· · ·· · · · · ·
H(y)H(x)H(1)

· · · · · · · · ·

pre(v1) next(v1)

key(v1)

pre(vi)

key(vi)

pre(vj)

key(vj)

next(vj)

pre(vn) next(vn)

key(vn)

next(vi)

Figure 5: Data Structure
In addition to the two arrays, we also record a value po, which is

the potential of the current maximum key value for all vertices in
the data structure, and is initialized as 0. The value of po is updated
after only the update-key operation.

Extract-max: To extract the next vertex with the largest key value,
we first decrease po until H(po) , nil, and then report the first
vertex pointed by H(po) and remove it from that doubly linked list,
as shown below.

Extract-max(u):

while H(po) = nil do
po← po − 1;

u← H(po), and remove u from H(po);

Update-key: To update the key of vertex v from x to y, we first
remove v from the doubly linked list represented by H(x), and then
insert v to the doubly linked list H(y). We also update po ← y if
y > po.

Update-key(v):

remove v from the doubly linked list H(key(v));
update key(v) and insert v into H(key(v));
po← key(v) if key(v) > po;

Example 4.2: Consider Fig. 5, assume that H(x) denotes a doubly
linked list containing vertices vi and v j, i.e., key(vi) = key(v j) = x,
and vi is the first vertex in the doubly linked list. Assume po is now
set as y and the largest key value with non-empty doubly linked
list is x. To extract the vertex with maximum key value, we first
decrease po to x which takes O(y − x) time, and then report and
remove vi which takes O(1) time. �

Time Complexity: The worst time complexity of the update-key
operation is O(1) as ensured by the properties of doubly linked lists.
In the following, we discuss the time complexity of the extract-max
operation which is nontrivial.

Lemma 4.1: The worst time complexity of extract-max is O(c̄),
which can be as large as |E|. �

Proof Sketch: For extract-max, we need to decrease po until H(po) ,
nil. As po can be potentially as large as c̄ and the only non-empty
doubly linked list could be H(1), therefore, in worst case, extract-
max takes O(c̄) time. �

Although the worst time complexity of one extract-max is bounded
by |E|, we show that the total running time of |V | extract-max oper-
ations is still bounded by |E| through the following theorem.

Theorem 4.1: Given a graph G = (V, E), Mas can find a minimum

cut for an arbitrary vertex pair s and t in time O(|E|) using our data

structure, denoted by Mas-Linear. �

Proof Sketch: The correctness of Mas-Linear directly follows from
the correctness of extract-max and update-key using our data struc-
ture and the correctness of Mas.

Let In(i) and De(i) denote the increase value and decrease value
of po when finding the most tightly connected vertex for the i-th
time in Mas, i.e., to compute the i-th vertex of L, respectively.
Then, the time complexity is bounded by O(|E|+

∑|V |
j=1 De( j)), where

O(|E|) is the total time of update-key operations and
∑|V |

j=1 De( j)
is the total time of extract-max operations. We have the property
that
∑|V |

j=1 In( j) ≤ |E| since the update-key operation is executed
once for each edge in the graph and the value of po is increased by
the amount of at most one after each update-key operation. Then,
∑|V |

j=1 De( j) ≤
∑|V |

j=1 In( j) ≤ |E|. Therefore, the total time complex-
ity of Mas-Linear follows. �

4.3 Optimization
In the following, we propose three optimization techniques to

further improve the performance of Decompose based on the thresh-
old k of computing k-edge connected components.

Early merge based on k-connectivity. From Line 7 of Alg. 2, we
can see that the only requirement for applying the merge operator
is that the connectivity between s and t should be no less than k.
Therefore, we can merge more than one pair of vertices during one
iteration of Mas, as long as each pair of vertices is guaranteed to
be k-connected in the input graph, based on the following lemmas.
Recall that, after finding a minimum cut, Alg. 2 merges only one
pair of vertices if applicable.

Consider the list L obtained by Mas on graph G. For any v ∈ L,
let Lv denote the list of vertices added to L prior to v (excluding v),
and pv denote the last vertex in Lv. We call w(Lv, v) as the key value
of v,∀v ∈ V . Then, we have the following property.

Lemma 4.2: Given a graph G, for any vertex v ∈ L, if w(Lv, v) ≥ k,

then pv and v are k-connected in G. �

Proof Sketch: Consider the subgraph of G induced by the vertex
set Lv∪{v}, i.e., G[Lv∪{v}], applying Mas on it will produce exactly
the same list Lv ∪ {v}. This is because that, considering the two
executions of Mas on G and G[Lv ∪ {v}] respectively and assuming
that the same initial vertex (i.e., the first vertex in Lv) is chosen,
then, for any vertex u ∈ Lv ∪ {v}, its key value will be the same for
both executions. Therefore, provided that w(Lv, v) ≥ k, pv and v

are k-connected in G[Lv ∪ {v}] (Theorem 2.1), which implies that
pv and v are k-connected in G. �

Following Lemma 4.2, we can merge more than one pair of ver-
tices after obtaining the list L. However, this will result in one
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additional scan on L of size |V |. Therefore, we propose to merge
pairs of vertices on-the-fly following the lemma below.

Lemma 4.3: During the execution of Mas, whenever there is a

vertex v with key value no less than k, we then apply the merge

operator on u and v where u is the vertex last added to the current

list L, and continue this execution. �

Proof Sketch: Let L denote the list obtained by Mas, and L1 denote
the list obtained by merging all pairs of vertices of L satisfying
Lemma 4.2. Note that, in L1, it merges only pairs of consecutive
vertices in L. Since L1 is obtained by getting L first, the set of
merge operators will not affect the correctness of the algorithm as
guaranteed by Lemma 4.2. Let L2 denote the list obtained by this
lemma. We prove that L2 is exactly the same as L1.

Note that, we consider each super-vertex , after merging pairs
of vertices, in L1 and L2 as a set of vertices, and call it an item
of L1 and L2. Let L1,i and L2,i denote the i-th item of L1 and L2,
respectively. We prove that L1 = L2 by induction. For i = 1, if L1,1

consists of only one vertex u, which means that w(u, v) < k,∀v , u,
then L1,1 = L2,1. Otherwise, for any vertex v other than the initial
vertex u in L1,1, we have w(Lv, v) ≥ k, then v will be included in
L2,1; for any vertex v < L1,1, we have w(Lv, v) < k, then v will not
be included in L2,1. Therefore L1,1 = L2,1. For i > 1, the first vertex
in L1,i and L2,i is identical as guaranteed by the selection of vertex
with maximum key value. Similarly to the proof for the case i = 1,
we have L1,i = L2,i. Therefore, L1 = L2. �

Following Lemma 4.3, consider the graph in Fig. 3 with k = 3,
when L is initialized as {v1}, the list L obtained after the first exe-
cution of Mas is (v1, v2, v3, {v4, v5}, v7, v6, {v8, v9}, v11, v12, {v10, v13}),
in which three pairs of vertices are merged in one iteration.

List sharing after applying split operators. Consider Alg. 2, if a
minimum cut of value less than k is found by Mas, after applying
the split operator, a minimum cut of the resulting graph can be de-
termined from the same list L, without actually running Mas on the
resulting graph. Therefore, the list L can be shared across different
executions of Mas after applying split operators.

Lemma 4.4: Given a graph G, if the value of a minimum s–t cut

(S ,T ) returned by Mas is less than k, then, in the resulting graph

after applying the split operator, i.e., γS ,T (G), (S \{s}, {s}) is a min-

imum r–s cut, where r is the vertex added to L prior to s. �

Proof Sketch: Note that, in the cut (S ,T ), T consists of only a
single vertex t. After the split operator which removes all adjacent
edges of t from G, we obtain γS ,T (G). The list L′ obtained by ap-
plying Mas on γS ,T (G) will be exactly the same as S . Therefore,
(S \{s}, {s}) is a minimum r–s cut in γS ,T (G). �

Consider the execution example shown in Table 1, the minimum
cut obtained at iteration 4 has value 2 which is less than k = 3.
Therefore, we can get the list L of iteration 5 without running Mas

again. Note that, this optimization can be applied iteratively until a
merge operator is applied.

Efficient vertex reduction by degree. In a k-edge connected com-
ponent, each vertex will have degree at least k. Therefore, we can
remove all vertices with degrees less than k from the input graph.
Efficient algorithm to recursively remove all vertices with degree
less than k is studied in [2], which runs in O(|V | + |E|) time. The
general idea is that, it maintains a queue Q of vertices which is ini-
tialized to contain all vertices with degree less than k in the current
graph G. It iteratively removes the vertices in Q from G. After
the removal of vertices, the degrees of some vertices not in Q will
change from at least k to below k, and then those vertices are added
to Q and the process of removing vertices from G continues until
no new vertex is added to Q. We use this efficient vertex reduction

method based on degree k in our optimization. For more details,
please refer to [2]. Without this optimization, to remove vertices
with degrees less than k would require scanning the graph multiple
times.

4.4 Algorithm with Optimization
The overall algorithm by incorporating the optimization tech-

niques is shown in Alg. 3, denoted by Decompose-LMS, where
the Linear data structure, early Merge, and list Sharing optimiza-
tion techniques are used. In procedure Mas-LMS, the vertices in
queue Q are recursively merged with u (Lines 13-20), and the split
operator is recursively applied if the minimum cut implied by the
current list L has value less than k (Lines 21-23).

Algorithm 3 Decompose-LMS (G, k)

Input: A graph G = (V, E) and an integer k.
Output: Subgraphs of G if λ(G) < k, and G otherwise.

1: Construct the corresponding partition graph PG of G, PG0 ← (G0(←
G),D(← V)), i← 0;

2: while The edge set of PGi is non-empty do
3: PGi+1 ← Mas-LMS (PGi, k);
4: i← i + 1;
5: return φk(PGi);

6: procedure Mas-LMS (G, k)
7: L← {an arbitrary vertex u of V};
8: Initialize our data structure;
9: while L , V do

10: u← extract-max;
11: Add u to L and remove u from the data structure;
12: Initialize a queue Q with u;
13: while Q , ∅ do

14: v← Q.pop();
15: for each (v, s) ∈ E with s < L do
16: if the key of s increases to pass k then

17: Add s to Q, remove s from the data structure;
18: else
19: Update-key for s;
20: Merge u and v if u , v;
21: while |L| > 1 and the value of the cut implied by the last two vertices

in L is less than k do
22: Split the cut;
23: Remove the last vertex from L;

In Decompose-LMS where the optimization of early merge based
on k-connectivity is applied, whenever the key of a vertex v is in-
creased to pass k, v is removed from our data structure. There-
fore, the maximum key value in our data structure is bounded by k,
which means that we need only k entries for our head table which
is discussed in Section 4.2.

Theorem 4.2: Given a graph G = (V, E), Decompose-LMS cor-

rectly decomposes it into at least two disconnected subgraphs if

λ(G) < k and returns G otherwise. The time complexity is O(l×|E|),
where l (≤ |V |) is the number of iterations of Mas-LMS, i.e., the

value of i at Line 5 of Alg. 3. �

Proof Sketch: The correctness of Decompose-LMS directly fol-
lows from the correctness of Mas, and Lemmas 4.2, 4.3, and 4.4.
For the time complexity, since Mas-LMS takes O(|E|) time and
there are totally l iterations of Mas-LMS, the time complexity of
Decompose-LMS follows. �

Bound on the value of l: Now, we characterize the value of l in
two situations based on whether G is k-connected or not.

Given a non k-connected graph G = (V, E), let Gk = {g1 =

(V1, E1), · · · , gm = (Vm, Em)} be the set of k-edge connected com-
ponents of G. Then, l ≤ maxm

j=1 |V j|. The reason is that, for any
two k-edge connected components of G, gi and g j, Decompose-
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LMS either splits the two subgraphs or merges them into a single
subgraph. If gi and g j are split into two subgraphs by Decompose-
LMS, then the number of vertices of gi and g j is each reduced by
at least one after one iteration of Mas-LMS. The reason is that,
let ui and u j be the last node of gi and g j on L respectively, then
the keys of ui and u j are at least k, therefore, ui and u j are merged
with other vertices. Otherwise, vertices of gi and g j are merged into
super-vertices. Let sga

i
and sga

j
denote the subgraph induced by ver-

tices (or super-vertices) of gi and g j after a iterations of Mas-LMS,
respectively. Note that super-vertices in sga

i
and sga

j
can overlap.

Then the number of vertices in sga+1
i

(sga+1
j

) is strictly less than sga
i

(sga
j
), since both sga

i
and sga

j
are k-connected. Therefore, after each

iteration of Mas-LMS, the number of vertices in each of gi will be
reduced by at least one, and l ≤ maxm

j=1 |V j|.
Given a k-connected graph G, each vertex of G will have a de-

gree at least k and Decompose-LMS will merge all vertices in G

into a single super-vertex. In Decompose-LMS, an iteration of
Mas-LMS computes an order L of vertices in G and merges each
such vertex having w(Lv, v) ≥ k with its predecessor vertex in L

(refer to early merge optimization). Let k(L) denote the number
of vertices having w(Lv, v) ≥ k in L. Then, after each iteration of
Mas-LMS which computes an order L, the number of vertices is re-
duced by k(L). Recall that w(Lv, v) is the number of edges between
v and vertices prior to v in L. Implicitly, for a pair of vertices u

and v that have more than k − 1 parallel edges between them, Mas-
LMS ensures to merge the two vertices into a super-vertex. Given
a random order L and a vertex v with degree no less than 2k, the
probability that v will be merged with other vertices is at least 1

2 .
Let V2k denote the subset of vertices in G whose degrees are no less
than 2k. The expected number of vertices that will be reduced after
one iteration of Mas-LMS is at least |V2k |

2 . After merging vertices
into super-vertices, degrees of super-vertices are tend to become
larger. Therefore, the number of vertices reduces rapidly after each
iteration of Mas-LMS. For a special graph that every vertex has
degree no less than 2k, the number of iterations l is expected to be
bounded by log |V |. The same phenomenon also applies to each
k-edge connected component of G if G is not k-connected.

In our empirical studies, the sizes of the largest k-edge connected
components of as-Skitter and SSCA-20 dataset are over 0.3 million
and 1 million, while the value of l is 9 and 8, respectively. Of all the
real and synthetic graphs we tested, the values of l are no more than
21 regardless of the sizes of graphs and the sizes and/or numbers
of k-edge connected components of a graph. Therefore, algorithm
Decompose-LMS is able to process large graphs. Note that our op-
timization techniques are inapplicable to those connectivity testing
algorithms (such as TestConnect [11] as discussed in Section 2.2)
which are based on maximum flow techniques, since flows com-
puted for different pairs of vertices are unrelated.

Example 4.3: Given the graph in Fig. 3 and k = 3. The list L ob-
tained for each iteration of Mas-LMS is shown in Table 2, where
super-vertices are denoted by their associated elements. Decompose-
LMS computes a graph decomposition for k = 3 in four iterations.
Therefore, Decompose-LMS is much faster than BaseLine (Sec-
tion 4.1), which takes 12 iterations as shown in Table 1. �

Iterations List L

1 v1, v2, v3, {v4, v5}, v7, v6, {v8, v9}, v11, v12, {v10, v13}

2 v1, {v4, v5}, {v2, v3}, v7, {v6, v8, v9}, v11, {v10, v12, v13}

3 v1, {v2, v3, v4, v5}, {v6, v7, v8, v9}, {v10, v11, v12, v13}

4 {v1, v2, v3, v4, v5}

Table 2: Execution of Decompose-LMS

Remarks on the range of the value of h: Our algorithm Decompose-
LMS will decompose a graph G into a set of subgraphs sgi, each
of which possibly contains several k-edge connected components.

Assume that two different k-edge connected components gi and g j

have equal probabilities to be split and to be merged. Then, the
decomposition tree (see Section 3) tends to be a balanced tree on
average, and h is expected to be bounded by log |V |. In our empir-
ical studies, the largest h is 5 across graphs whose vertex numbers
vary from 4 thousand to 2 million.

5. EXPERIMENTS
We conduct extensive performance studies to evaluate the effi-

ciency of our framework (proposed in Section 3) and our graph
decomposition algorithm based on several optimization techniques
(studied in Section 4) for the computation of k-edge connected
components in graphs. The following algorithms are implemented:

• CutB-GMC: The cut-based framework plugged in a variant
of finding Global Min-Cut algorithm as discussed in Sec-
tion 2.2. We also incorporate the optimization techniques
and pruning rules proposed in [20] into CutB-GMC.

• CutB-TC: The cut-based framework plugged in the Testing
Connectivity algorithm (TestConnect) which can find a min-
imum cut with value less than k by a slight modification, as
discussed in Section 2.2.1

• DecB-LMSD: Our graph decomposition-based framework
(Section 3) plugged in our graph decomposition algorithm
with all the optimization techniques proposed in Section 4,
i.e., the framework in Alg. 1 plus the decomposition algo-
rithm in Alg. 3.

• DecB: Our graph decomposition-based framework plugged
in the baseline algorithm BaseLine for graph decomposition.

• CutB-LMD: The cut-based framework plugged in a modifica-
tion of our decomposition algorithm to cut a graph into only
two disconnected subgraphs. All the optimization techniques
proposed in Section 4 are applied except the list sharing op-
timization which is inapplicable.

All algorithms are implemented in C++ and compiled with GNU
GCC with the -O3 optimization. All experiments are conducted on
a PC with an Intel(R) Core(TM) i5-2400 CPU (3.10GHz) and 4GB
memory running Ubuntu 12.04. We evaluate the performance of all
algorithms on both real and synthetic graphs as follows.

Real Graphs: We evaluate the algorithms on eight real graphs,
Arxiv General Relativity collaboration network (ca-GrQc), Arxiv
Condensed Matter collaboration network (ca-CondMat), email net-
work from a EU research institution (email-EuAll), who-trusts-
whom network of Epinions.com (soc-Epinions1), Amazon prod-
uct co-purchasing network (amazon0601), web graph from Google
(web-Google), Wikipedia talk (communication) network (wiki-Talk),
and Internet topology graph (as-Skitter). All the graphs are down-
loaded from the Stanford SNAP library2, and detailed descriptions
about these graphs can also be found there. Sizes of these graphs
are shown in Table 3.

Synthetic Graphs: We evaluate the algorithms on three kinds of
synthetic graphs, all of which are generated by the graph generator
GTGraph3. The three kinds of synthetic graphs are as follows.

• Random graphs: Random graphs with a × 1000 vertices and
b × 1000 edges are denoted by Random-a-b, where a and b

are integers and the b × 1000 edges are added by randomly
choosing a pair of vertices for each edge.

1Note that, TestConnect was not studied in previous works for
computing k-edge connected components.
2http://snap.stanford.edu/data/
3http://www.cse.psu.edu/~madduri/software/GTgraph/
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ID Dataset #Vertices #Edges
D1 ca-GrQc 5,242 14,484
D2 ca-CondMat 23,133 93,439
D3 email-EuAll 265,214 364,481
D4 soc-Epinions1 75,879 405,740
D5 wiki-Talk 2,394,385 4,659,565
D6 amazon0601 403,394 2,443,408
D7 web-Google 875,713 4,322,051
D8 as-Skitter 1,696,415 11,095,298

Table 3: Sizes of real graphs

• PowerLaw graphs: Similar to Random-a-b, PowerLaw-a-b
denote a PowerLaw graph with a × 1000 vertices and b ×

1000 edges. The degree distributions of PowerLaw graphs
conform with the power-law distribution.

• SSCA graphs: SSCA-a denote a SSCA graph with 2a ver-
tices. A SSCA graph contains a collection of randomly sized
cliques, and then inter-clique edges are added randomly.

We generated two random graphs, Random-20-120, and Random-
20-140, two power-law graphs, PowerLaw-20-120, and PowerLaw-
20-140, and five SSCA graphs, SSCA-12, SSCA-14, SSCA-16,
SSCA-18, and SSCA-20. The sizes of the five SSCA graphs are
shown in Table 4.

Dataset #Vertices #Edges
SSCA-12 4,096 24,584
SSCA-14 16,384 143,744
SSCA-16 65,536 896,759
SSCA-18 262,144 5,640,272
SSCA-20 1,048,576 35,318,325

Table 4: Sizes of SSCA graphs

For all these testings, we vary k for the connectivity requirement
of k-edge connected components. Each experiment is run three
times, and the average CPU time is reported here.

5.1 Decomposition-based Against Cut-based
In this test, we evaluate the effectiveness of our proposed graph

decomposition-based framework against the cut-based framework
studied in [20]. CutB-GMC, CutB-TC, CutB-LMD are cut-based
algorithms while DecB-LMSD is a graph decomposition-based al-
gorithm.
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Figure 6: Against cut-based algorithms (Varying k)

Results on Real Graphs: We evaluate CutB-GMC, CutB-TC, CutB-
LMD, and DecB-LMSD on four of the real graphs, since the other
four real graphs are too large for the slow algorithms to finish in
reasonable time. The processing time are shown in Fig. 6. A simi-
lar trend found in all figures of Fig. 6 is that the processing times of
all four algorithms tend towards smaller when k increases. When
k becomes larger, the resulting graph after removing all vertices

with degrees less than k becomes smaller, therefore all algorithms
run faster.4 CutB-TC runs slightly faster than CutB-GMC on all
four graphs which conforms with their time complexity differences
as discussed in Section 2.2, i.e., O(|V ||E|) for testing connectivity
versus O(|V ||E| + |V |2 log |V |) for finding global min-cut. DecB-
LMSD outperforms both CutB-GMC and CutB-TC by several or-
ders of magnitude. Although CutB-LMD runs much faster than
CutB-GMC due to our optimization techniques, it is still much
slower than DecB-LMSD. In Fig. 6(c), the processing times of
CutB-LMD and DecB-LMSD are almost the same. The reason is
that, after removing all vertices with degree less than k, the re-
maining graph consists of a single k-edge connected component,
i.e., h = 1, then the performance between the cut-based algorithm
and the graph decomposition-based algorithm becomes marginal
on this graph.

CutB-GMC CutB-TC CutB-LMD DecB-LMSD

0.01

1

100

4 6 8 10 12

Pr
oc

es
sin

g 
Ti

m
e (

se
c)

(a) Random-20-120

0.01

1

100

4 6 8 10 12

Pr
oc

es
sin

g 
Ti

m
e (

se
c)

(b) Random-20-140

0.01

1

100

4 6 8 10 12

Pr
oc

es
sin

g 
Ti

m
e (

se
c)

(c) PowerLaw-20-120

0.01

1

100

4 6 8 10 12

Pr
oc

es
sin

g 
Ti

m
e (

se
c)

(d) PowerLaw-20-140

Figure 7: Against cut-based algorithms (Varing k)

Results on Random and PowerLaw Graphs: The processing
times of CutB-GMC, CutB-TC, CutB-LMD, DecB-LMSD on ran-
dom graphs and power-law graphs are plotted in Fig. 7. Similar to
that shown in Fig. 6, DecB-LMSD outperforms both CutB-GMC

and CutB-TC by more than three orders of magnitude. As shown
in all figures of Fig. 7 except Fig. 7(d), when k is larger than a cer-
tain value (e.g., k ≥ 10 in Fig. 7(a)), the processing times of all
four algorithms are almost the same, due to that there is no sub-
graph that is k-connected, i.e., the graph is empty after removing
all vertices with degree less than k. The ratio between the process-
ing time of CutB-TC and that of CutB-GMC is almost the same
for all graphs with different k values. The process times of DecB-
LMSD and CutB-LMD are the same on all graphs, since the random
graphs and power-law graphs tend to either have no subgraph with
connectivity at least k or have only one giant subgraph with connec-
tivity at least k. By comparing Fig. 7(a) and Fig. 7(c), Fig. 7(b) and
Fig. 7(d). We can infer that power-law graphs tend to have larger
connectivity compared with random graphs.
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Figure 8: Against cut-based algorithms (Varying k)

4Note that, the technique of removing all vertices with degrees less
than k is applied on all of the tested algorithms, while our optimiza-
tion of efficient vertex reduction by degree is an efficient approach
to realize this reduction.
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Results on SSCA Graphs: Fig. 8 shows the evaluation results of
the four algorithms on two SSCA graphs. As a SSCA graph con-
tains a set of randomly sized cliques, the processing times shown
in Fig. 8 have different patterns as compared with that shown in Fig. 7.
In Fig. 8(a), the processing time of CutB-GMC increases when k in-
creases from 4 to 6 as opposite to that in Fig. 6 and Fig. 7. This is
because that, when k increases from 4 to 6, the size of each k-edge
connected component decreases, however, the number of k-edge
connected components increases as a result of the large number
of cliques contained. DecB-LMSD still outperforms CutB-GMC

by several orders of magnitude. However, CutB-TC also performs
well for larger k, because the size of k-edge connected components
becomes very small for larger k and TestConnect tends to find
more balanced cut than Mas. Intuitively, TestConnect divides a
non k-connected subgraph by the minimum cut between a pair of
random vertices whose minimum cut values are less than k, while
finding global minimum cut using Mas removes all the adjacent
edges of a subgraph after contracting all vertices in it into a single
super-vertex. Therefore, CutB-TC can reduce the size of each con-
nected subgraph very quickly, while CutB-GMC divides a graph
into one large and one small subgraph each time. As shown in
Fig. 8, unlike those shown in Fig. 6 and Fig. 7, CutB-LMD per-
forms much worse than DecB-LMSD, due to the larger number of
k-edge connected components contained in SSCA graphs than the
small real graphs, random graphs, and power-law graphs. There-
fore, CutB-LMD needs to compute a global minimum cut for a lot
of large subgraphs of the input graph.

Number of Max size of
Dataset components components h l

ca-GrQc 10 80 2 5
ca-CondMat 14 2, 020 2 7
email-EuAll 1 2, 762 1 2

soc-Epinions1 1 9, 337 1 3
wiki-Talk 1 47, 081 1 3

amazon0601 979 8, 855 3 21
web-Google 1, 031 171, 398 3 11

as-Skitter 9 325, 486 2 9

SSCA-12 166 94 3 7
SSCA-14 359 346 5 15
SSCA-16 79 59, 387 3 11
SSCA-18 30 254, 996 3 9
SSCA-20 22 1, 037, 606 2 8

Table 5: Value of h and l of DecB-LMSD (k = 10)

The value of h and l: We test the value of h and l which contributes
to the time complexity O(h× l×|E|) of our DecB-LMSD algorithm.
The values of h and l by applying DecB-LMSD on the eight real
graphs and the five SSCA graphs with k = 10 are shown in Ta-
ble 5, in which we also list out the number of k-edge connected
components and the maximum size of k-edge connected compo-
nents (in terms of number of vertices in it) of those graphs with
k = 10. Among the real graphs, amazon0601 and web-Google have
the largest number of k-edge connected components, and they also
have large size of k-edge connected components. SSCA graphs ei-
ther have a lot of small k-edge connected components (for large k)
or have just a few large k-edge connected components (for small k),
but not both. Despite the large number of k-edge connected compo-
nents and/or the large size of k-edge connected components, both
h and l in our DecB-LMSD computation are of small values. Com-
bining this fact with our O(h×l×|E|) time complexity, DecB-LMSD

can finish in a few seconds even on large graphs.

Scalability Testing: We test the scalability of CutB-GMC, CutB-
TC, CutB-LMD, and DecB-LMSD. We generate four Random graphs,
Random-a-10a, and four PowerLaw graphs, PowerLaw-a-10a, with
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Figure 9: Scalability test (Varying graphs, k = 8)
a = 10, 50, 250, 1000, respectively. The testing results with k = 8
are shown in Fig. 9. The x-axis denotes the different graphs. The
corresponding graphs in Fig. 9(b) can be inferred from the label
of the x-axis with “SSCA-” omitted, e.g., 12 means the SSCA-12
graph. The exact name of the corresponding graphs in Fig. 9(a) can
be found from Table 3. The x-axis of Fig. 9(c) and Fig. 9(d) denote
the number of vertices (×103). Some of the results are not plot-
ted in Fig. 9, because the corresponding algorithms fail to termi-
nate in five hours on the corresponding configurations. CutB-GMC

and CutB-TC are not scalable to large graphs. The performance
of CutB-LMD depends on the number of k-edge connected compo-
nents. For example, among the eight real graphs, D5 (amazon0601)
and D6 (web-Google) have large number of k-edge connected com-
ponents, then CutB-LMD performs much worse than DecB-LMSD.
DecB-LMSD scales almost linearly with respect to the size of in-
put graphs as shown in Fig. 9(b), where the sizes of the five SSCA
graphs increase exponentially. From Fig. 9(c) and Fig. 9(d), we
see that the processing times of CutB-LMD and DecB-LMSD are
almost the same, because there is only one large k-edge connected
component in each of these graphs.

5.2 Evaluating Optimization Techniques
In this subsection, we evaluate the effectiveness of the proposed

optimization techniques in Section 4. Note that, we also consider
the data structure proposed in Section 4.2 as an optimization. There-
fore, there are four optimization techniques: Linear data structure,
early Merge, list Sharing, and efficient vertex reduction by Degree.
Let the four letters (L, M, S, D) denote the corresponding opti-
mization applied in an algorithm, respectively. We evaluated a se-
ries of algorithms, DecB-M, DecB-LM, DecB-MSD, DecB-LMS,
DecB-LMD, DecB-L, DecB-LSD. For example, DecB-LMS is an
algorithm by applying the first three optimization techniques.

DecB DecB-L DecB-LSD DecB-LMSD

1

100

4 6 8 10 12

Pr
oc

es
sin

g 
Ti

m
e (

se
c)

(a) email-EuAll

0.01

1

100

4 6 8 10 12

Pr
oc

es
sin

g 
Ti

m
e (

se
c)

(b) SSCA-14

Figure 10: Testing early merge optimization(Varying k)

Testing the early merge optimization: We evaluate the effective-
ness of the early merge optimization by comparing DecB-LMSD

with other algorithms without this optimization, such as DecB,
DecB-L, DecB-LSD. The results of running these algorithms on
email-EuAll graph and SSCA-14 graph are reported in Fig. 10.
DecB-L and DecB-LSD run slightly faster than the baseline algo-
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rithm DecB, however, both of them run much slower than DecB-
LMSD by several orders of magnitude. The effectiveness of early
merge optimization is due to the fact that a lot of vertex-pairs are
merged in one iteration. Therefore, the number of vertices reduces
rapidly after each iteration of Mas-LMS in Alg. 3 as discussed in
Section 4.4, which results in a very small l. Without this optimiza-
tion, for a k-connected graph G(V, E), the running time would be
Ω(|V ||E|). In the following testings, we always include the early
merge optimization.
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Figure 11: Testing L, S, D optimization techniques (Varying k)

Testing L, S, D optimization techniques: We test the effective-
ness of the three optimizations, linear data structure, list sharing,
and efficient vertex reduction by degree, by not considering the cor-
responding optimization in an algorithm while applying all other
optimization techniques. The testing results are shown in Fig. 11.
On the email-EuAll graph, leaving out any optimization will in-
crease the processing time as shown in Fig. 11(a), while on the
web-Google graph leaving out the list sharing optimization does
not affect the performance of DecB-LMSD as shown in Fig. 11(b).
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Figure 12: Adding optimization incrementally(Varying k)

Adding optimization techniques incrementally: We test the ef-
fect of adding one optimization at a time incrementally, starting
from the DecB-M algorithm. The optimization techniques are added
in the following order, linear data structure, list sharing, and ver-
tex reduction by degree, where the final algorithm is DecB-LMSD.
In Fig. 12(a) we see that, the performance does not improve until
all optimization techniques are added. However, in Fig. 12(b), we
can see performance improvement after adding each of the three
optimization techniques.

From the above evaluations, we conclude that the early merge
optimization improves the performance substantially, while the other
optimization techniques also improve the performance of algorithms
after applying the early merge optimization.

6. CONCLUSION
In this paper, we have proposed a novel graph decomposition

paradigm to iteratively decompose a graph G for computing its k-
edge connected components with a very small decomposition depth
h. To compute k-edge connected components efficiently based on
this decomposition paradigm, we devised an efficient threshold-
based graph decomposition algorithm with time complexity O(l ×
|E|) with a small integer l (usually l ≪ |V |). As a result, we have
improved the time complexity of an existing state-of-the-art solu-
tion of computing k-edge connected components of a graph from
O(|V |2|E| + |V |3 log |V |) to O(h × l × |E|), where l and h are usually
bounded by a small constant in all the real and synthetic graphs

we tested. As their relationships and the average case behavior of
h × l are very challenging to deal with, we will put this issue in
our future work. We finally conducted experiments to evaluate the
performance of the proposed algorithm, and the experimental re-
sults demonstrate that our techniques outperform the existing one
by several orders of magnitude.
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