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EXECUTIVE SUMMARY 

 Good use of stacked DRAM is cache, but: 

– Tags in stacked DRAM believed too slow 

– On-chip tags too large (e.g., 96 MB for 1 GB stacked DRAM cache) 

 

 Solution put tags in stacked DRAM, but: 

– Faster Hits: Schedule together tag & data stacked DRAM accesses 

– Faster Miss: On-chip MissMap bypasses stacked DRAM on misses 

 

 Result (e.g., 1 GB stacked DRAM cache w/ 2 MB on-chip MissMap) 

– 29-67% faster than naïve tag+data in stacked DRAM 

– Within 88-97% of stacked DRAM cache w/ impractical on-chip tags 
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OUTLINE 

 Motivation 

 

 Fast Hits via Compound Access Scheduling 

 

 Fast Misses via MissMap 

 

 Experimental Results 

 

 Related Work and Summary 
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CHIP STACKING IS HERE 

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary  

cores 

DRAM 
layers 

silicon interposer 

cores 

DRAM 
layers 

“Vertical” “Horizontal” 

Samsung @ ISSCC’11: “A 1.2V 12.8Gb/s 2Gb Mobile Wide-I/O DRAM 
     with 4x128 I/Os Using TSV-Based Stacking” 

256 MB 



4 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches  |  Dec 7, 2011  |  Public 

HOW TO USE STACKED MEMORY? 

 Complete Main Memory 

– Few GB too small for all but some embedded systems 

 

 OS-Managed NUMA Memory 

– Page-size fragmentation an issue 

– Requires OS-HW cooperation (across companies) 

 

 Cache w/ Conventional Block (Line) Size (e.g., 64B) 

– But on-chip tags for 1 GB cache is impractical 96 MB! (TAKE 1) 

 

 Sector/subblock Cache 

– Tag w/ 2KB block (sector) + state bits w/ each 64B subblock 

– Tags+state fits on-chip, but fragmentation issues (see paper) 
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TAG+DATA IN DRAM (CONVENTIONAL BLOCKS – TAKE 2) 

 Use 2K-Stacked-DRAM pages but replace 32 64B blocks with  

– 29 tags (48b) + 29 blocks 

 

 

 

 

 

– But previously dismissed as too slow 
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IMPRACTICAL IDEAL & OUR RESULT FORECAST  

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary  
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FASTER HITS (CONVENTIONAL BLOCKS – TAKE 3) 
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COMPOUND ACCESS SCHEDULING 

 Reserve the bank for data access; guarantee row buffer hit 

– Approximately trading an SRAM lookup for a row-buffer hit: 

 

 

 

 

 

 On a miss, unnecessarily holds bank open for the tag-check latency 

– Prevents tag lookup on another row in same bank 

– Effective penalty is minimal since tRAS must elapse before closing this 
row, so bank will be unavailable anyway 
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FASTER MISSES (CONVENTIONAL BLOCKS – TAKE 4) 

 Want to avoid delay & power of stacked DRAM access on miss  

 

 Impractical on-chip tags answer 

– Q1 “Present:” Is block in stacked DRAM cache? 

– Q2 “Where:” Where in stacked DRAM cache (set/way)? 

 

 New on-chip MissMap 

– Approximate impractical tags for practical cost 

– Answer Q1 “Present” 

– But NOT Q2 “Where” 
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MISSMAP 

 On-chip structures to answer Q1: Is block in stacked DRAM cache? 

 

 

 

 

 MissMap Requirements 

– Add block in miss; remove block on victimization 

– No false negatives: If says, “not present”  must be not present 

– False positives allowed: If says, “present”  may (rarely) miss 

 Sounds like a Bloom Filter? 

 

 But our implementation is precise – no false negatives or positives 

– Extreme subblocking with over-provisioning 

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary  

Lookup address 
in MissMap 

Lookup tag in 
DRAM cache 

Miss: go to main 
memory 

Hit: get data from 
DRAM cache 

hit 

miss (miss) 

hit 



13 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches  |  Dec 7, 2011  |  Public 

MISSMAP IMPLEMENTATION 

 Key 1: Extreme Subblocking 
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MISSMAP IMPLEMENTATION 

 Key 2: Over-provisioning 

 Key 3: Answer Q1 “Present” NOT Q2 “Where” 
 36b tag + 64b vector = 100b 

 NOT 36b tag + 5*64b vector = 356b (3.6x) 

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary  
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METHODOLOGY (SEE PAPER FOR DETAILS) 

 Workloads (footprint) 

– Web-Index (2.98 GB)  //  SPECjbb05 (1.20 GB) 

– TPC-C (1.03 GB)  //  SPECweb05 (1.02 GB) 

 

 Base Target System 

– 8 3.2 GHz cores with 1 IPC peak w/ 2-cycle 2-way 32KB I$ + D$ 

– 10-cyc 8-way 2MB L2 for 2 cores + 24-cyc 16-way 8MB shared L3 

– Off-chip DRAM: DDR3-1600, 2 channels 

 Enhanced Target System 

– 12-way 6MB shared L3 + 2MB MissMap  

– Stacked DRAM: 4 channels, 2x freq (~½ latency), 2x bus width 

 

 gem5 simulation infrastructure (= Wisconsin GEMS + Michigan M5) 
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KEY RESULT: COMPOUND SCHEDULING + MISSMAP WORK 

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary  

Ideal SRAM Tags 
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Comp. Acc. Sched. 

Tags in DRAM 

Compound Access Scheduling + MissMap   
Approximate impractical on-chip SRAM tags 
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2ND KEY RESULT: OFF-CHIP CONTENTION REDUCED 

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary  

 For requests that miss, main memory is more responsive 

Fewer 
requests  

lower 
queuing 

delay 

Fewer requests   
More row-buffer 

hits  
lower DRAM 

latency 

B
a

s
e

 
  

  
  

1
2

8
M

B
 

  
  
2

5
6

M
B

 
  

5
1

2
M

B
 

1
0

2
4

M
B

 



19 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches  |  Dec 7, 2011  |  Public 

OTHER RESULTS IN PAPER 

 

 Impact on all off-chip DRAM traffic (activate, read, write, precharge) 

 Dynamic active memory footprint of the DRAM cache 

 Additional traffic due to MissMap evictions 

 Cacheline vs. MissMap lifetimes 

 Sensitivity to how L3 is divided between data and the MissMap 

 Sensitivity to MissMap segment size 

 Performance against sub-blocked caches 

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary  
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RELATED WORK 

 Stacked DRAM as main memory 

– Mostly assumes all of main memory can be stacked 
[Kgil+ ASPLOS’06, Liu+ IEEE D&T’05, Loh ISCA’08, Woo+ HPCA’10] 

 As a large cache 

– Mostly assumes tag-in-DRAM latency too costly 
[Dong+ SC’10, Ghosh+ MICRO’07, Jiang+ HPCA’10, 
Loh MICRO’09, Zhao+ ICCD’07] 

 Other stacked approaches (NVRAM, hybrid technologies, etc.) 

– [Madan+ HPCA’09, Zhang/Li PACT’09] 

 MissMap related 

– Subblocking [Liptay IBMSysJ’68, Hill/Smith ISCA’84, 
Seznec ISCA’94, Rothman/Smith ICS’99] 

– “Density Vector” for prefetch suppression [Lin+ ICCD’01] 

– Coherence optimization [Moshovos+ HPCA’01, Cantin+ ISCA’05] 
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EXECUTIVE SUMMARY 

 Good use of stacked DRAM is cache, but: 

– Tags in stacked DRAM believed too slow 

– On-chip tags too large (e.g., 96 MB for 1 GB stacked DRAM cache) 

 

 Solution put tags in stacked DRAM, but: 

– Faster Hits: Schedule together tag & data stacked DRAM accesses 
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– Within 88-97% of stacked DRAM cache w/ impractical on-chip tags 
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BACKUP SLIDES 
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UNIQUE PAGES IN L4 VS. MISSMAP REACH 

Ex. 70% of the time a 
256MB cache held 

~90,000 or fewer unique 
pages 
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IMPACT ON OFF-CHIP DRAM ACTIVITY 
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MISSMAP EVICTION TRAFFIC 

 Many MissMap evictions correspond to clean pages (e.g., no writeback 
traffic from the L4) 

 

 By the time a MissMap entry is evicted, most of its cachelines have are 
long past dead/evicted. 
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SENSITIVITY TO MISSMAP VS. DATA ALLOCATION OF L3 

 2MB MissMap + 6MB Data provides good performance 

 3MB MissMap + 5MB Data slightly better, but can hurt server workloads 
that are more sensitive to L3 capacity. 
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SENSITIVITY TO MISSMAP SEGMENT SIZE 

 4KB segment size works the best 

 Our simulations make use of physical addresses, so consecutive virtual 
pages can be mapped to arbitrary physical pages 
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COMPARISON TO SUB-BLOCKED CACHE 

 Beyond 128MB, overhead is greater than MissMap 

 At largest sizes (512MB, 1GB), sub-blocked cache delivers similar 
performance to our approach, but at substantially higher cost 
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BENCHMARK FOOTPRINTS 

 TPC-C: ~80% of accesses served by hottest 128MB worth of pages 

 SPECWeb05: ~80% accesses served by 256MB 

 SPECjbb05: ~80% accesses served by 512MB 

 Web-Index: huge active footprint 


