
Efficiently Exploring Architectural Design Spaces
via Predictive Modeling

Engin İpek Sally A. McKee
Cornell University

{engin,sam}@csl.cornell.edu

Bronis R. de Supinski
Martin Schulz

Lawrence Livermore National Laboratory
{bronis,schulzm}@llnl.gov

Rich Caruana
Cornell University

caruana@cs.cornell.edu

Abstract
Architects use cycle-by-cycle simulation to evaluate design choices
and understand tradeoffs and interactions among design param-
eters. Efficiently exploring exponential-size design spaces with
many interacting parameters remains an open problem: the sheer
number of experiments renders detailed simulation intractable. We
attack this problem via an automated approach that builds accurate,
confident predictive design-space models. We simulate sampled
points, using the results to teach our models the function describing
relationships among design parameters. The models produce highly
accurate performance estimates for other points in the space, can
be queried to predict performance impacts of architectural changes,
and are very fast compared to simulation, enabling efficient discov-
ery of tradeoffs among parameters in different regions. We validate
our approach via sensitivity studies on memory hierarchy and CPU
design spaces: our models generally predict IPC with only 1-2%
error and reduce required simulation by two orders of magnitude.
We also show the efficacy of our technique for exploring chip mul-
tiprocessor (CMP) design spaces: when trained on a 1% sample
drawn from a CMP design space with 250K points and up to 55×
performance swings among different system configurations, our
models predict performance with only 4-5% error on average. Our
approach combines with techniques to reduce time per simulation,
achieving net time savings of three-four orders of magnitude.

Categories and Subject Descriptors I.6.5 Computing Method-
ologies [Simulation and Modeling]: Model Development; B.8.2
Hardware [Performance and Reliability]: Performance Analysis
and Design Aids

General Terms Design, Experimentation, Measurement

Keywords design space exploration, sensitivity studies, artificial
neural networks, performance prediction

1. Introduction
Architects quantify the impact of design parameters on evaluation
metrics to understand tradeoffs and interactions among those pa-
rameters. Such analyses usually employ cycle-by-cycle simulation

Copyright 2006 Association for Computing Machinery. ACM acknowledges that this
contribution was authored or co-authored by a contractor or affiliate of the U.S.
Government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

ASPLOS’06 October 21–25, 2006, San Jose, California, USA.
Copyright c© 2006 ACM 1-59593-451-0/06/0010. . . $5.00
Reprinted from ASPLOS’06, [Unknown Proceedings], October 21–25, 2006, San
Jose, California, USA., pp. 1–12.

of a target machine either to predict performance impacts of ar-
chitectural changes, or to find promising design subspaces satisfy-
ing different performance/cost/complexity/power constraints. Sev-
eral factors have unacceptably increased the time and resources re-
quired for the latter task, including the desire to model more re-
alistic workloads, the increasing complexity of modeled architec-
tures, and the exponential design spaces spanned by many indepen-
dent parameters. Thorough study of even relatively modest design
spaces becomes challenging, if not infeasible [22, 16, 5].

Nonetheless, sensitivity studies of large design spaces are often
essential to making good choices: for instance, Kumar et al. [20]
find that design decisions not accounting for interactions with the
interconnect in a CMP are often opposite to those indicated when
such factors are considered. Research on reducing time per experi-
ment or identifying the most important subspaces to explore within
a full parameter space has significantly improved our ability to con-
duct more thorough studies. Even so, simulation times for thorough
design space exploration remain intractable for most researchers.

We attack this problem by using artificial neural networks
(ANNs) to predict performance for most points in the design space.
We view the simulator as a nonlinear function of its M -parameter
configuration: SIM(p0, p1, ...pM). Instead of sampling this func-
tion at every point (parameter vector) of interest, we employ non-
linear regression to approximate it. We repeatedly sample small
numbers of points in the design space, simulate them, and use the
results to teach the ANNs to approximate the function. At each
teaching (training) step, we obtain highly accurate error estimates
of our approximation for the full space. We continue refining the
approximation by training the ANNs on further sample points until
error estimates drop sufficiently low.

By training the ANNs on 1-2% of a design space, we predict
results for other design points with 98-99% accuracy. The ANNs
are extremely fast compared to simulation (training typically takes
few minutes), and our approach is fully automated. Combining our
models with SimPoint [34] reduces required CPU time by three-
four orders of magnitude, enabling detailed study of architectural
design spaces previously beyond the reach of current simulation
technology. This allows the architect to purge most of the unin-
teresting design points quickly and focus detailed simulation on
promising design regions.

Most importantly, our approach fundamentally differs from
heuristic search algorithms in scope and use. It can certainly be
used for optimization (predicted optimum with 1% sampling is
within 3% of global optimum performance for applications in our
processor and memory system studies), but we provide a super-
set of the capabilities of heuristics that intelligently search design
spaces to optimize an objective function (e.g., those studied by
Eyerman et al. [10]). Specifically, our technique:

1

Output Layer

Input Layer

Input1 Input2 Input3

Hidden
Layer

Output

Input1 Input2

Output2

Output
Layer

Layer 2
Hidden

Hidden
Layer 1

Input
Layer

Output1

Figure 1. Simplified diagrams of fully connected, feed-forward ANN

• generates accurate predictions for all points in the design space.
Unlike heuristic search techniques, our models can be queried
to predict performance impacts of architectural changes, en-
abling efficient discovery of tradeoffs among parameters in dif-
ferent regions.
• provides highly accurate (typically within 1-2%) error esti-

mates. These increase confidence in results, and provide a well
crafted knob for the architect to control the accuracy-speed
tradeoff inherent in architectural modeling.
• verifies that apparent performance gains from a novel proposal

are not mere artifacts of other parameters chosen.
• allows architects to observe the sensitivity of a proposal to

interacting parameters. This allows more thorough evaluation,
increasing confidence in novel architectural ideas.

After training on 2% of our design spaces, querying our models
to identify design points within >10% of the predicted optimal IPC
purges over 80% of design points. Querying again to identify points
within a given power budget, for instance, could eliminate compa-
rable portions of remaining subspaces. Inspection of these spaces
can then provide insight to guide subsequent design decisions.

2. ANN Modeling of Design Spaces
Artificial neural networks (ANNs) are machine learning models
that automatically learn to predict targets (here, simulation results)
from a set of inputs. ANNs constitute a powerful, flexible method
for generalized nonlinear regression, and deliver accurate results
in the presence of noisy input data. They have been used in re-
search and commercially to guide autonomous vehicles [30], to
play backgammon [36] and to predict weather [23], stock prices,
medical outcomes, and horse races. The representational power of
ANNs is rich enough to express complex interactions among vari-
ables: any function can be approximated to arbitrary precision by
a three-layer ANN [24]. We choose ANNs over other predictive
models (such as linear or polynomial regression and Support Vec-
tor Machines [SVMs]) for modeling parameter spaces in computer
architecture because:

1. they represent a mature, already commercialized technology;
2. they do not require the form of the functional relationship be-

tween inputs and target values to be known;
3. they operate with real-, discrete-, cardinal-, and boolean-valued

inputs and outputs, and thus can represent parameters of interest
to an architect; and

4. they work well with noisy data, and thus can successfully be
combined with existing mechanisms that reduce the time simu-
lation experiments take at the expense of introducing noise.

Figure 1 shows the basic organization of simple fully connected,
feed-forward ANNs. Networks consist of an input layer, output
layer, and one or more hidden layers. Input values are presented

w1

w2

wn

w0

x1

x2

xn

x0 = 1

�
�
�
.
.
.

Σ
net = Σ wi xii=0

n
1

1 + e
-neto = σ(net) =

Figure 2. Example of a hidden unit with a sigmoid activation function
(borrowed from Mitchell [24]).

at the input layer; predictions are obtained from the output layer.
Each unit operates on its inputs to produce an output that it passes
to the next layer. In fully connected feed-forward ANNs, weighted
edges connect every unit in each layer to all units in the next layer,
communicating outputs to other units downstream. A unit calcu-
lates its output by applying its activation function to the weighted
sum (based on edge weights) of all inputs. Figure 2 depicts a hid-
den unit using a sigmoid activation function. In general, activation
functions need not be sigmoid, but must be nonlinear, monotonic,
and differentiable. Our models use sigmoid activation functions.

Our model’s edge weights are updated via backpropagation, us-
ing gradient descent in weight space to minimize squared error be-
tween simulation results and model predictions. Weights are ini-
tialized near zero, causing the network to act like a linear model.
During training, examples are repeatedly presented at the inputs,
differences between network outputs and target values are calcu-
lated, and weights are updated by taking a small step in the direc-
tion of steepest decrease in error. As weights grow, the ANN be-
comes increasingly nonlinear. Every network weight wi,j (where i
and j correspond to processing units) is updated according to Equa-
tion 1, where E stands for squared-error and η is a small learning
rate constant (effectively the gradient descent step size).

wi,j ← wi,j − η
∂E

∂wi,j

(1)

wi,j ← wi,j − (η
∂E

∂wi,j

+ α∆wi,j(n− 1)) (2)

To speed search and help avoid backpropagation’s getting “stuck”
in local minima, a momentum term in the update rule of Equation 2
causes a weight’s update in the current gradient descent iteration to
include a fraction of the previous iteration’s update. This allows the
search to continue “rolling downhill” past inferior local minima.
Momentum accelerates gradient descent in low-gradient regions
and damps oscillations in highly nonlinear regions.

2.1 Training

Machine learning models require some type of training experience
from which to learn. Here we use direct training examples con-
sisting of the design space parameter vector to the simulator func-
tion along with IPC from the simulation results. Training an ANN
involves learning edge weights from these examples. The weights
associated with each edge in an ANN define the functional relation-
ship between input and output values. In order to predict IPC from
L1 and L2 cache sizes and front-side bus bandwidth, the architect
runs a number of cycle-by-cycle simulations for combinations of
these parameters, collecting the parameters and resulting IPCs into
a training dataset. The weights are adjusted based on these data
until the ANN accurately predicts IPC from the input parameters.
Obviously, a good model must make accurate predictions for pa-
rameter combinations on which it was not trained.

The ANN parameters that most impact learning are number
of hidden layers, number of hidden units per layer, learning rate
(gradient descent step size), momentum, and distribution of initial
weights. Finding settings that perform well is typically straightfor-
ward. We use one 16-unit hidden layer, a learning rate of 0.001,

2

and a momentum value of 0.5, initializing weights uniformly on
[-0.01,+0.01]. These parameters can be tuned automatically.

2.2 Cross Validation

In polynomial curve fitting, polynomials of high degree yield mod-
els that have excellent fit to the training samples yet interpolate
poorly; likewise, ANNs may overfit to training data. Overfitting
yields models that generalize poorly to new data even though they
perform well on training data. In contrast to polynomial curve fit-
ting, where model complexity is reduced by decreasing polynomial
degree, larger networks for which training is halted before gradi-
ent descent reaches the minimum error on the training set gener-
ally make better predictions [2]. We reserve a portion of the train-
ing set and prevent overfitting by stopping gradient descent when
squared error on this unbiased sample stops improving. If 25% of
the data are used as this early stopping set, the training set is 25%
smaller, and as with other regression methods, ANNs learn less
accurate models from reduced training samples. Cross validation
both avoids this problem and allows us to estimate model accuracy.

In cross validation, the training sample is split into multiple
subsets or folds. In our case, we divide training samples into 10
folds, each containing 10% of the training data. Folds 1-8 (80% of
the data) are used for training an ANN; fold 9 (10% of the data) is
used for early stopping; and fold 10 (also 10% of the data) is used
for estimating performance of the trained model. We train another
ANN on folds 2-9; use fold 10 for early stopping; and use fold 1 to
estimate accuracy. This process is repeated to use the data in each
fold successively as early stopping sets and test sets.

We combine the 10 networks into an ensemble, averaging their
predictions. Each ANN is trained on 80% of the data, but all data
are used to train models in the final ensemble. This ensemble
performs similarly to models trained on all data, yet held-aside
data are available for early stopping and unbiased error estimation.
Averaging multiple models often performs better than using one
model. Means and standard deviations of model error on the test
folds are used to estimate ensemble accuracy, allowing the architect
to determine when the models are accurate enough to be useful.

2.3 Modeling Architectural Design Spaces

Parameters in architectural design spaces can be grouped into a few
broad categories. Cardinal parameters indicate quantitative rela-
tionships (e.g., cache sizes, or number of ROB entries). Nominal
parameters identify choices, but lack quantifiable properties among
their values (e.g., front-end fetch policy in SMTs, or type of coher-
ence protocol in CMPs). Continuous (e.g., frequency) and boolean
(e.g., on/off states of power-saving optimizations) parameters are
also possible. The encoding of these parameters and how they are
presented to ANNs as inputs significantly impact model accuracy.
We encode each cardinal or continuous parameter as a real num-
ber in [0,1], normalizing with minimax scaling via minimum and
maximum values over the design space. Using a single input facil-
itates learning functional relationships involving different regions
in the parameter’s range, and normalization prevents placing more
emphasis on parameters with broader ranges. We represent nom-
inal parameters with one-hot encoding: we allocate an input unit
for each parameter setting, making the input corresponding to the
desired setting 1 and those corresponding to other settings 0. This
avoids erroneous encoding of range information where none exists.
We represent boolean parameters as single inputs with 0/1 values.
Target values (simulation results) for model training are encoded
like inputs. We scale normalized IPC predictions back to the actual
range. When reporting error rates, we perform calculations based
on actual (not normalized) values.

When exploring a design space, absolute value of the model
error is of little use. For instance, in predicting execution time,

erring by one second is negligible for actual time of an hour but
significant for actual time of two seconds. When absolute errors
have differing costs, ANNs can be trained by presenting points with
higher costs more often. Stratification replicates each point in the
dataset by a factor proportional to the inverse of its target value
so that the network sees training points with small target values
many more times than it sees those with large absolute values. As
a result, the training algorithm puts varying amounts of emphasis
on different regions of the search space, making the right tradeoffs
when setting weights to minimize percentage error. We perform
early stopping based on percentage error.

2.4 Intelligent Sampling

Sample points for training models affect how quickly they learn
to approximate the simulator function accurately. Randomly sam-
pling simulation data from the design space yields good perfor-
mance, but choosing sample points intelligently yields better pre-
dictions. Active learning [33] is a general class of algorithms that
aim for a given accuracy with the fewest possible samples by se-
lecting the points from which the model is likely to derive the most
benefit. We seek to identify samples on which the model makes the
greatest error, since learning these points is most likely to improve
model accuracy. Unfortunately, assessing model error on any point
requires knowing simulation results for that point. Since results are
unavailable before simulation, identifying points with highest error
requires an alternative strategy. We instead measure the variance of
the predictions for all ANNs in our cross validation ensemble. Af-
ter each training round, we query all ANNs for predictions on every
point in the design space (testing takes under 10 seconds for 20K+
points). We calculate the variance of model predictions, the mean
prediction, and the prediction’s coefficient of variance (CoV, or the
ratio of the standard deviation to mean). Points with high prediction
CoV values are those for which disagreement among the ANNs is
largest. Since the ensemble’s ANNs differ primarily by the sam-
ples (folds) on which they are trained, high disagreement indicates
that including the point in the sample set can lower model variance
(and thus error). In effect, active learning assigns confidence val-
ues based on predictions of the 10 models from our 10-fold cross
validation, and then samples the least confident points.

Impacts of different points on model accuracy are dependent on
one another. Sorting and sampling strictly according to CoV values
can yield a dataset with redundant points. One point may improve
the variance of another if these points lie close together in the de-
sign space, and adding either point increases model accuracy over
the whole region. Sampling both such points is inefficient, since the
second presents little additional information. We address this by it-
eratively choosing samples from the sorted points. We include the
least confident point first. We include the next least confident point
if its distance (in the design space) to the first point is above a cer-
tain threshold. We include each point considered if its distance to
current points is above threshold. If we do not find enough points
satisfying this constraint, we lower the threshold and reconsider
rejected points. Once we have enough sample points, we simulate
them, train a new model, and while our error estimate is too high we
calculate a new set of points for sampling through the active learn-
ing mechanism. Figure 3 summarizes our modeling mechanism for
random sampling or active learning. Figure 4 provides a different
perspective on the steps in training versus using the model.

3. Experimental Setup
We conduct performance sensitivity studies on memory system,
microprocessor, and multithreaded chip multiprocessor (CMP) pa-
rameters via detailed simulation of an out-of-order processor and its
memory subsystem (SESC) [32]. We model contention and latency
at all levels. Phansalkar et al. [29] use principal component analy-

3

1. Identify important design parameters.
2. Perform a set of simulations for N combinations of parameter settings,

possibly reducing the time for each simulation by using statistical simula-
tion techniques (e.g., SimPoint).

3. Normalize inputs and outputs. Encode nominal parameters with one-hot
encoding, booleans as 0-1, and others as real values in the normalized
0-1 range. Collect the results in a data set.

4. Divide data set into k folds.
5. Train k neural nets with k-fold cross validation. During training, present

each data point to the ANNs at a frequency proportional to the inverse of
its IPC (we assume the target to be predicted is IPC; other targets are
similar). Perform early stopping based on percentage error.

6. Estimate average and standard deviation of error from cross validation.
7. Repeat 2-6 with N additional simulations if estimated error is too high.
8. Predict any point in the parameter space by placing the parameters at the

input layers of all ANNs in the ensemble, and averaging predictions of all
models.

Figure 3. Summary of steps in modeling mechanism

��� ����� ���	�

���� �	��

�� ���	� � � � ���	� ���

��� �	��� � �
��� � ���� "!�� � #$��� � ���

�&%&'(��)�*
+$� ���,�!��	- #�+�� .�

/0�	�	��� ��+�� ��� ��� ��1
�$�����2 �	� � �

34���$'5��� ��� � ��
�5� �6�2 �	� �����

*56	�7�0����2 � ����� � ���

85��� �	17� ���"!.�	���	29$6�� 2 �	� ��1�� �	��!.�����	2

��� ����� ���	�"
���� ��.�

:76���� ;

���	��2 ;

�&%0%<!.�	����2

85������� �

�� ���	� � � � ���	� ���
�$� � �	�5����� � ��	� ��� � �

��� � ������� � � ���� ��� ���

Figure 4. Pictorial representation of modeling mechanism

sis to group SPEC CPU 2000 [35] applications according to metric
similarities like instruction mix, branch direction, and data locality.
For the memory system and processor studies, we choose codes
(bzip2, crafty, gcc, mcf, vortex, twolf, art, mgrid, applu, mesa,
equake, and swim) to cover the clusters they identify, ensuring that
we model the diverse program behaviors represented by the suite.
Since we run over 500K simulations, we choose MinneSPEC [19]
reduced reference inputs to validate our approach (results for SPEC
reference inputs would be even more impressive in terms of time
saved). We run all simulations, then sample these incrementally to
train the ANNs, predicting remaining points in the space at each
round, and validating predictions against the simulation results. For
the CMP study, we use two applications (swim and art) from the
SPEC OMP V3.0 suite and one application (mg) from the paral-
lel NAS benchmarks. We use MinneSPEC and Class-S inputs for
SPEC OMP and NAS benchmarks, respectively. We train our mod-
els on 1.03% of the design space (2500 simulations), and report
accuracies obtained on an independently sampled set of 500 points.

We assume a 90nm technology for the processor and mem-
ory system studies and a 65nm technology for the CMP study.
We derive all cache latencies with CACTI3.2 [39]. Table 1 shows
parameters in the memory hierarchy study, the design space for
which spans the cross product of all parameter values and requires
23,040 simulations per benchmark. Core frequency is 4GHz. The
L2 bus runs at core frequency and the front-side bus is 64 bits.
Table 2 shows parameters in the microprocessor study, which re-
quires 20,736 simulations per benchmark. We use core frequen-
cies of 2GHz and 4GHz, and calculate cache and SDRAM laten-
cies and branch misprediction penalties based on these. We use 11-
and 20-cycle minimum latencies for branch misprediction penal-
ties in the 2GHz and 4GHz cases, respectively. For register files,

Variable Parameters Values

L1 DCache Size 8,16,32,64 KB
L1 DCache Block Size 32,64 B
L1 DCache Associativity 1,2,4,8 Way
L1 Write Policy WT,WB
L2 Cache Size 256,512,1024,2048 KB
L2 Cache Block Size 64,128 B
L2 Cache Associativity 1,2,4,8,16 Way
L2 Bus Width 8,16,32 B
Front Side Bus Frequency 0.533,0.8,1.4 GHz

Fixed Parameters Value

Frequency 4GHz
Fetch/Issue/Commit Width 4
LD/ST Units 2/2
ROB Size 128 Entries
Register File 96 Integer/96 FP
LSQ Entries 48/48
SDRAM 100 ns 64 bit FSB
L1 ICache 32 KB/2 Cycles
Branch Predictor Tournament (21264)

Table 1. Parameter values in memory system study

we choose two of the four sizes in Table 2 based on ROB size
(e.g., a 96 entry ROB makes little sense with 112 integer/fp reg-
isters). When choosing the number of functional units, we choose
two sizes from Table 2 based on issue width. The number of load,
store and branch units is the same as the number of floating point
units. SDRAM latency is 100ns, and we simulate a 64-bit front-
side bus at 800MHz. The design space for the CMP study spans the
cross product of all parameters in Table 3, requiring 241,920 simu-
lations per benchmark for a full sensitivity study. We vary number
of cores and SMT contexts, microarchitectural parameters, and pa-
rameters of the shared-memory subsystem.

Partial simulation techniques (in which only certain application
intervals or simulation points are modeled) reduce time per experi-
ment at the expense of slight losses in accuracy. In SimPoint, Sher-
wood et al. [34] combine basic block distribution analysis with
clustering to summarize behavior of sections of program execu-
tion; this guides selection of representative samples to simulate in
detail. Errors induced by such techniques vary across the parameter
space. When combining techniques like SimPoint with our predic-
tive models, the ANNs see noisy results where the precise amount
of error depends on the simulation technique, its parameters, and
design space parameters. To evaluate our approach with noisy (but
quickly obtained) simulation results, we repeat the processor study
with SimPoint and four long-running applications (mesa, equake,
mcf, crafty). We scale SimPoint intervals from 100M to 10M
dynamic instructions to adjust for shorter MinneSPEC runtimes.
Otherwise, we run SimPoint out-of-the-box.

4. Evaluation
We address four questions:

1. How much of the design space must we simulate to train our
models?

2. How accurate and robust are our predictions versus full simula-
tion?

3. How fast can we train the models?
4. How well does our approach integrate with other approaches to

reduce time per simulation?

We answer these via four sensitivity studies: the memory hierarchy
and processor studies with random sampling; the memory study
with active sampling; and the processor study with SimPoint. We

4

Variable Parameters Values

Fetch/Issue/Commit Width 4,6,8 Instructions
Frequency 2,4 GHz (affects Cache/DRAM/

Branch Misprediction Latencies)
Max Branches 8,32
Branch Predictor 1K,2K,4K Entries (21264)
Branch Target Buffer 1K,2K Sets (2-Way)
ALUs/FPUs 2/1,4/2,3/1,6/3,4/2,8/4

(2 choices per Issue Width)
ROB Size 96,128,160
Register File 64,80,96,112

(2 choices per ROB Size)
Ld/St Queue 16/16,24/24,32/32
L1 ICache 8,32KB
L1 DCache 8,32KB
L2 Cache 256,1024KB

Fixed Parameters Value

L1 DCache Associativity 1,2 Way
(depends on L1 DCache Size)

L1 DCache Block Size 32B
L1 DCache Write Policy WB
L1 ICache Associativity 1,2 Way

(depends on L1 ICache Size)
L1 ICache Block Size 32B
L2 Cache Associativity 4,8 Way

(depends on L2 Cache Size)
L2 Cache Block Size 64B
L2 Cache Write Policy WB
Replacement Policies LRU
L2 Bus 32B/Core Frequency
FSB 64bits/800 MHz
SDRAM 100ns

Table 2. Parameter values in the processor study

also apply our approach to the CMP design space described in
Section 3. Here we predict performance because it’s well under-
stood, but our approach is general enough to apply to other metrics,
even multiple metrics at once.

Several mechanisms demonstrate that our design spaces are
complex and nonlinear. First, linear regression yields high error
(15-20%) for even dense (8%) samplings of the space: simple lin-
ear models are inadequate. Second, we investigate what the learned
model “looks like”: edge weights deviate significantly from their
initial values near zero, indicating that the model is a highly non-
linear function of the design parameters. Third, we perform multi-
dimensional scaling (MDS) analysis on our dataset [14], finding
numerous local maxima in different regions, many of which are
≥90% of the globally optimal IPC.

4.1 Training Set Size

Like other regression methods, ANNs typically predict better when
trained on more data. However, data collection in architecture de-
sign space exploration is expensive, and a tradeoff exists between
number of simulations and model accuracy. For the processor and
memory system studies, we increment our datasets by 50 simula-
tions at each training step. After each training round, we test the
ANNs on remaining points in the design space, recording mean
percentage error and standard deviation of error and tracking the
cross-validation estimates for these metrics. Space constraints limit
us to presenting graphs for a subset of representative applications.

Table 4 summarizes results for all applications with randomly
selected training samples. We show mean and standard deviation
of error along with cross-validation estimates for training sets cor-
responding roughly to 1%, 2%, and 4% of the full space. Table 6
shows the reduction factor in number of required sample points
when using active learning versus random sampling and training

Variable Parameters Values

Core Configuration In-Order, Out-of-Order
Issue Width 1,2,4
Number of Cores 1,2,4,8
SMT Contexts per Core 1,2,4
Off-Chip Bandwidth 8,16,24,32,40,48,56,64 GB/s
Frequency 1,1.5,2,2.5,3,3.5,4 GHz

(affects Cache/DRAM/
Branch Misprediction Latencies)

L2 Cache Size 1,2,4,8MB
L2 Cache Block Size 32,64,128B
L2 Cache Associativity 1,2,4,8,16 Way

Fixed Parameters Value

ROB Size 24,48,96
(depends on Issue Width)

Int/FP Issue Queue Sizes 12/12,24/24,48/48
(depends on Issue Width)

LD/ST Queue Sizes 6/6,12/12,24/24
(depends on Issue Width)

Int/FP Rename Registers 24/24,48/48,96/96
(depends on Issue Width)

L2 Bus 64B/Core Frequency
L1 ICache 32KB,2 Way,32B,LRU

(latency depends on Core
Frequency)

L1 DCache 32KB,2 Way,64B,LRU
(latency depends on Core
Frequency)

L2 Cache Shared,Unified,8 Banks
(latency depends on Core
Frequency
and L2 Parameters)

Branch Predictor Tournament
SMT Fetch Policy Round Robin
SDRAM 80ns Uncontended

Table 3. Parameter values in the CMP study

the ANNs within error rates of 2-3% for nine applications. For
tighter accuracy requirements, we expect active sampling to outper-
form random sampling: the latter generally requires more samples
to deliver comparable results. In most cases we reduce the number
of samples, but sometimes there is no change. Nonetheless, active
learning never increases sampling requirements, and further study
of intelligent sampling strategies is an avenue of ongoing research.

4.2 Accuracy

Learning curves in Figure 5 illustrate percentage error rate de-
creases in the memory system and processor studies as training set
sizes increase (via random sampling). The x axes show portions of
full parameter spaces simulated to form training sets, and the y axes
show percentage error across the design spaces. Error bars indicate
±1 standard deviation of the averages.

For the memory system study, training on 0.22% of the full de-
sign space (50 training examples) yields average error between 5-
10%, with standard deviation of error typically between 10-15%
across all applications. These are unacceptably high. The small
training set includes insufficient information to capture the func-
tional relationship between design parameters and performance.
Standard deviation of error is high, and model accuracy varies sig-
nificantly from one region of the design space to another, indicating
that sampling is too sparse. For the applications in Figure 5, error
rates improve dramatically as more data are added to the training
sets. When training on roughly 1% of the full space, average er-
ror and standard deviation drop to about 0.7-6.7%. Randomly sam-
pling 1% more brings error rates down to 0.6-4.7%. Rates reach an
asymptote at sample sizes of about 4%: models for these applica-
tions exhibit <2% average error.

5

Memory System Study

1.08% Sample 2.17% Sample 4.12% Sample

Mean Error SD of Error Mean Error SD of Error Mean Error SD of Error

Application True Estimated True Estimated True Estimated True Estimated True Estimated True Estimated
equake 2.32% 2.47% 3.28% 4.58% 1.40% 1.39% 1.81% 1.61% 0.92% 0.92% 0.97% 0.98%
applu 3.11% 2.97% 2.74% 2.79% 2.35% 2.57% 1.90% 2.32% 1.28% 1.31% 1.04% 1.21%
mcf 4.61% 4.53% 5.6% 5.73% 2.84% 3.06% 2.94% 3.61% 1.74% 1.77% 1.59% 1.68%

mesa 2.85% 2.8% 4.27% 5.24% 2.69% 2.73% 4.16% 4.77% 1.97% 2.15% 2.87% 3.79%
twolf 4.13% 3.70% 6.23% 5.80% 3.78% 3.30% 5.61% 4.84% 3.67% 3.44% 5.50% 4.95%
crafty 2.16% 2.45% 2.10% 2.38% 1.17% 1.29% 1.10% 1.33% 0.87% 0.96% 0.77% 0.91%
mgrid 4.96% 5.19% 6.12% 6.43% 1.53% 1.52% 1.40% 1.79% 0.83% 0.85% 0.74% 0.75%

art 6.63% 6.83% 5.23% 5.99% 4.69% 4.82% 4.29% 4.45% 2.92% 3.05% 2.86% 3.09%
gcc 3.69% 4.13% 4.02% 5.46% 1.50% 1.49% 1.44% 1.30% 1.13% 1.14% 0.97% 1.09%

bzip2 1.95% 1.90% 1.84% 1.82% 0.97% 0.94% 0.86% 0.81% 0.59% 0.61% 0.48% 0.52%
vortex 4.53% 4.65% 4.63% 5.19% 2.90% 2.96% 3.07% 2.77% 1.90% 2.07% 1.99% 2.14%
swim 0.66% 0.75% 0.52% 0.55% 0.57% 0.55% 1.50% 0.48% 0.54% 0.54% 0.45% 0.46%

Processor Study

0.96% Sample 1.93% Sample 4.10% Sample

Mean Error SD of Error Mean Error SD of Error Mean Error SD of Error

Application True Estimated True Estimated True Estimated True Estimated True Estimated True Estimated
equake 1.80% 1.89% 1.39% 1.47% 1.15% 1.99% 0.94% 1.00% 0.72% 0.73% 0.59% 0.64%
applu 1.94% 1.85% 1.45% 1.43% 1.30% 1.29% 0.99% 1.04% 0.87% 0.89% 0.72% 0.82%
mcf 1.67% 1.71% 1.38% 1.51% 1.20% 1.26% 0.99% 1.13% 0.94% 0.99% 0.83% 0.90%

mesa 2.57% 2.851% 1.96% 2.06% 1.27% 1.33% 0.99% 1.05% 0.87% 0.94% 0.69% 0.79%
twolf 4.85% 5.26% 4.76% 5.78% 4.32% 4.28% 4.39% 4.63% 4.34% 4.05% 4.05% 4.29%
crafty 2.65% 2.75% 2.03% 2.07% 1.53% 1.61% 1.25% 1.34% 0.78% 0.81% 0.66% 0.65%
mgrid 1.39% 1.16% 1.13% 0.89% 0.99% 1.00% 0.75% 0.78% 0.74% 0.80% 0.59% 0.66%

art 2.41% 2.34% 1.91% 2.00% 1.67% 1.74% 1.45% 1.53% 1.29% 1.29% 1.12% 1.18%
gcc 1.88% 1.97% 1.48% 1.31% 1.09% 1.05% 0.88% 0.95% 0.59% 0.59% 0.49% 0.52%

vortex 2.90% 3.46% 2.17% 2.68% 1.39% 1.52% 1.11% 1.34% 0.88% 0.93% 0.71% 0.78%
swim 2.65% 1.49% 2.05% 1.88% 1.22% 1.45% 0.94% 1.31% 0.59% 0.57% 0.49% 0.49%
bzip2 1.30% 1.50% 0.95% 1.16% 0.79% 1.86% 0.61% 0.66% 0.56% 0.57% 0.44% 0.46%

CMP Study (1.03% Sample)

Mean Error SD of Error

Application True Estimated True Estimated

art-OMP 4.66% 5.03% 6.05% 5.50%
swim-OMP 4.44% 4.87% 4.65% 3.90%

mg 5.27% 6.41% 4.76% 4.39%

Table 4. Memory hierarchy, processor and CMP study results (random sampling)

Learning curves for the processor parameter study follow simi-
lar trends. When simulating only 0.24% of the full design space (50
training examples), the data contain too little information to train
accurate models. Depending on the application, average error rate
varies between 2.5-6.4%, while standard deviation falls in the 1.8-
5.2% range. As more data are sampled, model accuracy improves
rapidly. When training set size reaches 1% of the full space, models
for the applications in Figure 5 reach average error rates≤2.9% and
standard deviations <2.2%. Table 4 shows that models for other ap-
plications (art, bzip2, equake, gcc, swim, twolf) maintain average
error rates of 1.3-4.9% with standard deviations of 1.0-4.8% at this
sampling rate. When training set size increases to 2% of the full
space, models for all applications except twolf achieve error rates
<2%. At a 4% sample size, all other models exhibit error rates
≤1.3%; the twolf model’s error rate drops to 4.3% on average, and
at an approximately 8% sample size, to roughly 3.9%. This is not
problematic: since cross validation yields accurate error estimates,
the architect can continue simulations until error rates become ac-
ceptable for the respective study.

Table 4 lists the mean error and the standard deviation of er-
ror obtained on the CMP study at a 1.03% sampling of the de-
sign space. Models for art, swim and mg obtain average error
rates of 4.66%, 4.44%, and 5.27%, and standard deviations of
5.03%, 4.87% and 6.41%, respectively. Note that system perfor-
mance varies widely across the CMP design space we study (by
25, 41, and 55× for art, swim, and mg, respectively), and hence
these error rates are negligible compared to the performance im-
pact of the parameters we vary. The empirical cumulative distribu-
tion function (CDF) plots in Figure 7 show the distribution of error.
The x axes show percentage error, and the y axes show the percent-
age of data points that achieve error less than each x value. 90%
of the points are predicted with less than 12.2-9.2% error, and 75%
of the points are predicted with less than 5.5-6.5% error. 65-72%
of the points are predicted with less than 5% error. These results
suggest that ANNs can handle design spaces with widely varying
target values and can still deliver low percentage error when trained
for the right metric (as explained in Section 2.3).

6

0 1 2 3 4 5 6 7 8 9
0
2
4
6
8

10
12
14

P
er

ce
nt

ag
e

E
rr

or

vortex (Memory System)
Mean
StDev

0 1 2 3 4 5 6 7 8 9
0
2
4
6
8

10
12
14

applu (Memory System)
Mean
StDev

0 1 2 3 4 5 6 7 8 9
0
2
4
6
8

10
12
14

mgrid (Memory System)
Mean
StDev

0 1 2 3 4 5 6 7 8 9
0
2
4
6
8

10
12
14

P
er

ce
nt

ag
e

E
rr

or

mesa (Memory System)
Mean
StDev

0 1 2 3 4 5 6 7 8 9
0
2
4
6
8

10
12
14

mcf (Memory System)
Mean
StDev

0 1 2 3 4 5 6 7 8 9
0
2
4
6
8

10
12
14

crafty (Memory System)
Mean
StDev

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

P
er

ce
nt

ag
e

E
rr

or

vortex (Processor)
Mean
StDev

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

applu (Processor)
Mean
StDev

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

mgrid (Processor)
Mean
StDev

0 1 2 3 4 5 6 7 8 9 10
Percentage of Full Space Sampled

0
1
2
3
4
5
6
7
8

P
er

ce
nt

ag
e

E
rr

or

mesa (Processor)
Mean
StDev

0 1 2 3 4 5 6 7 8 9 10
Percentage of Full Space Sampled

0
1
2
3
4
5
6
7
8

mcf (Processor)
Mean
StDev

0 1 2 3 4 5 6 7 8 9 10
Percentage of Full Space Sampled

0
1
2
3
4
5
6
7
8

crafty (Processor)
Mean
StDev

Figure 5. Accuracy of the models on the design spaces (random sampling)

To evaluate the robustness of our error estimation, we compare
estimated and true mean error and standard deviation. Figure 6 il-
lustrates these metrics on the memory and processor design spaces
as a function of training set size. For almost all codes, cross vali-
dation estimates are within 0.5% of actual values for sample sizes
≥1%. For sample size≤1%, differences between estimated and ac-
tual errors vary between 0.5-4%, but estimates are conservative in
this regime. Cross validation estimates error rates from individual
ANNs in the ensemble. Final predictions, however, average predic-
tions of all ANNs, typically yielding lower error rates. Cross vali-
dation thus slightly overestimates actual error, providing a conser-
vative estimate of average prediction accuracy and standard devia-
tion. With sample size above 1%, differences between true and es-
timated error rates become negligible. Accuracy of these estimates
allows the architect to stop collecting simulation results as soon as
error rates become acceptable. In our experiments, cross validation
almost never underestimates error.

The top of Table 5 shows the best three configurations for bzip2
from the memory hierarchy study. The bottom shows the best pre-
dicted configurations for a 2% sampling of the design space. The
predicted configurations point to the same narrow area of the design
space as the simulation results: L1 cache size, write policy, and L2
size match, and L2 block size differs in only one configuration.
For other parameters, the model chooses slightly different trade-
offs from the optimal settings found by simulation, but these do not
yield significant performance differences for this application and

this particular (optimum) region of the design space. The model
comes close to finding the global optimum, and predicted perfor-
mance characteristics of the region it finds are similar to the actual
performance characteristics. Combining this with an approach that
ranks parameter importance or characterizes interactions [41, 17]
guides the architect in exploring design tradeoffs in the region.

4.3 Training Times

If ANN models are to enable exploration of large design spaces
with reasonable expenditures of time and computational resources,
it is critical that time required to train the models be much smaller
than architectural simulation time. Figure 8 shows time required
to train our models as a function of training set size. The ANNs
in the 10-fold cross validation ensemble are trained in parallel on
10 cluster nodes with 3GHz Intel Pentium 4TM CPUs and 1GB
DRAM. Each point represents the average of three measurements.
As training sets increase from 1-9% of the parameter space, training
times scale linearly from 30 seconds to four minutes. 1 Since
simulation results are collected in batches, each round of training
is amortized over multiple simulations. Learning curves presented
in these studies typically level off at training set sizes of 2-4% of

1 This result is expected, since the algorithmic complexity of training a
neural network with a single hidden layer, H hidden units, I inputs, and O
outputs on D data points for P passes through the training set is O(H(I +
O)PD).

7

0 1 2 3 4 5 6 7 8 9
0
2
4
6
8

10
12
14

P
er

ce
nt

ag
e

E
rr

or
vortex (Memory System)

Mean
Estimated Mean

0 1 2 3 4 5 6 7 8 9
0
2
4
6
8

10
12
14

vortex (Memory System)
StDev
Estimated StDev

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

vortex (Processor)
Mean
Estimated Mean

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

vortex (Processor)
StDev
Estimated StDev

0 1 2 3 4 5 6 7 8 9
0
2
4
6
8

10
12
14

P
er

ce
nt

ag
e

E
rr

or

mgrid (Memory System)
Mean
Estimated Mean

0 1 2 3 4 5 6 7 8 9
0
2
4
6
8

10
12
14

mgrid (Memory System)
StDev
Estimated StDev

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

mgrid (Processor)
Mean
Estimated Mean

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

mgrid (Processor)
StDev
Estimated StDev

0 1 2 3 4 5 6 7 8 9
0
2
4
6
8

10
12
14

P
er

ce
nt

ag
e

E
rr

or

applu (Memory System)
Mean
Estimated Mean

0 1 2 3 4 5 6 7 8 9
0
2
4
6
8

10
12
14

applu (Memory System)
StDev
Estimated StDev

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

applu (Processor)
Mean
Estimated Mean

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

applu (Processor)
StDev
Estimated StDev

0 1 2 3 4 5 6 7 8 9
0
2
4
6
8

10
12
14

P
er

ce
nt

ag
e

E
rr

or

mesa (Memory System)
Mean
Estimated Mean

0 1 2 3 4 5 6 7 8 9
0
2
4
6
8

10
12
14

mesa (Memory System)
StDev
Estimated StDev

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

mesa (Processor)
Mean
Estimated Mean

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

mesa (Processor)
StDev
Estimated StDev

0 1 2 3 4 5 6 7 8 9
0
2
4
6
8

10
12
14

P
er

ce
nt

ag
e

E
rr

or

mcf (Memory System)
Mean
Estimated Mean

0 1 2 3 4 5 6 7 8 9
0
2
4
6
8

10
12
14

mcf (Memory System)
StDev
Estimated StDev

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

mcf (Processor)
Mean
Estimated Mean

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

mcf (Processor)
StDev
Estimated StDev

0 1 2 3 4 5 6 7 8 9
Percentage of Full Space Sampled

0
2
4
6
8

10
12
14

P
er

ce
nt

ag
e

E
rr

or

crafty (Memory System)
Mean
Estimated Mean

0 1 2 3 4 5 6 7 8 9
Percentage of Full Space Sampled

0
2
4
6
8

10
12
14

crafty (Memory System)
StDev
Estimated StDev

0 1 2 3 4 5 6 7 8 9 10
Percentage of Full Space Sampled

0
1
2
3
4
5
6
7
8

crafty (Processor)
Mean
Estimated Mean

0 1 2 3 4 5 6 7 8 9 10
Percentage of Full Space Sampled

0
1
2
3
4
5
6
7
8

crafty (Processor)
StDev
Estimated StDev

Figure 6. Estimated and true means and standard deviations for percentage error (random sampling)

the full space, requiring less than two minutes per training step
(compared to hours, days, or weeks of simulation per design point).

4.4 Integration with SimPoint

Our predictive modeling directly targets large parameter spaces and
is orthogonal to techniques that reduce times for single simulations.

This orthogonality does not necessarily imply that multiple tech-
niques can be combined successfully. For instance, SimPoint re-
duces experiment time at the expense of some loss in accuracy. If
the two approaches are combined to build a predictive model based
on SimPoint samples, that model must handle input imprecision
(which acts like noise), and not amplify error. Fortunately, ANNs

8

0 5 10 15 20 25 30 35 40 45 50 55
Percentage Error

0
10
20
30
40
50
60
70
80
90

100
P

er
ce

nt
ag

e
of

 S
am

pl
es

art-omp (CMP)

0 5 10 15 20 25 30 35 40 45 50 55
Percentage Error

0
10
20
30
40
50
60
70
80
90

100

P
er

ce
nt

ag
e

of
 S

am
pl

es

swim-omp (CMP)

0 5 10 15 20 25 30 35 40 45 50 55
Percentage Error

0
10
20
30
40
50
60
70
80
90

100

P
er

ce
nt

ag
e

of
 S

am
pl

es

mg (CMP)

Figure 7. Empirical CDF plots of error on CMP study: x axes show percentage error, and the y axes show the percentage of data points that achieve error
less than each x value

L1 size L1 block size (B) L1 ways L1 write policy L2 size (KB) L2 block size (B) L2 ways L2 bus width FSB frequency (GHz) IPC

Best Simulation Configurations

16 64 2 WB 1K 128 16 32 1.4 1.10
16 64 2 WB 1K 128 16 16 1.4 1.10
16 64 2 WB 1K 128 8 32 1.4 1.10

Best Predicted Configurations

16 32 2 WB 1K 128 16 32 1.4 1.09
16 32 4 WB 1K 128 16 32 1.4 1.08
16 64 1 WB 1K 128 16 8 0.8 1.08

Table 5. Similarity in best configurations for bzip2

Application

Accuracy applu mcf mgrid mesa equake crafty vortex bzip2 gcc
98% 1.09 1.23 1.17 1.17 1.15 1.18 1.32 1.0 1.0
97% 1.51 1.29 1.13 2.55 1.0 1.0 1.0 1.15 1.15

Table 6. Reduction factors in number of sample points (active sampling vs. random sampling)

1 2 3 4 5 6 7 8 9
Percentage of Full Space Sampled

0

1

2

3

4

T
ra

in
in

g
T

im
e

(M
in

ut
es

) Processor Study
Memory Study

Figure 8. Training times

1.
0

1.
9

3.
2

1.
0

2.
0

2.
8

1.
0

2.
0

2.
5

1.
0

2.
0

3.
1

Mean Percentage Error across Design Space

1

10

100

1K

10K

F
ac

to
r

of
 R

ed
uc

tio
n

in
 S

im
ul

at
ed

 In
st

ru
ct

io
ns

crafty equake mcf mesa

Figure 9. Gains from combining ANNs+SimPoint

work well in the presence of noise. To verify the robustness of our
models, we repeat the processor study (with random sampling) us-
ing SimPoint. After deriving SimPoints and corresponding weights,
we collect results for each application on every point in the space by
calculating SimPoint performance estimates per run. We train our
ANNs on these noisy datasets, but measure accuracy with respect to
the complete simulations. Figure 9 shows gains from combining ap-
proaches, and Figure 10 shows details. Figure 9 shows reduction in
simulated instructions at average percentage errors between 1-4%.
The combined approach yields impressive reductions in number of
simulated instructions for design space exploration. Even at error
rates as low as 1%, the combined approach reduces number of sim-
ulated instructions by two-three orders of magnitude. If 3.2% error
rates can be tolerated, reductions reach three-four orders of mag-
nitude. Of these gains, ANN modeling contributes about 40-200×,
while SimPoint contributes 10-60×.

The top of Figure 10 shows learning curves. When simulating
only 0.24% of the parameter space, average error rate and stan-
dard deviation vary between 3.5-4.4% and 2.4-3.2%, respectively.
Error rates steadily decrease as simulation results are added to the
training sets. When 1% of the full space is simulated, average er-
ror rate drops to <2.7% and standard deviation drops to 1.4-2.0%.
At this sampling rate, the models are accurate and perform consis-
tently well in all regions of the design space, as indicated by lower
standard deviation. When training sets contain 2% of the full space,
average error falls between 1.1-1.4%. In this regime, standard de-
viation varies between 0.9-1.2%. Compared to using full simula-
tions, training models with SimPoint results gives slightly higher
error, but differences are negligible. The bottom of Figure 10 plots
estimated and average error and its standard deviation as a function

9

of training set size. Estimates are again accurate. One difference
between these and the original results is that estimates provided by
cross validation beyond a 1% sampling are consistently lower than
actual error (differences are small). When cross validation calcu-
lates error estimates, it does so with respect to SimPoint results,
unaware of the noise in those results. Note, however, that these es-
timates are never off by more than 1% in this regime.

Our results indicate that ANN ensembles handle the inherent
inaccuracies induced by SimPoint well. Typically, average error
rates of ≤2% are maintained below a 1% sampling of the full
design space, and a 1% error rate is obtained by sampling about
2% of the space (representing 50-100× fewer simulations).

5. Related Work
Several recent articles elucidate aspects of the design space prob-
lem. Martonosi and Skadron [22] summarize a 2001 NSF work-
shop’s conclusions: trends towards multiple cores and increasing
on-chip heterogeneity will lead us to build systems that are difficult
to simulate; we require research into abstractions and evaluation
methodologies that make quantitative evaluations of complex sys-
tems manageable; existing tools dictate the majority of research,
resulting in light exploration of difficult-to-model parts of the de-
sign space; and the community’s emphasis on simulation may cause
practitioners to overlook other useful and possibly more informa-
tive modeling techniques. Jacob [16] spends six months simulation
time to study a small part of a memory system design space. Davis
et al. [5] struggle with massive design spaces for in-order multi-
threaded CMP configurations: they employ industry guidelines to
prune the space, but find the remaining find 13K design points for
in-order CPUs alone unmanageable.

5.1 Analytic and Statistical Models

Noonberg and Shen [27] use probability vectors to compose a set
of components as linked Markov chain models solved iteratively,
delivering 90-98% accuracy on a set of kernels. Karkhanis and
Smith [18] construct an intuitive first-order analytic model of su-
perscalar microprocessors that estimates performance with 87-95%
accuracy compared to detailed simulation. Fields et al. [11] define
interaction costs (icosts) to identify events affecting another event
of interest. They propose efficient hardware to enable sampling ex-
ecution in sufficient detail to construct statistically representative
microarchitecture graphs for computing icosts.

Yi et al. demonstrate Plackett and Burman fractional factorial
design [41] in prioritizing parameters for sensitivity studies. They
model a high and low value for a set of N parameters, varying each
independently to explore extremes of the design space in 2N simu-
lations. By focusing on the most important parameters, PB analysis
can reduce the simulations required to explore a large design space.
Chow and Ding [3] and Cai et al. [1] apply principal components
analysis and multivariate analysis to identify the most important
parameters and their correlations for processor design. Eeckhout et
al. [9] and Phansalkar et al. [29] use principal components analysis
for workload composition and benchmark suite subsetting.

Muttreja et al. [25, 26] perform macromodeling, pre-characterizing
reusable software components to construct high-level models to es-
timate performance and energy consumption. Symbolic regression
filters irrelevant macromodel parameters, constructs macromodel
functions, and derives optimal coefficient values to minimize fit-
ting error. They apply their approach to simulation of several em-
bedded benchmarks, yielding estimates with maximum 1.3% error.
Joseph et al [17] develop linear models primarily for identifying
significant parameters and their interactions. Not intended to be
predictive, model prediction accuracy depends on use of appropri-
ate input transformations.

Lee and Brooks [21] propose regression on cubic splines (piece-
wise polynomials) for predicting performance and power for appli-
cations executing on microprocessor configurations in a large mi-
croarchitectural design space. Their approach is not automated, and
requires some statistical intuition on the part of the modeler. Like
us, they observe high accuracies at sparse samplings. We expect
our approaches to be complementary, and are currently collaborat-
ing with them to perform fair comparisons and gain insight into
predictive modeling, in general.

5.2 Reduced Simulation Workloads

Statistical simulation [8] represents an attractive alternative to full
simulation for many purposes. The technique first derives applica-
tion characteristics; generates a much smaller, synthetic trace ex-
hibiting those characteristics; and then simulates that trace. Oskin
et al. [28] develop a hybrid simulator (HLS) that uses statistical
profiles to model application instruction and data streams. HLS dy-
namically generates a code base and symbolically executes it on
a superscalar microprocessor core much faster than detailed, ob-
serving average error within 5-7% of cycle-by-cycle simulation of
a MIPS R10000. Iyengar et al. [15] evaluate representativeness of
sampled, reduced traces (with respect to actual application work-
loads) and develop a graph-based heuristic to generate better syn-
thetic traces. Eeckhout et al. [6] build on this to generate statisti-
cal control flow graphs characterizing program execution, attaining
1.8% average error on 10 SPEC 2000 benchmarks.

5.3 Partial Simulation Techniques

Wunderlich et al. [40] model minimal instruction stream subsets
in SMARTS to achieve results within desired confidence inter-
vals. The approach can deliver high accuracies, even with small
sampling intervals. For large intervals, as in SimPoint [34], state
warmup becomes less significant, but can still improve accuracy.

Conte et al. [4] and Haskins and Skadron [12] sample portions
of application execution, performing warmup functional simulation
to create correct cache and branch predictor state for portions of the
application being simulated in detail. Haskins and Skadron exploit
Memory Reference Reuse Latencies (MRRLs) to choose the num-
ber of warmup instructions to simulate functionally before a desired
simulation point [13]. This selection of warm-up periods roughly
halves simulation time with minimal effect on IPC accuracy. Eeck-
hout et al. [7] further reduce warmup periods with Boundary Line
Reuse Latencies (BLRLs), in which they consider only reuse la-
tencies that cross the boundary between warmup and sample. Van
Biesbrouck et al. [37] investigate warmup for both SimPoint and
SMARTS, storing reduced Touched Memory Images (TMIs) and
Load Value Sequences (LVSs) of data to be accessed in a simula-
tion interval in conjunction with Memory Hierarchy State (MHS)
collected through cache simulation of the target benchmark. They
find MHS+LVS to be as accurate as MRRLs with faster simulation,
and to require less storage than TurboSMARTS [38] checkpoints.

Rapaka and Marculescu [31] use a hybrid simulation engine to
detect code hotspots of high temporal locality and use information
from these to estimate statistics for the remaining code. This ap-
proach needs no application behavior characterization before simu-
lation. Their adaptive profiling strategy predicts application perfor-
mance and power with less than 2% error while speeding simula-
tions by up to 12×. This approach is not tied to a given architecture
or application/input pairs, but requires modifying the simulation
model for adaptive sampling.

6. Conclusions
We demonstrate that Artificial Neural Networks can model large
design spaces with high accuracy and speed (training the ANNs on

10

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

P
er

ce
nt

ag
e

E
rr

or
mesa (Processor/ANN+Simpoint)

Mean
StDev

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
equake (Processor/ANN+Simpoint)

Mean
StDev

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

mcf (Processor/ANN+Simpoint)
Mean
StDev

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

crafty (Processor/ANN+Simpoint)
Mean
StDev

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

P
er

ce
nt

ag
e

E
rr

or

mesa (Processor/ANN+Simpoint)
Mean
Estimated Mean

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
equake (Processor/ANN+Simpoint)

Mean
Estimated Mean

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

mcf (Processor/ANN+Simpoint)
Mean
Estimated Mean

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

crafty (Processor/ANN+Simpoint)
Mean
Estimated Mean

0 1 2 3 4 5 6 7 8 9 10
Percentage of Full Space Sampled

0
1
2
3
4
5
6
7
8

P
er

ce
nt

ag
e

E
rr

or

mesa (Processor/ANN+Simpoint)
StDev
Estimated StDev

0 1 2 3 4 5 6 7 8 9 10
Percentage of Full Space Sampled

0
1
2
3
4
5
6
7
8
equake (Processor/ANN+Simpoint)

StDev
Estimated StDev

0 1 2 3 4 5 6 7 8 9 10
Percentage of Full Space Sampled

0
1
2
3
4
5
6
7
8

mcf (Processor/ANN+Simpoint)
StDev
Estimated StDev

0 1 2 3 4 5 6 7 8 9 10
Percentage of Full Space Sampled

0
1
2
3
4
5
6
7
8

crafty (Processor/ANN+Simpoint)
StDev
Estimated StDev

Figure 10. SimPoint processor study results (random sampling)

1-2% of the space lets us predict results for other design points with
98-99% accuracy). Our approach is potentially of great value to
computer architects, who rely on design space exploration to eval-
uate the sensitivity of a proposal to many interacting architectural
parameters. We present a fully automated, general mechanism to
build accurate models of architectural design spaces from limited
simulation results. The approach is orthogonal to statistical tech-
niques that reduce single simulation times or assess parameter im-
portance, and we show that combining our models with one already
widely used technique reduces number of simulated instructions by
three-four orders of magnitude. We make several contributions:

• a general mechanism to build highly accurate, confident models
of architectural design spaces, allowing architects to cull unin-
teresting design points quickly and focus on the most promising
regions of the design space;
• a framework that incorporates additional simulation results in-

crementally and allows models to be queried to predict perfor-
mance impacts of architectural changes, enabling efficient dis-
covery of tradeoffs among parameters in different regions;
• an evaluation showing that training times are negligible com-

pared to even individual architectural simulations; and
• an analysis of results showing that our approach can reduce

simulation times for sensitivity studies by several orders of
magnitude with almost no loss in accuracy.

We predict performance here, but our approach is sufficiently
general to predict other statistics, even several at once. Our mecha-
nism enables much faster exploration of design spaces of currently
feasible sizes, and makes possible exploration of massive spaces
outside the reach of current simulation infrastructures. We thus pro-
vide the architect with another tool to assist in the design and eval-
uation of systems. In so doing, we hope to increase understanding
of design tradeoffs in a world of ever increasing system complexity.

Acknowledgments
Part of this work was performed under the auspices of the U.S.
Department of Energy by University of California Lawrence Liver-
more National Laboratory (LLNL) under contract W-7405-Eng-48
(UCRL-CONF-223240) and under National Science Foundation
(NSF) grants CCF-0444413, OCI-0325536, and CNS-0509404.
Any opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessar-
ily reflect the views of the NSF or LLNL. The authors thank Dave
Albonesi, Kai Li, José Martı́nez, José Moreira, Karan Singh, and
the anonymous reviewers for feedback on this work. A research
equipment grant from Intel Corp. provided computing resources
that helped enable our design space studies.

References
[1] G. Cai, K. Chow, T. Nakanishi, J. Hall, , and M. Barany. Multivariate

power/performance analysis for high performance mobile micropro-
cessor design. In Power Driven Microarchitecture Workshop, June
1998.

[2] R. Caruana, S. Lawrence, and C. Giles. Overfitting in neural nets:
Backpropagation, conjugate gradient, and early stopping. In Proc.
Neural Information Processing Systems Conference, pages 402–408,
Nov. 2000.

[3] K. Chow and J. Ding. Multivariate analysis of Pentium Pro processor.
In Intel Software Developers Conference, pages 84–91, Oct. 1997.

[4] T. Conte, M. Hirsch, and K. Menezes. Reducing state loss for effective
trace sampling of superscalar processors. In Proc. IEEE International
Conference on Computer Design, pages 468–477, Oct. 1996.

[5] J. Davis, J. Laudon, and K. Olukotun. Maximizing CMP throughput
with mediocre cores. In Proc.IEEE/ACM International Conference
on Parallel Architectures and Compilation Techniques, pages 51–62,
Oct. 2005.

11

[6] L. Eeckhout, R. Bell, Jr., B. Stougie, K. De Bosschere, and L. John.
Control flow modeling in statistical simulation for accurate and
efficient processor design studies. In Proc. 31st IEEE/ACM
International Symposium on Computer Architecture, pages 350–361,
June 2004.

[7] L. Eeckhout, Y. Luo, L. John, and K. De Bosschere. BLRL:
Accurate and efficient warmup for sampled processor simulation.
The Computer Journal, 48(4):451–459, 2005.

[8] L. Eeckhout, S. Nussbaum, J. Smith, and K. De Bosschere. Statistical
simulation: Adding efficiency to the computer designer’s toolbox.
IEEE Micro, 23(5):26–38, 2003.

[9] L. Eeckhout, H. Vandierendonck, and K. De Bosschere. Quantifying
the impact of input data sets on program behavior and its applications.
Journal of Instruction Level Parallelism, 5:http://www.jilp.org/vol5,
Feb. 2003.

[10] S. Eyerman, L. Eeckhout, and K. D. Bosschere. The shape of
the processor design space and its implications for early stage
explorations. In Proc. 7th WSEAS International Conference on
Automatic Control, Modeling and Simulation, pages 395–400, Mar.
2005.

[11] B. Fields, R. Bodick, M. Hill, and C. Newburn. Interaction cost
and shotgun profiling. ACM Transactions on Architecture and Code
Optimization, 1(3):272–304, 2004.

[12] J. Haskins, Jr. and K. Skadron. Minimal subset evaluation: Rapid
warm-up for simulated hardware state. In Proc. IEEE International
Conference on Computer Design, pages 32–39, Sept. 2001.

[13] J. Haskins, Jr. and K. Skadron. Memory reference reuse latency:
Accelerated sampled microarchitecture simulation. In Proc. IEEE
International Symposium on Performance Analysis of Systems and
Software, pages 195–203, Mar. 2003.

[14] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer Verlag,
2001.

[15] V. Iyengar, L. Trevillyan, and P. Bose. Representative traces for
processor models with infinite cache. In Proc. 2nd IEEE Symposium
on High Performance Computer Architecture, pages 62–73, Feb.
1996.

[16] B. Jacob. A case for studying DRAM issues at the system level. IEEE
Micro, 23(4):44–56, 2003.

[17] P. Joseph, K. Vaswani, and M. Thazhuthaveetil. Use of linear
regression models for processor performance analysis. In Proc.
12th IEEE Symposium on High Performance Computer Architecture,
pages 99–108, Feb. 2006.

[18] T. Karkhanis and J. Smith. A 1st-order superscalar processor model.
In Proc. 31st IEEE/ACM International Symposium on Computer
Architecture, pages 338–349, June 2004.

[19] A. KleinOsowski and D. Lilja. MinneSPEC: A new SPEC benchmark
workload for simulation-based computer architecture research.
Computer Architecture Letters, 1, June 2002.

[20] R. Kumar, V. Zyuban, and D. Tullsen. Interconnections in multi-core
architectures: Understanding mechanisms, overheads and scaling.
In Proc. 32nd IEEE/ACM International Symposium on Computer
Architecture, pages 408–419, June 2005.

[21] B. Lee and D. Brooks. Accurate and efficient regression modeling
for microarchitectural performance and power prediction. In Proc.
12th ACM Symposium on Architectural Support for Programming
Languages and Operating Systems, Oct. 2006.

[22] M. Martonosi and K. Skadron. NSF computer performance evaluation
workshop http://www.princeton.edu/˜mrm/nsf sim final.pdf,
Dec. 2001.

[23] C. Marzban. A neural network for tornado diagnosis. Neural
Computing and Applications, 9(2):133–141, 2000.

[24] T. Mitchell. Machine Learning. WCB/McGraw Hill, Boston, MA,
1997.

[25] A. Muttreja, A. Raghunathan, S. Ravi, and N. Jha. Automated
energy/performance macromodeling of embedded software. In Proc.
41st ACM/IEEE Design Automation Conference, pages 99–102, June
2004.

[26] A. Muttreja, A. Raghunathan, S. Ravi, and N. Jha. Hybrid simulation
for embedded software energy estimation. In Proc. 42nd ACM/IEEE
Design Automation Conference, pages 23–26, July 2005.

[27] D. Noonburg and J. Shen. Theoretical modeling of superscalar
processor performance. In Proc. IEEE/ACM 27th International
Symposium on Microarchitecture, pages 53–62, Nov. 1994.

[28] M. Oskin, F. Chong, and M. Farrens. HLS: Combining statistical
and symbolic simulation to guide microprocessor design. In Proc.
27th IEEE/ACM International Symposium on Computer Architecture,
pages 71–82, June 2000.

[29] A. Phansalkar, A. Joshi, L. Eeckhout, and L. John. Measuring
program similarity: Experiments with SPEC CPU benchmark suites.
In Proc. IEEE International Symposium on Performance Analysis of
Systems and Software, pages 10–20, Mar. 2005.

[30] D. Pomerleau. Knowledge-based training of artificial neural networks
for autonomous robot driving. In J. Connell and S. Mahadevan,
editors, Robot Learning, pages 19–43. Kluwer Academic Press,
Boston, 1993.

[31] V. Rapaka and D. Marculescu. Pre-characterization free, efficient
power/performance analysis of embedded and general purpose
software applications. In Proc. ACM/IEEE Design, Automation
and Test in Europe Conference and Exposition, pages 10504–10509,
Mar. 2003.

[32] J. Renau. SESC. http://sesc.sourceforge.net/index.html.

[33] M. Saar-Tsechansky and F. Provost. Active learning for class
probability estimation and ranking. In Proc. 17th International Joint
Conference on Artificial Intelligence, pages 911–920, Aug. 2001.

[34] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In Proc. 10th Symposium
on Architectural Support for Programming Languages and Operating
Systems, pages 45–57, Oct. 2002.

[35] Standard Performance Evaluation Corporation. SPEC CPU bench-
mark suite. http://www.specbench.org/osg/cpu2000/, 2000.

[36] G. Tesauro. Temporal difference learning and TD-Gammon.
Communications of the ACM, 38(3):58–68, Mar. 1995.

[37] M. Van Biesbrouck, L. Eeckhout, and B. Calder. Efficient sampling
startup for sampled processor simulation. In Proc. 1st International
Conference on High Performance Embedded Architectures and
Compilers, pages 47–67, Nov. 2005.

[38] T. Wenisch, R. Wunderlich, B. Falsafi, and J. Hoe. TurboSMARTS:
Accurate microarchitecture simulation sampling in minutes. SIG-
METRICS Performance Evaluation Review, 33(1):408–409, 2005.

[39] S. Wilton and N. Jouppi. CACTI: An enhanced cache access and cycle
time model. IEEE Journal of Solid-State Circuits, 31(5):677–688,
May 1996.

[40] R. Wunderlich, T. Wenish, B. Falsafi, and J. Hoe. SMARTS:
Accelerating microarchitecture simulation via rigorous statistical
sampling. In Proc. 30th IEEE/ACM International Symposium on
Computer Architecture, pages 84–95, June 2003.

[41] J. Yi, D. Lilja, and D. Hawkins. A statistically-rigorous approach for
improving simulation methodology. In Proc. 9th IEEE Symposium
on High Performance Computer Architecture, pages 281–291, June
2003.

12

