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ABSTRACT

We introduce the problem of evaluating graph constraints
in content-based publish/subscribe (pub/sub) systems. This
problem formulation extends traditional content-based pub/sub
systems in the following manner: publishers and subscribers
are connected via a (logical) directed graph G with node
and edge constraints, which limits the set of valid paths be-
tween them. Such graph constraints can be used to model
a Web advertising exchange (where there may be restric-
tions on how advertising networks can connect advertisers
and publishers) and content delivery problems in social net-
works (where there may be restrictions on how information
can be shared via the social graph). In this context, we
develop efficient algorithms for evaluating graph constraints
over arbitrary directed graphs G. We also present experi-
mental results that demonstrate the effectiveness and scal-
ability of the proposed algorithms using a realistic dataset
from Yahoo!’s Web advertising exchange.

Categories and Subject Descriptors

H.2.4 [Systems]: Query processing

General Terms

Algorithms, Performance
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1. INTRODUCTION
Content-based publish/subscribe (pub/sub) systems are

designed to match a large number of content-based sub-
scriptions (e.g., weather = “rain” ∧ temperature < 0) to
a rapid stream of events (e.g., weather ← “rain”, tempera-
ture ← -1), and to do so in a scalable and efficient manner.
In this context, a subscription is said to match an event if
the subscription predicate evaluates to true over the event
specification. There has been a large and rich body of work
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on designing efficient content-based indices to enable effi-
cient matching (e.g., [1, 8, 9, 11, 18, 22], and on developing
efficient dissemination strategies for delivering the matched
events to the subscribers (e.g., [2, 3, 5, 6, 10, 20, 21]).

One of the implicit assumptions in current content-based
pub/sub systems is that all subscribers are (logically) di-
rectly connected to the event sources, i.e., a subscription
matches an event so long as its predicate evaluates to true
over the event. However, this assumption is too strong for
many emerging applications such as Web advertising and so-
cial networks, where (logical) intermediaries exist between
subscribers and publishers and have a say as to when a
subscription matches an event. For instance, in Web ad-
vertising, advertisers (subscribers) are typically connected
to publishers (event sources) through intermediate adver-
tising networks, which enforce their own rules (predicates)
on which events can be matched against which subscrip-
tions based on various business rules and ad quality con-
cerns. Similarly, in social networks, status updates (events)
flow through the social graph and intermediate nodes in the
graph (i.e., persons connected to the event producers and
consumers) may have privacy settings that disallow certain
updates from some connections to flow to other connections.

The key point in these applications is the fact that the
constraints on the intermediate graph define the semantics
of a match, and may restrict the set of subscribers eligible
for the event. This is semantically different from the prob-
lem of disseminating the results of matches to subscribers
in a physically distributed network (e.g., [2, 3, 5, 6, 10, 20,
21]). In that case, the semantics of the matches remains the
same, based on subscribers being logically directly connected
to publishers. In contrast, the new semantics of matching
specified by intermediaries changes the set of matches it-
self, and is orthogonal to the dissemination problem once
the matches are performed. We now describe the Web ad-
vertising and social networking applications in more detail.

Web advertising exchange. A Web advertising exchange
connects content publishers to advertisers through adver-
tising networks. Advertising networks enable publishers to
reach a wider set of advertisers, and also enforce content
and ad quality rules that ensure that publishers see high-
quality ads and that advertisers reach high-quality content
sites. One example is shown in Figure 1. In this simple
example, the fact that the three advertising networks are
connected allows the three publishers to have access to the
four available advertisers in the system. However, to con-



trol for quality and other business reasons, each ad network
may specify targeting attributes, constraining the types of
opportunities that they are willing to forward. Note that
these constraints encode complex business rules and rela-
tionships and are expressed as arbitrary Boolean formulae.
For instance, an ad network may be interested only in traffic
from sports and finance pages with users older than 30, as is
the case for Net1 in Figure 1. In a different scenario, an ad
network may target only mobile device users in California
who are also interested in sports or those from New York
with an interest in travel.

Advertisers themselves specify campaigns (subscriptions)
based on targeting attributes, which describe the set of user
visits that they wish to show ads against. The entire Web
advertising exchange graph is typically hosted on a (logically
centralized) Web exchange, such as Yahoo!’s RightMedia ex-
change 1. The individual advertisers, and advertising net-
works are allowed to changes their subscriptions and predi-
cates, but all of these changes are made on the hosted Web
advertising exchange.

Adv1 

topic IN {Sports, Finance} 

topic IN {World News,  

Finance} 

topic IN {Sports,  

Local News} 

age IN {30‐60} 
age > 30 AND 

topic IN {Sports} 
age > 40 AND 

Adv2 

Adv3 

Adv4 

Net1 

Net2 

Pub3 

Pub2 

Pub1 

Net3 

Figure 1: Sample Web advertising exchange.

Every time a publisher’s Web page is visited, an adver-
tising opportunity arises. At that time, an event from the
publisher is generated indicating the targeting attributes for
the opportunity. Such targeting attributes can include in-
formation about the page (such as the page content and
its main topics), information about the available advertising
slots (such as number of ads in the page and their maximum
dimensions in pixels), and information about the user (such
as user demographics and geographic location). Given an
ad opportunity (event), the advertising exchange is respon-
sible for notifying all advertisers (subscribers) with least one
valid path from the publisher that originated the opportu-
nity. That is, each node in the path must satisfy its targeting
constraints. In Figure 1’s example, if a user with age 35 vis-
its a sports page from publisher Pub1, networks Net1 and
Net2 and advertiser Adv1 would satisfy the targeting and
graph constraints for the event. Therefore Adv1 would be
the only valid advertiser for the event.

Social networks. In social networks, users are connected to
each other forming a connection graph. Consider an appli-
cation where every user subscribes and produces a stream
of “interesting tidbits.” Such tidbits could include music
concerts, books of interest and status updates. A user can
choose to incorporate in his collection the tidbits produced
by other users in the network, but with some restrictions.
For instance, he or she may be only interested in publishing
and aggregating tidbits related to music. In this case, each
user is acting as an intermediary between other indirectly

1rightmedia.com

connected users, selectively aggregating user feeds and pub-
lishing them to other users. Given a user tidbit, the system
needs to find all valid paths to users through connections in
the social graph, while satisfying restrictions on intermedi-
ate nodes (e.g., only publish music related content).

The “News Feed” feature in Facebook2 can be viewed as
a simplified version of the tidbit idea, with the restriction
that in Facebook the status updates are delivered only to
the immediate friends of a user (i.e., only to users that are
one-hop away from the publishing user) and users have lim-
ited control on which updates are of their interest and who
should receive their updates. In Twitter3 intermediate ser-
vices can act as content dissemination nodes accumulating
and redistributing tweets to interested subscribers.

Outline of the solution. Given the above applications, we
can now formalize the problem as follows. Publishers and
subscribers are connected through a graph of intermediary
nodes. The overall system can be represented by a directed
graph with three types of nodes (i) publishers, (ii) interme-
diaries and (iii) subscribers. For a given event, each node in
the graph can act as a publisher, an intermediary or a sub-
scriber, with the restriction that nodes with no incoming
edges can only act as publishers and nodes with no outgo-
ing edges can only act as subscribers. In this setting, events
from a publisher p can only be delivered to subscribers that
have at least one path from p in the graph. Moreover, the
path from p must satisfy the constraints on its nodes and
edges.

One naive solution for this problem is to use existing so-
lutions for content-based indexing [1, 8, 9, 11, 18, 22] and
to post-filter the results, discarding subscribers that do not
have valid paths leading to them. We show that this naive
solution can be greatly improved by keeping track of node
reachability while using an index to evaluate the graph con-
straints. When the constraints on the nodes are simple sub-
set constraints [14] showed how to preprocess the graph into
a set of overlapping trees that would allow for faster online
evaluation. However, their solution does not extend to the
scenario when the constraints can be arbitrary Boolean ex-
pressions. One could flatten any Boolean expression into a
DNF and then use the subset algorithm presented in [14] but
that would result in an exponential blow up in the solution
cost [12].

Our solution works as follows: we create one entity in
the content-based index for each node in the graph. While
existing solutions would simply use this index to evaluate
the targeting attributes and return the index results as the
set of valid subscribers, in our setting this is a required but
not sufficient condition. We also much check that there is at
least one valid path from the publisher to each node returned
by the index. To verify reachability, our algorithms use an
efficient representation of the graph structure and use an
“online” breath-first search (BFS) from the publisher node
to compute the reachable set, using the nodes returned by
the index as input. This ensures that every matching sub-
scription satisfies both the path predicates as well as the
targeting constraints.

We also exploit the structure of the graph to speedup eval-
uation by skipping over nodes that are unreachable. For
DAGs we use the topological sort order of the graph to de-

2facebook.com
3twitter.com



cide which nodes are unreachable without having to retrieve
them from the index. In the case of general directed graphs
with cycles, we compute a condensation of the graph by
mapping each strongly connected component (SCC) into a
single node. We then use the resulting condensed DAG to
avoid retrieving from the index nodes that belong to un-
reachable SCCs.

We have implemented the proposed techniques and eval-
uated them using data from Yahoo!’s Web advertising ex-
change. In order to meet the latency needs of Web advertis-
ing, the indices and stored and evaluated in main-memory
— this is quite feasible because the size of the intermedi-
ary graph is by itself relatively compact given current main-
memory sizes (this is also true for the social graph), while
the graph nodes corresponding to the event producers and
consumers can be partitioned on multiple machines and the
matching results can be simply aggregated to get the full set
of matches. Our performance results show that the proposed
techniques are scalable and efficient, and offer significant
performance benefits over approaches that do not explicitly
consider graph constraints during query evaluation.

Contributions and roadmap. In summary, the main contri-
butions of this paper are:

• A formal definition of the problem of evaluating graph
constraints in content-based pub/sub systems (Section 2).

• Algorithms to solve the problem of evaluating graph
constraints in content-based pub/sub systems. We
propose algorithms that work for DAGs (Section 3.1)
and any directed graph G (Section 3.2). These algo-
rithms are currently deployed in production at the core
of Yahoo!’s RightMedia advertising exchange.

• Correctness and efficiency proofs, showing that the
proposed algorithm is correct and optimal (Sections 3.1,
3.2, 3.4).

• Experimental evaluation of the proposed algorithms
that demonstrate the benefits of our solution in a re-
alistic Web advertising exchange application scenario
(Section 4).

2. PROBLEM DEFINITION
In this paper we focus on the problem of evaluating graph

constraints in content-based pub/sub. This is modeled as a
graph G in which publishers and subscribers are connected
through nodes an edges. Our queries (events) have two com-
ponents (a) a start node s, representing the publisher, and
(b) a set Q of labels representing the event. We model the
network by a directed graph G = (N, E), with each node
n ∈ N having an associated set of labels Ln corresponding
to its targeting attributes. We define a directed path P to
be valid for Q if P is a path in G and the set of labels Ln as-
sociated to every node n in P is valid for Q, with respect to
a matching function match(Q, Ln). The output of the sys-
tem is defined as the set of nodes in G reachable from s via
valid paths for Q. For simplicity we restrict our presentation
to the case when targeting attributes can only be placed on
nodes. The problem of edge based targeting is equivalent, as
any edge can be split into two and the targeting constraints
applied to the new node.

The function match(Q, Ln) is application specific, and is
given ahead of time. For example, it can be defined as “su-
perset,”meaning that the set of labels Ln must be a superset

of the labels in Q. This is the usual semantics in information
retrieval systems, where every query label must be present
in the qualifying documents. If match(Q, Ln) is “subset,”
the targeting attributes specified for each node must be a
subset of the event attributes (e.g. a subscriber is inter-
ested in sports pages only and the event identifies a page as
belonging to both the sports and news categories).

We abstract away the details of the match(Q, Ln) func-
tion, and instead assume that each node has a unique node id
and that there is an underlying index which returns match-
ing nodes in order of their ids. The index implements a
getNextEntity(Q, n) function call which returns the next
matching node with node id at least n.

To describe the algorithms, we will use the following no-
tation throughout:

• Graph G = (N, E). A representation of the graph
that efficiently returns the children of a given node.
In other words, an efficient implementation of Cn =
{v ∈ N, (n, v) ∈ E}, which denote the set of children
of node n.

• Valid nodes NV ⊆ N . The set of nodes that are valid
with respect to its targeting attributes. This means
that for every node n ∈ NV , match(Q, Ln) is true.

• Reachable nodes NR ⊆ N . The set of of nodes that are
reachable from s using only nodes in NV . Note that
every node n ∈ NR is guaranteed to have a path from
s consisting only of valid nodes. However, n itself may
not be valid.

• Result nodes. The set the nodes that should be re-
turned as query results. This is exactly NR ∩NV : the
set of valid nodes reachable through valid paths.

Figure 2 shows the general architecture of our solution,
where the evaluator component uses both the index and the
graph structures simultaneously to compute the set of valid
subscribers for each event. Our solution can use any index
structure (e.g. [9, 11, 12, 22]) that provides an interface
for retrieving the valid nodes for a given event. The graph
component is responsible for returning the children of a given
node and it is used during our BFS evaluation of reachability.
The evaluator is responsible for computing the intersection
of the reachable and valid nodes.

Index Evaluator Graph

targeting (Q)

valid nodes (NV)

node (n)

children (Cn)

events (s,Q)

valid subscribers (NR ! NV)

Figure 2: Overall systems architecture – the evalu-
ator uses the index and the graph structures simul-
taneously to evaluate the set of valid subscribers for
a given event.

3. EVALUATION ALGORITHMS
We first present our evaluation algorithms for DAGs, be-

fore generalizing them to arbitrary graphs.

3.1 DAG evaluation
We begin by describing an algorithm for the special case

when the graph G is a DAG. We assign node ids in the order



of a topological sort of G. This maintains the invariant that
for any node n, its children v ∈ Cn come later in the node
id order. The algorithm is shown in Figure 3.

The algorithm begins by adding the children of the start
node s to the reachable set NR (line 1). It then retrieves the
first valid node with node id greater than s from the index
(line 3). If the retrieved node is already in the reachable set,
we know it is both reachable and valid and we add it to the
results set (line 5). Moreover, we also know that its children
are reachable and we add them to the reachable set (line 6).
We then resume the search using the index to retrieve the
next valid node after node id n+1. At the end of processing
we return the nodes that are in the result set (line 10).

evaluate(s, Q)
// Returns the valid and reachable nodes.
1. reachable.add(graph.children(s));
2. skipIndex = s + 1;
3. while (n = index.getNextEntity(Q, skipIndex)) {
4. if (reachable.contains(n)) {
5. result.add(n);
6. reachable.add(children(n));
7. }
8. skipIndex = n + 1;
9. }
10.return result.nodes();

Figure 3: Query evaluation algorithm for DAGs.

Figure 4 shows a simple DAG where each node is anno-
tated with its node id. Node ids are assigned in topologi-
cal sort order in an offline process before query evaluation
starts. The figure also show the labels associated with each
node. Let us consider that for this example the start node
is s = 0 and the query labels are Q = {A, B, C}. Func-
tion match(Q, Ln) is “subset,” meaning that node n is valid
w.r.t. its targeting attributes if and only if Ln ⊆ Q. Given
this match(Q, Ln) semantics, the set of valid nodes NV is
{2,3,5,6,8}.

Figure 4’s table shows the valid, reachable and result sets
after each valid node is returned by the index. When nodes
2 and 3 are returned by the index they are simply discarded
since they are not reachable. When node 5 is returned we
know it is reachable, and therefore, we add it to the result
set and we add its children to the reachable set. The same
happens for nodes 6 and 8.

To prove the algorithm’s correctness, we observe the fol-
lowing important invariant.

Invariant 1. For any node n, let Pn = {v ∈ N, (v, n) ∈
E} denote the set of parents of n. Then for any n ∈ NR∩NV

there exists one node v ∈ Pn such that v ∈ NR ∩NV .

Proof. Assume the contrary, let n be a node so that
none of the nodes v ∈ Pn are present in the result set. Then
n cannot be reached from s using only valid nodes, since
none of its parents are valid.

Theorem 1. The algorithm in Figure 3 is correct.

Proof. By sorting the nodes in order of the topological
sort, we can conclude that at the point node n is examined,
all of its parents already have been examined by the algo-
rithm. Node n can be added to the reachable set if and
only if one of the nodes v ∈ Pn was added to the result
set. Therefore, n is added to the result set only if one of its
parents is valid and reachable.

D 

D  A, B 

D 

A, C 

C 

A, B 

A, B 

1 

2 

3 

4 

6 

5 

7 

8 

s 
0 

n NV NR NR ∩NV

s = 0 ∅ {1,4,5} ∅
2 {2} {1,4,5} ∅
3 {2,3} {1,4,5} ∅
5 {2,3,5} {1,4,5,6,7} {5}
6 {2,3,5,6} {1,4,5,6,7,8} {5,6}
8 {2,3,5,6,8} {1,4,5,6,7,8} {5,6,8}

Figure 4: DAG example. The table shows the state
of NV , NR and NR ∩ NV after each valid node is re-
turned by the index.

3.1.1 Speeding up the DAG algorithm

We can speed up the DAG algorithm further by skipping
in the underlying index. The following two lemmas show
that we can always skip to the minimum element in the
reachable set that is at least as big as the current node id
returned by the index.

Lemma 1. Let m be the minimum node id in NR. Then
no node with id less than m can ever added to the result set.

Proof. Consider a node k whose id is less than m. Then
when processing node k, we know that it is not in the reach-
able set and therefore the reachable.contains(k) state-
ment will fail.

Lemma 2. When processing node n, let m be the mini-
mum id in NR that is at least as big as n. Then no node
with id less than m can ever be added to the result set.

Proof. Suppose by contradiction that some node with
id less than m should be added to the result set, and let k
be such a node with the smallest id. Clearly k must be a
valid node, furthermore, one of its parents, v ∈ Pk must be
both valid and reachable. When processing v we add Cv to
the reachable set. Therefore, since k ∈ Cv it could not be
skipped during the course of the algorithm.

To implement skipping during retrieval we need to change
only two lines in the original DAG algorithm (Figure 5). The
changes from the previous algorithm are in line 2, where we
set the next node to be retrieved by the index to be the
minimum node id in the reachable set, and line 8, where we
resume searching for valid nodes after the minimum node id
from the reachable set that is greater than n.

Let us consider again the example from Figure 4 this time
using the skip enabled algorithm shown in Figure 5. After
the index returns node 2 and we verify that it is unreachable,
we know that the next node with id greater than n that is
in the reachable set is 4. Therefore we can avoid retrieving
node 3 from the index completely (for n = 2, variable skip
will be set to 4 in line 8 of the algorithm).



evaluate(s, Q)
1. reachable.add(graph.children(s));
2. skipIndex = min(reachable);
3. while (n = index.getNextEntity(Q, skipIndex)) {
4. if (reachable.contains(n)) {
5. result.add(n);
6. reachable.add(children(n));
7. }
8. skipIndex = minMoreThan(reachable, n);
9. }
10.return result.nodes();

Figure 5: Query evaluation algorithm for DAGs with
skipping.

3.2 General graphs
The crucial invariant in the case of DAGs ensured that

when processing a node n all of its parents had already been
processed. This allowed us to quickly decide whether n is
reachable or not. This is not the case in general graphs,
where no topological sort on the nodes exists. In this case,
the evaluation algorithm explicitly maintains the valid set
NV , in addition to the set of reachable nodes NR.

As before, the algorithm consumes the sequence of nodes
returned by the index. Each of these nodes is valid, therefore
when processing node n, the algorithm begins by adding it
to the valid set NV . If the node is already present in the
reachable set (n ∈ NR), it is then added to the result set.
Moreover, since at this point we can conclude that n is valid
and reachable we add all of its children to the reachable
set. We recursively check whether any of these nodes were
already valid, in which case they too are added to the result
set and their children added to the reachable set.

The exact pseudocode for the algorithm for general graphs
is presented in Figure 6. We begin by retrieving the valid
nodes from the index starting from node id 0 (line 2). Once
a node n is returned by the index, evaluate adds it to the
valid set (line 4). It then checks if n is reachable (line 5). If
n belongs to the reachable set we know it is both reachable
and valid and we use the auxiliary function updatePath to
update the status of n and its descendant nodes.

Function updatePath starts by adding n to the result set
(line 1). Then it updates the status of n’s children. At this
point of the execution we can conclude that n’s children have
at least one valid path leading to them. This is done in lines
2–12. We only modify the status of a child node c if it is
not already in the result set (line 4). This check guarantees
that updatePath is called exactly once for each node in the
result set. If c already belongs to the valid set, we know it is
both valid and reachable and we update its status through
a recursive call to updatePath (line 6). If c does not belong
to the valid set, we just add it to the reachable set (line 9).

Let us consider the example in Figure 7. For this example
we randomly assigned node ids to emphasize the fact that
the algorithm does not make any assumption about the node
id ordering. The start node s is 3 and the query labels are
Q = {A, B, C}. A node is considered valid if its labels have
a non-zero intersection with Q. The set of valid nodes NV

returned by the index is {1,2,5,6,8}. The table in Figure 7
shows the initial state of each of the node sets, as well as the
state after each call to the index method getNextEntity().

When nodes 1, 2, 5 and 6 are returned by the index they
are not in the reachable set, so we simply add them to the
valid set. When the index returns node 8, which is reachable,

evaluate(s, Q)
// Returns the valid and reachable nodes.
1. reachable.add(graph.children(s));
2. skipIndex = 0;
3. while (n = index.getNextEntity(Q, skipIndex)) {
4. valid.add(n);
5. if (reachable.contains(n)) {
6. updatePath(n);
7. }
8. skipIndex = n + 1;
9. }
10. return result.nodes();

updatePath(n)
// Updates status of a node and its descendants.
1. result.add(n);
2. C = graph.children(n);
3. foreach c in C {
4. if (not result.contains(c)) {
5. if (valid.contains(c)) {
6. updatePath(c);
7. }
8. else {
9. reachable.add(c);
10. }
11. }
12.}

Figure 6: Query evaluation algorithm for the general
case.

we add it to the valid set and we call updatePath, which
adds 8 to the result set and its children 0 and 1 to the
reachable set. Since node 1 is already valid, updatePath is
called recursively and it is added to the result set as well.
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n NV NR Result

s = 3 ∅ {4,7,8} ∅
1 {1} {4,7,8} ∅
2 {1,2} {4,7,8} ∅
5 {1,2,5} {4,7,8} ∅
6 {1,2,5,6} {4,7,8} ∅
8 {1,2,5,6,8} {0,1,4,7,8} {1,8}

Figure 7: Cyclic graph example. The table shows
the state of NV , NR and NR ∩ NV after each valid
node is returned by the index.

Lemma 3. The query evaluation algorithm returns node
n in a result if and only if n is valid and reachable.

Proof. For n to be added to the result set, it must be
returned by the index and therefore valid. Furthermore,
since only the children of result nodes are added to the set
of reachable nodes NR, one of its parents was a result node,
therefore n must be reachable as well.

To prove the converse, assume by contradiction that the
lemma is false and let V be the set of valid and reachable
nodes that is not returned by the algorithm. There exists



some node n ∈ V such that one of its parents v ∈ Pn must
be returned by the algorithm (otherwise none of the nodes
in V can be reached from s). If v was added to the result set
before processing n, then when processing n it will appear
in NR and therefore be added to the result set. Otherwise,
n is added to the valid set NV , however when v is added to
the result set, n will be marked reachable and added to the
result set as well. Therefore no such n can exist.

3.2.1 Speeding up the algorithm

In the case of DAGs the numbering of the nodes allowed
us to conclude that some of the valid nodes cannot be reach-
able, and skip in the underlying index. At first glance, this
is not true in the case of general graphs—without a full or-
dering on the nodes, one cannot skip a node simply because
it is not currently in the reachable set. In order to maintain
the skipping property, we first decompose the graph into
strongly connected components (SCCs). Recall that if we
contract each SCC into a single node, the resulting graph,
called the condensation of G, is a DAG. Thus, we can com-
bine the skipping component from the DAG algorithm and
the recursive evaluation component from the general algo-
rithm to enable skipping.

Before building the index we decompose the graph into the
SCCs. Let us assume that node ids have two parts, the SCC
id and the id of the node within the SCC. After decomposing
the graph into SCCs, we assign the SCC ids in topological
sort order. Inside each SCC we assign ids in arbitrary order.
Figure 9 shows an example of this id assignment. Given two
node ids c1.n1 and c2.n2, c1.n1 > c2.n2 ⇔ c1 > c2 ∨ (c1 =
c2 ∧n1 > n2). If required by the index API, this numbering
scheme can be easily converted to simple integer ids, e.g.
by using the most significative bits to represent the SCC id.
We proceed by running the DAG algorithm on the SCC ids
and the general graph algorithm on the combined ids. The
former enables us to skip over unreachable entries in the
graph, while the latter guarantees correctness within each
SCC.

The full algorithm is given in Figure 8. We use vari-
able reachableSCCs to store just the component ids from
the nodes in NR. The main changes from Figure 6’s algo-
rithm are in lines 6 and 16, where we set variable skip to
the minimum SCC id in the reachable set. In line 16 we
also make sure the component is greater than the current
component, denoted by scc. For simplicity we assume that
setting skip to a given component comp will cause the index
to return the next valid node with id greater than comp.0.
Another change is that we only add a node to the valid set
if it belongs to a reachable component (line 8).

In Figure 9 we show a run of the evaluate algorithm with
skipping enabled. We keep the same example as in Fig-
ure 7, but annotate the graph with new node id assignment
scheme. The algorithm proceeds as before, keeping a set of
valid and reachable nodes, as well as the reachable SCCs.
When evaluating node 2.1 we note that the minimum reach-
able SCC has index 4, therefore we can set skip to 4.0. This
allows us to completely skip over nodes 3.1 and 3.2, which
would otherwise be retrieved by the index. Another subtle
point is that although node 2.1 is valid, we do not add it to
the valid set NV since at the point that it is processed we
already know it is not reachable.

To reason about the skipping behavior, we observe the
following simple consequence of the labeling scheme.

evaluate(s, Q)
// Returns the valid and reachable nodes.
1. C = graph.children(s);
2. foreach scc.v in C {
3. reachable.add(scc.v);
4 reachableSCCs.add(scc);
5. }
6. skip = min(reachableSCCs);
7. while (scc.n = index.getNextEntity(Q, skip)) {
8. if (reachableSCCs.contains(scc)) {
9. valid.add(scc.n);
10. if (reachable.contains(scc.n)) {
11. updatePath(scc.n);
12. }
13. skip = scc.n + 1;
14. }
15. else {
16. skip = minMoreThan(reachableSCCs, scc);
17. }
18. }
19. return result.nodes();

updatePath(scc.n)
// Updates status of a node and its descendants.
1. result.add(scc.n);
2. C = graph.children(scc.n);
3. foreach comp.v in C {
4. if (not result.contains(comp.v)) {
5. reachableSCCs.add(comp);
6. if (valid.contains(comp.v)) {
7. updatePath(comp.v);
8. }
9. else {
10. reachable.add(comp.v);
11. }
12. }
13. }

Figure 8: Query evaluation algorithm for the general
case with skipping.

Invariant 2. For any two nodes v, w ∈ N if there exists
a path from v to w in G, then either v and w lie in the same
SCC, or the SCC id of v is strictly smaller than the SCC id
of w.

The invariant allows us to skip unreachable SCCs in the
general graph in the same manner that we skipped unreach-
able nodes in DAGs. To ensure correctness we state the
analogues of Lemmas 1 and 2. We omit their proofs since
they are parallel to those in the DAG case.

Lemma 4. Let cm.nm be the minimum node id in NR.
Then no node with id less than cm.0 can ever added to the
result set.

Lemma 5. When processing node c.n, let cm.nm be the
minimum id in NR that is at least as big as c.n. Then no
node with id less than cm.0 can ever be added to the result
set.

3.2.2 Node ordering within an SCC

Although the node id assignment within an SCC does not
impact the algorithm correctness or the ability to skip in
the index, it may affect query latency. In particular, it is
easy to come up with examples where a suboptimal labeling
may delay the emission of the first result by O(n), where n
is the number of nodes in the graph. The time for retrieving
the first result is quite important in several applications,



!"
#$#"

%&"'"
($#"

'"
)$#"

%&"*"
)$("

+$)"
!"

+$("
%&"*"

+$#"

%&"*"

,$,"

-"

!"

.$#"

scc.n NV NR SCCs Result

s = 0.0 ∅ {1.1,4.1,5.1} {1,4,5} ∅
2.1 ∅ {1.1,4.1,5.1} {1,4,5} ∅
5.1 {5.1} {1.1,4.1,5.1,5.2,5.3} {1,4,5} {5.1}
5.2 {5.1,5.2} {1.1,4.1,5.1,5.2,5.3} {1,4,5} {5.1,5.2}

Figure 9: Graph decomposed into strongly con-
nected components (SCCs). Column SCCs is the
set of reachable SCCs. After processing node 2.1
the next reachable SCC is 4, therefore the algorithm
sets skip to 4.0 and nodes 3.1 and 3.2 are skipped
during the processing.

including Web advertising exchanges, where the selection of
valid subscribers is followed by other computations that can
be pipelined [17].

In Figure 10(a) we show an example where we have m
nodes in a single SCC. Let us consider for this example that
the query labels include label A but not label X, which
means that all of the nodes are valid except for node 1.1.
When node 1.2 is returned by the index it is simply added
to the valid set NV . The same happens for every node 1.i,
i between 2 and m− 1. Finally, when we see node 1.m, we
know it is reachable and we add it to the result set. At that
point, updatePath is recursively called to add all nodes 1.i,
i between m−1 and 2 to the reachable and result sets. This
means that we must retrieve m − 1 nodes from the index
before emitting the first query result.

Figure 10(b) shows exactly the same graph, but with dif-
ferent node ids. With these new ids no recursive call to
updatePath is needed. Every node 1.i, i from 1 to m − 1
returned by the index is already reachable by the time it is
evaluated. This means that we can start emitting results
right away when we retrieve the first result from the index.

We note that for every fixed query a node assignment
requiring no calls to updatePath always exists: simply label
the nodes in order discovered by running breadth-first search
from s. However, there is no universally optimal assignment
— different queries yield different optimum assignments.

3.3 Handling updates in the system
Our proposed algorithm relies on the index for evaluating

the targeting constraints, and on the graph, for checking
node reachability. These two data structures are built offline
and used during query processing. Both the graph and the
index structure can be updated using standard techniques
(for example maintaining a “tail” index for entities added
since the last index build).

We must be careful, however, if the new updates to the
graph change the global connectivity parameters. Problems
arise if, due to the update, two previously distinct SCCs
are now merged into one, as the skipping may now produce
incorrect results. In this case, we must disable the SCC
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Figure 10: Two different node id assignments within
an SCC and their impact on query latency: (a) il-
lustrates the worst possible assignment while (b) il-
lustrates the best possible assignment.

based skipping until the graph index is rebuilt and the node
ids are updated to reflect the new graph structure.

3.4 Complexity analysis
The challenge of the problem we are trying to solve comes

from the fact that even though the underlying graph G is
given ahead of time, the graph induced by the valid nodes is
given online, as it depends on the query Q. Before analyzing
the running time of our proposed algorithm, we present a
running time lower bound that applies to any algorithm for
this problem. In what follows, denote by outn the number of
outgoing edges for node n. For any set of nodes S, out(S) =
P

n∈S
outn.

Theorem 2 (Lower bound). The worst-case running
time lower bound for any algorithm A solving the networked
pub/sub problem is Ω(|N |+ |E|), where |N | and |E| are the
number of nodes and edges in the system, respectively.

Proof. Consider a graph G where all nodes are valid and
reachable and each node has only one incoming edge. Any
algorithm A for the networked pub/sub problem will have to
look at all nodes and edges of this graph in order to produce
a valid response.

Since the algorithm makes a check for every node returned
by the index, the total running time of our algorithm is
O(|NV |+ out(NV ∩NR)). However, it is worth noting that
the skipping allowed by the structure of the graph reduces
the contribution of the NV term as some valid nodes may be
determined to be unreachable and be skipped by the index.

Besides the proposed algorithms, in Section 4 we show
results for two baseline algorithms:

• Index baseline uses the index to retrieve all valid nodes
and then applies a breath-first search (BFS) on the
results of the index, to filter out nodes that are not
reachable. The running time for this algorithm is also
O(|NV |+out(NR∩NV )). However, for this algorithm,
we have to wait until the index returns all the results
before the BFS can start, and therefore, the query la-
tency for the first response is much higher than in our
proposed algorithm, which can start emitting results
during the index evaluation. Moreover, this algorithm
cannot benefit from the graph structure to drive skip-
ping in the index.

• BFS baseline does not use the index. It runs BFS
from the start node s, and for each reachable node n



it calls match(·, ·) to validate if n is also valid. The
running time for this algorithm is O(|NR|+ out(NR ∩
NV )). The downside of this baseline is the fact that
evaluating match(·, ·) without an index does not scale
well in practice, as it is shown in our experimental
results.

Our proposed algorithm and the two baselines are worst-
case optimal. Moreover, the number of edges accessed by
our algorithm and the two baseline algorithms is also the
same, as described below.

Theorem 3. Let EBFS ⊂ E be the set of edges examined
by any BFS algorithm running on graph G. Then the number
of edges examined by the evaluate algorithm is no more than
|EBFS |.

Proof. Consider the edges examined by evaluate. Each
edge is examined at most once, and edges are only examined
when a node v is determined to be both valid and reachable.
Therefore, the number of edges examined by evaluate is at
most out(NV ∩NR). Now consider a BFS algorithm running
on G. Every node added to the BFS queue is valid and
reachable, and every time such a node is evaluated all of its
children are added to the queue. Therefore, the number of
edges examined by the BFS algorithm is out(NV ∩NR).

4. EXPERIMENTAL RESULTS
In this section we evaluate our query evaluation algo-

rithms. We start by describing the data set we used in Sec-
tion 4.1. We then evaluate the performance of the general
version of our algorithm against the BFS and index base-
lines defined in Section 3.4. For this evaluation we varied
the targeting selectivity (Section 4.2) and graph size (Sec-
tion 4.3). We run our experiments on a 2.5GHz Intel(R)
Xeon(R) processor with 16GB of RAM. In all experiments
we run, both the index and the graph were already loaded
into memory.

4.1 Data set
Our experiments are based on a subset of the graph from

Yahoo!’s RightMedia advertising exchange currently in pro-
duction. This graph has three types of nodes: publishers
which are nodes with no incoming edges; ad networks, which
are the intermediary nodes; and advertisers, which are nodes
with no outgoing edges. The graph has 71,097 nodes and
87,799 edges. A summary of the the salient statistics of the
data set is given in Table 1.

The average number of nodes reachable from each pub-
lisher node ignoring the targeting constraints is 4,802, which
is about 43% from the total of 11,086 ad networks and adver-
tiser nodes. We have also computed the strongly connected
components (SCCs) and the average number of incoming
and outgoing edges for each type of node in the graph.
From the 282 ad network nodes, 126 of them form a large
SCC. The remainder networks are isolated, except for an-
other small SCC of size 4. Figure 11 shows the structure of
the graph, which resembles the bow-tie structure of the Web
graph [4]. As shown in the figure, there are about 17K edges
that directly connect publishers to advertisers, without go-
ing through ad networks. We also computed the number of
cycles in the graph with path size smaller than 12 and found
over 3.7 million cycles.

In our setting, an event is the result of a user visiting one
of the pages for a given publisher. The event contains a set
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Figure 11: Graph structure of an advertising ex-
change.

PARAMETER VALUE

NUMBER OF NODES 71,097
NUMBER OF EDGES 87,799
PUBLISHERS (PUB) 60,011
AD NETWORKS (NET) 282
ADVERTISERS (ADV) 10,804
AVG REACHABLE NODES 4,802
MAX REACHABLE NODES 5,998
MIN REACHABLE NODES 1
NUMBER OF SCCs 70,969
MAX SCC SIZE 126
AVG out(PUB) 1.3
AVG in(NET) 224.4
AVG out(NET) 42.1
AVG in(ADV) 2.3
NUMBER OF CYCLES > 3,776,185

Table 1: Summary of graph parameters.

of attributes from the page and the user. A simple example
is {topic ← sports, gender ← male, age ← 20, adsize ←
300 × 200}. Each ad network and advertiser node in the
system can define the types of events they are interested on
by specifying a Boolean expression over the event attributes.
For instance, they can specify (topic = finance∧age = 20∧
geo = CA). We used the index algorithms described in [12,
22], which efficiently evaluate arbitrarily complex Boolean
expressions using an inverted index.

4.2 Index selectivity
For the first set of experiments, we used the graph de-

scribed in Table 1 and Figure 11 and we varied the index
selectivity. We defined six attributes with different selectiv-
ity values and we randomly assigned DNF expressions over
these synthetic attributes to the graph nodes, so that the
index selectivity would be approximately 1/16, 1/8, 1/4, 1/2

and 1. Selectivity 1 means that no targeting was applied.
Table 2 shows the size of the node sets and the number of
edges evaluated by the algorithms for each index selectivity
we tested. We tested 1,000 queries for each selectivity and
the numbers are averaged.

Figure 12 compares the running time of our algorithm
with the BFS baseline, which does not use the index and
simply applies match(·, ·) for every reachable node during
the BFS. Since the graph from the advertising exchange has
cycles, for these experiments we used the generic version of
evaluate described in Figure 6. The times shown in this and
all figures in this section are in milliseconds. The figure also
shows the time spent by the baseline in the match(·, ·) eval-
uation. This baseline performs well if |NR| is small, but it is
not scalable. In our setting evaluating match(·, ·) takes 20µs
without the index. Therefore, after |NR| is only 2,000 (se-
lectivity is 1/2) the index-based methods are more efficient.



1/16 1/8 1/4 1/2 1

|NV | 693 1,336 3,081 7,064 11,086
|NR| 34 83 452 1,756 4,837
|NR ∩ NV | 3 11 125 1,126 4,837
out(NR ∩ NV ) 47 127 740 3,310 8,588

Table 2: Size of valid, reachable and result node
sets and the number of edges evaluated for different
selectivity values.

More complex evaluation functions which require more time
to evaluate, would lead to a index based methods outper-
forming the BFS baseline even earlier. For the remainder of
the experiments we do not show results for the BFS baseline
since it is not scalable.
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Figure 12: Runtime performance of our proposed
algorithm and the BFS baseline for different selec-
tivity values. Also shown is the cost of evaluation
without the index.

Figure 13 compares our algorithm with the index base-
line, which first takes all of the valid nodes from the index
and then runs BFS to find the reachable subset. The fig-
ure also shows the total time spent in the index evaluation
module, i.e., the time spent in calls to getNextEntity().
Figure 14 measures query latency by plotting the time each
different algorithm takes for emitting the first result. Our
proposed algorithm is always about 50% faster than the in-
dex baseline due to the fact that it can start emitting results
before retrieving all of the valid nodes. In Web advertising
exchanges, the time to retrieve the first result is quite im-
portant as there are several steps in the overall evaluation
that can be pipelined [17].
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Figure 13: Runtime performance of our proposed
algorithm and the index baseline for different selec-
tivity values. Also shows index evaluation cost.

4.3 Graph size
For the experiments presented in this section we used a

graph generator to produce graphs of different sizes. We
generated graphs up to five times bigger than our original
graph maintaining the same average number of incoming and
outgoing edges for publishers, ad networks, and advertiser
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Figure 14: Time to first response of our proposed
algorithm and the index baseline for different selec-
tivity values.

×1 ×2 ×3 ×4 ×5

|NV | 2,751 5,489 8,263 10,968 13,677
|NR| 596 1,153 1,675 2,141 2,806
|NR ∩ NV | 166 320 466 593 782
out(NR ∩ NV ) 1,000 1,934 2,833 3,613 4,746

Table 3: Size of valid, reachable and result node
sets and the number of edges evaluated for different
graph sizes.

nodes as shown in Table 1. For these experiments we kept
the targeting selectivity to 1/4 and we tested 1,000 random
queries for each graph size. Table 3 shows the average size
of the different node sets and number of edges evaluated for
each graph size.

Figure 15 compares the running time of our algorithm
with the index baseline for different graph sizes. Figure 16
shows the time for the first response, highlighting that the la-
tency of the proposed algorithm scales better than the base-
line as the graph size grows.
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Figure 15: Runtime performance of our proposed
algorithm and the index baseline for different graph
sizes. Also shows index evaluation cost.

5. RELATED WORK
As mentioned in the introduction, the problem of eval-

uating graph constraints extends the semantics of matches
in content-based publish/subscribe systems. Our proposed
solution builds upon the work on indexing content-based
subscriptions, including the use of hash-indices (e.g., [11]),
trees (e.g., [2]) and inverted lists (e.g., [22]), and extends
them to work on graph constraints. There has also been
a large body of work on pub/sub systems with complex
predicates and events, such as those that support predicates
over multiple events (e.g., [1, 8]) and tree-structured events
(e.g., [9]), which is again complementary to our proposed ap-
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proach since we focus on evaluating graph constraints. An-
other related body of work is that of content-dissemination
networks (e.g., [5, 20, 21], where the goal is to efficiently
route the results to subscribers over a physical network based
on matching results. These do not change the semantics of
matches themselves, as is the case with graph constraints.

There has also been a vast body of work on indexing
graphs in order to efficiently support reachability queries
(e.g., [7, 13, 15, 19]). These techniques are designed to han-
dle queries such as “is node A reachable from node B” given
the directed edges of the graph. Using our terminology, ex-
isting reachability techniques essentially support only the
case where function match(·, ·) evaluates to “true” for every
node. They are not designed to handle predicates on the
nodes of the graph which depend on the query assignment,
which is the main focus of the techniques we propose.

More recently, [14] showed how to handle the case when
the match(·, ·) function is the subset relation. Their algo-
rithms are exponential in Σ, the total number of unique
labels on the edges. In this paper we consider arbitrary
match(·, ·) functions, which may encode Boolean expressions
over hundreds of potential labels, as long as they are effi-
ciently supported by the index infrastructure (e.g. [12]).

Another related body of work is that of indexing the struc-
ture and content of XML documents, and efficiently process-
ing queries over such documents (e.g., [16]). While XML
queries can indeed specify restrictions on valid paths over
XML documents, these are designed to work over tree-structured
data, and the set of predicates are limited to simple predi-
cates on XML tags, as opposed to arbitrary predicates over
nodes and edges.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced the problem of evaluating

graph constraints in content-based pub/sub systems, and
have proposed efficient evaluation algorithms over arbitrary
directed graphs. Our experimental results show that the
proposed algorithms lead to significant performance gains
in a realistic Web advertising exchange application scenario.
The proposed algorithms are currently deployed in produc-
tion at the core of Yahoo!’s RightMedia Web advertising ex-
change. An interesting direction for future work is a ranked
version of this problem, in which the ranking function may
be dependent on the paths from the publisher to the dif-
ferent subscribers (e.g., longer paths may incur in higher
cost, so subscribers reached through them might have lower
scores).
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