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ABSTRACT

A multithreaded Cilk program that is ostensibly deterministic may
nevertheless behave nondeterministically due to programming er-
rors in the code. For a Cilk program that uses reducers, a general
reduction mechanism supported in various Cilk dialects, such pro-
gramming errors are especially challenging to debug, because the
errors can expose the nondeterminism in how the Cilk runtime sys-
tem manages a reducer.

We identify two unique types of races that arise from incorrect
use of reducers in a Cilk program and present two algorithms to
catch them. The first algorithm, called the Peer-Set algorithm, de-
tects view-read races, which occur when the program attempts to
retrieve a value out of a reducer when the read may result a nonde-
terministic value, such as before all previously spawned subcompu-
tations that might update the reducer have necessarily returned. The
second algorithm, called the SP+ algorithm, detects determinacy
races, instances where a write to a memory location occurs logi-
cally in parallel with another access to that location, even when the
raced-on memory locations relate to reducers. Both algorithms are
provably correct, asymptotically efficient, and can be implemented
efficiently in practice. We have implemented both algorithms in
our prototype race detector, Rader. When running Peer-Set, Rader
incurs a geometric-mean multiplicative overhead of 2.32 over run-
ning the benchmark without instrumentation. When running SP+,
Rader incurs a geometric-mean multiplicative overhead of 16.76.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming—
parallel programming; D.2.5 [Software Engineering]: Testing
and Debugging; D.3.3 [Programming Languages]: Language
Constructs and Features—concurrent programming structures
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1. INTRODUCTION

A multithreaded Cilk program that is “ostensibly deterministic”
may nevertheless behave nondeterministically due to programming
errors in the code. Typically these errors, also called races, oc-
cur when the program fails to coordinate parallel operations on a
shared variable, causing accesses and updates to be performed on
the variable in a nondeterministic order based on scheduling hap-
penstance. Although provably efficient and correct race detection
algorithms exist for Cilk computations! [3,15,23], they do not pro-
vide the same guarantees when the program under test employs
a “reducer hyperobject” [18], an advanced linguistic feature sup-
ported in various Cilk dialects. Races involving the use of a reducer
are particularly challenging to debug, because such races can ex-
pose the nondeterminism in how the Cilk runtime system manages
a reducer. This paper addresses the question of how to efficiently
and correctly detect races in Cilk programs that use reducers.

Many modern concurrency platforms provide some form of re-
duction mechanism [18,22, 25,28, 34,39, 42, 45] to support safe
parallel updates to shared variables. A reduction mechanism coor-
dinates parallel updates to a shared variable by applying the par-
allel updates to distinct views of the variable. When the parallel
subcomputations that update the variable complete, these views are
combined together, or reduced, using a binary reduce operator.
A reduction mechanism typically encapsulates the nondeterminis-
tic behavior induced by parallel updates as long as the update and
reduce operations satisfy associativity and commutativity.

Reducer hyperobjects (or reducers for short) [18], which
are supported by Cilk dialects including Intel Cilk Plus [22],
Cilk++ [26], and Cilk-M [24], provide a general reduction mecha-
nism for Cilk programs and exhibit several useful properties.

e Reducers operate on arbitrary Cilk code. They are not tied to any
particular linguistic construct.

e Reducers can operate on any abstract data type, including a set,
a linked list, or even a user-defined data type, so long as the user
supplies an appropriate reduce operator.

e To produce a deterministic result, a reducer’s update and reduce
operations do not need to be commutative; associativity suffices.

In contrast, other reduction mechanisms, such as OpenMP’s reduc-

tion clause [34] or Microsoft’s PPL’s combinable objects [28], tie

the reduction mechanism to a particular construct, such as a parallel
loop, or require reductions to be commutative.

Although these properties make reducers a powerful general-
purpose reduction mechanism, they leave open opportunities for
programming errors that can produce races involving reducers.
Such errors can, in particular, expose the nondeterminism in the

"Henceforth, when we say a Cilk program, we mean a Cilk program with a
specific given input. On the other hand, when we say a Cilk computation,
we mean an instance of an execution of a Cilk program with a given input.



Cilk runtime system’s efficient management of reducers, which in-
cludes two significant optimizations [18]. First, a new reducer view
is created only when a worker thread steals some parallel subcom-
putation. Second, views are reduced together in an opportunistic
fashion, causing reductions to occur in a nondeterministic order.
Consequently, the state of a reducer’s view at a particular program
point, the number of views created throughout the execution, and
when the views are reduced together are all nondeterministic, de-
pending on how the scheduling plays out. This nondeterminism is
typically encapsulated by the reducers when used and programmed
correctly, but it can become observable due to programming errors.

The incorrect use of a reducer gives rise to two unique types of
races. The first type of race, called a view-read race, occurs when
a Cilk computation reads the value of a reducer at a program point
where the read might produce a nondeterministic value, such as
before all previously spawned subcomputations that might update
the reducer have necessarily returned. Because the Cilk runtime
system creates and reduces views based on scheduling, such a read
can cause multiple runs of the same Cilk program to produce differ-
ent results. A second type of race, called a determinacy race (also
called a general race [31]), occurs when two logically parallel in-
structions operate on the same memory location, and at least one
of them is a write. Although ordinary Cilk programs can contain
determinacy races, a Cilk program that uses a reducer can contain a
determinacy race involving an view-aware instruction executed in
updating or reducing views of a reducer. (In contrast, we refer to
all other instructions that do not operate on views as view oblivi-
ous.) Such a determinacy race is particularly challenging to debug,
because a view-aware instruction involved in a race might not ex-
ecute at all if the Cilk runtime system schedules the computation
differently and thus manages the views differently.

Existing algorithms for detecting determinacy races in Cilk com-
putations, including the SP-bags algorithm [15], the SP-order algo-
rithm [3], and the SP-hybrid algorithm [3], do not support detect-
ing races involving reducers. Extending these race detection algo-
rithms to handle reducers while providing provable guarantees is
non-trivial for two reasons. First, the use a reducer generates par-
allel control dependencies that violate the structural assumptions
that these algorithms depend on. Specifically, the computation can
no longer be modeled as a “series-parallel dag” [15], which is a
property that existing algorithms rely on. Second, different runs of
a Cilk program that uses a reducer can cause different view-aware
instructions to be executed, depending how the scheduling plays
out. Providing complete coverage could potentially require exe-
cuting exponentially many different schedules to elicit all possible
view-aware instructions. Consequently, existing tools that embody
the SP-bags algorithm,? such as the Nondeterminator [15] and Cilk
Screen [23], cannot guarantee correctness when one of the instruc-
tions involved in a race is executed to operate on a reducer view.

Contributions

In this paper, we show how to efficiently and correctly detect these
two types of races in a Cilk computation that uses reducers. Specif-
ically, we make the following contributions.

The Peer-Set algorithm. We present the Peer-Set algorithm,
which executes a Cilk computation serially and analyzes its logi-
cal parallelism to detect view-read races. The algorithm is prov-
ably correct, meaning it reports a view-read race if and only if the
Cilk computation contains one. For a Cilk computation that runs in
time 7 on one processor, the Peer-Set algorithm executes in time
O(Ta(v,v)), where « is Tarjan’s functional inverse of Ackermann’s

2To the best of our knowledge, no implementation of the SP-order and SP-
hybrid algorithms exists.

function, a very slowly growing function which, for all practical
purposes, is bounded above by 4.

The SP+ algorithm. We present the SP+ algorithm, which de-
tects determinacy races in Cilk computations that use reducers.
The SP+ algorithm extends Feng and Leiserson’s SP-bags algo-
rithm [15] for detecting determinacy races in ordinary Cilk pro-
grams that do not employ reducers. The SP+ algorithm takes as
input a Cilk program, its input, and a steal specification that effec-
tively fixes the schedule. That is, a steal specification specifies the
program points at which steals occur and which reduce operations
execute. Like the Peer-Set algorithm, SP+ executes the computa-
tion serially albeit simulates the steals according to the steal speci-
fication to detect determinacy races. The SP+ algorithm is provably
correct, meaning it reports a determinacy race in the computation if
and only if one exists, regardless of whether that determinacy race
occurs due to an operation on a reducer. Furthermore, the SP+ al-
gorithm executes efficiently in time O((T + M7)a(v,v)), where T
is the running time of the Cilk program on the given input on 1
processor, M is the number of steals in the steal specification, and
7 is the worst-case running time of a reduce operation. The SP+
algorithm thus incurs overhead over the SP-bags algorithm only to
execute reduce operations and simulate necessary steals.

Implementation and empirical evaluation of the algorithms.
We have developed a prototype tool, called Rader, that implements
both the Peer-Set and SP+ algorithms to debug Cilk computations
that use reducers. Rader implements the Peer-Set and SP+ algo-
rithms by using compiler instrumentation to track memory accesses
and parallel control dependencies. Using Rader, we empirically
demonstrate the efficiency of both algorithms in practice. We ran
Rader on 6 application benchmarks that use reducers. Compared to
running each benchmark without instrumentation, Rader incurred
geometric-mean multiplicative overheads of 2.32 and 16.76 to run
the Peer-Set and SP+ algorithms, respectively.

Analysis of SP+’s coverage guarantees. We show how the SP+
algorithm can be used to efficiently check all executions of an “os-
tensibly deterministic” Cilk program for determinacy races that in-
volve at least one view-oblivious instruction. A single run of the
SP+ algorithm detects determinacy races in one possible schedule
and thus has limited coverage; it elicits only a subset of all possible
view-aware instructions. Although an exponential number of steal
specifications exist for a given Cilk program, one can do better for
most Cilk programs. Most Cilk programs are written to be ostensi-
bly deterministic, meaning that, in the absence of a race, its view-
oblivious instructions are fixed across all executions regardless of
scheduling, and that it employs only reducers with semantically as-
sociative reduce operations. For such Cilk programs, we show how
to construct a polynomial number of steal specifications to elicit all
possible view-aware instructions. The SP+ algorithm can use these
steal specifications to exhaustively check for determinacy races be-
tween view-oblivious and view-aware instructions.

The remainder of the paper is organized as follows. Section 2
discusses the relevant background and provides an example of a
program that contains races involving reducers. Sections 3 and 4
present the Peer-Set algorithm and the intuition for its correctness.
Sections 5 and 6 present the SP+ algorithm and some intuition for
its correctness. Section 7 shows that executing SP+ with polyno-
mial number of different steal specifications is necessary and suf-
ficient to elicit all possible view-aware instructions in a ostensibly
deterministic Cilk program, thereby providing the stated coverage
guarantees. Section 8 describes our prototype implementation of
Rader and empirically evaluates its performance. Section 9 dis-
cusses related work and Section 10 provides concluding remarks.



2. EXAMPLES OF RACES THAT
INVOLVE A REDUCER

This section provides an motivational example to illustrate how
races that involve operations on a reducer can occur. We review
Cilk linguistics and semantics, including that of reducer hyperob-
jects. We walk through the example to illustrate how a subtle pro-
gramming error can trigger a race between user code and a reduce
operation on a reducer.

Cilk-style dynamic multithreading. Cilk extends C/C++ with
the keywords cilk_spawn, cilk_sync, and cilk_for, of which
cilk_spawn and cilk_sync are more primitive. Parallelism is cre-
ated using the keyword cilk_spawn. When a function f invokes
another function g by preceding the invocation with cilk_spawn,
g is spawned, and the scheduler may continue to execute the con-
tinuation of f — the statement after the spawning of g — in par-
allel with g, without waiting for g to return. The complement of
cilk_spawn is cilk_sync, which acts as a local barrier and joins
together, or sync, the parallelism specified by cilk_spawn. When a
function f reaches a cilk_sync, the Cilk runtime ensures that con-
trol in f does not pass the cilk_sync until all functions spawned
previously in f have completed and returned. The cilk_for key-
word defines a parallel loop — all loop iterations may run in par-
allel with each other — which may be understood in terms of
cilk_spawn and cilk_sync.

Note that these keywords denote the logical parallelism of the
computation, rather than the actual parallel execution. During exe-
cution, Cilk’s work-stealing scheduler [5,19] dynamically load bal-
ances a parallel computation across available worker threads while
respecting the dependencies specified by these keywords. Typi-
cally, a worker executes a Cilk computation in its serial order —
at a cilk_spawn, the worker executes the spawned function before
its continuation. When a worker runs out of work, it becomes a
thief and chooses a victim worker at random to steal from. If the
victim worker has excess work, the thief may steal some of this
work by resuming the continuation of some function. Notably, a
worker’s behavior mirrors precisely the behavior of a serial exe-
cution between successful steals, and Cilk’s support for reducers
implements significant optimizations based on this fact.

Cilk reducer hyperobjects. A reducer is defined semantically in
terms of an algebraic monoid: atriple (T, ®, e), where T is a set and
® is an associative binary operation over 7 with identity e. From
an object-oriented programming perspective, the set T forms the
base type of a reducer’s views, and the reducer provides a member
function Repuce that implements the binary operator ® and a mem-
ber function CReATE-IDENTITY that constructs an identity element of
type T. The reducer also provides one or more UppatE functions,
which modify an object of type T'. From the programmer’s perspec-
tive, the reducer library provides a list of commonly used monoids;
the programmer can also declare a reducer with a user-defined view
type, so long as the view type implements an identity function (in-
voked by the Create-IDENTITY function) and a binary associative
operator (invoked by the Repuck function).

During parallel execution, the Cilk runtime supports parallel up-
dates to a reducer by generating and maintaining multiple views
for that reducer, thereby allowing each parallel subcomputation to
operate on its own local view. In particular, when a worker first
executes a Uppatk call to a reducer after a successful steal, it au-
tomatically calls CReaTE-IDENTITY to create a new identity view of
the reducer. Because a worker executes a Cilk computation in its
serial order between successful steals, the worker can safely ap-
ply the call to Uppate, as well as all subsequent calls to UpPDATE, to
this view, until it steals again. As stolen subcomputations return,

1 void update_list(int n, MylList<int>& list) {
2 cilk::reducer< list_monoid<int> >
list_reducer;

3 list_reducer.set_value(list);

4 int x = cilk_spawn foo(n, list_reducer);
5 cilk_for(int i = 0; i < n; ++i) {

6 list_reducer.view().insert(i);

7

8 cilk_sync;

9 list = list_reducer.get_value();

10 3}

12 void race(int n, MylList<int>& list) {
13 int length = 0;

14 MyList<int> copy(list);

15 length = cilk_spawn scan_list(list);
16 update_list(n, copy);

17 cilk_sync;

18 return;

19 3

Figure 1: Example Cilk program that contains a determinacy race on the
reduce operation of a linked-list reducer.

the runtime automatically combines their corresponding views us-
ing the REDUCE operation, in the same order as how these updates
would be applied in a serial execution. In the absence of a race, as
long as the REDUCE operation is semantically associative, the result-
ing view is the same as if the program were run serially.

How a view-read race can occur. To illustrate how a view-read
race can occur, let us first consider the code for the update_list
routine shown in Figure 1. The function update_list takes in as
parameters an integer n and a user-defined 1ist of type MyList that
implements a singly linked list with a head and a tail pointer to en-
able fast list concatenation. The update_list routine spawns foo
with n and list_reducer to perform some computation, which
may execute in parallel with the continuation on lines 5-7, a par-
allel loop that inserts n elements into the linked list. To coordinate
parallel accesses to the list, update_list wraps the given linked
list in a reducer on line 2. Since the reducer has a user-defined
view type, the programmer must also supply the functions for im-
plementing the reducer’s CReATE-IDENTITY and REDUCE operations,
which are defined via the 1ist_monoid type (actual implementa-
tion not shown in the pseudocode).

Assuming that 1ist_monoid implements these functions cor-
rectly, update_list as written does not contain a determinacy
race, since the runtime coordinates parallel updates to the linked
list via the use of a reducer. The routine does not contain a view-
read race, either, since the value of reducer_list is initialized at
line 3 before anything is spawned, and the value of reducer_list
is retrieved at line 9 after all spawned subcomputations that may use
the reducer have returned. The code would have been a view-read
race, however, if get_value is invoked, say, before cilk_sync,
since at that point foo might be accessing the reducer in parallel.

How a determinacy race involving a reducer can occur. The
code in Figure 1 can exhibit a determinacy race between the race
and update_list routines, however. In this code, the race routine
invokes scan_list, which iterates through the elements of list
until one is found with a NULL pointer to the next element. This
spawned scan_list invocation can run in parallel with its contin-
uation, the call to update_list on line 16. Since update_list
might actually insert into the list, the race routine makes a copy
of the list first at line 14 and passes the copy to update_list, so
as to allow the scan_list to scan the snapshot of the list without
the new inserts performed by update_list. Unfortunately, this
code contains a bug because the copy constructor on line 14 only
performs a shallow copy. That means, even though copy is a new
MyList object, created with its own distinct head and tail pointers,
the two list and copy lists still point to the same set of linked-list
elements, leading to a determinacy race in the code. In particular,



Figure 2: Example Cilk computation dag. Dark rectangles represent
strands, edges represent parallel control dependencies between strands. The
strands are labeled in their serial execution order. Light rectangles are la-
beled with the function instantiation and encompass the strands that execute
within that instantiation.

whenever scan_list reaches the last linked-list node reading the
null next pointer, some parallel subcomputation in update_list
might be writing to that same next pointer to insert an element.
This determinacy race means that the scan_list may scan a non-
deterministic number of elements in the list.

Furthermore, where the determinacy race occurs is subtle. Be-
cause update_list employs a reducer to coordinate parallel in-
serts, any insert into the list can occur on a distinct view local
to the subcomputation performing the insertion. What eventu-
ally writes to the next pointer and constitutes the race occurs is
a Repuck operation that eventually appends to the original view of
list_reducer, as initialized in line 3. A tool such as Cilk Screen
will not catch this particular race, because the determinacy race in-
volves a view-aware instruction executed in a REDUCE operation.

3. THE PEER-SET ALGORITHM

This section presents the Peer-Set algorithm for detecting view-
read races. View-read races are defined formally in terms of the
“peer-set semantics” that reducers obey. We review the dag model
of dynamic multithreading. We describe the “peer-set semantics”
in terms of this dag computation model, and we formally define the
view-read races based on these semantics. We describe the Peer-Set
algorithm and how it checks for the “peer-set semantics.”

The dag model for dynamic multithreading. We adopt the dag
model for dynamic multithreading similar to the one introduced
by Blumofe and Leiserson [5], which models a Cilk computation
— the execution of a Cilk program — as a dag (directed acyclic
graph) A = (V, E), whose vertices are strands — sequences of one
or more instructions containing no parallel control — and whose
edges denote parallel control dependencies between strands. Fig-
ure 2 illustrates a Cilk computation dag that we shall use as a run-
ning example. The strands in Figure 2 are numbered in their serial
execution order — the depth-first traversal of the dag in which
every spawned child is visited before its continuation. We shall
assume that strands respect boundaries of Cilk functions — func-
tions that can spawn. That means, calling or spawning a Cilk func-
tion terminates a strand, as does returning from a Cilk function.
Each strand thus belongs to exactly one Cilk function invocation.
For now we shall not worry about modeling the executing of view-
aware strands in the computation dag.

For any two strands u and v, we say that u precedes v, denoted
as u < v, if there exists a path from u to v in the dag. Two strands u
and v are logically in series if either u < v or v < u; otherwise they
are logically parallel, denoted as u || v. In Figure 2, for example,
strands 4 and 9 are logically in series, because strand 4 precedes
strand 9, while strands 9 and 10 are logically in parallel.

Peer-set semantics. “Peer-set semantics” dictate which updates
are guaranteed to be reflected in the view of a reducer / observed
at strand u in terms of the peers of u — the set of strands in parallel
with u, denoted by peers(u) = {w € V : w || u}. Conceptually,

“peer-set semantics” dictate that the view visible to a strand v is
guaranteed to reflect the updates since a previous strand u if u and
v have the same peers. In Figure 2, for example, these semantics
dictate that the view of a reducer at strand 9 is guaranteed to re-
flect the updates since strand 5, because strands 5 and 9 have the
same peers. The view at strand 14, meanwhile, is not guaranteed
to reflect the updates since strand 10, because strands 10 and 14
do not share the same peers — strands 12 and 13 are in the peer
set of strand 14, but not that of strand 10. The following definition
formally defines peer-set semantics:

DerintTioN 1 (PEER-SET SEMANTICS). Let h be a reducer with an
associative operator Q. Consider a serial walk of G, and let
ai, ay, . ..,a denote the updates to h after the start of instruction u
and before the start of instruction v. Let h(u) and h(v) denote the
views of h at strands u and v respectively. If peers(u) = peers(v),
then h(v) =h(u)®a;1 9, ® ... Q ay.

View-read races. Formally, a view-read race occurs when two
accesses to reducers, called reducer-reads, occur at strands with
different sets of peers. Here, we broadly define a reducer-read as
creating a reducer, resetting a reducer’s value, or querying the re-
ducer to retrieve its value. On the other hand, invoking CREATE-
IpEnTITY, UPDATE, Oor REDUCE on a reducer does not count as a
reducer-read, because those functions operate on a reducer’s under-
lying view instead of on the reducer itself. For example, consider
the computation dag in Figure 2 and suppose that strands 1 and 9
read the value of the reducer. Because strands 1 and 9 do not share
the same peer set, a view-read race exists between strands 1 and 9.

Given this definition of a view-read race, a Cilk program with
a view-read race might nevertheless behave deterministically. For
instance, in the code example shown in Figure 1, suppose that the
programmer moves the call to 1ist_reducer.set_value(list)
to after cilk_spawn at line 4, thereby creating a view-read race. If
foo does not modify 1ist, however, then the update_list routine
could behave deterministically, rendering the view-read race be-
nign. We nevertheless declare this to be a race because the reducer-
reads violate their peer-set semantics.

The Peer-Set algorithm. The Peer-Set algorithm executes a
Cilk computation serially and evaluates its strands in their serial
execution order to check for view-read races. The Peer-Set algo-
rithm employs several data structures to track which strands read
the reducer and which strands have the same peer set.

During the execution, the Peer-Set algorithm assigns a unique ID
to every Cilk function instantiation and maintains, for each instanti-
ation F on the call stack, two scalars, F.Is and F.as, and three bags,
F.SS, F.SP, and F.P. Each bag stores a set of ID’s for completed
instantiations in a fast disjoint-set data structure [10, Ch. 21].

e The F.as scalar stores the ancestor-spawn count — the total
number of spawns that each ancestor F’ of F has performed since
F’ last synced.

e The F.Is scalar stores the local-spawn count — the number of
spawns F has executed since F last synced.

o The F.SS bag contains the ID’s of all completed descendants of
F with the same peer set as the first strand of F.

e The F.SP bag contains the ID’s of all completed descendants of
F with the same peer set as the last continuation strand executed
in F. If F has not spawned since it last executed a sync, then
F.SP is empty.

e The F. P bag contains the ID’s of all completed descendants of F'
not in F.SS or F.SP.

For each Cilk frame F, we refer to the sum of the ancestor-spawn

and local-spawn counts, F.as+F.ls, as the spawn count of F, which



F calls or spawns G: G returns to F:

1 if F spawns G 1 FPU=G.P

2 F.ls +=1 2 if F spawned G

3 F.P U= F.SP 3 F.P U= G.SS
4 F.SP =10 4 elseif F.Is =0

5 G.as = F.as+F.ls 5 F.8S u= G.S§
6 Gls=0 6 else

7 G.SS = MakeBaG(G) 7 F.SP U= G.SS
8 G.SP = MakEBaG(0)

9 G.P = MakeBaG(0)

F syncs: F reads reducer h:

1 Fils=0 1 if FinoBac(reader(h)) is a P bag or
2 F.PU=F.SP reader(h).s #+ F.as + F.ls

3 F.SP = MakeBaG(0) 2 a view-read race exists

3 reader(h) = F

4 reader(h).s = F.as + F.Is

Figure 3: Pseudocode for the Peer-Set algorithm. The MaxEBAG routine
creates a new bag with a specified initial contents and a view ID. When
passed 0, MakeBAG produces an empty bag. The FINbBaG routine finds the
bag containing the specified element by finding the corresponding set in the
disjoint-set data structure.

corresponds to the number of spawn statements executed by F' and
F’s ancestors that have not been synced yet.

The Peer-Set algorithm also maintains a shadow space of shared
memory, called reader, which maps each reducer to its last reader
and the access context. That is, for each reducer h, reader(h) stores
the ID of the Cilk function F that last read &, and the associated
field reader(h).s stores the spawn count of F when it last read A.

Figure 3 gives the pseudocode of the Peer-Set algorithm, which
maintains the bags and scalars for each function frame F as follows.
When created, frame F inherits its ancestor-spawn count from the
spawn count of its parent, and it initializes its local-spawn count
F.ls to 0. As F executes, it increments F.ls when F spawns, and
resets F./to 0 when F syncs. Frame F’s bags are updated when a
child frame G returns to F, based on whether F has spawned since
it last synced. Although the bag G. P is always combined with F. P,
the bag G.SS is combined with F.SS only if F has not spawned
since it last synced; otherwise G.SS is combined with F.SP. The
bag G.SP is guaranteed to be empty when G returns to F because
functions implicitly sync before they return in Cilk.

Given this algorithm, we can see that the Peer-Set algorithm has
runs in the following time.

THeOREM 1. Consider a Cilk program that executes in time T
on one processor and references x reducer variables. The Peer-Set
algorithm checks this program execution for a view-read race in
O(T a(x, x)) time, where « is Tarjan’s functiona, | inverse of Acker-
mann’s function.

Proor. Given the size of the shadow memory for the Peer-Set
algorithm, the theorem follows from the analyses in [15]. [

4. CORRECTNESS OF THE PEER-SET
ALGORITHM

This section provides discusses why the Peer-Set algorithm is
correct. We provide intuition for how the Peer-Set algorithm prop-
erly detects view-read races. We argue mathematically for its cor-
rectness.

Intuition for the Peer-Set algorithm. To understand how the
Peer-Set algorithm works, let us first consider the contents of the
bags of a function F when F returns, considering the execution of
the Peer-Set algorithm on the dag in Figure 2 as a running example.
The bag F.SP is empty, because in Cilk, a function F' always syncs
before it returns. Consequently, the bag F. SS identifies descendants
of F with the same peer set as the first instruction in F, and the bag
F.P contains all other descendants of F. In the example dag in

Figure 4: The canonical SP parse tree for the function instantiation a in
the computation dag in Figure 2. The internal nodes of a sync block are
indicated by the darkened rectangle outlined by a dashed line.

Figure 2, then when c returns, bag c.SS contains the ID for c, and
bag c. P contains the ID for d.

What happens to these bags when a function G returns to its
parent F'? The functions identified in G.P must have a different
peer set from that of any strand in F, and therefore, G. P is always
unioned with F.P. In the example dag in Figure 2, when c returns
to a, unioning bag c. P with bag a. P correctly identifies that d has
a distinct peer set from every strand in a.

As for G.SS, we must consider a few cases. Suppose that F
spawned G. By definition of a spawn, all descendants of G must
therefore have a different peer set from any strand in . The bag
G.SS is thus unioned with the bag F.P when G returns. In the
example dag in Figure 2, because a spawned c at strand 4, every
strand in c is in parallel with strand 10, implying that ¢ has a distinct
peer set from all strands in a.

If F called G when F had no outstanding spawned children, then
the first strand in G has the same peer set as the first strand in F,
and the bag G.SS is therefore unioned with F.SS. Otherwise, F
called G when F’s local-spawn count was nonzero, meaning that F
had at least one outstanding spawned child. The first strand in G
therefore has a distinct peer set from that of the first strand in F, but
the same peer set as the last continuation strand F executed. The
G.SS bag is therefore unioned with F.SP, where it remains until
F either spawns again or syncs. In the example dag in Figure 2,
strand 11 has a distinct peer set from strand 1, but the same peer
set as strand 10, the caller of e. When e returns to a, therefore,
unioning the bag e.SS with a.SP correctly identifies that the peer
set of strand 11 matches that of strand 10.

Now let us consider detecting a view-read race. If a strand reads
a reducer &, and reader(h) is in some ancestor’s P bag F. P, then it
certainly has a different peer set. If reader(h) is in F.SS or F.SP
for some ancestor F', however, then reader(h) has the same peer set
as a strand u that is either F’s first strand or the last continuation
strand that F executed, and the currently executing strand v might
have a distinct peer set from u. To handle this case, the Peer-Set
algorithm compares the spawn count of v against the spawn count
of reader(h), stored in reader(h).s, which must match the spawn
count as u. As long as v has this same spawn count, then no ancestor
of v below F added a peer to v that is not a peer of u#, meaning that
u and v have the same peer set.

Correctness of the Peer-Set algorithm. To show why the Peer-
Set algorithm works correctly, we model the computation dag using
an “SP parse tree” as introduced by Feng and Leiserson [15]. As
Feng and Leiserson show, the dag modeling a Cilk computation
(that does not use reducers) is a series-parallel dag, which has a
distinguished source vertex s and a distinguished sink vertex t and
can be constructed recursively with series and parallel composi-
tions. This recursive construction can be represented by a binary
tree, called an SP parse tree.

Figure 4 illustrates the SP parse tree corresponding to function a
in the dag in Figure 2. The leaves of the SP parse tree are strands
in the dag, and each internal node is either an S node or a P node,



denoting either a series or parallel composition, respectively, of its
two children. The SP parse tree in Figure 4 is a canonical parse
tree [15], meaning that its internal nodes are laid out as follows.
The sync strands in a Cilk function F partition the strands in F
into sync blocks. The canonical SP parse subtree for a sync block
is a chain of S and P nodes, where the left child of each node is
either a strand in F or the root of the canonical parse tree for a
subcomputation spawned or called in F, and the right child is the
next S or P node at the root of the SP parse subtree for the vertices
following the left subchild in the serial order. A chain of S nodes,
called the spine, links the sync blocks exist within F.

To show that the Peer-Set algorithm is correct, we first show that
two strands have the same peer set if and only if they are connected
by S nodes in the SP parse tree.

LemMA 2. Two strands u and v have the same peer set,
peers(u) = peers(v), if and only if the path connecting u to v in
the SP parse tree consists entirely of S nodes.

Proor. Let LCA(u,v) denote the least-common ancestor of u
and v in the SP parse tree. We first show that LCA(u, v) must be
an S node. If LCA(u,v) is a P node, then u || v, and therefore u €
peers(v). Because u ¢ peers(u), we have that peers(u) # peers(v).

Suppose that the path in the SP parse tree from LCA(u,v) to
u contains a P node. Then there must exist a strand w such that
LCA(u,w) is this P node, which implies that u || w and, there-
fore, that w € peers(u). Because this P node is on the path from
LCA(u,v) to u, we have that LCA(w, v) = LCA(u, v), which is an S
node. Therefore, w [ v, and thus w ¢ peers(v). This P node there-
fore implies that peers(u) # peers(v), so if peers(u) = peers(v),
then no such P node can exist. A symmetric argument shows that
no P node can exist on the path from LCA(u, v) to v.

Now suppose that peers(u) # peers(v). Without loss of gen-
erality, suppose that u executes before v in the serial order. If
v € peers(u), then u || v and LCA(u, v) is a P node. Otherwise,
we have u < v and there exists some strand w in exactly one of
peers(u) or peers(v). Suppose that w € peers(u) and w ¢ peers(v).
Then w || u, implying that LCA(w, u) is a P node [15, Lemma 4],
and w }t v, implying that LCA(w,v) is an S node. The nodes
LCA(w, u) and LCA(w, v) therefore differ, and one can show that
either LCA(u,v) is one of these two. Either way, the P node
LCA(w, u) appears on the path from u to v in the SP parse tree.
The case where w ¢ peers(u) and w € peers(v) is similar. [

Next, we argue that the Peer-Set algorithm identifies pairs of
strands that are connected via S nodes in the SP parse tree. As
in [15], we define the procedurification function F as the map from
strands and nodes in the SP parse tree to Cilk function invocations.

Lemma 3. Consider an execution of the Peer-Set algorithm on a
Cilk computation. Suppose that strand u executes before strand v,
and let F be the procedurification function mapping the SP parse
tree to Cilk function invocations. Let a = LCA(u,v) be the least
common ancestor of u and v in the SP parse tree. Then the both of
the following conditions hold if and only if the path from u to v in
the SP parse tree consists entirely of S nodes.

o The ID for F(u) belongs to either the SS bag or the SP bag of

F(a) when v executes.

o The spawn count for F(a) when u executes equals the spawn
count for F(v) when v executes.

Proor SketcH. Bags F(a).SS and F(a).SP contain the set of
descendants reachable from F(a)’s first strand and F(a)’s last-
executed continuation strand, respectively, via S nodes in the parse
tree. Either F(a).SS or F(a).SP contains u if and only if there is no

P node along the path from u to a. Spawn counts allow us to check
whether there is any P node along the path from a to v, because the
spawn count of F(x) when u executes matches that of F(v) when v
executes if and only if the path from a to v contains no P node. []

With Lemmas 2 and 3, we show that the Peer-Set algorithm de-
tects a view-read race if only if one exists.

THEOREM 4. The Peer-Set algorithm detects a view-read race in
a Cilk computation if and only if a view-read race exists.

Proor. Let F be the procedurification function mapping the SP
parse tree to Cilk function invocations.

We first see that, if the Peer-Set algorithm detects a view-read
race, then one exists. If the Peer-Set algorithm detects a view-
read race on a reducer 7 when executing strand e,, then Figure 3
shows that either reader(h) belongs to a P bag or the spawn count
reader(h).s does not match F(e,).as + F(e;).ls. Lemma 3 there-
fore implies that a P node exists on the path from e; to e; in the
SP parse tree, meaning that peers(e;) # peers(e;) by Lemma 2.
Consequently, a view-read race exists.

We now see that, if a view-read race exists on a reducer £, then
the Peer-Set algorithm detects it. Let e; and e, be two strands in-
volved in a view-read race on reducer &, where e¢; executes before
e, in the serial order and, if several such races exist, we choose the
race for which e, executes earliest in the serial order. The definition
of a view-read race implies that peers(e;) # peers(e,).

When e, executes, suppose that reader(h) = F(e) for some
strand e. If e = ey, then because peers(e;) # peers(e;), Lemmas 2
and 3 imply that a view-read race is reported. If e # e;, then e must
have executed after e, in order to overwrite reader(h). We must
also have that peers(e) = peers(e;); otherwise Lemmas 2 and 3 im-
ply that a view-read race exists between e and ey, and that fact that
both e and e, execute before e, contradicts strand e, being the earli-
est strand in the serial order for which a view-read race exists on /.
Because peers(e)) # peers(ey), we have that peers(e) # peers(e,),
and by Lemmas 2 and 3, a view-read race is detected. [

S. THE SP+ ALGORITHM

This section presents the SP+ algorithm for detecting determi-
nacy races in a Cilk computation that uses a reducer. For a Cilk pro-
gram that uses reducers, its parallel execution contains view-aware
strands and runtime-invoked REDUCE operations that generate addi-
tional reduce strands and corresponding dependencies. The SP+
algorithm extends the SP-bags algorithm [15] to handle these ad-
ditional complexity in execution due to the use of reducers. We
describe more precisely how the Cilk runtime manages views and
how one can model these additional strands and dependencies us-
ing a “performance dag.” We identify the circumstances in which a
determinacy race can exist in a computation that uses reducers. We
describe how the SP+ algorithm detects such determinacy races.

The SP+ algorithm makes the following assumptions. First, the
SP+ algorithm takes a steal specification as input, which dictates
which continuations to steal, when to create new views, and how
to reduce views. The steal specification removes all nondetermin-
ism in how the Cilk runtime manages the reducers, allowing the
SP+ algorithm to consider a single execution of the Cilk program.
Second, it assumes that the REDUCE, CREATE-IDENTITY, and UPDATE
functions execute only serial code, which is typically the case in
real programs, and thus the execution of one of these functions can
be modeled with a single strand. Following the same terminology
as in types of instructions, we refer to a strand that arises from ex-
ecuting one of these functions as a view-aware strand, and other
strands in the computation are view-oblivious strands.



Figure 5: An example of performance dag, which corresponds to augment-
ing the user dag in Figure 2 in Section 2 with reduce strands ro, r1, and r5. A
vertical bar across an edge indicates that the following continuation strand
is stolen. Each strand is labeled with its associated view ID. Strands with
the same view ID are highlighted with the same color.

How the Cilk runtime manages views. To see how view-aware
strands complicate determinacy race detection, let us first review
how the Cilk runtime manages views in more detail. Let /() de-
note the view of a reducer & seen by strand u in a dag A = (V, E).
The runtime system maintains the following view invariants:

1. If u has out-degree 1 and (1, v) € E, then h(v) = h(u).

2. Suppose that u is a spawn strand with outgoing edges
(u,v), (u, w) € E, where u spawns v and leads to continuation
strand w. Then, we have h(u) = h(v) and either h(w) = h(u)
if w was not stolen, or i(w) is a new view otherwise.

3. If u € Vis a sync strand, then A(u) = h(s), where s is the first
strand of the Cilk function containing u.

When a new view h(w) is created according to Invariant 2, we the
new view h(w) is a parallel view to h(u). We say that the old view
h(u) dominates h(w), which we denote by h(u) > h(w). For a set
H of views, we say that two views hy, h, € H are adjacent if there
does not exist h; € H such that Ay > h; > h,. Each parallel view
created according to Invariant 2 is eventually destroyed by a call to
REpUCE. In particular, the runtime system always reduces adjacent
pairs of views together, destroying the dominated view in the pair.

To maintain Invariant 3, the runtime ensures that all parallel
views created within a sync block are reduced before the sync
strand executes. One can show inductively that the views of the
first and last strands of a function must be identical. This prop-
erty holds because the first spawned child always inherits the view
of the first strand, and a REDUCE operation always reduces two adja-
cent views and destroys the dominated view. Moreover, the runtime
always performs an implicit sync before a Cilk function returns.

The performance dag. A Cilk computation that uses a reducer
can be modeled as a performance dag [27], which augments the
ordinary computation dag with additional reduce strands from exe-
cuting Repuck operations. The performance dag also modifies the
dependencies going into a sync strand in order to incorporate the re-
duce strands and model the necessary dependencies among them.
These dependencies among the reduce strands form a reduce tree
before each sync node, with an additional dependency going from
the root of the reduce tree into the corresponding sync node.

Figure 5 shows an example of a performance dag, which corre-
sponds to augmenting the computation dag shown in Figure 2 with
reduce strands. In this dag, three different continuation points are
stolen, each causing a new view to be generated, leading to a total
of 4 views in a. For each newly created view, there is a correspond-
ing reduce strand produced from executing the REpUCE operation
that destroys the view, reducing its value into an adjacent view that
dominates it. The reduce strand ry, for example, reduces the views
a and g, destroying 8 and inheriting the view ID a. Figure 5 also
shows how these reduce strands form a reduce tree before the fi-
nal strand, which is the sync strand in a. The reduce strands and
the structure of the reduce trees are both functions of the execution
schedule, which is fixed by the input steal specification.

Detecting determinacy races involving view-aware strands.
View-aware strands complicate the circumstances under which a
determinacy race occurs. For example, in the performance dag
shown in Figure 5, let e; be the first strand in function d, and let
e; be the second strand in function c. Suppose that e; and e, access
the same memory location ¢ with one being a write, and suppose
that e, is a view-aware strand generated from executing an UPDATE.
Because e, is a continuation that is not stolen in this execution,
the same worker executes e, immediately after returning from d,
and both e, and e, observe the same view S of the reducer, as Fig-
ure 5 shows. Because e, is view-aware, in a different execution in
which e; is stolen, e, will observe a different view and might there-
fore write to a different memory locations. If location ¢ is part of
view g, for example, then in this alternative scenario, e, might not
write to ¢, precluding a determinacy race with e¢;. Because e, is
view-aware, its logical parallelism with e; is not sufficient for it to
definitively race with e;; it must also operate on a parallel view.

We can summarize the conditions under which a determinacy
race exists between two strands e; and e, in a Cilk computation that
uses a reducer. Suppose that e, follows e; in the in serial execution
order, both e, and e, access the same location ¢, and at least one of
them writes to £.

e If ¢, is a view-oblivious strand, then a determinacy race exists
between e; and e, if and only if e; and e, are logically in parallel.

o If e, is a view-aware strand, then a determinacy race exists be-
tween e; and e; if and only if e¢; and e, are logically in parallel
and are associated with parallel views of a reducer.

The SP+ algorithm. Like the Peer-Set and SP-bags algorithms,
the SP+ algorithm is a serial algorithm that evaluates the strands of
a Cilk computation in their serial order. As it executes, SP+ em-
ploys several data structures to keep tracks of parallel views created
according to the steal specification and determine the series-parallel
relationships between strands, including reduce strands.

Like the SP-bags algorithm, SP+ maintains 2 shadow spaces of
shared memory, called reader and writer. Each shadow space con-
tains an entry for each memory location that the computation ac-
cesses. During the execution, each Cilk function instantiation is
given a unique ID. Each location ¢ in reader stores the ID of the
instantiation that last read ¢, while each location ¢ in writer stores
the ID for the instantiation that last wrote £.

The SP+ algorithm also maintains a set of bags for each Cilk
function F on the call stack. Each bag stores a set of ID’s for com-
pleted procedures in a fast disjoint-set data structure. In particular,
when executing a strand u, the bags associated with a function F
on the call stack have the following contents:

e The S bag F.S contains the ID’s of F’s completed descendants
that precede u, as well as the ID for F itself.

o The P stack F.P contains a stack of P bags. Together, the P bags
in F. P contain the set of ID’s of F’s completed descendants that
are logically in parallel with u. The P bags p € F. P partition this
set into subsets whose views are in series with the last ID to be
added to the P bag p.

Figure 6 gives the pseudocode of the SP+ algorithm. Like the
SP-bags algorithm, the SP+ algorithm pushes new S and P bags
onto the call stack when is executes a function call or spawn, and it
pops these bags off of the call stack when the function returns.

Unlike in the SP-bags algorithm, the SP+ algorithm also main-
tains P stacks. Conceptually, each P stack in SP+ replaces a P bag
in the SP-bags algorithm in order to keep track of views. Each P
bag p has an associated view ID, denoted p.vid, which is a unique
ID associated with the P bag on its creation. Executing a stolen
continuation pushes a new P bag with a new view ID onto the top



F spawns or calls G: F syncs:

1 G.S = MakeBaG(G, Tor(G). vid) 1 F.S U= Tor(F.P)

2 p = MakeBaG(0, Tor(G). vid) 2 p = MakeBaG(0, F.S.vid)
3 G.P=(p 3 Toe(F.P) = p

Spawned G returns to F: Called G returns to F:

1 Tor(F.P) U= G.S 1 FSu=G.S

F executes a stolen continuation: F executes REDUCE:

1 p = MakeBaG(0, new view ID) 1 p=Pop(F.P)

2 PusH(F.P,p) 2 Toe(F.P) U= p

read a shared location ¢ by a view-oblivious strand in F:
1 if FinoBac(writer(()) is a P bag

2 a determinacy race exists
3 if FinoBac(reader({)) is an S bag
4 reader(€) = F

write a shared location ¢ by a view-oblivious strand in F:
1 if FiNoBac(reader(()) is a P bag or FiNoBac(writer(()) is a P bag

2 a determinacy race exists
3 if FinoBac(writer(()) is an S bag
4 writer(€) = F

read a shared location ¢ by a view-aware strand in F:
1 if FinoBac(writer(£)) is a P bag and FinoBac(writer(()). vid # Top(F. P). vid
2 a determinacy race exists
3 if FiNoBac(reader(()) is an S bag or

(F is an invocation of Repuce and FinoBac(reader(()). vid == Top(F. P). vid)
4 reader({) = F
write a shared location ¢ by a view-aware strand in F:
1 if FinoBac(reader(?)) is a P bag and FinoBac(reader(()). vid # Top(F. P).vid
2 a determinacy race exists
3 if FinoBac(writer(£)) is a P bag and FinoBac(writer(()). vid # Top(F. P).vid
4
5

a determinacy race exists
if FinoBac(writer()) is an S bag or
(F is an invocation of Repuct and FinoBac(writer(€)). vid == Top(F. P). vid)
6 writer(€) = F

Figure 6: Pseudocode for the SP+ algorithm. Each P bag is a disjoint set
with an additional vid field, which tracks the view ID associated with that P
bag. This vid field is set when the P bag is first created and remains invariant
as the P bag’s set is modified. In particular, when a P bag is unioned into
another P bag, the bags are unioned, and the view ID of the destination P
bag is preserved. PusH pushes an element on top of the specified stack, and
Pop pops the specified stack. Top accesses the topmost element of the stack
without modifying the stack. MAKEBAG creates a new bag with a specified
initial contents and a view ID. MakeBaG produces an empty bag when
called with 0. The FinoBag routine finds the bag containing the specified
element by finding the corresponding set in the disjoint-set data structure.

of the P stack. Executing a REbUCE operation in F combines the top
two P bags in the P stack F.P, unioning the newer P bag into the
older one. Determinacy races are detected by the code for write
and read, and separate codes are used when the second strand is
view-oblivious versus view-aware.

The following theorem analyzes the running time of SP+.

THeEOREM 5. Consider a Cilk program that executes in time T
on one processor and references v shared memory locations. Sup-
pose that the SP+ algorithm executes this program with M specified
steals, and let T be the worst-case running time of any REDUCE op-
eration. The SP+ algorithm checks this program execution for a
determinacy race in O((T + M7)a(v,v)) time.

Proor. The theorem follows from the analyses in [27]
and [15]. [

6. CORRECTNESS OF THE SP-+
ALGORITHM

This section provides intuition as to why a single run of the SP+
algorithm correctly detects determinacy races in a particular Cilk
computation. Throughout this section, we analyze the correctness
of the SP+ algorithm with respect to the fixed execution of a Cilk

program specified by the given steal specification.® For simplic-
ity, our analysis shall assume that the Cilk computation operates
on a single reducer. It is straightforward to extend the argument
to handle more general cases. Section 7 discusses how a polyno-
mial number of such SP+ runs can provide the desired coverage for
ostensibly deterministic Cilk programs.

With respect to detecting races between two view-oblivious
strands, it is straightforward to see that SP+ provides the same
correctness guarantee as the SP-bags algorithm [15]. Like the SP-
bags algorithm, as it executes, SP+ maintains, for every active Cilk
function F, two sets of IDs corresponding to F’s completed de-
scendants: one set (in the S bag F.S) for those that are logically in
series with the currently executing strand, and one set (in a stack of
P bags F. P) for those that are logically in parallel with that strand.
Both SP-bags and SP+ maintain these sets and use them to detect
determinacy races between view-oblivious strands in effectively the
same way. SP+ differs only in that it partitions the strands that are
logically in parallel across multiple P bags.

With respect to detecting races between a view-oblivious strand
and a view-aware strand, SP+ needs to manage multiple P bags
per Cilk function to handle two complications arising from the use
of reducers. First, when a view-aware strand is involved, a race
between two strands exists only if both the strands are logically
in parallel, and their views are in parallel. Consequently, the SP+
algorithm must keep track of the views that strands might operate
on. Second, the SP+ algorithm must also keep track of different sets
of strands within the a Cilk function F that may end up serialized
with some reduce strand executed in F.

SP+ maintains P bags and their concomitant view IDs in a man-
ner that imitates the Cilk runtime’s management of views. Each P
bag has a view ID. When a function F is first spawned or called,
it inherits the same view ID as its parent’s top P bag. Whenever
SP+ executes a stolen continuation in F, as specified by the input
steal specification, it pushes a new P bag onto the top of F.P with
a brand new view ID. For a currently executing function F, its top
P bag thus has the view ID corresponding to the view of its cur-
rently executing strand. Whenever a REbuce operation occurs, also
as specified by the steal specification, the SP+ algorithm pops the
top P bag off of F.P and unions it into the next P bag on top, imi-
tating how the REpuce combines views and destroys the dominated
view. Because a necessary set of REDUCE operations must occur to
destroy all parallel views before a sync, when F executes a sync,
SP+ maintains the invariant that only a single P bag is left in F. P,
which is the same P bag (with the same view ID) that F' had when it
started. The view ID effectively simulates how the views get man-
aged by the runtime, the view invariants in Section 5 summarize.

In addition to keeping track of parallel views via view IDs, the
multiple P bags differentiate the sets of strands that can serialize
with different REpuck operations. Specifically, whenever a spawned
function G returns to F, the IDs corresponding to G’s descendant,
including G itself, get unioned into F’s top P bag. Each P bag in
F.P thus contains a set of IDs corresponding to F’s descendants
whose initial strands share the same view. Whenever a REbuck op-
eration occurs, the top two P bags have view IDs corresponding
to views that are about to be reduced together, and the set of IDs
they contain correspond to the set of F’s descendants that serialize
with the reduce operation. Since everything that comes after this
reduce strand, including this reduce strand, is in series with the de-
scendants corresponding to the IDs in the top two P bags, SP+ can
safely union them together.

3We shall see how a steal specification can be specified inexpensively in
Section 8.



To detect a potential race with a view-aware strand, SP+ checks
that not only the two strands are in parallel, but that they also oper-
ate on parallel views, as verified by comparing the view IDs of the
last access and currently executing strand. Note that the union of
the top two P bags occurs before the invocation of the correspond-
ing REDUCE operation, and thus any memory access performed by
the reduce strand will have the same view IDs as the descendants
in those P bags, achieving the desired effect — the reduce strand is
in series with descendants in these two P bags.

There is one subtlety in how SP+ handles the shadow memory.
SP+ replaces the last reader and writer only if the last access is in
an S bag or if the current access is performed by a reduce strand and
that it shares the same view as the last access. Call the last access
in the shadow memory e, and the currently executing strand e,.
By “pseudotransitivity of ||” [15], we know that there is no need
to replace e; in the shadow memory with e, if the e, is logically
in parallel with e;, because any strand that comes later in serial
execution order that races with e, will race with e; as well. We
need only to update the last reader / writer if e, is in series with e;.
In the case where e, is a reduce strand, however, e, is in series with
e; even if e; belongs to a P bag but has the same view ID.

To illustrate how SP+ operates, consider it unfolding the perfor-
mance dag shown in Figure 5 in Section 5. When it executes the
fifth strand e in function a, the stolen continuation labeled with 9,
it pushes a new empty P bag corresponding to view ¢. The P stack
a. P contains two other P bags: {b, c, d}, associated with view @, and
{e, f}, associated with view . The first P bag resulted from union-
ing the P bags corresponding to views a and 8 before executing ry.
After SP+ executes e and encounters ry, the steal specification dic-
tates that the top two P bags — the empty one representing strand
¢ and the one containing {e, f} — are unioned before executing r;.
If r, a view-aware strand, happens to write to location ¢ last ac-
cessed by the first strand in f labeled with y, SP+ will not report a
race, since they now share the same view after the union. If the last
access of ¢ before r; is performed by a strand in ¢, however, a race
will be reported, since c is in a different P bag of a.

7. ANALYSIS OF THE SP+ ALGORITHM

This section discusses how the SP+ algorithm can be used to
check if any execution on a given input of an ostensibly determin-
istic Cilk program that uses reducers contains a determinacy race
involving a view-oblivious strand. If D is the Cilk depth and K is
the maximum sync-block size (defined in Section 4), then we show
that Q(max{K D, K*}) steal specifications are needed to elicit every
possible view-aware strand, and O(KD + K?) steal specifications
suffice. The proofs in this section can be adapted to construct these
O(KD + K?) steal specifications.

The following theorem bounds the number of steal specifications
needed to elicit all possible update strands to M, the maximum
number of continuations in any sync block in a Cilk function. In
a Cilk computation, if D is the Cilk depth and K is the maximum
number of continuations in any sync block, then M can be as large
as KD. The following theorem considers the Cilk computation’s
ordinary dag, not its performance dag.

THEOREM 6. In a Cilk computation, all possible update strands
can be elicited in O(M) steal specifications, where M is the maxi-
mum number of continuations not followed by a sync strand in the
same Cilk function along any path in the computation dag.

Proor. Consider the canonical SP parse tree for the computation
dag. Let a denote an internal node in this tree whose left child is /
and whose right child is r. If a is an S node, then the subcomputa-
tion under r inherits the value of the view A(l). Because the reducer

is a monoid, the value of A(/) is the same, regardless of how the
subcomputation under / was scheduled. The same situation holds if
a is a P node unless the subcomputation under  is stolen, in which
case the subcomputation under r executes on a new, identity view.
In this case, because the reducer is a monoid, the value of A(e) does
not depend on the computation executed before e.

Consider the root-to-e path p in the SP parse tree. From the
argument above, the value of h(e) depends only on the closest P
node a € p such that the right child of a inherits an identity view.
The number of different values of A(e) is therefore the number of P
nodes a in p for which e is in the right subtree of a.

A root-to-e path in the canonical SP parse tree passes through at
most one sync block in each Cilk function F, and each P node in F
on that path corresponds to a continuation on the path to e in that
sync block. Consequently, (M) steal specifications are needed to
elicit all possible update strands at the location of e. Because there
exists a unique path in the SP parse tree from the root to each strand
e, continuations to steal can be chosen in a breadth-first manner,
where two continuations e; and e, are stolen in the same specifi-
cation if the same number of P nodes occur on the root-to-e¢; and
root-to-e, paths in the tree. Consequently, O(M) steal specifications
suffice to elicit all possible update strands. [J

We now consider the number of steal and reduce specifications
needed to elicit all possible reduce strands. Every REDUCE operation
on a sequence k = (ky,ks,...,kg) of K elements combines two
adjacent subsequences of k. There are therefore (f) distinct REDUCE
operations on K, and therefore O(K>) specifications can elicit all
possible reduce strands. The following theorem shows that, Q(K?)

specifications are necessary to elicit every reduce strand.

THEOREM 7. Let k = (ky,ky,...,kg) be an ordered set of K el-
ements. Any collection R of reduce trees on « that contains each
REDUCE operation at least once has size |R| = Q(K?).

Proor. To bound the number of reduce trees in R, let us charac-
terize a REDUCE operation by the size of its larger input view. Each
view h of a reducer corresponds to some subsequence of «, and
the size of h is the length of the subsequence corresponding to h.
For example, a reduce strand that reduces the views represented by
the subsequences (ky, kys15 - - - s kp—1) and (kp, kps1, . . . ke—1) Of k TE-
duces a view of size b — a with one of size ¢ — b. Let us consider
reduce strands for which the size of its larger input is at least n/2+1.

To count the number of reduce trees containing such reduce
strands, we imagine iteratively constructing the collection R of re-
duce trees by considering different view sizes in increasing order.
For each size s, each view h of size s can be an input to multiple
distinct possible reduce strands. Because s > n/2 + 1, each reduce
tree in R can contain at most one view h of size s and at most one
reduce strand r on such a view. A reduce tree in R that produces &
might already contain r already; otherwise a new reduce tree must
be added to R that contains r.

We can lower bound the number of reduce trees added to R for
each size s using the following observations:

e There are n — s + 1 distinct views of size s.

e For each view / of size s, there are n — s distinct reduce strands
that take & as an input.

e For each view h of size s, at most 2 reduce trees in R can
produce h from a smaller view of a particular size s, where
n/2 +1 < s’ < s. Consequently, there are at most 2(s — n/2 — 1)
reduce trees already in R that contain distinct reduce strands on 4.
These observations show that, for a particular size s > n/2 + 1,

there are (n — s + 1)(n — s) different reduce strands on views of size
s, and at most (n — s + 1)2(s — n/2 — 1) of these reduce strands



can be exist in reduce trees already in R. For each size s, we must
therefore add at least (n — s + 1)(2n — 3s + 2) new reduce trees
to R. This bound holds as long as 2n — 3s + 2 > 0, implying that
s < 2(n + 1)/3. Summing over the applicable sizes s, we have that
IR > S22 D01 s+ D@2 —3s+2) = Qn?). O

s=n/2+1

8. RADER

This section presents Rader, our prototype implementation of
Peer-Set and SP+. We evaluated Rader on 6 benchmarks. When
running the Peer-Set algorithm, Rader incurs a geometric-mean
multiplicative overhead of 2.32 (with a range of 1.03 — 5.95) over
running the benchmarks without instrumentation. When running
the SP+ algorithm, Rader incurs an overhead of 16.76 (with arange
of 3.94 — 75.60). To get a sense of how much of the overhead
comes from the instrumentation versus algorithm implementation,
we measured the overhead of Rader over an empty tool (i.e., same
instrumentation which leads to an empty call). When running the
Peer-Set algorithm, Rader incurs a geometric-mean multiplicative
overhead of 1.84 (with a range of 1 —3.89) over running the bench-
marks with an empty tool. When running the SP+ algorithm, Rader
incurs an overhead of 7.27 (with a range of 3.04 — 15.68). This av-
erage is without considering ferret, an outlier that has very little
overhead, which we explain later in the section.

Implementation. Rader uses compiler instrumentation to detect
races in Cilk programs. We modified GCC 4.9 to insert instrumen-
tation to identify parallel control constructs in the execution, akin to
the Low Overhead Annotations [21] for Intel’s Cilk Plus compiler.

For the SP+ algorithm, we also need to instrument reads and
writes and simulate parallel executions. Rader instruments reads
and writes by piggybacking on the ThreadSanitizer instrumenta-
tion [41], supported since GCC 4.8 [20]. When running SP+, Rader
triggers operations in the runtime system to simulate steals at pro-
gram points specified in a given steal specification. To accomplish
this, Rader appropriately “promotes” various runtime data struc-
tures that would be modified if, after a worker executes the cor-
responding spawn, the parent of that spawn had been stolen [18].
When the worker resumes the parent later, it acts as if it stole the
parent, and appropriately creates a new reducer view for the con-
tinuation. These promoted data structures also prompt the worker
to check if it should execute any reduction.

Since Rader needs to check particular reductions according to
the steal specification, the worker may need to hold off on a reduc-
tion instead of reducing eagerly, which is how Cilk runtime nor-
mally operates. We modified the runtime so that the worker, when
simulating steals, calls back to Rader to see if it should execute a
reduction. Although the modified runtime no longer always per-
forms reduction eagerly, we optimized the steal specifications that
Rader uses as follows to use only constant space per steal.

Steal specifications. Although constructing the steal specifi-
cation naively can cause the input to be as large as the compu-
tation dag, one can do better. Because Section 7 showed that
Q(max{KD, K*}) executions are necessary to guarantee complete-
ness and that O(DK + K?) suffice, no time is saved asymptotically if
the system checks for more than one particular reduction or update
per sync block. We therefore only need to make sure that Rader
checks at least one reduction or update per sync block in a given
execution. Consequently, the steal specification can be as simple as
specifying which three continuations to steal in a sync block (for
checking reduce operations) or which continuations at a particular
depth to steal (for checking updates). We can steal the same contin-
uations for every sync block, and the completeness guarantee still
stands, as long as we run Rader with O(K?) different specifications.
In practice, Rader takes as an input either three values specifying

the continuations to be stolen, or a random seed and the maximum
sync block size, in which case three different points are chosen ran-
domly for each sync block. If a race is detected, Rader reports the
labels corresponding to the stolen continuations that triggered the
race, making it easy to repeat the run for regression tests.

Experimental evaluation. We empirically evaluated Rader on
6 benchmark applications, which Figure 7 lists. We converted the
pipeline programs dedup and ferret from the PARSEC bench-
mark suite [4] to use Cilk linguistics and a reducer_ostream (part
of Cilk Plus) to write its output. The synthetic fib benchmark uses
a reducer_opadd, which is also part of Cilk Plus. All other bench-
marks use user-defined reducers, including a “Bag” data structure
(pbf's [27]), a “hypervector” (collision), and a user-defined struct
(knapsack [17]). All experiments ran serially on an Intel Xeon
E5-2665 system with 2.4 GHz CPU’s and 32 GB of main memory.
Each core has a 32-KB private L.1-data-cache and a 256 KB private
L2-cache, and shares a 20 MB L3-cache with 7 other cores.

Figure 7 shows the overhead of Rader over running each bench-
mark without instrumentation. As Figure 7 shows, the Peer-Set
algorithm (column Check view-read race) incurs little overhead.
The SP+ algorithm has a somewhat high overhead for fib and
knapsack, but otherwise exhibits reasonable overheads. The high
overheads on these two benchmarks stems from the fact that they
perform very little work per strand, making the overall running time
dominated by instrumentation. We have also compared Rader’s
overhead over running each benchmark with an empty tool to gauge
how much overhead comes from instrumentation versus algorithm
implementation. As can be seen in Figure 8, the overhead due to
algorithm implementation is minimal. The overhead dropped from
as high as 75.60 down to 13.85 on fib, for example.

In terms of the additional bookkeeping for checking reducers
(i.e., comparing columns Check reductions and No steals),
most applications exhibit negligible overhead; fib exhibits the
highest overhead in this regard (2.25 times overhead), because fib
is a synthetic benchmark we devised to stress test Rader— each
function call does almost no work except for updating reducers
and reducing views. The overhead is thus evident — there is not
much work to amortize it against. One interesting outlier is ferret,
which has virtually no overhead. It turns out that, when we instru-
ment all the library code that came with PARSEC, lots of races get
reported. We separately confirmed with this Cilk Screen using Intel
compiler, and indeed there were races. Since the reporting of races
(I/0) throws off timing, we opt to instrument only the main ferret
code without the rest of the library, meaning that only a small frac-
tion of memory accesses within the computation are instrumented.

9. RELATED WORK

Race detection is a rich area actively being worked on. Roughly
speaking, approaches to race detection can be categorized as either
static [1,2, 6, 13, 30, 36, 44] or dynamic [8,9, 11, 14, 16, 33, 35, 40,
43,46]. We focus our discussion on the dynamic approach, the
category our work falls under. In particular, we shall focus on re-
lated work that supports a similar language model, namely work on
detecting determinacy races in programs with nested parallelism.

Nudler and Rudolph [32] proposed a English-Hebrew labeling
scheme that labels “parallel tasks” in a computation based on two
different traversal orders, such that comparing the labels suffice to
tell whether the two tasks are logically in parallel. This scheme
uses static labels, meaning that, once assigned, the labels do not
change, and the label size can grow proportionally to the maximum
number of fork points in the program (i.e., execution points where
parallel branches are spawned off).



Benchmark  Input size Description

Overhead over no instrumentation

Check view-read race ~ No steals  Check updates ~ Check reductions

collision 20 Collision detection in 3D

dedup medium Compression program
ferret large Image similarity search
fib 28 Recursive Fibonacci

knapsack 26 Recursive knapsack
pbfs V] =0.3M, |[E| = 1.9M  Parallel breadth-first search

1.03 17.25 17.11 17.10
1.21 6.72 6.71 6.67
1.00 2.25 2.25 2.25
5.95 33.58 36.90 75.60
2.70 49.24 56.41 66.79
3.34 3.94 3.94 5.65

Figure 7: Rader’s overhead over running 6 benchmarks without instrumentation. Both Rader and the benchmarks are compiled with -03. We ran Rader with
different configurations. Check view-read race shows the overhead when running the Peer-set algorithm for checking view-read races only. No steals shows
the overhead of checking races without eliciting any reductions. Check reductions shows the overhead with randomly chosen steal points to eilcit subset of
possible reductions. Check updates shows the overhead with steals at continuation depth that’s half of the maximum sync block size.

Benchmark  Input size Description

Overhead over an empty tool

Check view-read race  No steals ~ Check updates ~ Check reductions

collision 20 Collision detection in 3D

dedup medium Compression program
ferret large Image similarity search
fib 28 Recursive Fibonacci

knapsack 26 Recursive knapsack
pbfs [Vl =0.3M, |[E| = 1.9M  Parallel breadth-first search

1.00 8.19 8.13 8.12
1.22 6.53 6.52 6.48
1.00 1.04 1.04 1.04
3.89 6.15 6.76 13.85
2.44 11.56 13.24 15.68
1.79 3.04 3.04 4.6

Figure 8: Rader’s overhead over running 6 benchmarks with an empty tool, i.e., instrumentation leads to empty calls. Both Rader and the benchmarks are
compiled with -03. We ran Rader with different configurations as described in Figure 7.

Dinning and Schonberg [12] proposed fask-recycling scheme
that improves upon the English-Hebrew labeling scheme by recy-
cling labels for tasks, at the expense of failing to detect some races.
They empirically demonstrated that the task-recycling scheme can
be implemented efficiently.

Mellor-Crummey [29] proposed a different labeling scheme
called offset-span labeling, where the label sizes grow proportion-
ally to the nesting depth, improving on the bound of the English-
Hebrew labeling scheme. He also observed that, for parallel deter-
minacy race detection, it suffices to keep only two readers in shared
memory, namely, the “left-most” and “right-most” parallel readers,
which are the least and most recent reads in the serial execution
order of the computation.

Feng and Leiserson proposed the SP-bags algorithm [15], which
employs a disjoint-set data structure to maintain series-parallel re-
lationships. SP-bags executes the computation serially and incurs
near-constant overhead per check. They also observed that, the
parallel relationship is pseudotransitive, and thus it suffices to store
only a single reader in the shadow memory.

Bender et. al proposed the SP-hybrid algorithm [3] that employs
a scheme similar to English-Hebrew labeling, but manages the la-
bels in a concurrent order-maintenance data structure, which allows
dynamic labels and supports checks with constant overhead.

Raman et. al proposed ESP-bags [37] algorithm, which is sim-
ilar to the SP-bags algorithm but extended to handle async and
finish in Habanero-Java [7]. They subsequently proposed SPD3
detectors [38], also for Habanero-Java that maintains series-parallel
relationships by keeping track of the entire computation tree, which
has a simple implementation and executes in parallel.

Since our algorithms extend upon the SP-bags algorithm and
similarly use a disjoint-set data structure, they enjoy similar time
and space bounds; the SP+ has the additional overhead for simu-
lating steals and reductions. Like SP-bags, however, they execute
the computation serially. One distinct difference between our work
and these algorithms is that SP+ handles race detection on com-
putations with reducers, which correspond to non-series-parallel
dags. As far as we know, the SP+ algorithm is the first determinacy
race detector that provides provable guarantees for computations
that are not series-parallel. Nevertheless, the SP+ algorithm, albeit
sound for a given execution, requires polynomial number of execu-

tions to guarantee complete coverage, due to the inherent nondeter-
minism in how the runtime manages reducers.

10. CONCLUSION

We have presented two algorithms for catching two unique types
of races that arise from incorrect use of reducer hyperobjects. Both
algorithms are provably efficient and correct with respect to a given
execution, and incur modest overhead in practice. We have also
shown that for an ostensibly deterministic Cilk program, polyno-
mially many SP+ executions with different steal specifications suf-
fice to elicit all possible view-aware strands, thereby providing the
desired coverage.

Both algorithms execute the computation serially, however, and a
natural question is whether they can be parallelized to execute Cilk
computations in parallel, so as to achieve better execution time for
race detection. In particular, the Peer-Set algorithm has demon-
strated negligible overhead when running serially; an efficient par-
allel algorithm can lead to a light-weight always-on view-read race
detection tool. Here, we lay out some of the challenges that we
foresee in parallelizing these algorithms.

To parallelize the Peer-Set algorithm, one challenge is figure out
what minimal information needs to be stored in the shadow mem-
ory to correctly detect view-read races. The Peer-Set algorithm
maintains the shadow memory to keep track of last readers in order
to properly check whether two reads to a given reducer have the
same peer set. If the algorithm executes the computation in paral-
lel, there is no longer a clear notion of the last reader. For detecting
determinacy races in parallel, Mellor-Crummey has demonstrated
that, it is sufficient to store only two “left-most” and “right-most”
parallel readers [29]. Such a scheme works for detecting accesses
that are logically in parallel, but it is unfortunately insufficient for
checking for peer-set equivalence. Storing all parallel reads en-
countered, meanwhile, incurs non-constant space usage per reducer
and time overhead per check.

The main challenge to an efficient parallel SP+ algorithm, on the
other hand, is to achieve the desired time bound so that one can
get speedup during parallel execution. Recall that the SP+ algo-
rithm executes the computation according to the steal specification,
which dictates what continuations to steal and what reduce oper-
ations to execute in what order. The constraints imposed by the



steal specification mean that some worker threads may need to be
blocked at certain execution points, which may have adversarial ef-
fects on load balancing. Conforming to the steal specification while
maintaining good load balance seems to be an obstacle.
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